Pearson Edexcel International A Level Mathematics Pure Mathematics 3

Past Paper Collection (from 2020)

www.CasperYC.club/wma13

Last updated: July 1, 2024

Paper Name	Page	Paper Name	Page	Paper Name	Page
P3 2020 01	1			P3 2020 10	33
P3 2021 01	65	P3 2021 06	97	P3 2021 10	129
P3 2022 01	161	P3 2022 05	193	P3 2022 10	225
P3 2023 01	257	P3 2023 06	289	P3 2023 10	321
P3 2024 01	353	P3 2024 06	381		

Please check the examination details	below before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	Centre Number Candidate Number
Wednesday 22	2 January 2020
Morning (Time: 1 hour 30 minutes)	Paper Reference WMA13/01
Mathematics	
International Advanced Pure Mathematics P3	Level
You must have: Mathematical Formulae and Statis	tical Tables (Lilac), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

Leave blank

1.	A popul	ation	of a	rare	spec	ies of to	ad	is being studie	ed.				
	FD1		0						C.	. 4	0.1		

The number of toads, N, in the population, t years after the start of the study, is modelled by the equation

$$N = \frac{900e^{0.12t}}{2e^{0.12t} + 1} \qquad t \geqslant 0, t \in \mathbb{R}$$

According to this model,

(a) calculate the number of toads in the population at the start of the study,

(1)

(b) find the value of *t* when there are 420 toads in the population, giving your answer to 2 decimal places.

(4)

(c) Explain why, according to this model, the number of toads in the population can never reach 500

(1)

Question 1 continued		bla
		Q1
	(Total 6 marks)	

Leave blank

2.	The	functio	n f and	1 the	function	ø	are	defined	hv
- •	1110	Tunctio	II I aii	ı ilic	Tunction	5	arc	ucilicu	Uy

$$f(x) = \frac{12}{x+1} \qquad x > 0, x \in \mathbb{R}$$

$$g(x) = \frac{5}{2} \ln x \qquad x > 0, x \in \mathbb{R}$$

(a) Find, in simplest form, the value of $fg(e^2)$

(2)

(b) Find f⁻¹

(3)

(c) Hence, or otherwise, find all real solutions of the equation

$$f^{-1}(x) = f(x)$$

(3)

Question 2 continued	Leave

Question 2 continued	Leave blank

Question 2 continued		Leave blank
		Q2
	(Total 8 marks)	

3.

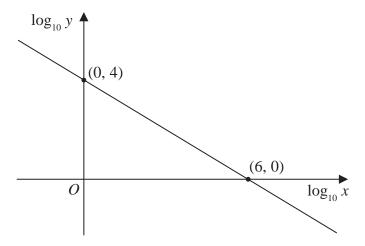


Figure 1

Figure 1 shows a linear relationship between $\log_{10} y$ and $\log_{10} x$

The line passes through the points (0, 4) and (6, 0) as shown.

(a) Find an equation linking $\log_{10} y$ with $\log_{10} x$

(2)

(b) Hence, or otherwise, express y in the form px^q , where p and q are constants to be found.

(3)

Question 3 continued	b
	Q

(5)

Leave blank

- **4.** (i) $f(x) = \frac{(2x+5)^2}{x-3} \qquad x \neq 3$
 - (a) Find f'(x) in the form $\frac{P(x)}{Q(x)}$ where P(x) and Q(x) are fully factorised quadratic expressions.
 - (b) Hence find the range of values of x for which f(x) is increasing. (6)

(ii)
$$g(x) = x\sqrt{\sin 4x} \qquad 0 \leqslant x < \frac{\pi}{4}$$

The curve with equation y = g(x) has a maximum at the point M.

Show that the x coordinate of M satisfies the equation

$$\tan 4x + kx = 0$$

where k is a constant to be found.

Question 4 continued	Leave blank

Question 4 continued	Leave blank

Question 4 continued		Leav blan
		Q ₂
	(Total 11 marks)	

Leav	e
blanl	<

5.	(a)	Use the substitution $t = \tan x$ to show that the equation	1
		$12\tan 2x + 5\cot x \sec^2 x = 0$	
		can be written in the form	
		$5t^4 - 24t^2 - 5 = 0$	(4)
	(b)	Hence solve, for $0 \le x < 360^{\circ}$, the equation	
		$12\tan 2x + 5\cot x \sec^2 x = 0$	
		Show each stage of your working and give your answers to one decimal place.	(4)

Question 5 continued	eave lank

Question 5 continued	Leave

	Q5

Leave blank

6.

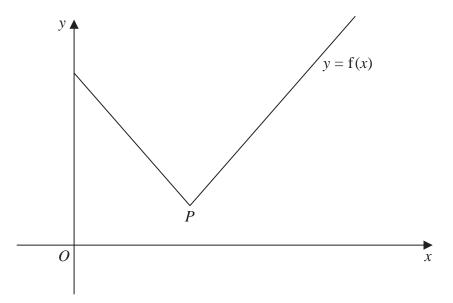


Figure 2

Figure 2 shows part of the graph with equation y = f(x), where

$$f(x) = 2|2x - 5| + 3$$
 $x \ge 0$

The vertex of the graph is at point P as shown.

(a) State the coordinates of P.

(2)

(b) Solve the equation f(x) = 3x - 2

(4)

Given that the equation

$$f(x) = kx + 2$$

where k is a constant, has exactly two roots,

(c) find the range of values of k.

(3)

	Lea bla	ave ank
Question 6 continued		
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	

Question 6 continued	Leave blank

Question 6 continued		bla
		Q 6
	(Total 9 marks)	

Leave blank

7.

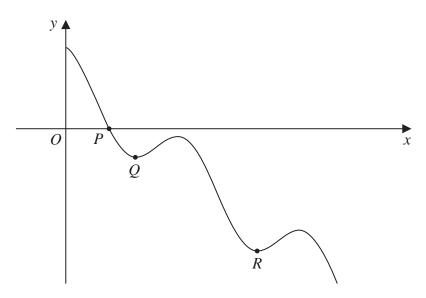


Figure 3

Figure 3 shows a sketch of part of the curve with equation

$$y = 2\cos 3x - 3x + 4$$
 $x > 0$

where *x* is measured in radians.

The curve crosses the *x*-axis at the point *P*, as shown in Figure 3.

Given that the x coordinate of P is α ,

(a) show that α lies between 0.8 and 0.9

(2)

The iteration formula

$$x_{n+1} = \frac{1}{3} \arccos(1.5x_n - 2)$$

can be used to find an approximate value for α .

- (b) Using this iteration formula with $x_1 = 0.8$ find, to 4 decimal places, the value of
 - (i) x_2

(ii)
$$x_5$$

The point Q and the point R are local minimum points on the curve, as shown in Figure 3.

Given that the x coordinates of Q and R are β and λ respectively, and that they are the two smallest values of x at which local minima occur,

(c) find, using calculus, the exact value of β and the exact value of λ .

(6)

Question 7 continued	

Question 7 continued	Leave
Question / continued	

Question 7 continued	L. b
	(Total 11 marks)

Leave blank

8. (i) Find, using algebraic integration, the exact value of

$$\int_{3}^{42} \frac{2}{3x-1} \, \mathrm{d}x$$

giving your answer in simplest form.

(4)

(ii)
$$h(x) = \frac{2x^3 - 7x^2 + 8x + 1}{(x - 1)^2} \qquad x > 1$$

Given $h(x) = Ax + B + \frac{C}{(x-1)^2}$ where A, B and C are constants to be found, find

$$\int h(x) dx$$

(6)

O	Leave blank
Question 8 continued	
	1

	Leave blank
Question 8 continued	
	-
	_
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	_
	_
	_
	-
	-
	-
	-
	_
	_
	_
	-
	-
	-
	_
	_
	-

Question 8 continued		blan
		_
	(Total 10 marks)	Q8

Leave blank

9.	$f(\theta) = 5\cos\theta - 4\sin\theta$	$\theta \in \mathbb{R}$

(a) Express $f(\theta)$ in the form $R\cos(\theta + \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the exact value of R and give the value of α , in radians, to 3 decimal places.

(3)

The curve with equation $y = \cos \theta$ is transformed onto the curve with equation $y = f(\theta)$ by a sequence of two transformations.

Given that the first transformation is a stretch and the second a translation,

- (b) (i) describe fully the transformation that is a stretch,
 - (ii) describe fully the transformation that is a translation.

(2)

Given

$$g(\theta) = \frac{90}{4 + (f(\theta))^2} \qquad \theta \in \mathbb{R}$$

(c) find the range of g.

$I \cap$
LZ
\ -

Question 9 continued	Leave

	Question 9 continued	Leave blank
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
		Q9
	(Total 7 marks)	
	TOTAL FOR PAPER IS 75 MARKS	
	END END	

Please check the examination details below before entering your candidate information				
Candidate surname	Other names			
Pearson Edexcel International Advanced Level	tre Number Candidate Number			
Thursday 08 Oc	tober 2020			
Afternoon (Time: 1 hour 30 minutes)	Paper Reference WMA13/01			
Mathematics International Advanced Level Pure Mathematics P3				
You must have: Mathematical Formulae and Statistical Tables (Lilac), calculator Total Marks				

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

Leave

$2\cos 2x = 7\cos x$	
giving your solutions to one decimal place.	
(Solutions based entirely on graphical or numerical methods are not acceptable.) (5)	

Question 1 continued		Lea bla
		Q1
	(Total 5 marks)	

A sci	entist monitored the growth of bacteria on a dish over a 30-day period.
	area, $N \text{mm}^2$, of the dish covered by bacteria, t days after monitoring began, is elled by the equation
	$\log_{10} N = 0.0646 t + 1.478 \qquad 0 \leqslant t \leqslant 30$
(a) S	Show that this equation may be written in the form
	$N = a b^t$
	where a and b are constants to be found. Give the value of a to the nearest integer and give the value of b to 3 significant figures.
	Use the model to find the area of the dish covered by bacteria 30 days after monitoring began. Give your answer, in mm ² , to 2 significant figures. (2)
	began. Give your answer, in mm ² , to 2 significant figures.
	(2)

Question 2 continued		Lea bla
	(Total 6 marks)	Q2

3.

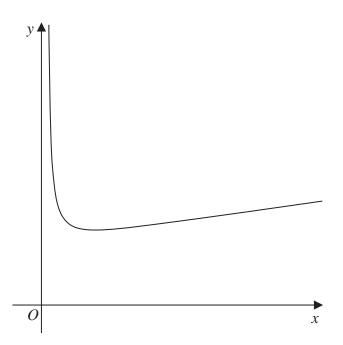


Figure 1

Figure 1 shows a sketch of a curve with equation y = f(x) where

$$f(x) = \frac{2x+3}{\sqrt{4x-1}} \qquad x > \frac{1}{4}$$

(a) Find, in simplest form, f'(x).

(4)

(b) Hence find the range of f.

(3)

Question 3 continued	Leave blank
design 5 continued	

Overtion 2 continued	Leave
Question 3 continued	

Question 3 continued	bl
	Q3

4.

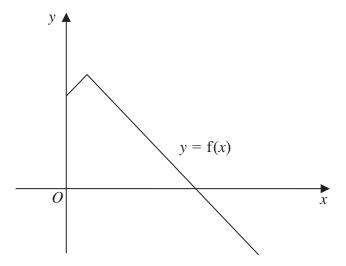


Figure 2

Figure 2 shows a sketch of part of the graph with equation y = f(x) where

$$f(x) = 21 - 2|2 - x|$$
 $x \ge 0$

(a) Find ff(6) (2)

(b) Solve the equation f(x) = 5x (2)

Given that the equation f(x) = k, where k is a constant, has exactly two roots,

(c) state the set of possible values of k.

(2)

The graph with equation y = f(x) is transformed onto the graph with equation y = a f(x - b)

The vertex of the graph with equation y = a f(x - b) is (6, 3).

Given that a and b are constants,

(d) find the value of a and the value of b.

(2)

	Leave blank
Question 4 continued	

Question 4 continued	Leave blank

Question 4 continued	
	Q

Leave
blank

5. (a) Show that	
$\sin 3x \equiv 3\sin x - 4\sin^3 x$	
$\sin 3x - 3\sin x$	(4)
(b) Hence find, using algebraic integration,	
$\int_{0}^{\frac{\pi}{3}}$	
$\int_0^{\frac{\pi}{3}} \sin^3 x \mathrm{d}x$	
	(4)

Question 5 continued		Lea blai
		Q5
	(Total 8 marks)	

6.

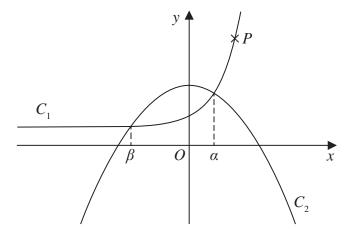


Figure 3

Figure 3 shows a sketch of curve C_1 with equation $y = 5e^{x-1} + 3$

and curve C_2 with equation $y = 10 - x^2$

The point P lies on C_1 and has y coordinate 18

(a) Find the x coordinate of P, writing your answer in the form $\ln k$, where k is a constant to be found.

(3)

The curve C_1 meets the curve C_2 at $x = \alpha$ and at $x = \beta$, as shown in Figure 3.

(b) Using a suitable interval and a suitable function that should be stated, show that to 3 decimal places $\alpha = 1.134$

(3)

The iterative equation

$$x_{n+1} = -\sqrt{7 - 5e^{x_n - 1}}$$

is used to find an approximation to β .

Using this iterative formula with $x_1 = -3$

(c) find the value of x_2 and the value of β , giving each answer to 6 decimal places.

(3)

	Leave blank
Question 6 continued	

	Leave blank
Question 6 continued	

Question 6 continued		bla
	Q	2 6
	(Total 9 marks)	

7. (a) Express $\cos x + 4\sin x$ in the form $R\cos(x - \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$ Give the exact value of R and give the value of α , in radians, to 3 decimal places.

(3)

A scientist is studying the behaviour of seabirds in a colony.

She models the height above sea level, H metres, of one of the birds in the colony by the equation

$$H = \frac{24}{3 + \cos\left(\frac{1}{2}t\right) + 4\sin\left(\frac{1}{2}t\right)} \qquad 0 \leqslant t \leqslant 6.5$$

where *t* seconds is the time after it leaves the nest.

Find, according to the model,

(b) the minimum height of the seabird above sea level, giving your answer to the nearest cm,

(2)

(c) the value of t, to 2 decimal places, when H = 10

(4)

Question 7 continued		Leave blank
yueston / continueu		

Question 7 continued	Leave blank

Question 7 continued	
	Q

8.	(i)	The curve	C has	equation	y = g(x)	where
	(-)				7 0(1)	

$$g(x) = e^{3x} \sec 2x \qquad -\frac{\pi}{4} < x < \frac{\pi}{4}$$

(a) Find g'(x)

(2)

(b) Hence find the x coordinate of the stationary point of C.

(3)

(ii) A different curve has equation

$$x = \ln(\sin y) \qquad 0 < y < \frac{\pi}{2}$$

Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x}{\mathrm{f}(x)}$$

where f(x) is a function of e^x that should be found.

(4)

	Leave blank
Question 8 continued	
	1

Question 8 continued	b	Leave olank

Question 8 continued		bla
		06
	(Total 9 marks)	Q8

9. (a) Given that

$$\frac{x^4 - x^3 - 10x^2 + 3x - 9}{x^2 - x - 12} \equiv x^2 + P + \frac{Q}{x - 4} \qquad x > -3$$

find the value of the constant P and show that Q = 5

(4)

The curve C has equation y = g(x), where

$$g(x) = \frac{x^4 - x^3 - 10x^2 + 3x - 9}{x^2 - x - 12} \qquad -3 < x < 3.5 \qquad x \in \mathbb{R}$$

(b) Find the equation of the tangent to C at the point where x = 2Give your answer in the form y = mx + c, where m and c are constants to be found. (5)

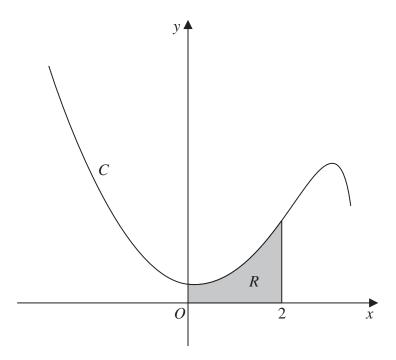


Figure 4

Figure 4 shows a sketch of the curve *C*.

The region R, shown shaded in Figure 4, is bounded by C, the y-axis, the x-axis and the line with equation x = 2

(c)	Find the exact area of R , writing your answer in the for	orm $a + b \ln 2$,	where a	and b
	are constants to be found.			

(5)

	Leave blank
Question 9 continued	

	Leave blank
Question 9 continued	

	Leave blank
Question 9 continued	

Question 9 continued		Leave blank
	_	
	_	
	_	
		Q9
/TF_4.1 4.4 1	lra)	γ
(Total 14 mar)		
TOTAL FOR PAPER IS 75 MAR	CA	

Please check the examination det	ails below before en	ntering your candidate information
Candidate surname		Other names
Pearson Edexcel International Advanced Level	Centre Numbe	er Candidate Number
Thursday 14	Januar	ry 2021
Morning (Time: 1 hour 30 minut	es) Paper	Reference WMA13/01
Mathematics International Advance Pure Mathematics P3	ed Level	
You must have: Mathematical Formulae and Sta	tistical Tables (L	Lilac), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

Leave
blank

$\int \frac{x^2 - 5}{2x^3} dx \qquad x > 0$	b
giving your answer in simplest form.	(3)

P3_2021_01_QP

Question 1 continued	

2.

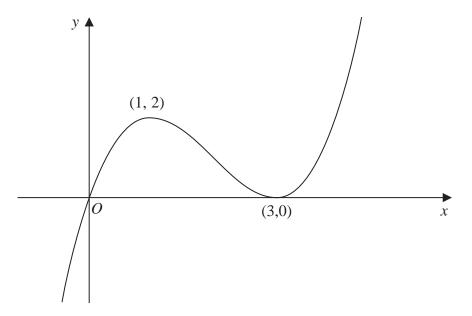


Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x), where $x \in \mathbb{R}$ and f(x) is a polynomial.

The curve passes through the origin and touches the x-axis at the point (3, 0)

There is a maximum turning point at (1, 2) and a minimum turning point at (3, 0)

On separate diagrams, sketch the curve with equation

(i)
$$y = 3f(2x)$$
 (3)

(ii)
$$y = f(-x) - 1$$
 (3)

On each sketch, show clearly the coordinates of

- the point where the curve crosses the y-axis
- any maximum or minimum turning points

Overtion 2 continued	Leave blank
Question 2 continued	
	Q2
(Total 6 marks)	

3.

$$f(x) = 3 - \frac{x-2}{x+1} + \frac{5x+26}{2x^2 - 3x - 5} \qquad x > 4$$

(a) Show that

$$f(x) = \frac{ax+b}{cx+d} \qquad x > 4$$

where a, b, c and d are integers to be found.

(4)

(b) Hence find $f^{-1}(x)$

(2)

(c) Find the domain of f⁻¹

(2)

P3_2021_01_QP

uestion 3 continued	Leave blank
desiron 5 continued	

Overtion 2 continued	Leave
Question 3 continued	

4.

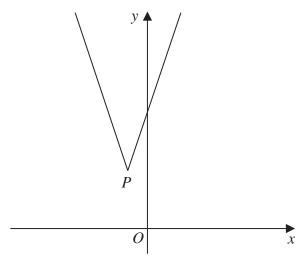


Figure 2

Figure 2 shows a sketch of the graph with equation y = f(x), where

$$f(x) = |3x + a| + a$$

and where a is a positive constant.

The graph has a vertex at the point P, as shown in Figure 2.

(a) Find, in terms of a, the coordinates of P.

(2)

(b) Sketch the graph with equation y = g(x), where

$$g(x) = |x + 5a|$$

On your sketch, show the coordinates, in terms of a, of each point where the graph cuts or meets the coordinate axes.

(2)

The graph with equation y = g(x) intersects the graph with equation y = f(x) at two points.

(c) Find, in terms of a, the coordinates of the two points.

(5)

Question 4 continued	Leave blank
euconon 4 continueu	

Question 4 continued	Leave blank

Question 4 continued	b

5.	The temperature, θ °C, inside an oven, t minutes after the oven is switched on, is given by
	$\theta = A - 180e^{-kt}$
	where A and k are positive constants.
	Given that the temperature inside the oven is initially 18 °C,
	(a) find the value of A. (2)
	The temperature inside the oven, 5 minutes after the oven is switched on, is 90 °C.
	(b) Show that $k = p \ln q$ where p and q are rational numbers to be found. (4)
	Hence find
	(c) the temperature inside the oven 9 minutes after the oven is switched on, giving your answer to 3 significant figures,
	(2)
	(d) the rate of increase of the temperature inside the oven 9 minutes after the oven is switched on. Give your answer in °C min ⁻¹ to 3 significant figures.
	(3)

Question 5 continued	Leave

Question 5 continued	Leave blank
Question 5 continued	

Question 5 continued	Le bl
	(Total 11 marks)

6.

$$f(x) = x \cos\left(\frac{x}{3}\right) \qquad x > 0$$

(a) Find f'(x)

(2)

(b) Show that the equation f'(x) = 0 can be written as

$$x = k \arctan\left(\frac{k}{x}\right)$$

where k is an integer to be found.

(2)

(c) Starting with $x_1 = 2.5$ use the iteration formula

$$x_{n+1} = k \arctan\left(\frac{k}{x_n}\right)$$

with the value of k found in part (b), to calculate the values of x_2 and x_6 giving your answers to 3 decimal places.

(2)

(d) Using a suitable interval and a suitable function that should be stated, show that a root of f'(x) = 0 is 2.581 correct to 3 decimal places.

(2)

	Leave blank
Question 6 continued	

Question 6 continued	Leav blan
e continued	
	I

Question 6 continued		bla
		Q6
	(Total 8 marks)	

In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

7. (a) Prove that

$$\frac{\sin 2x}{\cos x} + \frac{\cos 2x}{\sin x} \equiv \csc x \qquad x \neq \frac{n\pi}{2} \ n \in \mathbb{Z}$$

(3)

(b) Hence solve, for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$

$$7 + \frac{\sin 4\theta}{\cos 2\theta} + \frac{\cos 4\theta}{\sin 2\theta} = 3\cot^2 2\theta$$

giving your answers in radians to 3 significant figures where appropriate.

(6)

Question 7 continued	Leave blank
Question / continued	

Question 7 continued		Leave blank
yueston / continueu		

Question 7 continued		blan
		Q7
	(Total 9 marks)	

	$P = ab^t$
	I - uv
where a and b are	constants and t is the number of years after the start of 2005
Using the data for plotted of $\log_{10} P$ a	the years between the start of 2005 and the start of 2010, a graph is against t .
The points are four 0.68 on the $\log_{10} P$	nd to lie approximately on a straight line with gradient 0.09 and intercept axis.
(a) Find, according to 2 decimal p	
	(4)
(b) In the context	of the model, give a practical interpretation of the constant a . (1)
(c) Use the mode internet at the	el to estimate the percentage of the population who had access to the start of 2015
	(2)

Question 8 continued		Lea bla
	(Total 7 marks)	8

Leave	
blank	

9. Find

(1)	3x-2	dx
(1)	$3x^2 - 4x + 5$	uл

(2)

(ii)
$$\int \frac{e^{2x}}{(e^{2x} - 1)^3} dx$$
 $x \neq 0$

(2)

Question 9 continued	
	Q

10. The curve C has equation

$$x = 3\sec^2 2y$$
 $x > 3$ $0 < y < \frac{\pi}{4}$

(a) Find $\frac{dx}{dy}$ in terms of y.

(2)

(b) Hence show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{p}{qx\sqrt{x-3}}$$

where p is irrational and q is an integer, stating the values of p and q.

(3)

(c) Find the equation of the normal to C at the point where $y = \frac{\pi}{12}$, giving your answer in the form y = mx + c, giving m and c as exact irrational numbers.

(5)

Overtion 10 continued	Leave blank
Question 10 continued	

Owestian 10 continued	Leave blank
Question 10 continued	
	Q10
(Total 10 marks)	
TOTAL FOR PAPER IS 75 MARKS	
END	

Please check the examination deta	ils below before ent	ering your candidate information
Candidate surname		Other names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Time 1 hour 30 minutes	Paper referenc	WMA13/01
Mathematics		
International Advanced Pure Mathematics P3	d Level	
You must have: Mathematical Formulae and Stat	istical Tables (Ye	ellow), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.
- Good luck with your examination

Turn over ▶

1.	The	curve	C	has	ec	uation
	1110	carvo	\sim	Hub	-	Junion

$$y = x^2 \cos\left(\frac{1}{2}x\right) \qquad 0 < x \leqslant \pi$$

The curve has a stationary point at the point P.

(a) Show, using calculus, that the x coordinate of P is a solution of the equation

$$x = 2\arctan\left(\frac{4}{x}\right)$$

(4)

Using the iteration formula

$$x_{n+1} = 2\arctan\left(\frac{4}{x_n}\right) \qquad x_1 = 2$$

(b)	find the value of x_2	and the value	e of x_6 , giving	g your answei	rs to 3 decimal	l places.	
						(3))

Question 1 continued	L b
	Q
	(Total 7 marks)

2. (a) Show that

$$\frac{1 - \cos 2x}{2\sin 2x} \equiv k \tan x \qquad x \neq (90n)^{\circ} \qquad n \in \mathbb{Z}$$

where k is a constant to be found.

(3)

(b) Hence solve, for $0 < \theta < 90^{\circ}$

$$\frac{9(1-\cos 2\theta)}{2\sin 2\theta} = 2\sec^2\theta$$

giving your answers to one decimal place.

(6)

Question 2 continued	Leave blank

Question 2 continued	Leave blank

	Leave blank
Question 2 continued	
	Q2
(Total 9 marks)	

3. (i) Find

$$\int \frac{12}{\left(2x-1\right)^2} \, \mathrm{d}x$$

giving your answer in simplest form.

(2)

(ii) (a) Write $\frac{4x+3}{x+2}$ in the form

$$A + \frac{B}{x+2}$$
 where A and B are constants to be found

(b) Hence find, using algebraic integration, the exact value of

$$\int_{-8}^{-5} \frac{4x+3}{x+2} \, \mathrm{d}x$$

giving your answer in simplest form.

(6)

Question 3 continued	Leave blank

Question 3 continued	Leave blank

Question 3 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	-
	_
	-
	_
	_
	-
	_
	_
	-
	Q3
(Total 8 marks	

(3)

Leave blank

4.	The	functions	f	and	ø	are	defined	bv
-1.0	1110	Tunetions		unu	8	ui C	actifica	$\boldsymbol{\sigma}_{\boldsymbol{y}}$

$$f(x) = \frac{4x+6}{x-5} \qquad x \in \mathbb{R}, \ x \neq 5$$

$$g(x) = 5 - 2x^2 \qquad x \in \mathbb{R}, \ x \leqslant 0$$

(a) Solve the equation

$$fg(x) = 3 \tag{4}$$

(b) Find f^{-1} (3)

(c) Sketch and label, on the same axes, the curve with equation y = g(x) and the curve with equation $y = g^{-1}(x)$. Show on your sketch the coordinates of the points where each curve meets or cuts the coordinate axes.

Question 4 continued	Leave blank

	Leave
Question 4 continued	blank
Question 4 continued	

Question 4 continued	Leave blank
	_
	- -
	_
	-
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_ Q4
(Total 10 marks	

5.

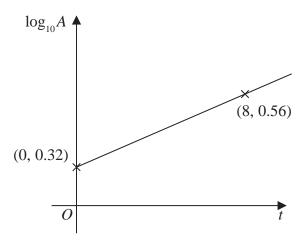


Figure 1

The growth of duckweed on a pond is being studied.

The surface area of the pond covered by duckweed, Am^2 , at a time t days after the start of the study is modelled by the equation

 $A = p q^t$ where p and q are positive constants

Figure 1 shows the linear relationship between $\log_{10} A$ and t.

The points (0, 0.32) and (8, 0.56) lie on the line as shown.

(a) Find, to 3 decimal places, the value of p and the value of q.

(4)

Using the model with the values of p and q found in part (a),

(b) find the rate of increase of the surface area of the pond covered by duckweed, in m²/day, exactly 6 days after the start of the study. Give your answer to 2 decimal places.

17) (
1 1	١.
10	,

Question 5 continued	Leave blank

Question 5 continued	Leave blank

		Leave blank
Question 5 continued		
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	-	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	Q5
(Total 7 marks)	

- **6.** Given that k is a positive constant,
 - (a) on separate diagrams, sketch the graph with equation
 - (i) y = k 2|x|
 - (ii) $y = \left| 2x \frac{k}{3} \right|$

Show on each sketch the coordinates, in terms of k, of each point where the graph meets or cuts the axes.

(4)

(b) Hence find, in terms of k, the values of x for which

$$\left| 2x - \frac{k}{3} \right| = k - 2|x|$$

giving your answers in simplest form.

(4)

	Leave
Question 6 continued	blank
Question o continueu	
	1

Question 6 continued	Leave blank

Question 6 continued	Leave blank
	Q6
(Total 8 r	

_		
_	Given	41 4
/	(tlven	ากฆ

$$x = 6\sin^2 2y \qquad 0 < y < \frac{\pi}{4}$$

show that		
	dv 1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{A\sqrt{(Bx - x^2)}}$	
where A and R ar	re integers to be found.	
where A and B ar	e integers to be found.	

Question 7 continued		Leave blank
		Q7
(Total 5 m	arks)	

8.	A scientist is studying a population of fish in a lake. The number of fish,	N, i	n 1	the
	population, t years after the start of the study, is modelled by the equation			

$$N = \frac{600e^{0.3t}}{2 + e^{0.3t}} \qquad t \geqslant 0$$

Use the equation of the model to answer parts (a), (b), (c), (d) and (e).

(a) Find the number of fish in the lake at the start of the study.

(1)

(b) Find the upper limit to the number of fish in the lake.

(1)

(c) Find the time, after the start of the study, when there are predicted to be 500 fish in the lake. Give your answer in years and months to the nearest month.

(4)

(d) Show that

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{A\mathrm{e}^{0.3t}}{\left(2 + \mathrm{e}^{0.3t}\right)^2}$$

where *A* is a constant to be found.

(3)

Given that when t = T, $\frac{dN}{dt} = 8$

(e) find the value of T to one decimal place.

(Solutions relying entirely on calculator technology are not acceptable.)

	/ A >	
- 4	/	
١,	-	

Question 8 continued	Leave blank

Question 8 continued	Leave blank

Question 8 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	Q8
(Total 13 marl	KS)

9.	(a) Express $12\sin x - 5\cos x$ in the form $R\sin(x - \alpha)$, where R and α are constants,
	$R>0$ and $0<\alpha<\frac{\pi}{2}$. Give the exact value of R and give the value of α in radians,
	to 3 decimal places.

(3)

The function g is defined by

$$g(\theta) = 10 + 12\sin\left(2\theta - \frac{\pi}{6}\right) - 5\cos\left(2\theta - \frac{\pi}{6}\right) \qquad \theta > 0$$

Find

- (b) (i) the minimum value of $g(\theta)$
 - (ii) the smallest value of θ at which the minimum value occurs.

(3)

The function h is defined by

(c) Find the range of h.

$$h(\beta) = 10 - (12\sin\beta - 5\cos\beta)^2$$

(2)

Question 9 continued	Leave blank

Question 9 continued		Leave blank
		<u>Q9</u>
(Total 8 marks)		
TOTAL FOR PAPER IS 75 MARKS END	•	

Please check the examination details belo	ow before ente	ering your candidate information	
Candidate surname		Other names	
Centre Number Candidate Number Pearson Edexcel Inter		nal Advanced Leve	!
Time 1 hour 30 minutes	Paper reference	WMA13/01	
Mathematics International Advanced Le Pure Mathematics P3	evel		
You must have: Mathematical Formulae and Statistica	al Tables (Ye	ellow), calculator	is

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1.	The	function	f is	defined	by
----	-----	----------	------	---------	----

$$f(x) = \frac{5x}{x^2 + 7x + 12} + \frac{5x}{x + 4} \qquad x > 0$$

(a) Show that
$$f(x) = \frac{5x}{x+3}$$
 (3)

(b) Find
$$f^{-1}$$

(3)

(3)

- (c) (i) Find, in simplest form, f'(x).
 - (ii) Hence, state whether f is an increasing or a decreasing function, giving a reason for your answer.

Question 1 continued	Leave

Question 1 continued	Leave

uestion 1 continued	

2.

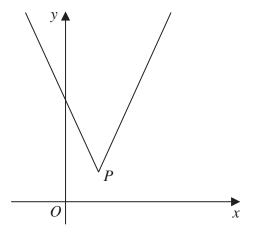


Figure 1

Figure 1 shows a sketch of part of the graph with equation y = f(x), where

$$f(x) = |3x - 13| + 5 \qquad x \in \mathbb{R}$$

The vertex of the graph is at point P, as shown in Figure 1.

(a) State the coordinates of P.

(2)

- (b) (i) State the range of f.
 - (ii) Find the value of ff(4)

(2)

(c) Solve, using algebra and showing your working,

$$16 - 2x > |3x - 13| + 5 \tag{4}$$

The graph with equation y = f(x) is transformed onto the graph with equation y = af(x + b)

The vertex of the graph with equation y = af(x + b) is (4, 20)

Given that a and b are constants,

(d) find the value of a and the value of b.

(2)

Question 2 continued	Leave blank

Question 2 continued	Leave blank

Question 2 continued	Leave blank
	Q2
(Total 1	0 marks)

3.

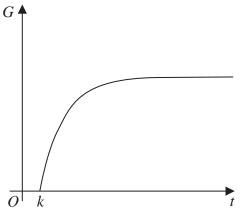


Figure 2

The total mass of gold, G tonnes, extracted from a mine is modelled by the equation

$$G = 40 - 30e^{1 - 0.05t}$$
 $t \ge k$ $G \ge 0$

where *t* is the number of years after 1st January 1800.

Figure 2 shows a sketch of G against t.

Use the equation of the model to answer parts (a), (b) and (c).

- (a) (i) Find the value of k.
 - (ii) Hence find the year and month in which gold started being extracted from the mine.

 (3)

(b) Find the total mass of gold extracted from the mine up to 1st January 1870. (2)

There is a limit to the mass of gold that can be extracted from the mine.

(c) State the value of this limit. (1)

Question 3 continued	Leave blank
	Q3
(Tota	l 6 marks)

Leave

4.	In this question you should show detailed reasoning.	1
	Solutions relying entirely on calculator technology are not acceptable.	
(a)	Show that the equation	
	$2\sin(\theta - 30^{\circ}) = 5\cos\theta$	
	can be written in the form	
	$\tan \theta = 2\sqrt{3} \tag{4}$	
(b)	Hence, or otherwise, solve for $0 \le x \le 360^{\circ}$	
	$2\sin(x - 10^{\circ}) = 5\cos(x + 20^{\circ})$	
	giving your answers to one decimal place. (3)	

Question 4 continued	Leave blank

Question 4 continued	Leave blank

uestion 4 continued	

Leave	
blank	

5. (i) Find, by algebraic integra	tion, the exact value of	
	$\int_{2}^{4} \frac{8}{(2x-3)^3} \mathrm{d}x$	(4)
(ii) Find, in simplest form,		
	$\int x(x^2+3)^7\mathrm{d}x$	
	•	(2)

uestion 5 continued	

6.	(i)	The	curve	C	has	eaua	tion
•	(1)	1110	curve	\sim_1	Hub	cquu	LIOI

$$y = 3\ln(x^2 - 5) - 4x^2 + 15 \qquad x > \sqrt{5}$$

Show that C_1 has a stationary point at $x = \frac{\sqrt{p}}{2}$ where p is a constant to be found. (4)

(ii) A different curve C_2 has equation

$$y = 4x - 12\sin^2 x$$

(a) Show that, for this curve,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = A + B\sin 2x$$

where *A* and *B* are constants to be found.

(b) Hence, state the maximum gradient of this co	urve.
--	-------

(4)

uestion 6 continued	

Leave

The mass, M kg, of a species of tree can be modelled by the equation	
$\log_{10} M = 1.93 \log_{10} r + 0.684$	
where r cm is the base radius of the tree.	
The base radius of a particular tree of this species is 45 cm.	
According to the model,	
(a) find the mass of this tree, giving your answer to 2 significant figures.	(2)
(b) Show that the equation of the model can be written in the form	
$M = pr^q$	
giving the values of the constants p and q to 3 significant figures.	(3)
(c) With reference to the model, interpret the value of the constant p .	(1)

ļ

8. A curve C has equation y = f(x), where

$$f(x) = \arcsin\left(\frac{1}{2}x\right)$$
 $-2 \leqslant x \leqslant 2$ $-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}$

(a) Sketch C.

(1)

(b) Given $x = 2 \sin y$, show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{A - x^2}}$$

where *A* is a constant to be found.

(3)

The point *P* lies on *C* and has *y* coordinate $\frac{\pi}{4}$

(c) Find the equation of the tangent to C at P. Write your answer in the form y = mx + c, where m and c are constants to be found.

(3)

Question 8 continued	Leave blank

Question 8 continued	Leave blank

uestion 8 continued	

9.

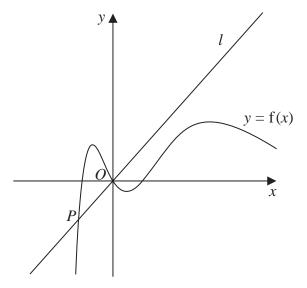


Figure 3

Figure 3 shows a sketch of part of the curve with equation y = f(x), where

$$f(x) = x(x^2 - 4)e^{-\frac{1}{2}x}$$

(a) Find f'(x). (2)

The line l is the normal to the curve at O and meets the curve again at the point P.

The point *P* lies in the 3rd quadrant, as shown in Figure 3.

(b) Show that the x coordinate of P is a solution of the equation

$$x = -\frac{1}{2}\sqrt{16 + e^{\frac{1}{2}x}} \tag{4}$$

(c) Using the iterative formula

$$x_{n+1} = -\frac{1}{2}\sqrt{16 + e^{\frac{1}{2}x_n}}$$
 with $x_1 = -2$

find, to 4 decimal places,

- (i) the value of x_2
- (ii) the x coordinate of P.

(3)

Question 9 continued	Leave blank

Question 9 continued	Leave blank

uestion 9 continued	

10.

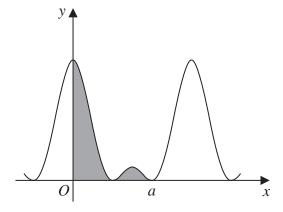


Figure 4

Figure 4 shows a sketch of part of the curve with equation

$$y = (1 + 2\cos 2x)^2$$

(a) Show that

$$(1 + 2\cos 2x)^2 \equiv p + q\cos 2x + r\cos 4x$$

where p, q and r are constants to be found.

(2)

(5)

The curve touches the positive x-axis for the second time when x = a, as shown in Figure 4.

The regions bounded by the curve, the y-axis and the x-axis up to x = a are shown shaded in Figure 4.

(b)	Find, using algebraic integration and making your method clear, the exact total area
	of the shaded regions. Write your answer in simplest form.

Question 10 continued	Leave blank

Question 10 continued		Lea blar
		0.1
		Q1
	(Total 7 marks)	

Please check the examination details bel	ow before ente	ring your candidate information
Candidate surname		Other names
Centre Number Candidate No Pearson Edexcel Inter		al Advanced Level
Time 1 hour 30 minutes	Paper reference	WMA13/01
Mathematics International Advanced Le Pure Mathematics P3	evel	00
You must have: Mathematical Formulae and Statistica	al Tables (Yel	llow), calculator

Candidates may use any calculator permitted by Pearson regulations.

Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

Leave

$y = (2x + 5)e^{3x}$	
	(4)
	()

Question 1 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	Q1
(Total 4 mar)	ks)

Leave	
hlank	

2.	(a)	Show that the equation	blank
		$8\cos\theta = 3\csc\theta$	
		can be written in the form	
		$\sin 2\theta = k$	
		where k is a constant to be found.	
	(b)	Hence find the smallest positive solution of the equation (3)	
	(0)	$8\cos\theta = 3\csc\theta$	
		giving your answer, in degrees, to one decimal place. (2)	

uestion 2 continued	

Leave	
blank	

3.	(i)	Eind	in	cimplact	form
J.	(1)	Tillu,	Ш	simplest	mi,

$$\int (2x-5)^7 \, \mathrm{d}x$$

(2)

(ii) Show, by algebraic integration, that

$$\int_0^{\frac{\pi}{3}} \frac{4\sin x}{1 + 2\cos x} dx = \ln a$$

$\int_0^3 \frac{4\sin x}{1 + 2\cos x} dx = \ln a$	
where a is a rational constant to be found.	(4)

Question 3 continued	Leave blank
	Q3
(Total 6 marks)	

4. The growth of a weed on the surface of a pond is being studied.

The surface area of the pond covered by the weed, $A \,\mathrm{m}^2$, is modelled by the equation

$$A = \frac{80pe^{0.15t}}{pe^{0.15t} + 4}$$

where p is a positive constant and t is the number of days after the start of the study.

Given that

- 30 m² of the surface of the pond was covered by the weed at the start of the study
- 50 m² of the surface of the pond was covered by the weed *T* days after the start of the study
- (a) show that p = 2.4 (2)
- (b) find the value of T, giving your answer to one decimal place.

(Solutions relying entirely on graphical or numerical methods are not acceptable.)

(4)

The weed grows until it covers the surface of the pond.

(c) Find, according to the model, the maximum possible surface area of the pond. (1)

uestion 4 continued	

5.

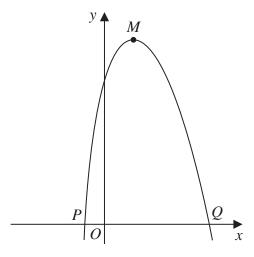


Figure 1

Figure 1 shows a sketch of part of the curve with equation

$$y = 6\ln(2x+3) - \frac{1}{2}x^2 + 4$$
 $x > -\frac{3}{2}$

The curve cuts the negative x-axis at the point P, as shown in Figure 1.

(a) Show that the x coordinate of P lies in the interval [-1.25, -1.2]

The curve cuts the positive x-axis at the point Q, also shown in Figure 1.

Using the iterative formula

$$x_{n+1} = \sqrt{12\ln(2x_n + 3) + 8}$$
 with $x_1 = 6$

- (b) (i) find, to 4 decimal places, the value of x_2
 - (ii) find, by continued iteration, the x coordinate of Q. Give your answer to 4 decimal places.

(3)

(2)

The curve has a maximum turning point at M, as shown in Figure 1.

(c)	Using calculus	and showing	; each stage	of your	working,	find the	x coordinate	of M .
								(4)

Question 5 continued	Leave

Question 5 continued	Leave

Question 5 continued		Leave blank
		Q5
	(Total 9 marks)	

6. The function f is defined by

$$f(x) = \frac{5x - 3}{x - 4} \qquad x > 4$$

(a) Show, by using calculus, that f is a decreasing function.

(3)

(b) Find f⁻¹

(3)

- (c) (i) Show that $ff(x) = \frac{ax + b}{x + c}$ where a, b and c are constants to be found.
 - (ii) Deduce the range of ff.

(5)

Question 6 continued	Leave

Question 6 continued	Leave

Question 6 continued]
	Q

7.

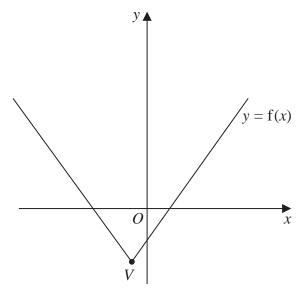


Figure 2

Figure 2 shows a sketch of part of the graph with equation y = f(x), where

$$f(x) = \frac{1}{2} |2x + 7| - 10$$

(a) State the coordinates of the vertex, V, of the graph.

(2)

(b) Solve, using algebra,

$$\frac{1}{2} \left| 2x + 7 \right| - 10 \geqslant \frac{1}{3} x + 1 \tag{4}$$

(c) Sketch the graph with equation

$$y = |f(x)|$$

stating the coordinates of the local maximum point and each local minimum point.

(4)

Question 7 continued	Leave blank

Question 7 continued	Leave blank
Question / continued	

estion 7 continued	

8.	A dose	of	antibiotics	is	given	to	a	natient.
•	11 0000	O.	antiolotics	10	51 1 011	·	ч	patient.

The amount of the antibiotic, x milligrams, in the patient's bloodstream t hours after the dose was given, is found to satisfy the equation

$$\log_{10} x = 2.74 - 0.079t$$

(a) Show that this equation can be written in the form

$$x = pq^{-t}$$

where p and q are constants to be found. Give the value of p to the nearest whole number and the value of q to 2 significant figures.

(4)

(b) With reference to the equation in part (a), interpret the value of the constant p.

(1)

When a different dose of the antibiotic is given to another patient, the values of x and t satisfy the equation

$$x = 400 \times 1.4^{-t}$$

(c)	Use calculus t	to find, to 2 sign	nificant figure	s, the value of	$f \frac{\mathrm{d}x}{\mathrm{d}t} \text{ when } t = 5$	

Question 8 continued	Leave blank

Question 8 continued	Leave blank

Question 8 continued		Leave blank
		Q8
	(Total 8 marks)	

Leave

9.	In this question you must show detailed reasoning.	
	Solutions relying entirely on calculator technology are not ac	cceptable.
	(i) Solve, for $0 < x \le \pi$, the equation	
	$2\sec^2 x - 3\tan x = 2$	
	giving the answers, as appropriate, to 3 significant figures.	(4)
	(ii) Prove that	(4)
	$\frac{\sin 3\theta}{\cos \theta} - \frac{\cos 3\theta}{\cos \theta} \equiv 2$	
	$\frac{1}{\sin\theta} - \frac{1}{\cos\theta} \equiv 2$	(4)
_		
_		
_		

Question 9 continued	Leave blank

Question 9 continued	Leave blank

uestion 9 continued	

10.

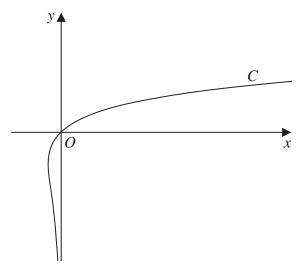


Figure 3

Figure 3 shows a sketch of the curve C with equation

$$x = ye^{2y} \qquad y \in \mathbb{R}$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x(1+2y)}$$
(4)

Given that the straight line with equation x = k, where k is a constant, cuts C at exactly two points,

(3))
(3))

Question 10 continued	Leave blank

Question 10 continued		Le: bla
		01
		Q1
	(Total 7 marks)	

Please check the examination details below before entering your candidate information				
Candidate surname	Other names			
Centre Number Candidate No				
Pearson Edexcel Inter	national Advanced Level			
Time 1 hour 30 minutes	Paper reference WMA13/01			
Mathematics	• •			
International Advanced Le Pure Mathematics P3	evel			
You must have: Mathematical Formulae and Statistica	al Tables (Yellow), calculator			

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end

Turn over ▶

Leave	
blank	

1.	The curve	C has	equation
	THE CUITE	Cilus	cquation

$$y = (3x - 2)^6$$

(a) Find
$$\frac{dy}{dx}$$

(2)

Given that the point $P\left(\frac{1}{3},1\right)$ lies on C,

(b) find the equation of the normal to C at P. Write your answer in the form ax + by + c = 0 where a, b and c are integers to be found.

(4)

uestion 1 continued	

2.	The	functions	f	and	g	are	defined	bv
		10,110,110	-	****	\sim			\sim $_{J}$

$$f(x) = \frac{5 - x}{3x + 2}$$

$$x \in \mathbb{R}, x \neq -\frac{2}{3}$$

$$g(x) = 2x - 7$$

$$x \in \mathbb{R}$$

(a) Find the value of fg(5)

(2)

(b) Find f⁻¹

(3)

(c) Solve the equation

$$f\left(\frac{1}{a}\right) = g(a+3)$$

(4)

Question 2 continued	Leave blank

Question 2 continued	Leave blank

Question 2 continued		Leave blank
		Q2
	(Total 9 marks)	

3.	In this ques	stion vou mus	st show all sta	ges of vour	working.
•	THE CHIEF GOOD	, cross y our sinus	or billo ii tell bett	ges or jour	,, 0111119

Solutions relying entirely on calculator technology are not acceptable.

Given that k is a positive constant,

(a) find

$$\int \frac{9x}{3x^2 + k} \, \mathrm{d}x \tag{2}$$

Given also that

$$\int_{2}^{5} \frac{9x}{3x^2 + k} \, \mathrm{d}x = \ln 8$$


(b) find the value of k

(4)

Question 3 continued	Leave blank
	-
	Q3
(Total 6 marks)	

4.

The number of subscribers to an online video streaming service, N, is modelled by the equation

$$N = ab^t$$

where a and b are constants and t is the number of years since monitoring began.

The line in Figure 1 shows the linear relationship between t and $\log_{10} N$

The line passes through the points (0, 3.08) and (5, 3.85)

Using this information,

(a) find an equation for this line.

(2)

(b) Find the value of a and the value of b, giving your answers to 3 significant figures. (3)

When t = T the number of subscribers is 500 000

According to the model,

(c) find the value of T

(2)

Question 4 continued	Leave blank

Question 4 continued	Leave blank

uestion 4 continued	

5.

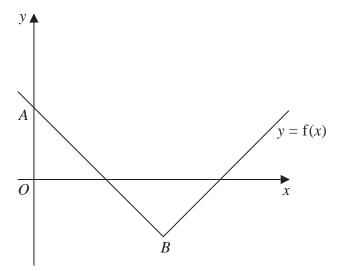


Figure 2

Figure 2 shows part of the graph with equation y = f(x), where

$$f(x) = |kx - 9| - 2 \qquad x \in \mathbb{R}$$

and k is a positive constant.

The graph intersects the y-axis at the point A and has a minimum point at B as shown.

- (a) (i) Find the y coordinate of A
 - (ii) Find, in terms of k, the x coordinate of B

(2)

(b) Find, in terms of k, the range of values of x that satisfy the inequality

$$|kx - 9| - 2 < 0$$
 (3)

Given that the line y = 3 - 2x intersects the graph y = f(x) at two distinct points,

(c) find the range of possible values of k

(3)

Question 5 continued	Leave

Question 5 continued	Leave

uestion 5 continued	
	(Total 8 marks)

6.

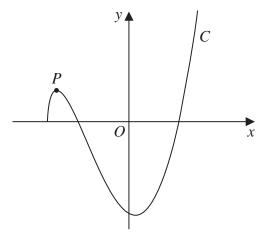


Figure 3

In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

The function f is defined by

$$f(x) = 5(x^2 - 2)(4x + 9)^{\frac{1}{2}}$$
 $x \ge -\frac{9}{4}$

(a) Show that

$$f'(x) = \frac{k(5x^2 + 9x - 2)}{(4x + 9)^{\frac{1}{2}}}$$

where k is an integer to be found.

(4)

(b) Hence, find the values of x for which f'(x) = 0

(1)

Figure 3 shows a sketch of the curve C with equation y = f(x).

The curve has a local maximum at the point P

(c) Find the exact coordinates of P

(2)

The function g is defined by

$$g(x) = 2f(x) + 4$$
 $-\frac{9}{4} \le x \le 0$

(d) Find the range of g

(3)

	Leave blank
Question 6 continued	

Question 6 continued	Leave

uestion 6 continued	

7.		In this question you must show all stages of your working.	1
		Solutions relying entirely on calculator technology are not acceptable.	
	(a)	Show that the equation	
		$2\sin\theta(3\cot^22\theta-7)=13\sec\theta$	
		can be written as	
		$3\csc^2 2\theta - 13\csc 2\theta - 10 = 0$ (4)	
	(b)	Hence solve, for $0 < \theta < \frac{\pi}{2}$, the equation	
		$2\sin\theta(3\cot^22\theta-7)=13\sec\theta$	
		giving your answers to 3 significant figures. (4)	

Question 7 continued	Leave blank

Question 7 continued	Leave blank

stion 7 continued	

8.

Leave blank

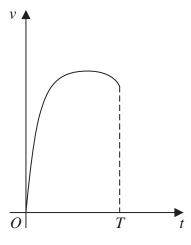


Figure 4

Figure 4 is a graph showing the velocity of a sprinter during a 100 m race.

The sprinter's velocity during the race, $v \, \text{m s}^{-1}$, is modelled by the equation

$$v = 12 - e^{t-10} - 12e^{-0.75t} \qquad t \geqslant 0$$

where t seconds is the time after the sprinter begins to run.

According to the model,

(a) find, using calculus, the sprinter's maximum velocity during the race.

(5)

Given that the sprinter runs 100 m in T seconds, such that

$$\int_0^T v \, \mathrm{d}t = 100$$

(b) show that T is a solution of the equation

$$T = \frac{1}{12} \left(116 - 16e^{-0.75T} + e^{T-10} - e^{-10} \right)$$
 (4)

The iteration formula

$$T_{n+1} = \frac{1}{12} \left(116 - 16e^{-0.75T_n} + e^{T_n - 10} - e^{-10} \right)$$

is used to find an approximate value for T

Using this iteration formula with $T_1 = 10$

- (c) find, to 4 decimal places,
 - (i) the value of T_2
 - (ii) the time taken by the sprinter to run the race, according to the model.

(3)

Question 8 continued	Leave blank

Question 8 continued	Leave blank

Question 8 continued	Leb

9.

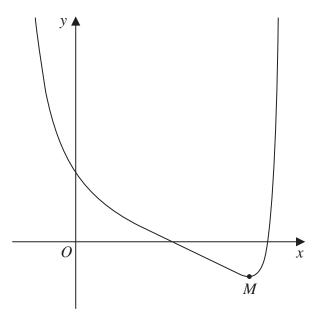


Figure 5

In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

Figure 5 shows the curve with equation

$$y = \frac{1 + 2\cos x}{1 + \sin x} \qquad -\frac{\pi}{2} < x < \frac{3\pi}{2}$$

The point M, shown in Figure 5, is the minimum point on the curve.

(a) Show that the x coordinate of M is a solution of the equation

$$2\sin x + \cos x = -2$$

(4)

(b) Hence find, to 3 significant figures, the x coordinate of M.

(5)

Question 9 continued	Leave blank

Question 9 continued		bla
		Q9
	(Total 9 mar	ks)

Please check the examination details below before ente	ring your candidate information
Candidate surname	Other names
Centre Number Candidate Number	
Pearson Edexcel Internation	al Advanced Level
Time 1 hour 30 minutes Paper reference	WMA13/01
Mathematics International Advanced Level Pure Mathematics P3	
You must have: Mathematical Formulae and Statistical Tables (Ye	llow), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

$$f(x) = \frac{2x^3 - 4x - 15}{x^2 + 3x + 4}$$

(a) Show that

$$f(x) \equiv Ax + B + \frac{C(2x+3)}{x^2 + 3x + 4}$$

where A, B and C are integers to be found.

(4)

(b) Hence, find

$$\int_3^5 f(x) dx$$

giving your answer in the form $p + \ln q$, where p and q are integers.

(5)

Question 1 continued	Leave blank

Question 1 continued	Leave blank
Question I continued	
	I

uestion 1 continued	

2.	The	function	s f	and	g	are	defined	bv
		10,110,11	_	****	\sim			\sim $_{J}$

$$f(x) = 5 - \frac{4}{3x + 2} \qquad x \geqslant 0$$

$$g(x) = \left| 4\sin\left(\frac{x}{3} + \frac{\pi}{6}\right) \right| \quad x \in \mathbb{R}$$

(a)	Find	the	range	of	f
-----	------	-----	-------	----	---

(2)

- (b) (i) Find $f^{-1}(x)$
 - (ii) Write down the domain of f^{-1}

(3)

(c)	Find	fg(-	$-\pi$

(2)

Question 2 continued	Leave blank
	Q2
(Total 7 marks)	

In this question you must show all stages of your working.
 Solutions relying entirely on calculator technology are not acceptable.

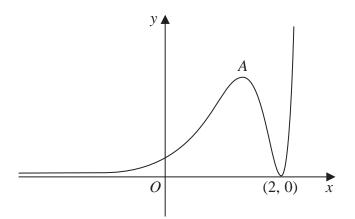


Figure 1

Figure 1 shows a sketch of part of the curve with equation y = f(x) where

$$f(x) = (x - 2)^2 e^{3x} \qquad x \in \mathbb{R}$$

The curve has a maximum turning point at A and a minimum turning point at (2, 0)

(a) Use calculus to find the exact coordinates of A.

(5)

Given that the equation f(x) = k, where k is a constant, has at least two distinct roots,

(b) state the range of possible values for k.

-	1	
•	4	

puestion 3 continued	

4.	$y = \log_{10}(2x+1)$	Leave blank
	(a) Express x in terms of y . (2)	
	(b) Hence, giving your answer in terms of x, find $\frac{dy}{dx}$	
	(3)	

uestion 4 continued	b
	_
	_
	_
	_
	_
	_
	_
	 Q
	ks)

5.

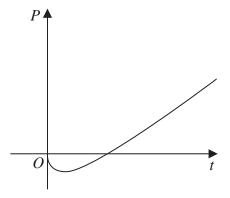


Figure 2

The profit made by a company, $\pounds P$ million, t years after the company started trading, is modelled by the equation

$$P = \frac{4t - 1}{10} + \frac{3}{4} \ln \left[\frac{t + 1}{(2t + 1)^2} \right]$$

The graph of *P* against *t* is shown in Figure 2.

According to the model,

(a) show that exactly one year after it started trading, the company had made a loss of approximately £830000

(2)

(2)

A manager of the company wants to know the value of t for which P = 0

(b) Show that this value of t occurs in the interval [6, 7]

(c) Show that the equation P = 0 can be expressed in the form

$$t = \frac{1}{4} + \frac{15}{8} \ln \left[\frac{(2t+1)^2}{t+1} \right]$$
 (2)

(d) Using the iteration formula

$$t_{n+1} = \frac{1}{4} + \frac{15}{8} \ln \left[\frac{\left(2t_n + 1\right)^2}{t_n + 1} \right]$$
 with $t_1 = 6$

find the value of t_2 and the value of t_6 , giving your answers to 3 decimal places.

(3)

(e) Hence find, according to the model, how many months it takes in total, from when the company started trading, for it to make a profit.

(2)

Question 5 continued	Leave blank

Question 5 continued	Leave blank

	Leave blank
Question 5 continued	
	Q5
(Total 11 marks)	

6.

$$y = \frac{2 + 3\sin x}{\cos x + \sin x}$$

Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{a\tan x + b\sec x + c}{\sec x + 2\sin x}$$

where a , b and c are in	ntegers to be found.
--------------------------------	----------------------

_	_	_			

(6)

Question 6 continued	Leave blank

Question 6 continued	Leave blank

uestion 6 continued	1
	Q

7.

Figure 3

Figure 3 shows a sketch of the graph of C_1 with equation

$$y = 5 - |3x - 22|$$

- (a) Write down the coordinates of
 - (i) the vertex of C_1
 - (ii) the intersection of C_1 with the y-axis.

(2)

(b) Find the x coordinates of the intersections of C_1 with the x-axis.

(2)

Diagram 1, shown on page 21, is a copy of Figure 3.

(c) On Diagram 1, sketch the curve C_2 with equation

$$y = \frac{1}{9}x^2 - 9$$

Identify clearly the coordinates of any points of intersection of ${\cal C}_2$ with the coordinate axes.

(3)

(d) Find the coordinates of the points of intersection of C_1 and C_2 (Solutions relying entirely on calculator technology are not acceptable.)

1	5)	

Question 7 continued	Leave blank
$igcup_{C_1}$	
Diagram 1	

Question 7 continued	Leave blank

Question 7 continued	L. b.

8. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(a) Express $8\sin x - 15\cos x$ in the form $R\sin(x - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$

Give the exact value of R, and give the value of α , in radians, to 4 significant figures.

$$f(x) = \frac{15}{41 + 16\sin x - 30\cos x} \qquad x > 0$$

- (b) Find
 - (i) the minimum value of f(x)
 - (ii) the smallest value of x at which this minimum value occurs.

(4)

(c) State the y coordinate of the minimum points on the curve with equation

$$y = 2f(x) - 5$$
 $x > 0$ (1)

(d) State the smallest value of x at which a maximum point occurs for the curve with equation

$$y = -f(2x) \qquad x > 0 \tag{1}$$

Question 8 continued	Leave blank

Question 8 continued		eave lank
Question o continueu		
	_	

Question 8 continued	ł
	Q

Leave blank

9.	In this question you must show all stages of your working.
	Solutions relying entirely on calculator technology are not acceptable.

Given that $\cos 2\theta - \sin 3\theta \neq 0$

(a) prove that

$$\frac{\cos^2 \theta}{\cos 2\theta - \sin 3\theta} \equiv \frac{1 + \sin \theta}{1 - 2\sin \theta - 4\sin^2 \theta}$$

(4)

(b) Hence solve, for $0 < \theta \le 360^{\circ}$

$$\frac{\cos^2 \theta}{\cos 2\theta - \sin 3\theta} = 2 \csc \theta$$

Give your answers to one decimal place.

(5)

Question 9 continued	Leave blank

Question 9 continued	Leave blank

Question 9 continued	Leave blank
Question 9 continued	

Question 9 continued	Leave blank
	Q9
(Total 9 marks)	
TOTAL FOR PAPER IS 75 MARKS END	

Please check the examination details below before entering your candidate information			
Candidate surname	Other names		
Centre Number Candidate Nui	mber		
Pearson Edexcel International Advanced Level			
Time 1 hour 30 minutes	Paper WMA13/01		
Mathematics International Advanced Level Pure Mathematics P3			
T dre Mathematics 1 3			

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1.	The functions f and g are def	fined by			
		$f(x) = 9 - x^2$	$x \in \mathbb{R}$	$x \geqslant 0$	
		$g(x) = \frac{3}{2x+1}$	$x \in \mathbb{R}$	$x \geqslant 0$	
	(a) Write down the range of	f			(4)
	(b) Find the value of fa(1.5)				(1)
	(b) Find the value of fg(1.5)				(2)
	(c) Find g ⁻¹				(3)

Question 1 continued			
	(Total for Question 1 is 6 marks)		

2.	$f(x) = \cos x + 2\sin x$	
	(a) Express $f(x)$ in the form $R\cos(x-\alpha)$, where R and α are constants,	
	$R > 0$ and $0 < \alpha < \frac{\pi}{2}$	
	Give the exact value of R and give the value of α , in radians, to 3 decimal places.	(3)
	g(x) = 3 - 7f(2x)	
	(b) Using the answer to part (a),	
	(i) write down the exact maximum value of $g(x)$,	
	(ii) find the smallest positive value of <i>x</i> for which this maximum value occurs, giving your answer to 2 decimal places.	(3)

Question 2 continued				
(Total for Question 2 is 6 marks)				
· · · · · · · · · · · · · · · · · · ·				

3.

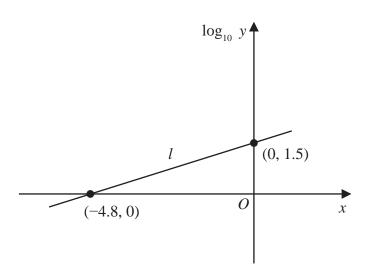


Figure 1

The line l in Figure 1 shows a linear relationship between $log_{10} y$ and x.

The line passes through the points (0, 1.5) and (-4.8, 0) as shown.

(a) Write down an equation for l.

(2)

(b) Hence, or otherwise, express y in the form kb^x , giving the values of the constants k and b to 3 significant figures.

(3)

Question 3 continued	
	(Total for Question 3 is 5 marks)

(a) Find the values of the constants A. D. C. and D. such that	
(a) Find the values of the constants A, B, C and D such that	
$f(x) = Ax^2 + Bx + C + \frac{D}{(x+3)^2}$ (4)	
(b) Hence find,	
$\int f(x) dx$	
(3)	

Question 4 continued

Question 4 continued

Question 4 continued	
(Total f	for Question 4 is 7 marks)
(2010)	

5.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	(a) Prove that	
	$\cot^2 x - \tan^2 x \equiv 4\cot 2x\csc 2x \qquad \qquad x \neq \frac{n\pi}{2} n \in \mathbb{Z}$	(4)
	(b) Hence solve, for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$	
	$4\cot 2\theta \csc 2\theta = 2\tan^2 \theta$	
	giving your answers to 2 decimal places.	(5)

Question 5 continued

Question 5 continued	

Question 5 continued
(Total for Question 5 is 9 marks)

6.

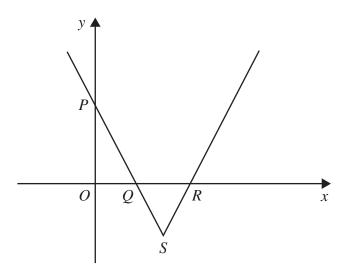


Figure 2

Figure 2 shows a sketch of the graph with equation

$$y = |3x - 5a| - 2a$$

where a is a positive constant.

The graph

- cuts the y-axis at the point P
- cuts the x-axis at the points Q and R
- has a minimum point at S
- (a) Find, in simplest form in terms of a, the coordinates of
 - (i) point P
 - (ii) points Q and R
 - (iii) point S

(4)

(b) Find, in simplest form in terms of a, the values of x for which

$$\left|3x - 5a\right| - 2a = \left|x - 2a\right|$$

(4)

Question 6 continued

Question 6 continued

Question 6 continued	
	Fotal for Orosetian (!- 0 1)
	Total for Question 6 is 8 marks)

7.	The	curve	\boldsymbol{C}	has	equation
----	-----	-------	------------------	-----	----------

$$x = 3\tan\left(y - \frac{\pi}{6}\right) \qquad x \in \mathbb{R} \quad -\frac{\pi}{3} < y < \frac{2\pi}{3}$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{a}{x^2 + b}$$

where a and b are integers to be found.

(4)

The point *P* with *y* coordinate $\frac{\pi}{3}$ lies on *C*.

Given that the tangent to C at P crosses the x-axis at the point Q.

(b)	find,	in	simplest	form,	the	exact x	coordinate	of	Q
-----	-------	----	----------	-------	-----	---------	------------	----	---

(5)

Question 7 continued

Question 7 continued

Question 7 continued	
	(Total for Question 7 is 9 marks)

8. Find, in simplest form,	\mathbf{f}_{a}	
	$\int (2\cos x - \sin x)^2 \mathrm{d}x$	(5)

Question 8 continued	
(Total for Question 8 is 5 marks)	

9.

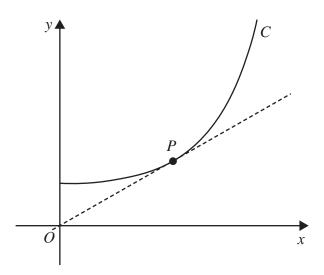


Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = \sqrt{3 + 4e^{x^2}} \qquad x \geqslant 0$$

(a) Find $\frac{dy}{dx}$, giving your answer in simplest form.

The point P with x coordinate α lies on C.

Given that the tangent to C at P passes through the origin, as shown in Figure 3,

(b) show that $x = \alpha$ is a solution of the equation

$$4x^2e^{x^2} - 4e^{x^2} - 3 = 0 ag{3}$$

(c) Hence show that α lies between 1 and 2

(2)

(2)

(d) Show that the equation in part (b) can be written in the form

$$x = \frac{1}{2}\sqrt{4 + 3e^{-x^2}} \tag{1}$$

The iteration formula

$$x_{n+1} = \frac{1}{2}\sqrt{4 + 3e^{-x_n^2}}$$

with $x_1 = 1$ is used to find an approximation for α .

(e) Use the iteration formula to find, to 4 decimal places, the value of

- (i) x_3
- (ii) α

(3)

Question 9 continued

Question 9 continued

Question 9 continued	
(Tot	al for Question 9 is 11 marks)

10.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	A population of fruit flies is being studied.	
	The number of fruit flies, F , in the population, t days after the start of the study, is modelled by the equation	
	$F = \frac{350e^{kt}}{9 + e^{kt}}$	
	$9 + e^{kt}$ where k is a constant.	
	Use the equation of the model to answer parts (a), (b) and (c).	
	(a) Find the number of fruit flies in the population at the start of the study.	(1)
	Given that there are 200 fruit flies in the population 15 days after the start of the study,	
	(b) show that $k = \frac{1}{15} \ln 12$	
	15	(3)
	Given also that, when $t = T$, the number of fruit flies in the population is increasing at a rate of 10 per day,	
	(c) find the possible values of T , giving your answers to one decimal place.	
		(5)

Question 10 continued	

Question 10 continued	
	tal far Oraștian 10 i- 0l)
(10)	tal for Question 10 is 9 marks)
TOTA	L FOR PAPER IS 75 MARKS

Please check the examination details below before entering your candidate information		
Candidate surname		Other names
Centre Number Candidate Nu	mber	
Pearson Edexcel Interi	nation	al Advanced Level
Wednesday 31 May	2023	
Morning (Time: 1 hour 30 minutes)	Paper reference	WMA13/01
Mathematics International Advanced Le Pure Mathematics P3	vel	
You must have: Mathematical Formulae and Statistica	l Tables (Yel	low), calculator

Candidates may use any calculator permitted by Pearson regulations.

Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1.	$g(x) = x^6 + 2x - 1000$	
	(a) Show that $g(x) = 0$ has a root α in the interval [3, 4]	(2)
	Using the iteration formula	(-)
	$x_{n+1} = \sqrt[6]{1000 - 2x_n} \text{with } x_1 = 3$	
	(b) (i) find, to 4 decimal places, the value of x_2	
	(ii) find, by repeated iteration, the value of α . Give your answer to 4 decimal places.	(3)

Question 1 continued
(Total for Question 1 is 5 marks)

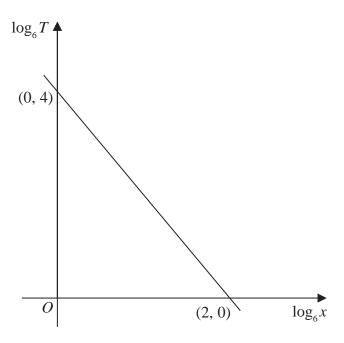


Figure 1

Figure 1 shows the linear relationship between $\log_6 T$ and $\log_6 x$

The line passes through the points (0, 4) and (2, 0) as shown.

- (a) (i) Find an equation linking $\log_6 T$ and $\log_6 x$
 - (ii) Hence find the exact value of T when x = 216

(3)

(b) Find an equation, not involving logs, linking T with x

(3)

Question 2 continued
(Total for Question 2 is 6 marks)

3. (i) Find $\frac{d}{dx} \ln(\sin^2 3x)$ writing your answer in simplest form.	(2)
(ii) (a) Find $\frac{d}{dx}(3x^2-4)^6$	
(b) Hence show that	(2)
$\int_0^{\sqrt{2}} x \left(3x^2 - 4\right)^5 dx = R$	
where R is an integer to be found.	
(Solutions relying on calculator technology are not acceptable.)	(3)

Question 3 continued	
	(Total for Question 3 is 7 marks)
	(Lower for Anomalia is 1 marks)

4.	The function f is defined by	
	$f(x) = 2x^2 - 5 \qquad x \geqslant 0 x \in \mathbb{R}$	
	(a) State the range of f	(1)
		(1)
	On the following page there is a diagram, labelled Diagram 1, which shows a sketch of the curve with equation $y = f(x)$.	
	(b) On Diagram 1, sketch the curve with equation $y = f^{-1}(x)$.	(2)
	The curve with equation $y = f(x)$ meets the curve with equation $y = f^{-1}(x)$ at the point P	
	Using algebra and showing your working,	
	(c) find the exact <i>x</i> coordinate of <i>P</i>	(3)

Question 4 continued	y = f(x) $y = f(x)$ Diagram 1
	(Total for Question 4 is 6 marks)

5.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	(i) Solve, for $0 < x < \pi$	
	$(x-2)\left(\sqrt{3}\sec x + 2\right) = 0$	
	(··)(·· · · · ·)	(3)
	(ii) Solve, for $0 < \theta < 360^{\circ}$, ,
	$10\sin\theta = 3\cos 2\theta$	
		(4)

Question 5 continued

Question 5 continued

Question 5 continued	
Γ)	otal for Question 5 is 7 marks)

Figure 2

Figure 2 shows a sketch of the graph y = f(x), where

$$f(x) = 3|x - 2| - 10$$

The vertex of the graph is at point P, shown in Figure 2.

(a) Find the coordinates of P

(2)

(b) Find ff(0)

(2)

(c) Solve the inequality

$$3|x-2| - 10 < 5x + 10$$

(2)

(d) Solve the equation

$$f(|x|) = 0$$

(3)

Question 6 continued	

Question 6 continued	

Question 6 continued	
(To	tal for Question 6 is 9 marks)

7.	A scientist is studying two different populations of bacteria.	
	The number of bacteria N in the first population is modelled by the equation	
	$N = Ae^{kt}$ $t \geqslant 0$	
	where A and k are positive constants and t is the time in hours from the start of the study.	
	 Given that there were 2500 bacteria in this population at the start of the study there were 10000 bacteria 8 hours later 	
	(a) find the exact value of A and the value of k to 4 significant figures.	(3)
	The number of bacteria N in the second population is modelled by the equation	
	$N = 60000e^{-0.6t} \qquad t \geqslant 0$	
	where t is the time in hours from the start of the study.	
	(b) Find the rate of decrease of bacteria in this population exactly 5 hours from the start of the study. Give your answer to 3 significant figures.	(2)
	When $t = T$, the number of bacteria in the two different populations was the same.	
	(c) Find the value of <i>T</i> , giving your answer to 3 significant figures.	
	(Solutions relying entirely on calculator technology are not acceptable.)	(3)

Question 7 continued

Question 7 continued

Question 7 continued	
(Total for Question 7 is 8 marks)	

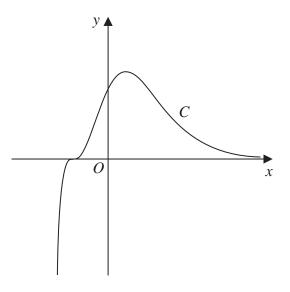


Figure 3

Figure 3 shows a sketch of the curve C with equation y = f(x), where

$$f(x) = (2x + 1)^3 e^{-4x}$$

(a) Show that

$$f'(x) = A(2x + 1)^{2} (1 - 4x) e^{-4x}$$

where *A* is a constant to be found.

(4)

(b) Hence find the exact coordinates of the two stationary points on C.

(3)

The function g is defined by

$$g(x) = 8f(x-2)$$

(c) Find the coordinates of the maximum stationary point on the curve with equation y = g(x).

(2)

Question 8 continued

Question 8 continued

Question 8 continued	
	Total for Question 8 is 9 marks)

9.	In this question you must show all stages of your working.
	Solutions relying entirely on calculator technology are not acceptable.

(a) Show that

$$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} \equiv \csc x \qquad x \neq \frac{n\pi}{2} \qquad n \in \mathbb{Z}$$
(3)

(b) Hence solve, for $0 < \theta < \frac{\pi}{2}$

$$\left(\frac{\cos 2\theta}{\sin \theta} + \frac{\sin 2\theta}{\cos \theta}\right)^2 = 6\cot \theta - 4$$

giving your answers to 3 significant figures as appropriate.

(5)

(c) Using the result from part (a), or otherwise, find the exact value of

$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \left(\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} \right) \cot x \, \mathrm{d}x$$

(2)

Question 9 continued

Question 9 continued

Question 9 continued	
V	
	(T-4-1 f O4' O'10 1)
	(Total for Question 9 is 10 marks)

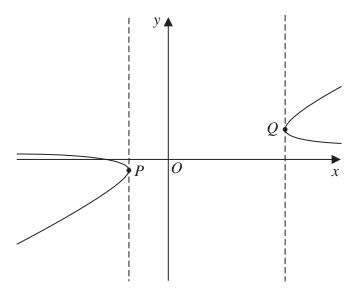


Figure 4

Figure 4 shows a sketch of the curve with equation

$$x = \frac{2y^2 + 6}{3y - 3}$$

(a) Find $\frac{dx}{dy}$ giving your answer as a fully simplified fraction.

(4)

The tangents at points P and Q on the curve are parallel to the y-axis, as shown in Figure 4.

(b) Use the answer to part (a) to find the equations of these two tangents.

(4)

Question 10 continued

Question 10 continued	
	(Total for Question 10 is 8 marks)
	TOTAL FOR PAPER IS 75 MARKS

Please check the examination details below before entering your candidate information		
Candidate surname		Other names
Pearson Edexcel Interior		al Advanced Level
Wednesday 18 October 2023		
Morning (Time: 1 hour 30 minutes)	Paper reference	WMA13/01
Mathematics International Advanced Le Pure Mathematics P3	evel	• •
You must have: Mathematical Formulae and Statistical	Tables (Yel	low), calculator

Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have iment in end.

Turn over ▶

1.	A curve has equation $y = f(x)$ where	
	$f(x) = x^2 - 5x + e^x \qquad x \in \mathbb{R}$	
	(a) Show that the equation $f(x) = 0$ has a root, α , in the interval [1, 2]	(2)
	The iterative formula	(2)
	$x_{n+1} = \sqrt{5x_n - e^{x_n}}$	
	with $x_1 = 1$ is used to find an approximate value for the root α .	
	(b) (i) Find the value of x_2 to 4 decimal places.	
	(ii) Find, by repeated iteration, the value of α , giving your answer to 4 decimal places.	
	r deemar places.	(3)

Question 1 continued
(Total for Question 1 is 5 marks)

2.	The function f is defined by			
		$f(x) = \frac{x+3}{x-4}$	$x \in \mathbb{R}, x \neq 4$	
	(a) Find ff(6)			(2)
	(b) Find f^{-1}			(3)
	The function g is defined by			(3)
		$g(x) = x^2 + 5$	$x \in \mathbb{R}, x > 0$	
	(c) Find the exact value of a f	or which		
		gf(a) =	7	
				(3)

Question 2 continued

Question 2 continued

Question 2 continued
(Total for Question 2 is 8 marks)

3.	(a) Using the identity for $cos(A + B)$, prove that	
	$\cos 2A \equiv 2\cos^2 A - 1$	
		(2)
	(b) Hence, using algebraic integration, find the exact value of	
	$\int_{\frac{\pi}{12}}^{\frac{\pi}{8}} (5 - 4\cos^2 3x) \mathrm{d}x$	
		(4)

Question 3 continued
(Total for Question 3 is 6 marks)

4.	A new mobile phone is released for sale.	
	The total sales N of this phone, in thousands , is modelled by the equation	
	$N = 125 - Ae^{-0.109t} t \geqslant 0$	
	where A is a constant and t is the time in months after the phone was released for sale.	
	Given that when $t = 0$, $N = 32$	
	(a) state the value of A.	(4)
		(1)
	Given that when $t = T$ the total sales of the phone was 100000	
	(b) find, according to the model, the value of <i>T</i> . Give your answer to 2 decimal places.	(3)
	(c) Find, according to the model, the rate of increase in total sales when $t = 7$, giving your answer to 3 significant figures.	
	(Solutions relying entirely on calculator technology are not acceptable.)	(2)
	The total sales of the mobile phone is expected to reach 150 000	
	Using this information,	
	(d) give a reason why the given equation is not suitable for modelling the total sales of the phone.	
		(1)

Question 4 continued

Question 4 continued

Question 4 continued
(Total for Question 4 is 7 marks)

5.	The curve C has equation	
	$y = \frac{\ln(x^2 + k)}{x^2 + k} \qquad x \in \mathbb{R}$	
	where k is a positive constant.	
	(a) Show that	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{Ax(B - \ln(x^2 + k))}{(x^2 + k)^2}$	
	where A and B are constants to be found.	(3)
	Given that C has exactly three turning points,	
	(b) find the <i>x</i> coordinate of each of these points. Give your answer in terms of <i>k</i> where appropriate.	(2)
		(3)
	(c) find the upper limit to the value for k .	(1)

Question 5 continued
(Total for Question 5 is 7 marks)

6.	An area of sea floor is being monitored.	
	The area of the sea floor, $S \mathrm{km}^2$, covered by coral reefs is modelled by the equation	
	$S = pq^t$	
	where p and q are constants and t is the number of years after monitoring began.	
	Given that	
	$\log_{10} S = 4.5 - 0.006t$	
	(a) find, according to the model, the area of sea floor covered by coral reefs when $t = 2$	(2)
	(b) find a complete equation for the model in the form	
	$S=pq^t$	
	giving the value of p and the value of q each to 3 significant figures.	(3)
	(c) With reference to the model, interpret the value of the constant q	(1)

Question 6 continued
(Total for Question 6 is 6 marks)

7.

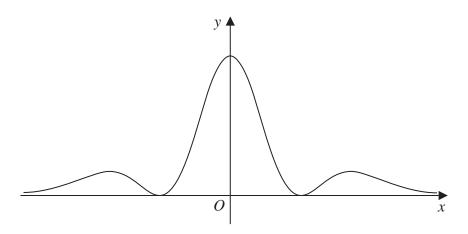


Figure 1

Figure 1 shows a sketch of the curve C with equation y = f(x) where

$$f(x) = e^{-x^2} (2x^2 - 3)^2$$

(a) Find the range of f

(2)

(b) Show that

$$f'(x) = 2x(2x^2 - 3)e^{-x^2}(A - Bx^2)$$

where *A* and *B* are constants to be found.

(4)

Given that the line y = k, where k is a constant, k > 0, intersects the curve at exactly two distinct points,

(c) find the exact range of values of k

(4)

Question 7 continued

Question 7 continued

Question 7 continued	
(Total for Question 7 is 10 mar	rks)

8.	(a)	Prove that	
		$2\csc^2 2\theta (1 - \cos 2\theta) \equiv 1 + \tan^2 \theta$	(4)
	(b)	Hence solve for $0 < x < 360^{\circ}$, where $x \neq (90n)^{\circ}$, $n \in \mathbb{N}$, the equation	
		$2\csc^2 2x(1-\cos 2x) = 4 + 3\sec x$	
		giving your answers to one decimal place.	
		(Solutions relying entirely on calculator technology are not acceptable.)	(4)

Question 8 continued

Question 8 continued

Question 8 continued	
	(Total for Question 8 is 8 marks)

9. In this question you must show all stages of your working.Solutions relying on calculator technology are not acceptable.

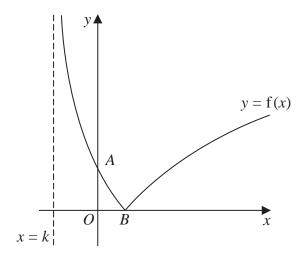


Figure 2

Figure 2 shows a sketch of the curve with equation

$$y = |2 - 4\ln(x + 1)|$$
 $x > k$

where k is a constant.

Given that the curve

- has an asymptote at x = k
- cuts the y-axis at point A
- meets the *x*-axis at point *B*

as shown in Figure 2,

(a) state the value of k

(1)

- (b) (i) find the y coordinate of A
 - (ii) find the exact x coordinate of B

(3)

(c) Using algebra and showing your working, find the set of values of x such that

$$\left|2 - 4\ln\left(x + 1\right)\right| > 3$$

(5)

Question 9 continued

Question 9 continued

Question 9 continued
(Total for Question 9 is 9 marks)

10. In this question you must show all stages of your working.	
Solutions relying on calculator technology are not acceptable.	
A curve C has equation	
$x = \sin^2 4y \qquad 0 \leqslant y \leqslant \frac{\pi}{8} \qquad 0 \leqslant x \leqslant 1$	
The point <i>P</i> with <i>x</i> coordinate $\frac{1}{4}$ lies on <i>C</i>	
(a) Find the exact y coordinate of P	(2)
(b) Find $\frac{dx}{dy}$	(2)
	(2)
(c) Hence show that $\frac{dy}{dx}$ can be written in the form	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{q + r(x+s)^2}}$	
where q , r and s are constants to be found.	(3)
Using the answer to part (c),	
(d) (i) state the x coordinate of the point where the value of $\frac{dy}{dx}$ is a minimum,	
(ii) state the value of $\frac{dy}{dx}$ at this point.	
dx	(2)

Question 10 continued

Question 10 continued	
	(Total for Question 10 is 9 marks)
	TOTAL FOR PAPER IS 75 MARKS

Please check the examination details below before entering your candidate information			
Candidate surname	Other names		
Centre Number Candidate Number Pearson Edexcel Internation	al Advanced Level		
Monday 8 January 2024	Monday 8 January 2024		
Afternoon (Time: 1 hour 30 minutes) Paper reference	WMA13/01		
Mathematics International Advanced Level Pure Mathematics P3	♦ ♦		
You must have: Mathematical Formulae and Statistical Tables (Yel	llow), calculator		

Candidates may use any calculator permitted by Pearson regulations.
Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

 Turn over

1.	The point $P(-4, -3)$ lies on the curve with equation $y = f(x), x \in \mathbb{R}$		
	Find the point to which P is mapped when the curve with equation $y = f(x)$ is transformed to the curve with equation		
	(a) $y = f(2x)$	(1)	
	(b) $y = 3f(x - 1)$	(1)	
		(2)	
	(c) $y = f(x) $	(1)	
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_

Question 1 continued	
	(Total for Question 1 is 4 marks)

(3)

ว	A curve	1	~~~ ~ 4: ~	£()	\1 <u>-</u>
7.	A CHIVE	nas e	manon	v = 10x	i where
	11 Cui vC	mus C	quation	$y - I(\lambda)$, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

$$f(x) = x^4 - 5x^2 + 4x - 7$$
 $x \in \mathbb{R}$

- (a) Show that the equation f(x) = 0 has a root, α , in the interval [2, 3] (2)
- (b) Show that the equation f(x) = 0 can be written as

$$x = \sqrt[3]{\frac{5x^2 - 4x + 7}{x}} \tag{1}$$

The iterative formula

$$x_{n+1} = \sqrt[3]{\frac{5x_n^2 - 4x_n + 7}{x_n}}$$

is used to find α

- (c) Starting with $x_1 = 2$ and using the iterative formula,
 - (i) find, to 4 decimal places, the value of x_2
 - (ii) find, to 4 decimal places, the value of α

Question 2 continued
(Total for Question 2 is 6 marks)

3.	The amount of money raised for a charity is being monitored.	
	The total amount raised in the t months after monitoring began, £ D , is modelled by the equation	
	$\log_{10} D = 1.04 + 0.38t$	
	(a) Write this equation in the form	
	$D = ab^t$	
	where a and b are constants to be found. Give each value to 4 significant figures.	(3)
	When $t = T$, the total amount of money raised is £45 000	
	According to the model,	
	(b) find the value of <i>T</i> , giving your answer to 3 significant figures.	(2)
	The charity aims to raise a total of £350000 within the first 12 months of monitoring.	
	According to the model,	
	(c) determine whether or not the charity will achieve its aim.	(2)

Question 3 continued
(Total for Question 3 is 7 marks)

4.	The function f is defined by	
	$f(x) = \frac{2x^2 - 32}{3x^2 + 7x - 20} + \frac{8}{3x - 5} \qquad x \in \mathbb{R} x > 2$	
	(a) Show that $f(x) = \frac{2x}{3x-5}$	(3)
	(b) Show, using calculus, that f is a decreasing function. You must make your reasoning clear.	
	The function g is defined by	(3)
	$g(x) = 3 + 2\ln x \qquad x \geqslant 1$	
	(c) Find g ⁻¹	(3)
	(d) Find the exact value of a for which	
	gf(a) = 5	(4)
_		

Question 4 continued

Question 4 continued

Question 4 continued
(Total for Question 4 is 13 marks)

5.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	The temperature, T °C, of the air in a room t minutes after a heat source is switched off, is modelled by the equation	
	$T = 10 + Ae^{-Bt}$	
	where A and B are constants.	
	Given that the temperature of the air in the room at the instant the heat source was switched off was 18 °C,	
	(a) find the value of A	(1)
		(1)
	Given also that, exactly 45 minutes after the heat source was switched off, the temperature of the air in the room was 16°C,	
	(b) find the value of <i>B</i> to 3 significant figures.	(3)
	Using the values for A and B,	
	(c) find, according to the model, the rate of change of the temperature of the air in the room exactly two minutes after the heat source was switched off. Give your answer in °C min ⁻¹ to 3 significant figures.	
	Give your answer in Chini to 3 significant figures.	(2)
	(d) Explain why, according to the model, the temperature of the air in the room cannot fall to 5°C	
		(1)

Question 5 continued
(Total for Question 5 is 7 marks)

6.

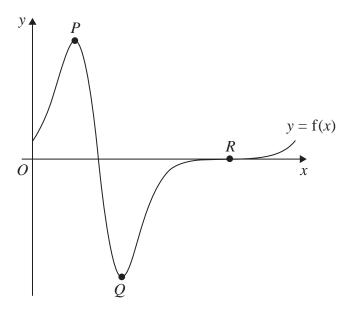


Figure 1

In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

Figure 1 shows a sketch of the curve with equation y = f(x), where

$$f(x) = 2e^{3\sin x}\cos x \qquad 0 \leqslant x \leqslant 2\pi$$

The curve intersects the x-axis at point R, as shown in Figure 1.

(a) State the coordinates of R

(1)

The curve has two turning points, at point P and point Q, also shown in Figure 1.

(b) Show that, at points P and Q,

$$a\sin^2 x + b\sin x + c = 0$$

where a, b and c are integers to be found.

(4)

(c) Hence find the x coordinate of point Q, giving your answer to 3 decimal places.

(2)

Question 6 continued	

Question 6 continued	

Question 6 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total for Question 6 is 7 marks)	_

7. In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

The curve *C* has equation

$$y = \frac{16}{9(3x - k)} \qquad \qquad x \neq \frac{k}{3}$$

where k is a positive constant not equal to 3

(a) Find $\frac{dy}{dx}$ giving your answer in simplest form in terms of k.

The point P with x coordinate 1 lies on C.

Given that the gradient of the curve at P is -12

(b) find the two possible values of k

(3)

Given also that k < 3

(c) find the equation of the normal to C at P, writing your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(3)

(d) show, using algebraic integration that,

$$\int_{1}^{3} \frac{16}{9(3x-k)} \mathrm{d}x = \lambda \ln 10$$

where λ is a constant to be found.	(4)

Question 7 continued

Question 7 continued

Question 7 continued			
(Total for Question 7 is 12 marks)			

8.

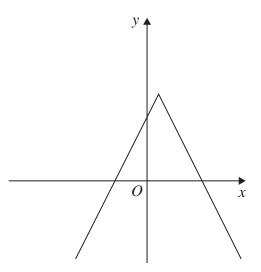


Figure 2

In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

The graph shown in Figure 2 has equation

$$y = a - |2x - b|$$

where a and b are positive constants, a > b

- (a) Find, giving your answer in terms of a and b,
 - (i) the coordinates of the maximum point of the graph,
 - (ii) the coordinates of the point of intersection of the graph with the y-axis,
 - (iii) the coordinates of the points of intersection of the graph with the *x*-axis.

(5)

On page 24 there is a copy of Figure 2 called Diagram 1.

(b) On Diagram 1, sketch the graph with equation

$$y = |x| - 1 \tag{2}$$

Given that the graphs y = |x| - 1 and y = a - |2x - b| intersect at x = -3 and x = 5

(c) find the value of a and the value of b

(4)

Question 8 continued

Question 8 continued
Diagram 1

Question 8 continued			
(Total for Question 8 is 11 marks)			

9.		In this question you must show all stages of your working.	
		Solutions relying entirely on calculator technology are not acceptable.	
	(a)	Show that the equation	
		$\frac{3\sin\theta\cos\theta}{\cos\theta + \sin\theta} = (2 + \sec 2\theta)(\cos\theta - \sin\theta)$	
		can be written in the form	
		$3\sin 2\theta - 4\cos 2\theta = 2$	(3)
	(b)	Hence solve for $\pi < x < \frac{3\pi}{2}$	(-)
		$\frac{3\sin x \cos x}{\cos x + \sin x} = (2 + \sec 2x)(\cos x - \sin x)$	
		giving the answer to 3 significant figures.	(5)

Question 9 continued			

Question 9 continued		
	(Total for Question 9 is 8 marks)	
	TOTAL FOR PAPER IS 75 MARKS	

Please check the examination details below before entering your candidate information			
Candidate surname	Other names		
Centre Number Candidate Number Pearson Edexcel Internatio	nal Advanced Level		
Thursday 30 May 2024			
Morning (Time: 1 hour 30 minutes) Paper referen	wmA13/01		
Mathematics International Advanced Level Pure Mathematics P3			
You must have: Mathematical Formulae and Statistical Tables (Yellow), calculator		

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have mean

1.

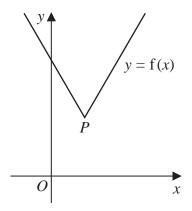


Figure 1

Figure 1 shows a sketch of the graph with equation y = f(x) where

$$f(x) = 2|x - 5| + 10$$

The point *P*, shown in Figure 1, is the vertex of the graph.

(a) State the coordinates of P

(2)

(b) Use algebra to solve

$$2|x-5|+10>6x$$

(Solutions relying on calculator technology are not acceptable.)

(2)

(c) Find the point to which P is mapped, when the graph with equation y = f(x) is transformed to the graph with equation y = 3f(x - 2)

(2)

Question 1 continued			
(Total for Question 1 is 6 marks)			

2.		$g(x) = \frac{2x^2 - 5x + 8}{x - 2}$	
	(a)	Write $g(x)$ in the form	
		$Ax + B + \frac{C}{x - 2}$	
		where A, B and C are integers to be found.	(3)
	(b)	Hence use algebraic integration to show that	
		$\int_{4}^{8} g(x) dx = \alpha + \beta \ln 3$	
		where α and β are integers to be found.	(4)

Question 2 continued

Question 2 continued

Question 2 continued	
(Total for Question 2 is 7 marks)	

3. (i) The variables x and y are connected by the equation

$$y = \frac{10^6}{x^3} \qquad x > 0$$

Sketch the graph of $\log_{10} y$ against $\log_{10} x$

Show on your sketch the coordinates of the points of intersection of the graph with the axes.

(3)

(ii)

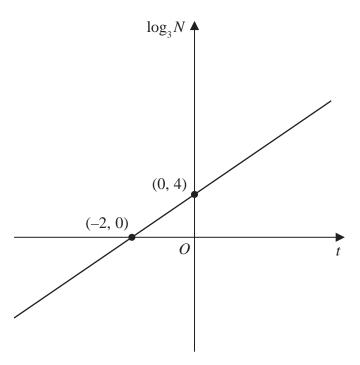


Figure 2

Figure 2 shows the linear relationship between $\log_3 N$ and t.

Show that $N = ab^t$ where a and b are constants to be found.

(3)

Question 3 continued
(Total for Question 3 is 6 marks)

4.	$f(x) = 8\sin x \cos x + 4\cos^2 x - 3$	
	(a) Write $f(x)$ in the form	
	$a\sin 2x + b\cos 2x + c$	
	where a , b and c are integers to be found.	(2)
	(b) He the encycer to part (a) to write $f(x)$ in the form	(3)
	(b) Use the answer to part (a) to write $f(x)$ in the form $R\sin(2x+x) + a$	
	$R\sin(2x+\alpha)+c$	
	where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$	
	Give the exact value of R and give the value of α in radians to 3 significant figures.	(3)
	(c) Hence, or otherwise,	
	(i) state the maximum value of $f(x)$	
	(ii) find the second smallest positive value of x at which a maximum value of $f(x)$ occurs. Give your answer to 3 significant figures.	
	occurs. Give your unswer to 3 significant rigures.	(3)

Question 4 continued

Question 4 continued

Question 4 continued	
	(Total for Question 4 is 9 marks)

5.	The functions f and g are defined by			
		$f(x) = 2 + 5\ln x$	x > 0	
		$g(x) = \frac{6x - 2}{2x + 1}$	$x > \frac{1}{3}$	
	(a) Find $f^{-1}(22)$			(2)
	(b) Use differentiation to prove th	at g is an increasing	function.	(3)
	(c) Find g ⁻¹			(3)
	(d) Find the range of fg			(2)

Question 5 continued

Question 5 continued

Question 5 continued	
	(Total for Question 5 is 10 marks)

6.

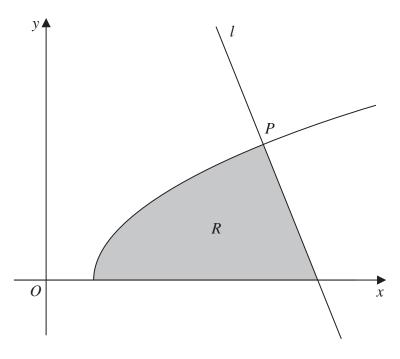


Figure 3

In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

Figure 3 shows a sketch of part of the curve with equation

$$y = \sqrt{4x - 7}$$

The line l, shown in Figure 3, is the normal to the curve at the point P(8, 5)

(a) Use calculus to show that an equation of l is

$$5x + 2y - 50 = 0 ag{5}$$

The region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and l.

(b) Use algebraic integration to find the exact area of K.	(4)

Question 6 continued

Question 6 continued

Question 6 continued	
(To	otal for Question 6 is 9 marks)

7.		In this question you must show all stages of your working.	
		Solutions relying entirely on calculator technology are not acceptable.	
	(a)	Given that	
		$\sqrt{2}\sin(x+45^\circ) = \cos(x-60^\circ)$	
		show that	
		$\tan x = -2 - \sqrt{3}$	
		$\tan x = -2 - \sqrt{3}$	(4)
	(b)	Hence or otherwise, solve, for $0 \le \theta < 180^{\circ}$	
		$\sqrt{2}\sin(2\theta) = \cos(2\theta - 105^\circ)$	
			(4)
_			

Question 7 continued

Question 7 continued

Question 7 continued	
(Total for Question 7 is	s 8 marks)

8.

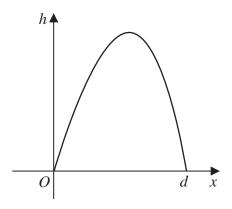


Figure 4

Figure 4 is a graph showing the path of a golf ball after the ball has been hit until it first hits the ground.

The vertical height, h metres, of the ball above the ground has been plotted against the horizontal distance travelled, x metres, measured from where the ball was hit.

The ball travels a horizontal distance of d metres before it first hits the ground.

The ball is modelled as a particle travelling in a vertical plane above horizontal ground.

The path of the ball is modelled by the equation

$$h = 1.5x - 0.5x e^{0.02x} \qquad 0 \le x \le d$$

Use the model to answer parts (a), (b) and (c).

(a) Find the value of d, giving your answer to 2 decimal places.

(b) Show that the maximum value of h occurs when

$$x = 50\ln\left(\frac{150}{x+50}\right) \tag{4}$$

Using the iteration formula

$$x_{n+1} = 50 \ln \left(\frac{150}{x_n + 50} \right)$$
 with $x_1 = 30$

- (c) (i) find the value of x_2 to 2 decimal places,
 - (ii) find, by repeated iteration, the horizontal distance travelled by the golf ball before it reaches its maximum height. Give your answer to 2 decimal places.

(3)

Question 8 continued

Question 8 continued

Question 8 continued	
(Tot	tal for Question 8 is 10 marks)

9.

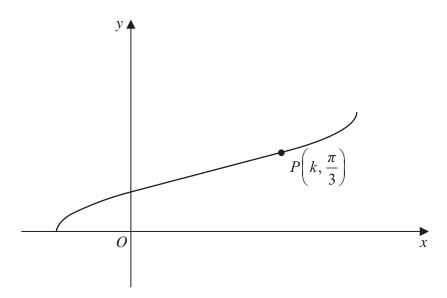


Figure 5

The curve shown in Figure 5 has equation

$$x = 4\sin^2 y - 1 \qquad 0 \leqslant y \leqslant \frac{\pi}{2}$$

The point $P\left(k, \frac{\pi}{3}\right)$ lies on the curve.

(a) Verify that k = 2

(1)

(b) (i) Find $\frac{dx}{dy}$ in terms of y

(ii) Hence show that
$$\frac{dy}{dx} = \frac{1}{2\sqrt{x+1}\sqrt{3-x}}$$

(6)

The normal to the curve at P cuts the x-axis at the point N.

(c) Find the exact area of triangle OPN, where O is the origin.

Give your answer in the form $a\pi + b\pi^2$ where a and b are constants.

(3)

Question 9 continued

Question 9 continued	
	(Total for Question 9 is 10 marks)
	TOTAL FOR PAPER IS 75 MARKS