Question Number	Scheme	Marks
$\mathbf{1}$	$2\left(2 \cos ^{2} x-1\right)=7 \cos x$	M1
	$4 \cos ^{2} x-7 \cos x-2=0 \Rightarrow \cos x=-\frac{1}{4}$	M1 A1
	$\Rightarrow x=\arccos \left(-\frac{1}{4}\right)=104.5^{\circ}, 255.5^{\circ}$	dM1 A1
		(5 marks)

M1 Attempts to use $\cos 2 x= \pm 2 \cos ^{2} x \pm 1$ to form a quadratic equation in $\cos x$
If the other two forms are attempted there must be some attempt to use $\sin ^{2} x+\cos ^{2} x=1$ to form a quadratic equation in $\cos x$ $2 \times 2 \cos ^{2} x-1=7 \cos x$ is M0 unless the correct identity has been previously stated or recovery occurs.
M1 Attempts to solve a 3TQ in $\cos x$ using an allowable method (the quadratic need not be correct and may have come from incorrect work)
A1 Reaches $\cos x=-\frac{1}{4}$ or $-\frac{2}{8}$ or -0.25 . (May be implied by a correct value for x) Ignore any reference to $\cos x=2$ Those who use $y=\cos x$ and stop at a $y=-\frac{1}{4}$ score A0.
dM1 Depend on the second method mark. Takes arccos of at least one solution (α) of their quadratic where $|\alpha|<1$ to find at least one solution in range. If substitution not seen then you will need to check.

NB a radian answer of awrt 1.8 or correct 1d.p. answer for their α can imply the method.
A1 awrt $104.5^{\circ}, 255.5^{\circ}$ with no other values in the range. Ignore values outside the range.

Question Number	Scheme	Marks
2.(a)	Sight of $10^{1.478}$ or $10^{0.0646}$ or $10^{0.0646+1.478}$	M1
	($a=$)awrt 30 or ($b=$ awrt 1.16	A1
	$\begin{aligned} \log _{10} N=0.0646 t+1.478 \rightarrow N & =10^{0.0646 t+1.478}=10^{0.0646 t} 10^{1.478} \\ & =" 30 " \times " 1.16^{t} \end{aligned}$	dM1
	$N=30 \times 1.16^{t}$	A1
		(4)
(b)	Attempts $N=30 \times 1.16^{30}=$ awrt 2600	M1 A1
		(2)
		(6 marks)

(a) NB This shows as MMAA on ePEN but is being marked as MAMA.

M1 Sight of $10^{1.478}$ or $10^{0.0646}$ or $10^{0.0646 t+1.478}$ (allowing slips copying the values) anywhere in their solution. This mark is implied by seeing awrt 30 or awrt 1.16
A1 Sight of either awrt 30 or awrt 1.16
dM1 Applies correct index laws and proceeds to find values for a and $b . N=\left(10^{0.0646}\right)^{t} \times 10^{1.478}=" 1.16^{t} \times$ " 30 " For this mark there must be evidence of correct index work so expect to see at least $10^{0.0464 t+1.478}$ before a final answer and no incorrect index work.
A1 $\quad a=a w r t 30$ and $b=a w r t 1.16$ as long as there is no contrary work, or states that $N=30 \times 1.16^{t}$ (awrt values)
(b)

M1 Attempts $N=30 \times 1.16^{30}$ with their values of a and b.
Alternatively $\log _{10} N=0.0646 \times 30+1.478 \Rightarrow N=10^{3.416}$
A1 awrt 2600, isw after a correct answer.

Alt (a) using $N=a b^{t}$ as a starting point.
M1 As main scheme.
A1 $\quad a=$ awrt 30 or $b=$ awrt 1.16 (must be correctly assigned)
dM1 Takes $\log _{10}$ of both sides and proceeds to at least $\log _{10} N=\log _{10} a+t \log _{10} b$ and attempts to find a value for both of the constants with no incorrect log work.
A1 $\quad a=a w r t 30$ and $b=a w r t 1.16$ as long as there is no contrary work, or states that $N=30 \times 1.16^{t}$ (awrt values)

Question Number	Scheme	Marks
3. (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(4 x-1)^{\frac{1}{2}} \times 2-(2 x+3) \times 2(4 x-1)^{-\frac{1}{2}}}{(4 x-1)}$	M1 A1
	$\frac{(4 x-1)^{\frac{1}{2}} \times 2-(2 x+3) \times 2(4 x-1)^{-\frac{1}{2}}}{(4 x-1)} \times \frac{(4 x-1)^{\frac{1}{2}}}{(4 x-1)^{\frac{1}{2}}}=\frac{4 x-8}{(4 x-1)^{\frac{3}{2}}}$	dM1 A1 (4)
(b)	Turning point where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow x=2$ Find value of f at $x=2 \Rightarrow \mathrm{f}(x)=\sqrt{7}$ Hence range is $\mathrm{f} \geqslant \sqrt{7}$	M1 $\begin{equation*} \mathrm{dM} 1 \mathrm{Al} \tag{3} \end{equation*}$
		(7 marks)

(a)

M1 Attempts the quotient rule and achieves $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{p(4 x-1)^{\frac{1}{2}}-q(2 x+3)(4 x-1)^{-\frac{1}{2}}}{(4 x-1)}$ condoning slips in coefficients Allow the denominator to appear as $(4 x-1)^{\frac{1}{2} 2}$ or even $(4 x-1)^{\frac{1}{4}}$
Alternatively attempts the product rule with $(2 x+3)$ and $(4 x-1)^{-\frac{1}{2}}$ and achieves
$\frac{\mathrm{d} y}{\mathrm{~d} x}=A(4 x-1)^{-\frac{1}{2}} \pm B(2 x+3)(4 x-1)^{-\frac{3}{2}}$
A1 For a correct un-simplified $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Look for $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(4 x-1)^{\frac{1}{2}} \times 2-(2 x+3) \times 2(4 x-1)^{-\frac{1}{2}}}{(4 x-1)}$ oe via the quotient rule Look for $\frac{\mathrm{d} y}{\mathrm{~d} x}=2(4 x-1)^{-\frac{1}{2}}-2(2 x+3)(4 x-1)^{-\frac{3}{2}}$ oe via the product rule
dM1 Multiplies both numerator and denominator by $(4 x-1)^{\frac{1}{2}}$ and simplifies to a linear numerator, or correctly takes a common factor of $(4 x-1)^{-\frac{1}{2}}$ out of the numerator to leave a linear factor.
If the product rule is used look for a correct attempt to factor out $(4 x-1)^{-\frac{3}{2}}$
A1 $\frac{4 x-8}{(4 x-1)^{\frac{3}{2}}}$ or exact simplified equivalent Must have a single term in $(4 x-1)$
NB Allow marks for (a) if simplification of $\mathrm{f}^{\prime}(x)$ is seen in (b) (but not having set $\mathrm{f}^{\prime}(x)=0$ and rearranging).
(b)

M1 Attempts $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow x=\ldots$
dM1 Finds the value of f (their 2), where their $2>\frac{1}{4}$
A1 $\mathrm{f} \geqslant \sqrt{7}$ Allow e.g. $y \geqslant \sqrt{7}, \mathrm{f}(x) \geqslant \sqrt{7}$ or range is $[\sqrt{7}, \infty)$ Allow with $\frac{7}{\sqrt{7}}$ oe or awrt 2.65
Do not allow $x \geqslant \sqrt{7}$ or just $\geqslant \sqrt{7}$
Special Case: If candidates square the function first in (a) they will get $\left(\mathrm{f}(x)^{2}\right)^{\prime}=1-\frac{49}{(4 x-1)^{2}}=\frac{16 x^{2}-8 x-48}{(4 x-1)^{2}}$.
They will score no marks in (a) but can achieve full marks in (b) as the stationary point occurs at the same x coordinate. Special Case: A correct range given following no attempt, or an incorrect answer to (a), can score SC M1M0A0.

Question Number	Scheme	Marks
4 (a)	$\mathrm{ff}(6)=\mathrm{f}(13)=-1$	M1 A1
(b)	Attempts $21+2(2-x)=5 x \Rightarrow x=\ldots$ or $21-2(x-2)=5 x \Rightarrow x=\ldots$ $x=\frac{25}{7}$ only	M1
		A1
		(2)
(c)	$\begin{gathered} \text { Either } k<21 \text { or } \quad k \geqslant 17 \\ 17 \leqslant k<21 \end{gathered}$	M1
		A1
		(2)
(d)	$a=\frac{1}{7} \quad b=4$	B1 B1
		(2)
		(8 marks)

(a)

M1 For attempting f "twice". Award for sight of $\mathrm{f}(13)$ or $21-2|2-(21-2|2-x|)|$ followed by a value.
A1 For -1
(b)

M1 Attempts $21+2(2-x)=5 x \Rightarrow x=\ldots$
A1 For $x=\frac{25}{7}$ only. Do not isw if students go on to find additional solutions unless they identify this as the only answer by rejecting others.
(c)

M1 For either $k<21$ or $k \geqslant 17$ Condone for this mark $k \leqslant 21$ or $k>17$
Alt: Allow for both $k=17$ and $k=21$ identified as critical values even if no inequalities are given.
A1 $17 \leqslant k<21$ May be written as separate inequalities. Accept alternative notations for the range such as $[17,21)$ Do not accept $17 \leqslant \mathrm{f}(x)<21$
(d)

B1 Either $a=\frac{1}{7}$ or $b=4$
B1 Both $\quad a=\frac{1}{7}$ and $b=4 \quad$ Allow both marks if $y=\frac{1}{7} \mathrm{f}(x-4)$ is given.

Question Number	Scheme	Marks
5 (a)	$\sin 3 x \equiv \sin (2 x+x) \equiv \sin 2 x \cos x+\cos 2 x \sin x$	M1
	$\equiv 2 \sin x \cos x \cos x+\left(1-2 \sin ^{2} x\right) \sin x$	M1
	$\equiv 2 \sin x\left(1-\sin ^{2} x\right)+\left(1-2 \sin ^{2} x\right) \sin x$	ddM1
	$\equiv 3 \sin x-4 \sin ^{3} x$ *	A1*
		(4)
(b)	$\int^{\frac{\pi}{3}} \sin ^{3} x \mathrm{~d} x=\int^{\frac{\pi}{3}} \frac{3}{4} \sin x-\frac{1}{4} \sin 3 x \mathrm{~d} x$	M1
	$=\left[-\frac{3}{4} \cos x+\frac{1}{12} \cos 3 x\right]^{\frac{\pi}{3}}$	dM1 A1
	$=\frac{5}{24}$	A1
		(4)
		(8 marks)

(a)

M1 Uses $\sin 3 x=\sin (2 x+x)= \pm \sin 2 x \cos x \pm \cos 2 x \sin x$
M1 Uses the correct identity for $\sin 2 x=2 \sin x \cos x$ and any correct identity for $\cos 2 x$
ddM1 Dependent upon both previous M's. It is for using $\cos ^{2} x=1-\sin ^{2} x$ to get an equation in only $\sin x$
A1* Fully correct solution with correct notation within their proof. Examples of incorrect notation include use of $\sin x^{2}$ instead of $\sin ^{2} x$ or use of \sin instead of $\sin x$ and so on. Penalise in the A mark only for such.
Note: The ddM mark and final A mark may be score by substituting $\sin ^{2} x=1-\cos ^{2} x$ into the right hand side of the equation to reach an identical expression to an expanded left hand side ("working from both sides"), with the A mark then awarded for correct work leading to identical expressions and an minimal conclusion given (e.g. //)
Note You may see use of De Moivre's Theorem from an FP3 candidate. This can score full credit if carried out correctly. If there are errors or you are unsure then send to review.

If attempted in reverse:

M1 $\quad 3 \sin x-4 \sin ^{3} x=3 \sin x-2 \sin ^{2} x \sin x-2 \sin x\left(1-\cos ^{2} x\right)=\sin x-2 \sin x \frac{1}{2}(1-\cos 2 x)+\sin 2 x \cos x$ Uses $\sin ^{3} x=\sin x \times \sin ^{2} x$ with either $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$ OR $\sin ^{2} x=1-\cos ^{2} x$ and $2 \sin x \cos x=\sin 2 x$
M1 Uses both steps above to get to an equation with $\sin 2 x$ and $\cos 2 x$
ddM1 Gathers terms to reach $=\cos 2 x \sin x+\sin 2 x \cos x$
A1 Completes the proof uses $\cos 2 x \sin x+\sin 2 x \cos x=\sin 3 x$ with no errors seen.
(b)

M1 Attempts to use part (a) to simplify. Accept $\int \sin ^{3} x \mathrm{~d} x=\int A \sin x+B \sin 3 x \mathrm{~d} x$
$\mathrm{dM} 1 \int A \sin x+B \sin 3 x \mathrm{~d} x \rightarrow a \cos x+b \cos 3 x$
A1 $\quad-\frac{3}{4} \cos x+\frac{1}{12} \cos 3 x$ oe (not a multiple of this (unless recovered))
A1 $\quad \mathrm{CSO}=\frac{5}{24}$

Note an answer of A1 $\frac{5}{24}$ with no supporting working scores no marks as algebraic integration is specified. But alternative methods of integration are permissible. Two alternatives are:

Notes: First three marks as follows (final A is as main scheme).
Alt 1
M1: Splits as $\sin ^{3} x=\sin x \sin ^{2} x$ and applies $\sin ^{2} x=1-\cos ^{2} x$ to get the integrand into and integrable form.
dM1 for $\sin x \rightarrow \pm \cos x$ and $\sin x \cos ^{2} x \rightarrow K \cos ^{3} x$
A1 $\quad-\cos x-\left(-\frac{\cos ^{3} x}{3}\right)$ oe (not a multiple of this (unless recovered))

Alt 2

M1 Sets $u=\cos x$, finds $\frac{\mathrm{d} u}{\mathrm{~d} x}= \pm \sin x$ and makes a full substitution using both of these to get an integral in terms of u only. (Limits not needed for this mark).
dM1

$$
\text { for } a u^{2}-b \rightarrow A u^{3}-b u
$$

A1 For reaching $\left[\frac{u^{3}}{3}-u\right]_{1}^{\frac{1}{2}}$ including correct limits or for undoing the substitution and reaching $\frac{\cos ^{3} x}{3}-\cos x$

(a)

M1 For attempting to proceed from $5 \mathrm{e}^{x-1}+3=18$ to $\mathrm{e}^{x-1}=\ldots$ or $\mathrm{e}^{x}=\ldots$
A1 $x=\ln 3+1$ or for $\mathrm{e}^{x}=3 \mathrm{e}$
A1 $\quad x=\ln 3 \mathrm{e}$ Accept $x=\ln 3 \mathrm{e}^{1}$
(b)

B1 Sets the equations equal to each other and finds a suitable function which is then used.
Suitable functions are $\mathrm{f}(x)= \pm\left(7-x^{2}-5 \mathrm{e}^{x-1}\right), \mathrm{g}(x)= \pm\left(x-\sqrt{7-5 \mathrm{e}^{x-1}}\right)$ orh $(x)= \pm\left(x-1-\ln \left(\frac{7-x^{2}}{5}\right)\right)$
M1 Substitutes $x=1.1335$ and $x=1.1345$, or suitable values for a tighter interval (either side of 1.133634..), into a suitable function and obtains one correct value to 1 sf rounded or truncated.
FYI for the + options above

$$
\begin{aligned}
& \mathrm{f}(1.1335)=0.001 \text { and } \mathrm{f}(1.1345)=-0.007 \\
& \mathrm{~g}(1.1335)=-0.0005 \text { and } \mathrm{g}(1.1345)=0.003 \\
& \mathrm{~h}(1.1335)=-0.0002 \text { and } \mathrm{g}(1.1345)=0.001
\end{aligned}
$$

A1 Requires both values to be correct (1sf rounded or truncated), a reason (change of sign and continuous) and a minimal conclusion
(c)

M1 For an attempt at substituting -3 into the iterative equation.
This is implied by the sight of the expression or awrt -2.63
A1 awrt -2.628388
A1 $\quad \beta=$ awrt -2.620330 condone -2.62033

It is possible in part (b) to score B0 M1 A1 by comparing y values for $y=5 \mathrm{e}^{x-1}+3$ and $y=10-x^{2}$ at $x=1.1335$ and $x=1.1345 \quad$ For the A1 apply the similar criteria as for the main scheme with values to $3 \mathrm{~d} . \mathrm{p} .$.
At $x=1.1335,\left.y\right|_{1.1335}=5 \mathrm{e}^{x-1}+3=8.714$ and $\left.y\right|_{1.1335}==10-x^{2}=8.715$
At $x=1.1345,\left.y\right|_{1.1345}=5 \mathrm{e}^{x-1}+3=8.720$ and $\left.y\right|_{1.1345}=10-x^{2}=8.713$

Question Number	Scheme	Marks
7.(a)	$\begin{aligned} & R=\sqrt{17} \\ & \tan \alpha=4 \Rightarrow \alpha=\text { awrt } 1.326 \end{aligned}$	B1 M1A1
(b)	Minimum height $=\frac{24}{3+{ }^{" R} R^{"}}=3.37($ metres $)$	M1 A1
(c)	Uses part (a) $10=\frac{24}{3+\sqrt{17} \cos \left(\frac{1}{2} t-1.326\right)} \Rightarrow \cos \left(\frac{1}{2} t-1.326\right)=\frac{-0.6}{\sqrt{17}}$	(2) M1 A1
	$t=$ awrt 6.09	M1 A1 (4) (9 marks)

(a)

B1 $\quad R=\sqrt{17}$
Condone $R= \pm \sqrt{17} \quad$ (Do not allow decimals for this mark Eg 4.12 but remember to isw after $\sqrt{17}$)
M1 $\quad \tan \alpha= \pm 4, \tan \alpha= \pm \frac{1}{4} \Rightarrow \alpha=\ldots$
If R is used to find α accept $\sin \alpha= \pm \frac{4}{R}$ or $\cos \alpha= \pm \frac{1}{R} \Rightarrow \alpha=\ldots$
A1 $\quad \alpha=$ awrt 1.326
Note that the degree equivalent $\alpha=\operatorname{awrt} 75.96^{\circ}$ is A 0
(b)

M1 Attempts minimum height by stating or finding $\frac{24}{3+{ }^{\prime \prime} R^{\prime \prime}}$
Attempts via differentiation must be complete methods with correct work up to slips in coefficients. They are unlikely to succeed.
FYI $\frac{\mathrm{d} H}{\mathrm{~d} t}=-\frac{24\left(2 \cos \left(\frac{t}{2}\right)-\frac{1}{2} \sin \left(\frac{t}{2}\right)\right)}{\left(4 \sin \left(\frac{t}{2}\right)+\cos \left(\frac{t}{2}\right)+3\right)^{2}}=0 \Rightarrow \tan \left(\frac{t}{2}\right)=4 \Rightarrow H=\frac{24}{3+\cos (1.326)+4 \sin (1.326)}$
A1 $\quad 3.37$ (metres) Assume metres unless otherwise stated, but 3.37 cm is A0. Accept 337 cm as long as the units are stated, but do not accept $\frac{24}{3+\sqrt{17}}$ and do not isw if incorrect units are given following 3.37.
(c)

M1
Attempts to use their answer to part (a) (including their R and their α) AND proceeds to $\cos (\beta t \pm " 1.326 ")=k, \quad-1<k<1$ and $\beta=1$ or $\frac{1}{2}$
A1 $\quad \cos (\beta t \pm " 1.326 ")=\frac{-0.6}{\sqrt{17}}$ or awrt -0.146 where $\beta=1$ or $\frac{1}{2}$
M1 Full method to make t the subject from an equation of the form $\cos \left(\frac{1}{2} t \pm " 1.326^{\prime \prime}\right)=k, \quad-1<k<1$
Look for $2 \times($ their $\arccos (k) \pm$ their $\alpha)$
A1 awrt $t=6.09$ (Ignore any extra solutions outside the domain, but A0 if extras inside are given.)

Question Number	Scheme	Marks
8(i)(a)	$\mathrm{g}^{\prime}(x)=3 \mathrm{e}^{3 x} \sec 2 x+2 \mathrm{e}^{3 x} \sec 2 x \tan 2 x$	M1 A1
(b)	$\mathrm{g}^{\prime}(x)=0 \Rightarrow \mathrm{e}^{3 x} \sec 2 x(3+2 \tan 2 x)=0$	
$\tan 2 x=-1.5 \Rightarrow x=-0.491$	M1	
(ii)	$x=\operatorname{dn}(\sin y) \Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1}{\sin y} \times \cos y$	B1
Attempts $\cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-\mathrm{e}^{2 x}} \quad$ or $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin y}{\cos y}$		
Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin y}{\cos y}=\frac{\mathrm{e}^{x}}{\sqrt{1-\mathrm{e}^{2 x}}}$	M1	
		dM1 A1

(i)(a)

M1 Correct attempt at the product rule $\mathrm{g}^{\prime}(x)=A \mathrm{e}^{3 x} \sec 2 x+B \mathrm{e}^{3 x} \sec 2 x \tan 2 x$
For use of the quotient rule look for $\frac{A \cos 2 x \mathrm{e}^{3 x}-B \mathrm{e}^{3 x} \sin 2 x}{\cos ^{2} 2 x}$
A1 $\quad \mathrm{g}^{\prime}(x)=3 \mathrm{e}^{3 x} \sec 2 x+2 \mathrm{e}^{3 x} \sec 2 x \tan 2 x$ Allow in any form and then isw
For use of the quotient rule look for $\frac{3 \cos 2 x \mathrm{e}^{3 x}+2 \mathrm{e}^{3 x} \sin 2 x}{\cos ^{2} 2 x}$
(i)(b)

M1 Sets $\mathrm{g}^{\prime}(x)=0 \Rightarrow$ and takes out / factorises out $\mathrm{e}^{3 x} \sec 2 x$ to identify a linear factor in $\tan 2 x$ For the quotient rule they should be factorising out $\frac{\mathrm{e}^{3 x}}{\cos ^{2} 2 x}$ to leave a linear factor in $\cos 2 x$ and $\sin 2 x$
dM1 Correct order of operations to $x=$...
For quotient rule approach they must use $\tan 2 x=\frac{\sin 2 x}{\cos 2 x}$ (oe correct work)
You may need to check their answer if no method is shown. Accept awrt 2.s.f. for their $\tan 2 x=\ldots$. in either radians or degrees.

A1 $x=a w r t-0.491$ only in the range. If extra solutions arise from trying to solve $\sec 2 x=0$ then A 0 .
(ii)

B1 $\quad \frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1}{\sin y} \times \cos y \quad$ OR $\quad \mathrm{e}^{x}=\cos y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ via $\mathrm{e}^{x}=\sin y$
M1 For one of the two operations needed to complete the proof

- Either an attempt to get $\cos y$ in terms of e^{x} look for an attempt using $\sin ^{2} y+\cos ^{2} y=1$ with $\sin y$ being replaced by e^{x}. Alternatively allow use of arcsin
- Or taking the reciprocal and making $\frac{\mathrm{d} y}{\mathrm{~d} x}$ the subject (variables must be consistent)
dM1 Applies both operations to obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of just e^{x}
A1 $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{x}}{\sqrt{1-\mathrm{e}^{2 x}}}$ or $\frac{\mathrm{e}^{x}}{\cos \left(\arcsin \mathrm{e}^{x}\right)}$ Allow $\frac{1}{\sqrt{1-\left(\mathrm{e}^{x}\right)^{2}}}$ or states $\mathrm{f}(x)=\sqrt{1-\mathrm{e}^{2 x}}$ following a correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{x}}{\cos y}$ or similar.

Alt:
B1 $\quad x=\ln (\sin y) \Rightarrow y=\arcsin \left(\mathrm{e}^{x}\right)$
M1 $\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1-\left(\mathrm{e}^{x}\right)^{2}}} \times \ldots$ or $\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1-(\ldots)^{2}}} \times \mathrm{e}^{x}$
dM1
both of these
A1 $\frac{\mathrm{e}^{x}}{\sqrt{1-\left(\mathrm{e}^{x}\right)^{2}}}$

M1: Divides to obtain a quadratic quotient and a linear remainder. May divide by $(x-4)$ and then by $(x+3)$ or vice versa to reach these but must be a full process.
FYI: By $x+3$ first gives $x^{3}-4 x^{2}+2 x-3$ as quotient, followed by $x^{2}+2+\frac{5}{x-4}$

By $x-4$ first gives $x^{3}+3 x^{2}+2 x+11+\frac{35}{x-4}$ then $x^{2}+2+\frac{5}{x+3}+\frac{35}{(x+3)(x-4)} \rightarrow x^{2}+2+\frac{5}{x-4}$
A1: Obtains a quotient of $x^{2}+2$ and a remainder of $5 x+15$
M1: Writes the given expression in the required form using $x^{2}-x-12=(x-4)(x+3)$ or divides $x+3$ into their remainder term.

A1: Correct answer. $(P=2, Q=5)$ May be awarded following an incorrect " $a x^{2}+2$ " quadratic factor.
Alt:
M1: Multiplies though completely by the denominator and cancels the $x-4$ term.
M1: Complete process of comparing coefficients or substituting values to find a value for either P or Q
A1: Either $P=2$ or for showing $Q=5^{*} \quad$ (must have seen a correct equation for Q)
A1: Both $P=2$ and showing $Q=5^{*}$ Note that $Q=5$ is given so it must be shown from correct work, not just stated.
Note M0M1A1A0 is possible if Q is assumed and factorisation of $x^{2}-x-12$ is never seen.
(b)

M1: For $\frac{Q}{x-4} \rightarrow \frac{\ldots}{(x-4)^{2}}$
A1: For $\mathrm{g}^{\prime}(x)=2 x-\frac{5}{(x-4)^{2}}$. Note that this can be scored from an incorrect P.
M1: Attempts the gradient of C at the point where $x=2$
dM 1 : Depends on previous M. A complete method of finding the equation of the tangent. If $y=m x+c$ is used, they must proceed as far as finding c.
A1: $y=2.75 x-2$ or exact equivalent and isw.
Note: This may be attempted from the original function $\mathrm{g}(x)=\frac{x^{4}-x^{3}-10 x^{2}+3 x-9}{x^{2}+x-12}$
M1: Scored for an attempt at the quotient rule A1 if correct and so on.
$\rightarrow \frac{\left(a x^{3}+b x^{2}+c x+d\right)\left(x^{2}+x-12\right)-\left(x^{4}-x^{3}-10 x^{2}+3 x-9\right)(p x+q)}{\left(x^{2}+x-12\right)^{2}}$
(c)

M1: Attempts to integrate with $\int \frac{. .}{(x-4)} \mathrm{d} x \rightarrow . . \ln |x-4| \quad$ Condone $\ln (x-4)$
A1ft: $\int x^{2}+P+\frac{5}{(x-4)} \mathrm{d} x=\frac{1}{3} x^{3}+P x+5 \ln |x-4|$ following through on their P.
dM 1 : Dependent on first M mark. Attempt the area of R using the limits 0 and 2 in their integrated function and subtracting the correct way round (or recovered).
ddM1: Depends on both previous M's. Scored for attempting to combine two log terms using correct log work
Allow the method and final accuracy if $\ln (-2)-\ln (-4) \rightarrow \ln \left(\frac{-2}{-4}\right)=-\ln 2$ is used (bod that modulus is meant) Do not allow if $\ln (-a) \rightarrow-\ln a$ is used.

A1: cao $\frac{20}{3}-5 \ln 2$
Note: If a candidate gives correct values of m and c in (b) and of a and b in (c) but has not stated the answer in correct form, then penalise only the first instance.

