Question Number	Scheme	Marks	
1. (a)	g(3) = -265, g(4) = 3104	M1	
	States change of sign, continuous and hence root in $[3, 4]$	A1	
		(2)	
(b)	$x_2 = \sqrt[6]{1000 - 2 \times 3} = 3.1591$	M1 A1	
	$(\alpha =)3.1589$	A1	
		(3)	
		(5 marks)	
Notes			
M1 A1	 (a) M1 Attempts the value of g at 3 and 4 with one correct (accept any value for the other as an attempt). Note narrower ranges are possible but must contain the root and lies in [3,4]. 		
AI BO	Both values correct with reason (Sign change (stated or indicated) and continuous function) and minimal conclusion (root)		
(b)			
M1 At	tempts to substitute $x_1 = 3$ into the formula. Implied by sight of expression, aw	rt 3.159	
A1 aw	awrt 3.1591		
A1 (a	x = 3.1589 cao - must be to 4 d.p. Do not be concerned about the labelling of the	the root (x or α	
ete	etc), mark the final answer of (b)(ii). (Note sight of this value implies the M1 even if x_2 is not seen).		

P3	2	02	3	0	6	MS

Quest Num	tion ber	Scheme	Marks	
2 (a)	(i)	$\log_6 T = 4 - 2\log_6 x$	B1	
((ii)	E.g. $\log_6 T = 4 - 2\log_6 216 \Longrightarrow \log_6 T = 4 - 2 \times 3 = -2 \Longrightarrow T = \dots$	M1	
		$\Rightarrow T = 6^{-2} = \frac{1}{1}$	Al	
		36	(3)	
(b))	$\log_6 T = 4 - 2\log_6 x \Longrightarrow T = 6^{4 - 2\log_6 x}$	M1	
		$\Rightarrow T = 6^4 \times 6^{\log_6 x^{-2}}$	dM1	
		$\Rightarrow T = \frac{1296}{2}$	A1	
		x^{-}	(3)	
			(5) (6 marks)	
Notes Mark	the a	uestion as a whole. Do not be concerned about part labelling.		
(a)(i)	une q	action as a whole Do not we concerned about part ascening.		
B1	Corre	ect linear equation $\log_6 T = 4 - 2\log_6 x$ (oe) The 4 may be written as $\log_6 1296$		
(ii)				
M1	Subs	titutes $x = 216$ into an equation linking T and x arising from a linear equation in it is and proceeded to make T the subject. They may have answered (b) first D	1 the	
	concequa	erned about the process for this mark. May be implied by awrt 0.028 following tion.	a correct	
A1	Corre	ect value $T = \frac{1}{36}$. Do not accept 6^{-2} .		
(b) M1	Make stage As a	akes a first step towards achieving an answer. Use of a correct log rule or law applied at some age in their attempt to eliminate logs from the equation. s a rule of thumb this can be awarded for e.g.		
	• a	pplication of a power rule $-"2"\log_6 x = -\log_6 x^{-2}$ or $"4" = \log_6 6^{-4^{\circ}}$ or $4 \to 6^4$ (note that e.g.	
	1	$og_6 T = -2 \log_6 x + 4 \rightarrow x^{-2} + 6^4$ implies this mark)		
	• a	n attempt to make T the subject. E.g. $\log_6 T = "4" - "2" \log_6 x \Longrightarrow T = 6^{"4" - "2" \log_6 x}$		
dM1	Full	ll and complete method in proceeding from an equation of form $\log_6 T = a + b \log_6 x \ (a, b \neq 0)$		
	to an coeff	an equation of form $T = k \times x^{\pm n}$ or equivalent. All log work must be correct but allow slips on efficients.		
A1	Achieves $T = \frac{1296}{x^2}$ or equivalent such as $Tx^2 = 1296$ and isw after a correct answer. Allow		Allow 6^4 for	
	1296			
Note: A	Note: Allow the M marks if a different letter than <i>T</i> is used, e.g. <i>y</i> . But must be correct in terms of <i>T</i> and <i>x</i> for the A mark.			

P3_2023_06_MS

Question
NumberSchemeMarks3 (i)
$$\frac{d}{dx} \ln(\sin^2 3x) = \frac{1}{\sin^2 3x} \times 2\sin^3 5x \cdot 3\cos 3x = 6\cot 3x$$
M1 A1(ii) (a) $\frac{d}{dx} (3x^2 - 4)^6 = 36x (3x^2 - 4)^5$ (2)(b) $\int x(3x^2 - 4)^5 dx = \frac{1}{36} (3x^2 - 4)^6 \int_0^{1/7} = \frac{1}{36} (2)^6 - \frac{1}{36} (-4)^6 = -112$ M1 A1 cso(ii)(b) $\int \sqrt{x} (3x^2 - 4)^5 dx = \left[\frac{1}{36} (3x^2 - 4)^6\right]_0^{1/7} = \frac{1}{36} (2)^6 - \frac{1}{36} (-4)^6 = -112$ M1 A1 cso(iii)M1Attempts to differentiate a ln function. Award for $\frac{d}{dx} \ln (\sin^2 3x) = \frac{1}{\sin^2 3x} \times ...$ where ... could be 1An alternative could be $\frac{d}{dx} \ln (\sin^2 3x) = \frac{d}{dx} 2\ln (\sin 3x) = (2x) \frac{1}{\sin 3x} \times ...$ or $\frac{d}{dx} \ln (\frac{1-\cos 6x}{2}) = \frac{2}{1-\cos 6x} \times ...$ A16 cot 3x o.e. such as $\frac{6\cos 3x}{\sin 3x}$ or $\frac{6}{\tan 3x}$ or $6(\tan 3x)^{-1}$ but not $6\tan^{-1} 3x$. Accept also $\frac{6\sin 6x}{1-\cos 6x}$ or $\frac{3\sin 6x}{\sin^2 3x}$ and isw after a suitably simplified answer.Constant terms must be gathered and no uncancelled common factors in numerator and denominator.(ii) (a)M1Achieves $\frac{d}{dx} (3x^2 - 4)^6 = 4x (3x^2 - 4)^5$ where A is a constant which may be 1.A1 $\frac{d}{dx} (3x^2 - 4)^6 = 4x (3x^2 - 4)^5$ or. Need not be simplified. Isw after a correct answer.(ii) (b)B1ft $\int x (3x^2 - 4)^6 = 4x (3x^2 - 4)^6$ or $\frac{1}{4} (3x^2 - 4)^6$ following through on their (a) provided it is of the form $\frac{d}{dx} (3x^2 - 4)^6 = 4x (3x^2 - 4)^6$ or $\frac{1}{4} (3x^2 - 4)^6$ (iii) (b)B1ft $\int x (3x^2 - 4)^6 = 4x (3x^2 - 4)^6$ or $\frac{1}{4} (3x^2 - 4)^6$ (iii) (b)B1ft $\int x (3x^2 - 4)^6 = 4x (3x^2 - 4)^6$ or $\frac{1}{4} (3x^2 - 4)^6$ following through on their (a) provided it is

A1cso (R =) -112 and isw if they make the answer positive after a correct answer seen. Note: Answer only with no working at all shown scores no marks. Correct integral must be seen. Note: Attempts at integration by parts are unlikely to succeed, but if done correctly and achieve the correct form of the answer may score the relevant marks.

Note (ii) may be completed by expansion.

- (a)
- M1 Requires expansion to form $ax^{12} + bx^{10} + cx^8 + dx^6 + ex^4 + fx^2 + g$ followed by an attempt to integrate each term (power decreased by 1)

A1 Requires correct derivative. $8748x^{11} - 58320x^9 + 155520x^7 - 207360x^5 + 138240x^3 - 36864x$

(b)

B1ft Correct answer from a restart, which may be via expansion

$$\frac{81x^{12}}{4} - 162x^{10} + 540x^8 - 960x^6 + 960x^4 - 512x^2$$

M1 Substitutes both limits and subtracts into an expression of the form $ax^{12} + bx^{10} + cx^8 + dx^6 + ex^4 + fx^2$

A1cso As main scheme.

P3_2023_06_MS

Question Number	Scheme	Marks		
4.(a)	f ≥-5	B1 (1)		
(b)	$y = f(x)$ $y = f^{-1}(x)$ Curve starting on negative <i>x</i> -axis and passing through positive <i>y</i> -axis, in quadrants 1 and 2 only. Shape and position correct.	M1 A1		
(c)	$2x^2 - 5 = x$ or $2x^2 - 5 = \sqrt{\frac{x+5}{2}}$ or $x = \sqrt{\frac{x+5}{2}}$ or $2(2x^2 - 5)^2 - 5 = x$	(2) B1		
	Full attempt to solve $2x^2 - x - 5 = 0 \Rightarrow x =$ exact	M1		
	$x = \frac{1 + \sqrt{41}}{4}$	A1		
	4	(3) 6 marks		
Notes				
(a) Mar	k the question as a whole - if (c) answered as (b) allow the marks.	- last is at issue		
BI Con	rect range. Accept $y \ge -5$, $f(x) \ge -5$, $1 \in [-5,\infty)$ of correct formal set notation	i but not just		
(b) Not	-5.			
M1 For and	a curve starting on the negative x - axis and passing through the positive y - axis, 2 only.	in quadrants 1		
A1 Corridect	 Correct shape (curvature) and position. Must be increasing (not bending back on itself) with decreasing gradient, though be tolerant with pen slips at the end. Do not penalise incorrect intercepts. 			
(c) B1 Sets equa	Sets up a correct equation for the solution, as shown in scheme or equivalents. Should be an equation but allow "=0" implied if there is an attempt to solve. Just $2x^2 - x - 5$ is B0 with no			
M1 Full	Full attempt to solve a correct equation leading to exact answers. Attempts via $f(x) = f^{-1}(x)$ (oe)			
will	lead a quartic $(8x^4 - 40x^2 - x + 45 = 0 \text{ if correct})$ but will likely not lead to exact	t answers.		
Not Dec	e exact answers following a quadratic is fine, but method should be shown for a c imal answer only is M0. $1+\sqrt{41}$	quartic.		
A1 $x =$	$x = \frac{1+\sqrt{11}}{4}$ ONLY.			

Some examples of curves for question 4(b).

M1A0: Curve is clearly going downward on the right-hand side.

Question Number	Scheme	Marks			
5 (i)	States $x = 2$	B1			
	$\sqrt{3}\sec x + 2 = 0 \Longrightarrow \cos x = -\frac{\sqrt{3}}{2} \Longrightarrow x = \dots$	M1			
	$x = \frac{5\pi}{6}$	A1			
		(3)			
(ii)	Attempts to use $\cos 2\theta = 1 - 2\sin^2 \theta$	M1			
	$6\sin^2\theta + 10\sin\theta - 3 = 0$	A1			
	$\sin \theta = \frac{-5 \pm \sqrt{43}}{6} (= -1.926, 0.2595) \Longrightarrow \theta = \arcsin()$	M1			
	$\theta = 15.0^{\circ}, 165^{\circ}$	A1			
		(4) (7 marks)			
Notes		(7 marks)			
(i)					
B1 Stat	es $x = 2$. May be seen anywhere in (i) and don't be concerned where it con	mes from. $\overline{2}$			
M1 For	a correct process to solve $\sqrt{3} \sec x + 2 = 0$ E.g. $\sec x = \frac{1}{\cos x} \Rightarrow \cos x = -\frac{\sqrt{2}}{2}$	$\frac{3}{2} \Rightarrow x = \dots$ Allow			
slip	s in rearranging but must attempt to solve $\cos x = k$, $ k < 1$ or $\sec x = k$, $ k $	>1 Degree value (
150	°) following a correct equation implies the M mark. Note some may use se	$ec^2 x = 1 + tan^2 x$ and			
form	n a quadratic in tan x. These will need a correct identity, correct method to	solve a quadratic			
(wh	ich may be by calculator) and attempt to solve $\tan x = k, k \neq 0$				
A1 $x =$	$\frac{5\pi}{6}$ and no other extra solutions in the range. Accept awrt 2.62 (and isw).				
Note that $$	$\sqrt{3} \sec x + 2 = 0 \rightarrow x = \frac{5\pi}{6}$ can score M1A1 as no incorrect work is seen, method	implied.			
Question re	quired working to be shown $x = \frac{5\pi}{6}$ without seeing at least $\sqrt{3} \sec x + 2 = 0$) extracted first is			
M04	A0.				
(ii)					
M1 Atte	mpts to use $\cos 2\theta = \pm 1 \pm 2\sin^2 \theta$ to form a quadratic equation in $\sin \theta$. If u	using alternative			
form	is for the identity, must also use $\cos^2 \theta = 1 - \sin^2 \theta$ before gaining this mark	k.			
A1 Cor	rect 3 term quadratic equation $6\sin^2\theta + 10\sin\theta - 3 = 0$ or a multiple of this.	Alternatively may			
be s	cored for $6\sin^2\theta + 10\sin\theta = 3$ if followed by completing the square on LHS	S to solve.			
M1 Full	attempt to find one value for θ from a quadratic in sin θ . Must involved				
•	correct method to solve the quadratic in $\sin\theta$ (usual rules, may use calculator) to produce a value for $\sin\theta$				
•	use of $\arcsin()$ to reach the value for θ (you may need to check the values	if arcsin() is not			
	shown). Radian answers can imply the mark (awrt 0.263, 2.88 if correct).				
May	May be scored from an incorrect identity as long as a quadratic is achieved. Accept arcsin				
$A1 \theta = \theta$	wrt 15.0° 165° and no other solutions in the range Accent just 15° for 15.	0° (but not awrt			
15°	if it does not round to 15.0°)				
Condone a d	Condone a different variable used than θ throughout.				

Condone a different variable used than θ throughout.

Question Number	Scheme	Marks		
6.(a)	(2, -10)	B1 B1		
		(2)		
(b)	ff(0) = f(-4) =	M1		
	= 8	Alcso		
		(2)		
(c)	Attempts to solve $-3(x-2)-10 = 5x+10 \Rightarrow x =$	M1		
	$x > -\frac{7}{4}$ only	A1		
		(2)		
(d)	$x(\text{or } x) = \frac{16}{3}$	B1		
	Attempts $3(x -2)-10=0 \Rightarrow x =k, k>0$			
	or $3(-x-2)-10 = 0 \Longrightarrow x = -k$	M1		
	or $3(x-2)-10 = 0 \Rightarrow x = k \Rightarrow x = -k$			
	$x = \left(\frac{16}{3} \text{ and}\right) - \frac{16}{3}$ with no other values	A1		
		(3)		
		(9 marks)		
Notes (a)				
B1 Fo	one correct coordinate			
BI Fo	(2, -10). Allow $x =, y =$ Do not accept e.g. 6/3 unless 2 has been seen/ident	itied with		
(b)	5.			
M1 Fo	a full attempt at $f f (0)$. Can be scored for $f (-4)$. Allow for use of their $f(0)$ even	if incorrect		
as firs con	long as the process is clear, e.g. $f(0) =$ stated or calculated first then used. May be it attempting $ff(x)$ before substituting. This mark is for showing the correct process proposites, so may be scored if there are slips or errors with modulus if the intent is c $0 = 8$ only. A0 if other values given	scored by of lear.		
(c)				
M1 A	tempts to solve $-3(x-2)-10 = 5x+10 \Rightarrow x = \dots$ Allow with equality or any inequ	ality for the		
M Alt	M mark. Alternatively, rearranges to $ x-2 = ax+b$, squares both sides and solves the quadratic.			
A1 x2	A1 $x > -\frac{7}{4}$ (oe) only. If another inequality or value is given and not rejected withhold this mark.			
(d) Work for used in (d)	(d) Work for (d) must be seen or referred to in (d). Do not accept for work attempted in earlier parts but not used in (d).			
B1 Fc	$x = \frac{16}{3}$. Allow when seen even from incorrect working as it could be verified. Ma	y be seen on		
ske	tch as long as referred to in (d). Allow also for $ x = \frac{16}{3}$			

M1 Correct method to find the root on the negative x-axis. E.g. attempts to solve 3(|x|-2)-10=0 to achieve a value for |x|, or 3(-x-2)-10=0 to achieve a value for x, or for reflecting in the y-axis (making negative) their 16/3 from an attempt at 3(x-2)-10=0. May be part of longer winded attempts. Allow missing brackets for the M.
Note it is possible to arrive at an equation leading to x = ±16/3 from incorrect starting points, and such methods will score M0.
A1 For x = -16/3 with no other values (aside their x = 16/3). Must give the negative value, not just |x|=16/3. May be stated on a sketch as long as work seen in (d). Do not isw if they clearly reject this value later or if they try to form an inequality from the values, which is A0 as other values are included.

Question Number		Scheme	Marks	
7.(a))	States or implies that $A = 2500$	B1	
		$10000 = 2500e^{k \times 8} \Longrightarrow 8k = \ln 4 \Longrightarrow k = \dots$	M1	
		$\Rightarrow k = \frac{1}{8} \ln 4$ or awrt 0.1733	A1	
		0		(3)
(b))	$\frac{dN}{dt} = 60000 \times -0.6e^{-0.6 \times 5} = -1792$ So decrease is 1790	M1, A1	
(c	:)	$60000e^{-0.6t} = 2500e^{0.1733t}$	M1	(2)
		$24 = 0.1733t + 0.6t \implies 0.1722t + 0.6t \implies 1224 \implies 124 \implies$	dM1	
		$24 = e \qquad \Rightarrow 0.1/35l + 0.0l = III 24 \Rightarrow l =$ $T = 4.11$	A1	
			8 marks	(3)
Notes			0 1111 115	
(a)		kt		
B1	State	es or implies that $A = 2500$. E.g award for $N = 2500e^{-1}$		
M1	Atter	npts to use $N = Ae^{kt}$ with $t = 8, N = 10000$ and their A to set up and solve an equ	ation in <i>k</i>	•
	Corr	ect ln work must be used to solve their equation.	C 1	
	Allo	w this mark for attempts to find k first by solving simultaneously if they use $t = 1$	for the st	tart
	of th	e study: $2500 = Ae$, $10000 = Ae \implies e = 4 \implies /k = \ln 4 \implies k =$ but the index a	and In wo	rk
	musi			
Al	k = a	awrt $0.1/33$. Accept the exact value $-\ln 4$ and 1sw after seen. $\frac{8}{8}$		
(b)				
M1	$\frac{\mathrm{d}N}{\mathrm{d}t}$	$= Ce^{-0.6\times 5} = \dots$ where C is a constant. Condone $60000e^{-0.6t} \rightarrow 60000e^{-0.6t}$ as long	as it is cle	ear
	they	think they have found $\frac{dN}{dt}$. Must be correct index (not kt).		
A1	Awr	t 1790 from a correct derivative. Condone awrt -1790		
(c)				
(C) M1	Sata	$60,0000 e^{-0.6t}$ - their 2500e ^{(0.1733)t} May use T or enother variable instead. Allow a site	lin on o a	tha
IVII	6000	0000000 = then 25000 = May use 1 of anomer variable instead. Allow a signal of the second seco	or k in (a)	. the
dM1	Proc	eeds to rearrange to $e^{mt} = D$ ($D > 0$) and applies ln to find t. The ln work must be	e correct,	•
	thou	gh there may be slips in the coefficients or index work reaching $e^{mt} = D \ (D > 0)$.	May be	
	impl	ied by a correct answer for their $e^{mt} = D$	-	
	Alter	natively, takes ln of both sides first and applies correct ln laws to proceed to mak	e t the	
	subje	ect: $\ln\left(60000e^{-0.6t}\right) = \ln\left(2500e^{0.1733t}\right) \Rightarrow \ln 60000 - 0.6t = \ln 2500 + 0.1733t \Rightarrow t =$	=	
A1	awrt	4.11 Must be a value, not an expression in ln terms for this mark.		
Note A	Answe the A	er only scores no marks, method must be shown and the dM1 must be achieved in mark	order to	

Page 10 of 16

Questio Numbe	n Scheme	Marks		
8. (a)	$f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$	M1 A1		
	$= 2(2x+1)^{2} e^{-4x} \{3-2(2x+1)\}$	dM1		
	$= 2(2x+1)^{2}(1-4x)e^{-4x}$	A1		
		(4)		
(b)	Sets $f'(x) = 0 \Longrightarrow x = -\frac{1}{2}, \frac{1}{4}$	B1		
	Either $f\left("-\frac{1}{2}"\right) = \dots$ or $f\left("\frac{1}{4}"\right) = \dots$	M1		
	Both $\left(-\frac{1}{2},0\right)$ and $\left(\frac{1}{4},\frac{27}{8e}\right)$	A1		
	(0, 27)	(3)		
(c)	$\left(\frac{9}{4},\frac{27}{e}\right)$	B1ft B1ft		
		(2) 9 marks		
Notes (a)				
M1	Attempts the product rule to achieve $P(2x+1)^2 e^{-4x} \pm Q(2x+1)^3 e^{-4x}$			
	May also be attempted by the quotient rule - equivalent form after e terms cancel.			
A1	$f'(x) = 6(2x+1)^2 e^{-4x} - 4(2x+1)^3 e^{-4x}$ which may be unsimplified			
dM1	Correctly takes out a common factor of $(2x+1)^2 e^{-4x}$ from their expression with an in-	termediate		
	step before the final answer. Allow if there are minor slips in the $(2x+1)^2 e^{-4x}$ as a factorized to be the final answer.	ctor (such as		
	$(2x+)^2 e^{-4x}$ if recovered - look for the correct remaining terms in the bracket { }. Allo	ow going		
	From an expanded cubic to a factorised form for this mark: $-4x \left(2 - 2x + \frac{2}{3}\right) = 2 \left(2 - x\right)^2 \left(x + 1 + \frac{-4x}{3}\right)$			
	$e (2-24x - 32x) \rightarrow 2(2x+1) (1-4x)e$.			
A1	Achieves $2(2x+1)^2(1-4x)e^{-4x}$ with no incorrect algebra. Accept with the brackets in order.	ı either		
(b)	1 1			
B1	$x = -\frac{1}{2}, \frac{1}{4}$ o.e. Both required.			
M1	Attempts to substitute one of $x = \pm \frac{1}{2}, \pm \frac{1}{4}$ into f(x). If substitution not seen may be im	plied by		
	either of $\left(-\frac{1}{2},0\right)$ or $\left(\frac{1}{4},\frac{27}{8e}\right)$ o.e (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2},\frac{1}{2}\right)$	$\left(\frac{8}{e^2}\right)$ (awrt		
	1.08) or $\left(-\frac{1}{4}, \frac{e}{8}\right)$ (awrt 0.340) o.e.			
A1	For $\left(-\frac{1}{2},0\right)$ and $\left(\frac{1}{4},\frac{27}{8e}\right)$ o.e. must be exact but isw after exact coordinates given.			
	Allow as $x =, y =$ as long as clearly paired. Allow the M and A marks if seen in part (c) - mark (b) and (c) together.			

B1ft One correct aspect applied correctly to one of their points. So for either 2 added to one of their x coordinates, or a non-zero y coordinate multiplied by 8. E.g. either (⁹/₄,...) or (...,²⁷/_e) or follow through on ("¹/₄"+2,...) or (...,8×"²⁷/_{8e}") etc.
B1ft (⁹/₄,²⁷/_e) only or follow through on the y coordinate only so (⁹/₄,8×"²⁷/_{8e}") (oe) only. B0 if another point is given. Accept awrt 9.93 for second ordinate but note 9.92 is a correct follow through on 1.24. Allow as x = ⁹/₄, y =....
SC allow B1B0 if coordinates given wrong way round.

(c)

Questi Numb	on er Scheme	Marks	
9(a)	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} = \frac{\cos 2x}{\sin x} + \frac{2\sin x \cos x}{\cos x} $ (One Correct identity)	B1	
	$=\frac{1-2\sin^2 x}{\sin x}+\frac{2\sin x\cos x}{\cos x}$	M1	
	$= \frac{1}{\sin x} - \frac{2\sin^{2}x}{\sin x} + 2\sin x = \frac{1}{\sin x} = \csc x *$	A1*	
(h)	$\mathbf{F} = \mathbf{F} = \mathbf{F}^2 \mathbf{O} + \mathbf{O} = \mathbf{O} + $	(3)	
	E.g. Equation is cosec $\theta = 0 \cot \theta - 4 \Longrightarrow 1 + \cot \theta = 0 \cot \theta - 4$ E.g. $\cot^2 \theta - 6 \cot \theta + 5 = 0$	Al	
	E.g. $\tan \theta = \frac{1}{5}, 1$	dM1	
	$\theta=0.197, \frac{\pi}{4}$	A1, A1	
	4	(5)	
(c)	$\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \operatorname{cosecx} \operatorname{cot} x \mathrm{d} x = \left[-\operatorname{cosecx}\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}$	M1	
	$=2-\sqrt{2}$	A1	
		(2) 10 marks	
Notes	There are lots of ways of proving this statement. In general score as follows		
(d) B1 M1	There are lots of ways of proving this statement. In general score as follows For applying at least one CORRECT double or compound angle identity during the proof or for forming a CORRECT single fraction initially. For a correct overall strategy, e.g. applying double angle identities to reduce terms to single angle arguments and cancelling down terms to eliminate $\cos x$ terms (score at the stage $\cos x$ terms could be eliminated), or attempting a single fraction and applying relevant identities to achieve single angle argument with common factor $\cos x$ in the numerator. Allow slips in signs, such as $\cos 2x = 1 \pm 2 \sin^2 x$ for the M but otherwise identities used must be correct. Fully correct proof showing all necessary steps, though the left hand side may be implied (and		
	may follow initial lines of aside working). Must see the $\frac{1}{\sin x} \rightarrow \csc x$ during the provide the provided of	oof . Do not	
(b)	penalise minor notational slips such as missing an x in one term.		
M1	Correctly applies the result of (a) and attempts to use relevant identities, allowing sign	i errors e.g.	
	$\pm 1 \pm \cot^2 \theta = \csc^2 \theta \text{ to produce an equation in } \cot \theta \text{ or other single trig term only. A alternative is}$ $\frac{1}{\sin^2 \theta} = 6 \frac{\cos \theta}{\sin \theta} - 4 \Rightarrow 1 = 6 \sin \theta \cos \theta - 4 \sin^2 \theta \Rightarrow (1 + 4 \sin^2 \theta)^2 = 36 \sin^2 \theta (1 - \sin^2 \theta)^2$	An)	
A1	Correct quadratic $\cot^2 \theta - 6 \cot \theta + 5 = 0$ or $5 \tan^2 \theta - 6 \tan \theta + 1 = 0$. In the alternative,	a correct	
dM1	adratic in $\sin^2\theta$ or $\cos^2\theta$ e.g. $52\sin^4\theta - 28\sin^2\theta + 1 = 0$. The "=0" may be implied by an tempt to solve. May be implied by correct solutions following an unsimplified quadratic. tempts to solve quadratic to find at least one value for their trig term used. Usual rules, may use lculator.		
A1	One correct value for θ following from a correct value for the trig term they are working must have solved a correct quadratic in the dM. Accept awrt 0.197 or 0.785. Degrees A0A0.	ng in — answer are	

P3	2023	0	6	MS

Question Number	Scheme	Marks		
A1 Bot	th values correct and no other values in the range. Accept awrt 0.197 and $\frac{\pi}{4}$ only (
exa Note: Alle the Note Ans (c) M1 For Ma A1 2-	exact but isw after correct value seen). Allow if a different variable used (such as x). For mixed variables allow the M's but only allow the first A (and final A's) if recovered. Answers without working score no marks. For using part (a) and achieving $\pm k$ cosecx oe for the integral (limits not required for this mark. May arise from longer methods, but must achieve the correct form.			
(a) ALT I	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} = \frac{\cos 2x \cos x + \sin 2x \sin x}{\sin x \cos x}$ Correct single fraction	B1		
	$= \frac{\cos x \left(1 - 2\sin^2 x\right) + 2\sin x \cos x \sin x}{\sin x \cos x}$ Single fraction with single arguments and common factor $\cos x$ in numerator	M1		
	$=\frac{\cos x}{\sin x \cos x} = \frac{1}{\sin x} = \csc x *$	A1* (3)		
(a) ALT II	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} \equiv \frac{\cos 2x \cos x + \sin 2x \sin x}{\sin x \cos x}$ Correct single fraction	B1		
	$\equiv \frac{\cos(2x-x)}{\sin x \cos x}$ Applies identity to reach single fraction with single arguments and common factor $\cos x$ in numerator	M1		
	$\equiv \frac{\cos x}{\sin x \cos x} \equiv \frac{1}{\sin x} \equiv \csc x *$ Note $\cos(x-2x)$ is equally correct for the M1.	A1* (3)		
(a) ALT III	$\frac{\cos 2x}{\sin x} + \frac{\sin 2x}{\cos x} \equiv \frac{\cos^2 x - \sin^2 x}{\sin x} + \frac{2\sin x \cos x}{\cos x}$ Correct identity	B1		
	$\equiv \frac{\cos^3 x - \sin^2 x \cos x + 2\sin^2 x \cos x}{\sin x \cos x}$ Single fraction with single arguments and common factor $\cos x$ in numerator	M1		
	$\equiv \frac{(\cos^2 x + \sin^2 x)\cos x}{\sin x \cos x} \equiv \frac{1}{\sin x} \equiv \operatorname{cosec} x \ *$	A1* (3)		

Question Number	Scheme	Marks		
10 (a)	$x = \frac{2y^2 + 6}{3y - 3} \Longrightarrow \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right) = \frac{4y(3y - 3) - 3(2y^2 + 6)}{(3y - 3)^2}$	M1 A1		
	$\frac{dx}{dy} = \frac{6y^2 - 12y - 18}{9(y - 1)^2} = \frac{2y^2 - 4y - 6}{3(y - 1)^2} \text{o.e}$	dM1, A1		
(b)	P and Q are where $\frac{dx}{dt} = 0$ or where $2v^2 - 4v - 6 = 0$	(4)		
(0)	Solves $2v^2 - 4v - 6 = 0 \Rightarrow 2(v-3)(v+1) = 0 \Rightarrow v = 3 -1$	M1		
	Subs $y = -1$ and 3 in $x = \frac{2y^2 + 6}{3y - 3} \Rightarrow x =$	dM1		
	Achieves $x = -\frac{4}{3}$ and $x = 4$	Alcso		
		(4) 8 marks		
Notes				
(a)		2		
M1 A	ttempts the quotient rule. Condone slips on the coefficients - look for $\frac{Ay(3y-3)-By}{(3y-3)}$	$\frac{(2y^2+6)}{y^2}$		
A	A, B > 0. Allow a product rule attempt:			
د	$= \left(2y^{2} + 6\right)\left(3y - 3\right)^{-1} \Longrightarrow \left(\frac{dx}{dy}\right) = Ay\left(3y - 3\right)^{-1} + \left(2y^{2} + 6\right) \times -B\left(3y - 3\right)^{-2}$			
A1 C	preserved or the differentiation which may be unsimplified. Allow if the $\frac{dx}{dy}$ is missing or called	d $\frac{\mathrm{d}y}{\mathrm{d}x}$ for		
tł	is mark. By product rule $4y(3y-3)^{-1} + (2y^2+6) \times -3(3y-3)^{-2}$ Condone missing br	ackets if		
dM1 R F 3	covered. equires an attempt to get a single fraction with some attempt to simplify. or the quotient rule look for a simplification of the numerator with like terms collecte FO.	d giving a		
A	ttempts via the product rule will require a correct method to put as a single fraction.			
A1 ($\frac{dx}{dy} = \int \frac{2y^2 - 4y - 6}{3y^2 - 6y + 3}$ or exact simplified equivalent such as $\frac{2(y - 3)(y + 1)}{3(y - 1)^2}$ is wafter a	a correct		
S	mplified answer. Common factor 3 must have been cancelled. Must be seen in part (a	ı). A0 if		
с	called $\frac{dy}{dx}$ but allow A1 if LHS is not stated.			
Attempts	Attempts at $\frac{dy}{dx}$ can score the first 3 marks if correct. Allow use of x in place of y for the Ms.			
(b)				
B1 I	dicates P and Q are where $\frac{dx}{dy} = 0$ or where their $2y^2 - 4y - 6 = 0$ (which may be t	he		
d	enominator of $\frac{dy}{dx}$ if they found this instead).			
M1 S	plves their 3TQ from an attempt at $\frac{dx}{dy} = 0$ (or denominator of their $\frac{dy}{dx} = 0$), usual rule	·S.		

Page 15 of 16

dM1 Substitutes both their solutions to $2y^2 - 4y - 6 = 0$ into $x = \frac{2y^2 + 6}{3y - 3}$. Condone slips if the attempt

is clear. At least one should be correct if no method is shown.

Alcso Achieves $x = -\frac{4}{3}$ and x = 4 only. Must be equations not just values but isw after correct equations seen as long as no contrary work is shown (such as giving horizontal lines). Accept equivalents. Must have come from a correct derivative - though allow from an isw form if a numerical factor was lost in the numerator. Must be exact.

Answers from no working score 0/4 as the question instructs use of part (a), so must see the attempt at setting $\frac{dx}{dy} = 0$

uy		
Alt (a)	$x = \frac{2y^2 + 6}{3y - 3} \Longrightarrow 3xy - 3x = 2y^2 + 6 \Longrightarrow 3x + 3y\frac{dx}{dy} - 3\frac{dx}{dy} = 4y$	M1 A1
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{4y - 3x}{3(y - 1)}$	dM1, A1
		(4)
(b) First 2 marks.	States that <i>P</i> and <i>Q</i> are where $\frac{dx}{dy} = 0$ or where $4y - 3x = 0$	B1
	$\Rightarrow \frac{4}{3}y = \frac{2y^2 + 6}{3y - 3} \Rightarrow 4y^2 - 4y = 2y^2 + 6 \Rightarrow \text{ as main scheme}$	M1
Alt II (a)	$x = \frac{2y^2 + 6}{3y - 3} = \frac{2y}{3} + \frac{2}{3} + \frac{8}{3(y - 1)} \Longrightarrow \frac{dx}{dy} = \frac{2}{3} - \frac{8}{3(y - 1)^2}$	M1 A1
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{2(y-1)^2 - 8}{3(y-1)^2} = \frac{2y^2 - 4y - 6}{3(y-1)^2} \text{ oe}$	dM1, A1
		(4)
Notes		
(a)		
M1 Attempts long division or other method to achieve $Ay + B + \frac{C}{3y-3}$ oe and differentiates.		
A1 Correct differentiation.		
1) (1) Attained to the state of the state		

dM1 Attempts to get a single fraction and simplifies numerator to 3TQ or uses difference of squares to factorise.

A1 Correct answer.