Question Number	Scheme	Marks
1. (a)	$g(3)=-265, \quad g(4)=3104$ States change of sign, continuous and hence root in $[3,4]$ $\begin{aligned} x_{2}=\sqrt[6]{1000-2 \times 3}= & 3.1591 \\ & (\alpha=) 3.1589 \end{aligned}$	M1 A1 M1 A1 A1 (5 marks)
Notes		
(a)		
M1 Attempts the value of g at 3 and 4 with one correct (accept any value for the other as an attem Note narrower ranges are possible but must contain the root and lies in [3,4].		
A1 Both values correct with reason (Sign change (stated or indicated) and continuous function) and minimal conclusion (root)		
(b)		
1 Attempts to substitute $x_{1}=3$ into the formula. Implied by sight of expression, awrt 3.159		
$\mathrm{A} 1$	3.1589 cao - must be to 4 d.p. Do not be concerned about the mark the final answer of (b)(ii). (Note sight of this value implie	e root (x or α if x_{2} is not

Question Number	Scheme	Marks
(ii)	$\begin{aligned} & \log _{6} T=4-2 \log _{6} x \\ & \text { E.g. } \log _{6} T=4-2 \log _{6} 216 \end{aligned} \quad \log _{6} T=4-2 \times 3=-2 \Rightarrow T=\ldots,$	B1 M1 A1
(b)	$\begin{aligned} & \log _{6} T=4-2 \log _{6} x \Rightarrow T=6^{4-2 \log _{6} x} \\ & \Rightarrow T=6^{4} \times 6^{\log _{6}-x^{-2}} \\ & \Rightarrow T=\frac{1296}{2} \end{aligned}$	M1 dM1 A1
		$\begin{array}{r} \text { (3) } \\ \text { (6 marks) } \end{array}$

Notes

Mark the question as a whole. Do not be concerned about part labelling.
(a)(i)

B1 Correct linear equation $\log _{6} T=4-2 \log _{6} x$ (oe) The 4 may be written as $\log _{6} 1296$
(ii)

M1 Substitutes $x=216$ into an equation linking T and x arising from a linear equation in the logarithms and proceeds to make T the subject. They may have answered (b) first. Do not be concerned about the process for this mark. May be implied by awrt 0.028 following a correct equation.
A1 Correct value $T=\frac{1}{36}$. Do not accept 6^{-2}.
(b)

M1 Makes a first step towards achieving an answer. Use of a correct log rule or law applied at some stage in their attempt to eliminate logs from the equation.
As a rule of thumb this can be awarded for e.g.

- application of a power rule $-2 " \log _{6} x=-\log _{6} x^{" 2 "}$ or " $4 "=\log _{6} 6^{\text {"4" }}$ or $4 \rightarrow 6^{4}$ (note that e.g. $\log _{6} T=-2 \log _{6} x+4 \rightarrow x^{-2}+6^{4}$ implies this mark)
- an attempt to make T the subject. E.g. $\log _{6} T=" 4 "-" 2 " \log _{6} x \Rightarrow T=64$ "4"-"2" $\log _{6} x$
dM1 Full and complete method in proceeding from an equation of form $\log _{6} T=a+b \log _{6} x(a, b \neq 0)$ to an equation of form $T=k \times x^{ \pm n}$ or equivalent. All log work must be correct but allow slips on coefficients.
A1 Achieves $T=\frac{1296}{x^{2}}$ or equivalent such as $T x^{2}=1296$ and isw after a correct answer. Allow 6^{4} for 1296.

Note: Allow the M marks if a different letter than T is used, e.g. y. But must be correct in terms of T and x for the A mark.

Question Number	Scheme	Marks
3 (i)	$\frac{\mathrm{d}}{\mathrm{~d} x} \ln \left(\sin ^{2} 3 x\right)=\frac{1}{\sin \ngtr 3 x} \times 2 \sin 3 x \times 3 \cos 3 x=6 \cot 3 x$	M1 A1
(ii) (a)	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(3 x^{2}-4\right)^{6}=36 x\left(3 x^{2}-4\right)^{5}$	M1 A1
(b)	$\int x\left(3 x^{2}-4\right)^{5} \mathrm{~d} x=\frac{1}{36}\left(3 x^{2}-4\right)^{6}$	B1ft
	$\int_{0}^{\sqrt{2}} x\left(3 x^{2}-4\right)^{5} \mathrm{~d} x=\left[\frac{1}{36}\left(3 x^{2}-4\right)^{6}\right]_{0}^{\sqrt{2}}=\frac{1}{36}(2)^{6}-\frac{1}{36}(-4)^{6}=-112$	M1 A1cso (3) (7 marks)

Notes

(i)

M1 Attempts to differentiate a \ln function. Award for $\frac{\mathrm{d}}{\mathrm{d} x} \ln \left(\sin ^{2} 3 x\right)=\frac{1}{\sin ^{2} 3 x} \times \ldots$ where ... could be 1 An alternative could be $\frac{\mathrm{d}}{\mathrm{d} x} \ln \left(\sin ^{2} 3 x\right)=\frac{\mathrm{d}}{\mathrm{d} x} 2 \ln (\sin 3 x)=(2 \times) \frac{1}{\sin 3 x} \times \ldots$ or $\frac{\mathrm{d}}{\mathrm{d} x} \ln \left(\frac{1-\cos 6 x}{2}\right)=\frac{2}{1-\cos 6 x} \times \ldots$
A1 $6 \cot 3 x$ o.e. such as $\frac{6 \cos 3 x}{\sin 3 x}$ or $\frac{6}{\tan 3 x}$ or $6(\tan 3 x)^{-1}$ but not $6 \tan ^{-1} 3 x$ Accept also $\frac{6 \sin 6 x}{1-\cos 6 x}$ or $\frac{3 \sin 6 x}{\sin ^{2} 3 x}$ and isw after a suitably simplified answer.
Constant terms must be gathered and no uncancelled common factors in numerator and denominator.
(ii) (a)

M1 Achieves $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}-4\right)^{6}=A x\left(3 x^{2}-4\right)^{5}$ where A is a constant which may be 1 .
A1 $\quad \frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}-4\right)^{6}=36 x\left(3 x^{2}-4\right)^{5}$ oe. Need not be simplified. Isw after a correct answer.
(ii) (b)

B1ft $\int x\left(3 x^{2}-4\right)^{5} \mathrm{~d} x=\frac{1}{36}\left(3 x^{2}-4\right)^{6}$ or $\frac{1}{A}\left(3 x^{2}-4\right)^{6}$ following through on their (a) provided it is of the form $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}-4\right)^{6}=A x\left(3 x^{2}-4\right)^{5}$ This may arise from attempts via substitution and can be scored from a restart if (ii)(a) was incorrect. Need not be simplified and isw if simplified incorrectly. Condone notation errors such as unneeded integral signs - mark the expression that is their attempt at the integration.
M1 Substitutes in both limits and subtracts (either way round) into an expression of the form $D\left(3 x^{2}-4\right)^{6}$ where D is a constant but allow slips such as a missing power if the intention is clear. Sight of the subtraction is sufficient. Implied by the correct answer for their integral if substitution not seen. If using integration by substitution they must be substituting the correct limits for their variable.

A1cso ($R=$) -112 and isw if they make the answer positive after a correct answer seen.
Note: Answer only with no working at all shown scores no marks. Correct integral must be seen.
Note: Attempts at integration by parts are unlikely to succeed, but if done correctly and achieve the correct form of the answer may score the relevant marks.

Note (ii) may be completed by expansion.
(a)

M1 Requires expansion to form $a x^{12}+b x^{10}+c x^{8}+d x^{6}+e x^{4}+f x^{2}+g$ followed by an attempt to integrate each term (power decreased by 1)
A1 Requires correct derivative. $8748 x^{11}-58320 x^{9}+155520 x^{7}-207360 x^{5}+138240 x^{3}-36864 x$ (b)

B1ft Correct answer from a restart, which may be via expansion

$$
\frac{81 x^{12}}{4}-162 x^{10}+540 x^{8}-960 x^{6}+960 x^{4}-512 x^{2}
$$

M1 Substitutes both limits and subtracts into an expression of the form

$$
a x^{12}+b x^{10}+c x^{8}+d x^{6}+e x^{4}+f x^{2}
$$

Alcso As main scheme.

Some examples of curves for question 4(b).

M1A1bod: Curve slips downward at the end due to slip of pen. This is a borderline case.

M1A1bod: Position and curvature correct - ignore possible $y=x$ line, mark the curve.

M1A1bod: Gradient is decreasing on the whole.

M1A0: Meets conditions for M1 but gradient not decreasing.

M0A0: Does not start on negative x-axis. Curvature would be unacceptable.

diagraml
M1A0: Curve is clearly going downward on the right-hand side.

M1A0: Meets condition for M1 but curvature out of tolerance, gradient increases after intersection.

Notes

(i)

B1 States $x=2$. May be seen anywhere in (i) and don't be concerned where it comes from.
M1 For a correct process to solve $\sqrt{3} \sec x+2=0$ E.g. $\sec x=\frac{1}{\cos x} \Rightarrow \cos x=-\frac{\sqrt{3}}{2} \Rightarrow x=\ldots$. Allow slips in rearranging but must attempt to solve $\cos x=k,|k|<1$ or $\sec x=k,|k|>1$ Degree value (150°) following a correct equation implies the M mark. Note some may use $\sec ^{2} x=1+\tan ^{2} x$ and form a quadratic in $\tan x$. These will need a correct identity, correct method to solve a quadratic (which may be by calculator) and attempt to solve $\tan x=k, k \neq 0$
A1 $x=\frac{5 \pi}{6}$ and no other extra solutions in the range. Accept awrt 2.62 (and isw).
Note that $\sqrt{3} \sec x+2=0 \rightarrow x=\frac{5 \pi}{6}$ can score M1A1 as no incorrect work is seen, method implied.
Question required working to be shown $x=\frac{5 \pi}{6}$ without seeing at least $\sqrt{3} \sec x+2=0$ extracted first is M0A0.
(ii)

M1 Attempts to use $\cos 2 \theta= \pm 1 \pm 2 \sin ^{2} \theta$ to form a quadratic equation in $\sin \theta$. If using alternative forms for the identity, must also use $\cos ^{2} \theta=1-\sin ^{2} \theta$ before gaining this mark.
A1 Correct 3 term quadratic equation $6 \sin ^{2} \theta+10 \sin \theta-3=0$ or a multiple of this. Alternatively may be scored for $6 \sin ^{2} \theta+10 \sin \theta=3$ if followed by completing the square on LHS to solve.
M1 Full attempt to find one value for θ from a quadratic in $\sin \theta$. Must involved

- correct method to solve the quadratic in $\sin \theta$ (usual rules, may use calculator) to produce a value for $\sin \theta$
- use of $\arcsin (.$.$) to reach the value for \theta$ (you may need to check the values if $\arcsin (\ldots$) is not shown). Radian answers can imply the mark (awrt $0.263,2.88$ if correct).
May be scored from an incorrect identity as long as a quadratic is achieved. Accept arcsin expression for the M
A1 $\theta=$ awrt $15.0^{\circ}, 165^{\circ}$ and no other solutions in the range. Accept just 15° for 15.0° (but not awrt 15° if it does not round to 15.0°)
Condone a different variable used than θ throughout.

M1 Correct method to find the root on the negative x-axis. E.g. attempts to solve $3(|x|-2)-10=0$ to achieve a value for $|x|$, or $3(-x-2)-10=0$ to achieve a value for x, or for reflecting in the y-axis (making negative) their $\frac{16}{3}$ from an attempt at $3(x-2)-10=0$. May be part of longer winded attempts. Allow missing brackets for the M.
Note it is possible to arrive at an equation leading to $x= \pm \frac{16}{3}$ from incorrect starting points, and such methods will score M0.
A1 For $x=-\frac{16}{3}$ with no other values (aside their $x=\frac{16}{3}$). Must give the negative value, not just $|x|=\frac{16}{3}$. May be stated on a sketch as long as work seen in (d). Do not isw if they clearly reject this value later or if they try to form an inequality from the values, which is A0 as other values are included.

A1 Achieves $2(2 x+1)^{2}(1-4 x) \mathrm{e}^{-4 x}$ with no incorrect algebra. Accept with the brackets in either order.
(b)

B1 $\quad x=-\frac{1}{2}, \frac{1}{4}$ o.e. Both required.
M1 Attempts to substitute one of $x= \pm \frac{1}{2}, \pm \frac{1}{4}$ into $\mathrm{f}(x)$. If substitution not seen may be implied by either of $\left(-\frac{1}{2}, 0\right)$ or $\left(\frac{1}{4}, \frac{27}{8 \mathrm{e}}\right)$ o.e (accept awrt 1.24 for this mark) or by either of $\left(\frac{1}{2}, \frac{8}{\mathrm{e}^{2}}\right)$ (awrt 1.08) or $\left(-\frac{1}{4}, \frac{\mathrm{e}}{8}\right)$ (awrt 0.340) o.e.

A1 For $\left(-\frac{1}{2}, 0\right)$ and $\left(\frac{1}{4}, \frac{27}{8 \mathrm{e}}\right)$ o.e. must be exact but isw after exact coordinates given.
Allow as $x=\ldots, y=\ldots$ as long as clearly paired.
Allow the M and A marks if seen in part (c) - mark (b) and (c) together.
(c)

B1ft One correct aspect applied correctly to one of their points. So for either 2 added to one of their x coordinates, or a non-zero y coordinate multiplied by 8. E.g. either $\left(\frac{9}{4}, \ldots\right)$ or $\left(\ldots, \frac{27}{\mathrm{e}}\right)$ or follow through on $\left(" \frac{1}{4} "+2, \ldots\right)$ or $\left(\ldots, 8 \times " \frac{27}{8 \mathrm{e}} "\right)$ etc.
B1ft $\left(\frac{9}{4}, \frac{27}{\mathrm{e}}\right)$ only or follow through on the y coordinate only so $\left(\frac{9}{4}, 8 \times{ }^{\prime 2} \frac{27}{8 \mathrm{e}} "\right)$ (oe) only. B0 if another point is given. Accept awrt 9.93 for second ordinate but note 9.92 is a correct follow through on 1.24. Allow as $x=\frac{9}{4}, y=\ldots$.

SC allow B1B0 if coordinates given wrong way round.

Question

Number
A1 Both values correct and no other values in the range. Accept awrt 0.197 and $\frac{\pi}{4}$ only (must be exact but isw after correct value seen).
Note: Allow if a different variable used (such as x). For mixed variables allow the M's but only allow the first A (and final A's) if recovered.
Note Answers without working score no marks.
(c)

M1 For using part (a) and achieving $\pm k \operatorname{cosec} x$ oe for the integral (limits not required for this mark. May arise from longer methods, but must achieve the correct form.
A1 $2-\sqrt{2}$ Must have scored the $\mathrm{M}-$ answer only with no integration shown is M0A0.

$\stackrel{(\text { a) }}{\text { ALT I }}$	$\begin{gathered} \frac{\cos 2 x}{\sin x}+\frac{\sin 2 x}{\cos x}=\frac{\cos 2 x \cos x+\sin 2 x \sin x}{\sin x \cos x} \quad \text { Correct single fraction } \\ =\frac{\cos x\left(1-2 \sin ^{2} x\right)+2 \sin x \cos x \sin x}{\sin x \cos x} \\ =\frac{\cos x}{\sin x \cos x}=\frac{1}{\sin x}=\operatorname{cosec} x \quad * \end{gathered} \begin{aligned} & \text { Single fraction with single } \\ & \text { arguments and common factor } \\ & \cos x \text { in numerator } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1* (3) } \end{aligned}$
$\begin{gathered} \text { (a) } \\ \text { ALT II } \end{gathered}$	$\left.\begin{array}{rl} \frac{\cos 2 x}{\sin x}+\frac{\sin 2 x}{\cos x} & \equiv \frac{\cos 2 x \cos x+\sin 2 x \sin x}{\sin x \cos x} \quad \text { Correct single fraction } \\ \equiv & \frac{\cos (2 x-x)}{\sin x \cos x} \end{array} \begin{array}{l} \text { Applies identity to reach single fraction } \\ \text { with single arguments and common factor } \\ \cos x \text { in numerator } \end{array}\right] \begin{aligned} & \cos x \\ & \\ & \end{aligned}$ Note $\cos (x-2 x)$ is equally correct for the M1.	B1 M1 $\mathrm{A} 1^{*}$
$\stackrel{(\text { a) }}{\text { ALT III }}$	$\begin{align*} & \frac{\cos 2 x}{\sin x}+\frac{\sin 2 x}{\cos x} \equiv \frac{\cos ^{2} x-\sin ^{2} x}{\sin x}+\frac{2 \sin x \cos x}{\cos x} \begin{array}{l} \text { Correct identity } \end{array} \\ & \equiv \frac{\cos ^{3} x-\sin ^{2} x \cos x+2 \sin ^{2} x \cos x}{\sin x \cos x} \begin{array}{l} \text { Single fraction with single } \\ \text { arguments and common factor } \\ \cos x \text { in numerator } \end{array} \\ & \equiv \frac{\left(\cos ^{2} x+\sin ^{2} x\right) \cos x}{\sin x \cos x} \equiv \frac{1}{\sin x} \equiv \operatorname{cosec} x * \tag{3}\\ & \hline \end{align*}$	B1 M1 $\mathrm{A} 1^{*}$

Notes

(a)

M1 Attempts the quotient rule. Condone slips on the coefficients - look for $\frac{A y(3 y-3)-B\left(2 y^{2}+6\right)}{(3 y-3)^{2}}$ $A, B>0$. Allow a product rule attempt:
$x=\left(2 y^{2}+6\right)(3 y-3)^{-1} \Rightarrow\left(\frac{\mathrm{~d} x}{\mathrm{~d} y}=\right) A y(3 y-3)^{-1}+\left(2 y^{2}+6\right) \times-B(3 y-3)^{-2}$
A1 Correct differentiation which may be unsimplified. Allow if the $\frac{\mathrm{d} x}{\mathrm{~d} y}$ is missing or called $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for this mark. By product rule $4 y(3 y-3)^{-1}+\left(2 y^{2}+6\right) \times-3(3 y-3)^{-2}$ Condone missing brackets if recovered.
dM1 Requires an attempt to get a single fraction with some attempt to simplify.
For the quotient rule look for a simplification of the numerator with like terms collected giving a 3TQ.
Attempts via the product rule will require a correct method to put as a single fraction.
A1 $\quad\left(\frac{\mathrm{d} x}{\mathrm{~d} y}=\right) \frac{2 y^{2}-4 y-6}{3 y^{2}-6 y+3}$ or exact simplified equivalent such as $\frac{2(y-3)(y+1)}{3(y-1)^{2}}$ isw after a correct simplified answer. Common factor 3 must have been cancelled. Must be seen in part (a). A0 if called $\frac{\mathrm{d} y}{\mathrm{~d} x}$ but allow A1 if LHS is not stated.
Attempts at $\frac{\mathrm{d} y}{\mathrm{~d} x}$ can score the first 3 marks if correct. Allow use of x in place of y for the Ms.
(b)

B1 Indicates P and Q are where $\frac{\mathrm{d} x}{\mathrm{~d} y}=0$ or where their $2 y^{2}-4 y-6=0$ (which may be the denominator of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if they found this instead).
M1 Solves their 3TQ from an attempt at $\frac{\mathrm{d} x}{\mathrm{~d} y}=0$ (or denominator of their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$), usual rules.
dM1 Substitutes both their solutions to $2 y^{2}-4 y-6=0$ into $x=\frac{2 y^{2}+6}{3 y-3}$. Condone slips if the attempt is clear. At least one should be correct if no method is shown.
Alcso Achieves $x=-\frac{4}{3}$ and $x=4$ only. Must be equations not just values but isw after correct equations seen as long as no contrary work is shown (such as giving horizontal lines). Accept equivalents. Must have come from a correct derivative - though allow from an isw form if a numerical factor was lost in the numerator. Must be exact.
Answers from no working score $0 / 4$ as the question instructs use of part (a), so must see the attempt at setting $\frac{\mathrm{d} x}{\mathrm{~d} y}=0$

Alt (a) (b) First 2 marks.	$\begin{gathered} x=\frac{2 y^{2}+6}{3 y-3} \Rightarrow 3 x y-3 x=2 y^{2}+6 \Rightarrow 3 x+3 y \frac{\mathrm{~d} x}{\mathrm{~d} y}-3 \frac{\mathrm{~d} x}{\mathrm{~d} y}=4 y \\ \frac{\mathrm{~d} x}{\mathrm{~d} y}=\frac{4 y-3 x}{3(y-1)} \end{gathered}$ States that P and Q are where $\frac{\mathrm{d} x}{\mathrm{~d} y}=0$ or where $4 y-3 x=0$ $\Rightarrow \frac{4}{3} y=\frac{2 y^{2}+6}{3 y-3} \Rightarrow 4 y^{2}-4 y=2 y^{2}+6 \Rightarrow$ as main scheme	M1 A1 dM1, A1 (4) B1 M1
Alt II (a)	$\begin{array}{r} x=\frac{2 y^{2}+6}{3 y-3}=\frac{2 y}{3}+\frac{2}{3}+\frac{8}{3(y-1)} \Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{2}{3}-\frac{8}{3(y-1)^{2}} \\ \frac{\mathrm{~d} x}{\mathrm{~d} y}=\frac{2(y-1)^{2}-8}{3(y-1)^{2}}=\frac{2 y^{2}-4 y-6}{3(y-1)^{2}} \mathrm{oe} \end{array}$	M1 A1 dM1, A1 (4)

Notes

(a)

M1 Attempts long division or other method to achieve $A y+B+\frac{C}{3 y-3}$ oe and differentiates.
A1 Correct differentiation.
dM1 Attempts to get a single fraction and simplifies numerator to 3 TQ or uses difference of squares to factorise.
A1 Correct answer.

