Question Number	Scheme	Marks	
1	$2\left(2\cos^2 x - 1\right) = 7\cos x$	M1	
	$4\cos^2 x - 7\cos x - 2 = 0 \Longrightarrow \cos x = -\frac{1}{4}$	M1 A1	
	$\Rightarrow x = \arccos\left(-\frac{1}{4}\right) = 104.5^{\circ}, 255.5^{\circ}$	dM1 A1	
		(5)	
		(5 marks)	

M1 Attempts to use $\cos 2x = \pm 2\cos^2 x \pm 1$ to form a quadratic equation in $\cos x$ If the other two forms are attempted there must be some attempt to use $\sin^2 x + \cos^2 x = 1$ to form a quadratic equation in $\cos x$

 $2 \times 2\cos^2 x - 1 = 7\cos x$ is M0 unless the correct identity has been previously stated or recovery occurs.

M1 Attempts to solve a 3TQ in cos x using an allowable method (the quadratic need not be correct and may have come from incorrect work)

A1 Reaches $\cos x = -\frac{1}{4}$ or $-\frac{2}{8}$ or -0.25. (May be implied by a correct value for *x*) Ignore any reference to $\cos x = 2$ Those who use $y = \cos x$ and stop at a $y = -\frac{1}{4}$ score A0.

dM1 Depend on the second method mark. Takes arccos of at least one solution (α) of their quadratic where $|\alpha| < 1$ to find at least one solution in range. If substitution not seen then you will need to check.

NB a radian answer of awrt 1.8 or correct 1d.p. answer for their α can imply the method.

A1 awrt 104.5°, 255.5° with no other values in the range. Ignore values outside the range.

Question Number	Scheme	Marks
2.(a)	Sight of $10^{1.478}$ or $10^{0.0646}$ or $10^{0.0646t+1.478}$	M1
	(a =)awrt 30 or $(b =)$ awrt 1.16	A1
	$\log_{10} N = 0.0646t + 1.478 \rightarrow N = 10^{0.0646t + 1.478} = 10^{0.0646t} 10^{1.478}$ $= "30" \times "1.16"^{t}$	dM1
	$N = 30 \times 1.16^{t}$	A1
(b)	Attempts $N = 30 \times 1.16^{30} = \text{awrt } 2600$	(4) M1 A1 (2)
		(6 marks)

(a) NB This shows as MMAA on ePEN but is being marked as MAMA.

- M1 Sight of $10^{1.478}$ or $10^{0.0646}$ or $10^{0.0646t+1.478}$ (allowing slips copying the values) anywhere in their solution. This mark is implied by seeing awrt 30 or awrt 1.16
- A1 Sight of either awrt 30 or awrt 1.16

dM1 Applies correct index laws and proceeds to find values for *a* and *b*. $N = (10^{0.0646})^t \times 10^{1.478} = "1.16"^t \times "30"$

For this mark there must be evidence of correct index work so expect to see at least $10^{0.0464t+1.478}$ before a final answer and no incorrect index work.

A1 a = awrt 30 and b = awrt 1.16 as long as there is no contrary work, or states that $N = 30 \times 1.16^{t}$ (awrt values)

(b)

M1 Attempts $N = 30 \times 1.16^{30}$ with their values of *a* and *b*.

Alternatively $\log_{10} N = 0.0646 \times 30 + 1.478 \Longrightarrow N = 10^{3.416}$

A1 awrt 2600, isw after a correct answer.

.....

Alt (a) using $N = ab^{t}$ as a starting point.

M1 As main scheme.

- A1 a = awrt 30 or b = awrt 1.16 (must be correctly assigned)
- dM1 Takes \log_{10} of both sides and proceeds to at least $\log_{10} N = \log_{10} a + t \log_{10} b$ and attempts to find a value for both of the constants with no incorrect log work.
- A1 a = awrt 30 and b = awrt 1.16 as long as there is no contrary work, or states that $N = 30 \times 1.16^{t}$ (awrt values)

www.CasperYC.club/wma13

P3_2020_10_MS Page 3 of 13

Question Number	Scheme	Marks
4 (a)	ff(6) = f(13) = -1	M1 A1
		(2)
(b)	Attempts $21+2(2-x) = 5x \Rightarrow x = \dots$ or $21-2(x-2) = 5x \Rightarrow x = \dots$	M1
	$x = \frac{25}{7}$ only	A1
		(2)
(c)	Either $k < 21$ or $k \ge 17$	M1
	$17 \leq k < 21$	A1
		(2)
(d)	$a = \frac{1}{7} b = 4$	B1 B1
		(2)
		(8 marks)

(a)

M1 For attempting f "twice". Award for sight of f(13) or 21-2|2-(21-2|2-x|)| followed by a value.

(b)

M1 Attempts $21+2(2-x) = 5x \Rightarrow x = ...$

A1 For $x = \frac{25}{7}$ only. Do not isw if students go on to find additional solutions unless they identify this as the only answer by rejecting others.

(c)

M1 For either k < 21 or $k \ge 17$ Condone for this mark $k \le 21$ or k > 17Alt: Allow for **both** k = 17 and k = 21 identified as critical values even if no inequalities are given.

A1 $17 \le k < 21$ May be written as separate inequalities. Accept alternative notations for the range such as [17, 21)Do not accept $17 \le f(x) < 21$

(d)

B1 Either
$$a = \frac{1}{7}$$
 or $b = 4$

B1 Both $a = \frac{1}{7}$ and b = 4 Allow both marks if $y = \frac{1}{7}f(x-4)$ is given.

P3_2020_10_MS Page 4 of 13

Question Number	Scheme	Marks
5 (a)	$\sin 3x \equiv \sin(2x+x) \equiv \sin 2x \cos x + \cos 2x \sin x$	M1
	$\equiv 2\sin x \cos x \cos x + \left(1 - 2\sin^2 x\right)\sin x$	M1
	$\equiv 2\sin x \left(1 - \sin^2 x\right) + \left(1 - 2\sin^2 x\right)\sin x$	ddM1
	$\equiv 3\sin x - 4\sin^3 x *$	A1*
		(4)
(b)	$\int_{0}^{\frac{\pi}{3}} \sin^{3} x dx = \int_{0}^{\frac{\pi}{3}} \frac{3}{4} \sin x - \frac{1}{4} \sin 3x dx$	M1
	$= \left[-\frac{3}{4}\cos x + \frac{1}{12}\cos 3x \right]_{0}^{\frac{\pi}{3}}$	dM1 A1
	$=\frac{5}{24}$	A1
		(4)
		(8 marks)

(a)

M1 Uses $\sin 3x = \sin(2x+x) = \pm \sin 2x \cos x \pm \cos 2x \sin x$

M1 Uses the correct identity for $\sin 2x = 2\sin x \cos x$ and any correct identity for $\cos 2x$

ddM1 Dependent upon both previous M's. It is for using $\cos^2 x = 1 - \sin^2 x$ to get an equation in only $\sin x$

A1* Fully correct solution with correct notation within their proof. Examples of incorrect notation include use of $\sin x^2$ instead of $\sin^2 x$ or use of sin instead of sin x and so on. Penalise in the A mark only for such.

- Note: The ddM mark and final A mark may be score by substituting $\sin^2 x = 1 \cos^2 x$ into the right hand side of the equation to reach an identical expression to an expanded left hand side ("working from both sides"), with the A mark then awarded for correct work leading to identical expressions **and** an minimal conclusion given (e.g. //)
- **Note** You may see use of De Moivre's Theorem from an FP3 candidate. This can score full credit if carried out correctly. If there are errors or you are unsure then send to review.

If attempted in reverse:

M1
$$3\sin x - 4\sin^3 x = 3\sin x - 2\sin^2 x \sin x - 2\sin x (1 - \cos^2 x) = \sin x - 2\sin x \frac{1}{2} (1 - \cos 2x) + \sin 2x \cos x$$

Uses $\sin^3 x = \sin x \times \sin^2 x$ with either $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ OR $\sin^2 x = 1 - \cos^2 x$ and $2\sin x \cos x = \sin 2x$

P3_2020_10_MS Page 5 of 13

M1 Uses both steps above to get to an equation with sin2x and cos2x

ddM1 Gathers terms to reach = $\cos 2x \sin x + \sin 2x \cos x$

A1 Completes the proof uses $\cos 2x \sin x + \sin 2x \cos x = \sin 3x$ with no errors seen.

M1 Attempts to use part (a) to simplify. Accept
$$\int \sin^3 x \, dx = \int A \sin x + B \sin 3x \, dx$$

dM1
$$\int A \sin x + B \sin 3x \, dx \rightarrow a \cos x + b \cos 3x$$

A1
$$-\frac{3}{4} \cos x + \frac{1}{12} \cos 3x \text{ oe (not a multiple of this (unless recovered))}$$

A1
$$CSO = \frac{5}{24}$$

Note an answer of A1 $\frac{5}{24}$ with no supporting working scores no marks as algebraic integration is specified. But alternative methods of integration are permissible. Two alternatives are:

Question Number	Scheme	Marks
5 (b) Alt 1	$\int_{0}^{\frac{\pi}{3}} \sin^{3} x dx = \int_{0}^{\frac{\pi}{3}} \sin x \left(1 - \cos^{2} x\right) dx = \int_{0}^{\frac{\pi}{3}} \sin x - \sin x \cos^{2} x dx$	M1
	$= \left[-\cos x - \left(-\frac{\cos^3 x}{3}\right)\right]_0^{\frac{\pi}{3}}$	dM1A1
	$=\frac{5}{24}$	A1
(b) Alt 2	$u = \cos x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x \Rightarrow \int_0^{\frac{\pi}{3}} \sin^3 x \mathrm{d}x = \int_1^{\frac{1}{2}} u^2 - 1 \mathrm{d}u$	(4) M1
	$= \left[\frac{u^3}{3} - u\right]_1^{\frac{1}{2}}$	dM1 A1
	$=\frac{5}{24}$	A1
		(4) (8 marks)

Notes: First three marks as follows (final A is as main scheme).

Alt 1

M1: Splits as $\sin^3 x = \sin x \sin^2 x$ and applies $\sin^2 x = 1 - \cos^2 x$ to get the integrand into and integrable form.

dM1 for $\sin x \to \pm \cos x$ and $\sin x \cos^2 x \to K \cos^3 x$

A1
$$-\cos x - \left(-\frac{\cos^3 x}{3}\right)$$
 oe (not a multiple of this (unless recovered))

Alt 2

- M1 Sets $u = \cos x$, finds $\frac{du}{dx} = \pm \sin x$ and makes a full substitution using both of these to get an integral in terms of u only. (Limits not needed for this mark).
- dM1 for $au^2 b \rightarrow Au^3 bu$

A1 For reaching
$$\left[\frac{u^3}{3} - u\right]_1^{\frac{1}{2}}$$
 including correct limits or for undoing the substitution and reaching $\frac{\cos^3 x}{3} - \cos x$

P3_2020_10_MS Page 6 of 13

	Scheme	Marks	
6 (a)	$5e^{x-1}+3=18 \Longrightarrow e^{x-1}=3$	M1	
	$\Rightarrow x = \ln 3 + 1$ or $e^x = 3e$	A1	
	$\Rightarrow x = \ln 3e$	A1	
			(3
(b)	Sets $5e^{x-1} + 3 = 10 - x^2$ and proceeds to find and use a suitable function. Eg	B1	
(0)	$(f(x) =) 7 - x^2 - 5e^{x-1}$	DI	
	Attempts $f(1.1335) = 0.001$ and $f(1.1345) = -0.007$	M1	
	Correct values with reason(change of sign and continuous) and conclusion, hence	A1	
	α is 1.134 to 3dp	111	(
			(3
(c)	$x_{2} = -\sqrt{7 - 5e^{-3-1}} = -2.628388$ $\beta = -2.620330$	M1 A1	
	$\beta = -2.620330$	A1	
		(0	(3
		(9 marks)	
	empting to proceed from $5e^{x-1} + 3 = 18$ to $e^{x-1} =$ or $e^x =$		
$x = \ln x$	$3+1$ or for $e^x = 3e$		
$x = \ln x$	$3e \text{Accept} x = \ln 3e^{1}$		
Cata th			
	e equations equal to each other and finds a suitable function which is then used.	(2
		$x-1-\ln\left(\frac{7-3}{4}\right)$	$\frac{-x^2}{5}$
Suitab	e equations equal to each other and finds a suitable function which is then used. le functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$		
Suitab Substi suitabl	le functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - $		
Suitab Substi suitabl	He functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - $		
Suitab Substi suitabl	The functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x -$		
Suitab Substi suitabl	The functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x -$		
Suitab Substi suitabl FYI fo	He functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - $	e of 1.133634.	
Suitab Substi suitabl FYI fo Requin	The functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x -$	e of 1.133634.	
Suitab Substir suitabl FYI fo Requin and a r	le functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - $	e of 1.133634.	
Suitab Substi suitabl FYI fo Requin and a 1 For an	le functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - $	e of 1.133634.	
Suitab Substir suitabl FYI fo Requir and a r For an This is	He functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - $	e of 1.133634.	
Suitab Substi suitabl FYI fo Requin and a t For an This is awrt –	le functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - $	e of 1.133634.	
Suitab Substi suitabl FYI fo Requin and a t For an This is awrt –	He functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - $	e of 1.133634.	
Suitab Substi- suitabl FYI fo Requir and a t For an This is awrt – $\beta = av$	He functions are $f(x) = \pm (7 - x^2 - 5e^{x-1})$, $g(x) = \pm (x - \sqrt{7 - 5e^{x-1}})$ or $h(x) = \pm (x - $	e of 1.133634.), i

At x = 1.1345, $y|_{1.1345} = 5e^{x-1} + 3 = 8.720$ and $y|_{1.1345} = 10 - x^2 = 8.713$

P3_2020_10_MS Page 7 of 13

Question Number	Scheme	Marks	
7.(a)	$R = \sqrt{17}$	B1	
	$\tan \alpha = 4 \Longrightarrow \alpha = \text{awrt } 1.326$	M1A1	
			(3)
(b)	Minimum height = $\frac{24}{3 + "R"} = 3.37$ (metres)	M1 A1	
			(2)
(c)	Uses part (a) $10 = \frac{24}{3 + \sqrt{17} \cos\left(\frac{1}{2}t - 1.326\right)} \Rightarrow \cos\left(\frac{1}{2}t - 1.326\right) = \frac{-0.6}{\sqrt{17}}$	M1 A1	
	t = awrt 6.09	M1 A1	
		(9 marks)	(4)

(a) B1 $R = \sqrt{17}$

Condone $R = \pm \sqrt{17}$ (Do not allow decimals for this mark Eg 4.12 but remember to isw after $\sqrt{17}$) M1 $\tan \alpha = \pm 4$, $\tan \alpha = \pm \frac{1}{4} \Rightarrow \alpha = ...$

If *R* is used to find α accept $\sin \alpha = \pm \frac{4}{R}$ or $\cos \alpha = \pm \frac{1}{R} \Longrightarrow \alpha = ...$

- A1 $\alpha = awrt 1.326$ Note that the degree equivalent $\alpha = awrt 75.96^{\circ}$ is A0
- (b)

M1 Attempts minimum height by stating or finding $\frac{24}{3 + "R"}$

Attempts via differentiation must be complete methods with correct work up to slips in coefficients. They are unlikely to succeed.

FYI
$$\frac{\mathrm{d}H}{\mathrm{d}t} = -\frac{24\left(2\cos\left(\frac{t}{2}\right) - \frac{1}{2}\sin\left(\frac{t}{2}\right)\right)}{\left(4\sin\left(\frac{t}{2}\right) + \cos\left(\frac{t}{2}\right) + 3\right)^2} = 0 \Rightarrow \tan\left(\frac{t}{2}\right) = 4 \Rightarrow H = \frac{24}{3 + \cos(1.326) + 4\sin(1.326)}$$

A1 3.37 (metres) Assume metres unless otherwise stated, but 3.37 cm is A0. Accept 337 cm as long as the units are stated, but do not accept $\frac{24}{3+\sqrt{17}}$ and do not isw if incorrect units are given following 3.37.

(c)

M1 Attempts to use their answer to part (a) (including their R and their α) AND proceeds to

$$\cos(\beta t \pm "1.326") = k$$
, $-1 < k < 1$ and $\beta = 1$ or $\frac{1}{2}$

A1
$$\cos(\beta t \pm "1.326") = \frac{-0.6}{\sqrt{17}}$$
 or awrt -0.146 where $\beta = 1$ or $\frac{1}{2}$

M1 Full method to make *t* the subject from an equation of the form $\cos\left(\frac{1}{2}t \pm "1.326"\right) = k$, -1 < k < 1Look for $2 \times (\text{their } \arccos(k) \pm \text{their } \alpha)$

A1 awrt t = 6.09 (Ignore any extra solutions outside the domain, but A0 if extras inside are given.)

P3_2020_10_MS Page 8 of 13

Question Number	Scheme	Marks	
8(i)(a)	$g'(x) = 3e^{3x} \sec 2x + 2e^{3x} \sec 2x \tan 2x$	M1 A1	
			(2)
(b)	$g'(x) = 0 \implies e^{3x} \sec 2x (3 + 2 \tan 2x) = 0$	M1	
	$\tan 2x = -1.5 \Longrightarrow x = -0.491$	dM1 A1	
			(3)
(ii)	$x = \ln(\sin y) \Rightarrow \frac{dx}{dy} = \frac{1}{\sin y} \times \cos y$	B1	
	Attempts $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - e^{2x}}$ or $\frac{dy}{dx} = \frac{\sin y}{\cos y}$	M1	
	Hence $\frac{dy}{dx} = \frac{\sin y}{\cos y} = \frac{e^x}{\sqrt{1 - e^{2x}}}$	dM1 A1	
			(4)
		(9 marks)	

(i)(a)

M1 Correct attempt at the product rule $g'(x) = Ae^{3x} \sec 2x + Be^{3x} \sec 2x \tan 2x$ For use of the quotient rule look for $\frac{A\cos 2xe^{3x} - Be^{3x}\sin 2x}{\cos^2 2x}$

A1 $g'(x) = 3e^{3x} \sec 2x + 2e^{3x} \sec 2x \tan 2x$ Allow in any form and then isw

For use of the quotient rule look for
$$\frac{3\cos 2x e^{3x} + 2e^{3x} \sin 2x}{\cos^2 2x}$$

(i)(b)

M1 Sets $g'(x) = 0 \Rightarrow$ and takes out / factorises out $e^{3x} \sec 2x$ to identify a linear factor in $\tan 2x$

For the quotient rule they should be factorising out $\frac{e^{3x}}{\cos^2 2x}$ to leave a linear factor in $\cos 2x$ and $\sin 2x$

dM1 Correct order of operations to x = ...

For quotient rule approach they must use $\tan 2x = \frac{\sin 2x}{\cos 2x}$ (oe correct work)

You may need to check their answer if no method is shown. Accept awrt 2.s.f. for their tan 2x = ... in either radians or degrees.

A1 x = awrt - 0.491 only in the range. If extra solutions arise from trying to solve $\sec 2x = 0$ then A0.

P3_2020_10_MS Page 9 of 13

B1
$$\frac{dx}{dy} = \frac{1}{\sin y} \times \cos y$$
 OR $e^x = \cos y \frac{dy}{dx}$ via $e^x = \sin y$

- M1 For one of the two operations needed to complete the proof
 - Either an attempt to get $\cos y$ in terms of e^x look for an attempt using $\sin^2 y + \cos^2 y = 1$ with $\sin y$ being replaced by e^x . Alternatively allow use of arcsin
 - Or taking the reciprocal and making $\frac{dy}{dx}$ the subject (variables must be consistent)

dM1 Applies both operations to obtain $\frac{dy}{dx}$ in terms of just e^x

A1
$$\frac{dy}{dx} = \frac{e^x}{\sqrt{1 - e^{2x}}}$$
 or $\frac{e^x}{\cos(\arcsin e^x)}$ Allow $\frac{1}{\sqrt{1 - (e^x)^2}}$ or states $f(x) = \sqrt{1 - e^{2x}}$ following a correct
 $\frac{dy}{dx} = \frac{e^x}{e^x}$

expression for
$$\frac{dy}{dx} = \frac{e}{\cos y}$$
 or similar.

Alt:

B1
$$x = \ln(\sin y) \Rightarrow y = \arcsin(e^x)$$

M1
$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - (e^x)^2}} \times \dots \text{ or } \Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - (\dots)^2}} \times e^x$$

dM1 both of these

A1
$$\frac{e^x}{\sqrt{1-\left(e^x\right)^2}}$$

Question Number	Scheme	Marks
9 (a)	$\frac{x^2 + 2}{x^2 - x - 12} \overline{x^4 - x^3 - 10x^2 + 3x - 9}$	
	$\frac{x^4 - x^3 - 12x^2}{2x^2 + 3x - 9}$ $\frac{2x^2 - 2x - 24}{2x^2 - 2x - 24}$	M1A1
	5 <i>x</i> +15	
	$\frac{x^4 - x^3 - 10x^2 + 3x - 9}{x^2 + x - 12} \equiv x^2 + 2 + \frac{5(x+3)}{(x-4)(x+3)}$	M1
	$\equiv x^2 + 2 + \frac{5}{(x-4)}$ or stating $P = 2, Q = 5$	A1
(b)	$g'(x) = 2x - \frac{5}{(x-4)^2}$	(4) M1A1
	Subs $x = 2$ into $g'(2) = 2 \times 2 - \frac{5}{(2-4)^2} = \frac{11}{4}$	M1
	Uses $m = g'(2) = \left(\frac{11}{4}\right)$ with $(2, g(2)) = \left(2, \frac{7}{2}\right)$ to form equation of tangent	
	$y - \frac{7}{2} = \frac{11}{4}(x - 2) \Longrightarrow y = \frac{11}{4}x - 2$	dM1A1 (5)
(c)	$\int x^2 + 2 + \frac{5}{(x-4)} dx = \frac{1}{3}x^3 + 2x, +5\ln x-4 $	M1 A1ft
	Area $R = \left[\frac{1}{3}x^3 + 2x + 5\ln x-4 \right]_0^2 = \left(\frac{8}{3} + 4 + 5\ln 2\right) - (0 + 0 + 5\ln 4)$	dM1
	$=\frac{20}{3}+5\ln 2-5\ln 4=\frac{20}{3}-5\ln 2$	ddM1 A1
Alt (a)	$x^{4} - x^{3} - 10x^{2} + 3x - 9 \equiv (x^{2} + P)(x^{2} - x - 12) + Q(x + 3)$	(5) (14 marks) M1
	Compare terms (OR sub in values) and solve simultaneously to find P and/or Q ie $x^2 \Rightarrow P - 12 = -10$, $x \Rightarrow -P + Q = 3$, const $\Rightarrow -12P + 3Q = -9$ $\Rightarrow P = \dots$ or $Q = \dots$	M1
	P = 2, Q = 5* Award in the order shown here on ePEN.	A1,A1

(a)

M1: Divides to obtain a quadratic quotient and a linear remainder. May divide by (x-4) and then by (x+3) or vice versa to reach these but must be a full process.

FYI: By x + 3 first gives $x^3 - 4x^2 + 2x - 3$ as quotient, followed by $x^2 + 2 + \frac{5}{x-4}$

P3_2020_10_MS Page 11 of 13

By
$$x-4$$
 first gives $x^3 + 3x^2 + 2x + 11 + \frac{35}{x-4}$ then $x^2 + 2 + \frac{5}{x+3} + \frac{35}{(x+3)(x-4)} \rightarrow x^2 + 2 + \frac{5}{x-4}$

A1: Obtains a quotient of $x^2 + 2$ and a remainder of 5x + 15

M1: Writes the given expression in the required form using $x^2 - x - 12 = (x - 4)(x + 3)$ or divides x + 3 into their remainder term.

A1: Correct answer. (P = 2, Q = 5) May be awarded following an incorrect " $ax^2 + 2$ " quadratic factor. Alt:

M1: Multiplies though completely by the denominator and cancels the x-4 term.

- M1: Complete process of comparing coefficients or substituting values to find a value for either P or Q
- A1: Either P = 2 or for showing $Q = 5^*$ (must have seen a correct equation for Q)

A1: Both P = 2 and showing $Q = 5^*$ Note that Q = 5 is given so it must be shown from correct work, not just stated. Note M0M1A1A0 is possible if Q is assumed and factorisation of $x^2 - x - 12$ is never seen.

M1: For
$$\frac{Q}{x-4} \rightarrow \frac{\dots}{(x-4)^2}$$

A1: For $g'(x) = 2x - \frac{5}{(x-4)^2}$. Note that this can be scored from an incorrect *P*.

- M1: Attempts the gradient of *C* at the point where x = 2
- dM1: Depends on previous M. A complete method of finding the equation of the tangent. If y = mx + c is used, they must proceed as far as finding *c*.

A1: y = 2.75x - 2 or exact equivalent and isw.

Note: This may be attempted from the original function $g(x) = \frac{x^4 - x^3 - 10x^2 + 3x - 9}{x^2 + x - 12}$

M1: Scored for an attempt at the quotient rule A1 if correct and so on.

$$\rightarrow \frac{(ax^3 + bx^2 + cx + d)(x^2 + x - 12) - (x^4 - x^3 - 10x^2 + 3x - 9)(px + q)}{(x^2 + x - 12)^2}$$

(c)

M1: Attempts to integrate with $\int \frac{...}{(x-4)} dx \rightarrow ..\ln|x-4|$ Condone $\ln(x-4)$

A1ft: $\int x^2 + P + \frac{5}{(x-4)} dx = \frac{1}{3}x^3 + Px + 5\ln|x-4|$ following through on their P.

dM1: Dependent on first M mark. Attempt the area of *R* using the limits 0 and 2 in their integrated function and subtracting the correct way round (or recovered).

ddM1: Depends on both previous M's. Scored for attempting to combine two log terms using correct log work

Allow the method and final accuracy if $\ln(-2) - \ln(-4) \rightarrow \ln\left(\frac{-2}{-4}\right) = -\ln 2$ is used (bod that modulus is meant) Do not allow if $\ln(-a) \rightarrow -\ln a$ is used.

> P3_2020_10_MS Page 12 of 13

A1: cao
$$\frac{20}{3} - 5 \ln 2$$

Note: If a candidate gives correct values of m and c in (b) and of a and b in (c) but has not stated the answer in correct form, then penalise only the first instance.