Question Number	Scheme	Notes	Marks	
1(a)	$\left(2 - \frac{x}{4}\right)^{10} = 2^{10} + {10 \choose 1} 2^9 \left(-\frac{x}{4}\right) + {10 \choose 2} 2^8 \left(-\frac{x}{4}\right)^2 + {10 \choose 3} 2^7 \left(-\frac{x}{4}\right)^3 + \dots$ Attempts the binomial expansion to get the third and/or fourth term with an acceptable			
	structure. The correct binomial coefficient must be combined with the correct power of $\frac{x}{4}$			
	and the correct power of 2 but condone omission of brackets. You can ignore the signs between the terms and allow the terms to be listed.			
	Allow for e.g. $\pm \left(\frac{10}{2}\right) 2^8 \left(\pm \frac{x}{4}\right)^2$ or $\pm {}^{10}\text{C}_3 2^7 \left(\pm \frac{x}{4}\right)^3$ but condone omission of brackets.			
	NB 10 C ₂ = 45,	10 C ₃ = 120		
	$NB^{10}C_2 = {}^{10}C_8$ a	10 C ₂ = 10 C ₇		
	Alterna	5		
	$\left(2 - \frac{x}{4}\right)^{10} = 2^{10} \left(1 - \frac{x}{8}\right)^{10} = 2^{10} \left(1 - \frac{10x}{8}\right)^{10} + \frac{10x}{8} + 1$	$\frac{10\times 9}{2}\left(-\frac{x}{8}\right)^2 + \frac{10\times 9\times 8}{3!}\left(-\frac{x}{8}\right)^3 + \dots$		
	Score M1 for $2^{10} \left(\pm \frac{10 \times 9}{2} \left(-\frac{x}{8} \right)^2 + \right)$	or $2^{10} \left(\dots \pm \frac{10 \times 9 \times 8}{3!} \left(-\frac{x}{8} \right)^3 + \dots \right)$		
		1024 – 1280 <i>x</i>	B1	
	$= 1024 - 1280x + 720x^2 - 240x^3$	$720x^2$ or $-240x^3$	A1	
	Note that if any of the "-"'s are "+ -"'s th	$720x^2$ and $-240x^3$	A1	
	Allow the terms to be listed e.g. 1	-		
	Apply isw once a correct answer is seen.			
	Ignore any extra terms			
			(4)	
(b)	$\left(3 - \frac{1}{x}\right)^2 = 9 - \frac{6}{x} + \frac{1}{x^2} \text{ or } 9 - \frac{3}{x} - \frac{3}{x} + \frac{1}{x^2}$	Correct expansion. May be implied by their work to find the constant.	B1	
	$\left(3 - \frac{1}{x}\right)^2 \left(2 - \frac{x}{4}\right)^{10} = \left(9 - \frac{6}{x} + \frac{1}{x^2}\right) \left(10 - \frac{6}{x}\right)^{10}$	$24 - 1280x + 720x^2 \left(-240x^3\right) + \dots $		
	constant term = 9×1024 –	$\frac{6}{x}(-1280x) + \frac{1}{x^2}720x^2$		
	This mark depends on having obtained an expre	ession of the form $A + \frac{B}{x} + \frac{C}{x^2}$ for $\left(3 - \frac{1}{x}\right)^2$	M1	
	and at least a 3-term quadratic expression $A \times "1024" + B \times "-1280" + C$	$C \times "720"$ A, B, C non-zero.		
	Allow 1 sign error May be seen as part of a complete expansion by value of the constant term w	but there must be an attempt to calculate the vith the above conditions.		
	For reference, true value calcul	1		
	= 17616	Correct value. Must be "extracted" if a complete expansion is found above.	A1	
			(3)	
			Total 7	

Question Number			Scheme				Ν	Votes		Marks
2(a)		X	- 0.25	0	0.2	5	0.5	0.75		
		у	0.462	0.577	0.65	3	0.686	0.698		
	Allow	awrt these va	alues and look t Also allow e	heir calculati	on in pa	ırt (b)			r within	B1
										(1)
(b)			h = 0.25				rect strip wid $\frac{1}{8}$ or $\frac{1}{2} \times 0.25$	th. May be in	nplied	B1
	$A \approx \frac{1}{2} \times $	$A \approx \frac{1}{2}$ Scores M $A \approx \frac{1}{2}$ Would also so $A \approx \frac{1}{2}$ Would also so $A \approx \frac{1}{2}$ $A \approx \frac$	×"0.25"×0.4 0 unless any r •×"0.25" $\left\{0.4\right\}$ core M0 unless Condone copse all the y-va $\left\{0.577\right\} + \frac{1}{2}$ ×"0.25	cation of the correct applied $462 + 0.698 - $	trapeziu cation o + 2 ("0 tets are : + 2 ("0 bracket g. 0.426 ed or m te trapez b) + $\frac{1}{2}$ × "0 ne funct $2\left(\frac{2}{\sqrt{5(0)}}\right)$	im rul f the instance of the	e with their rule so e.g. + 0.653 + "0 ed by subseq + 0.653 + "0 mplied by subsed of 0.462. 53 + "0.686") + $\frac{1}{2}$ g. + $\frac{2^{0.25}}{5(0.25)^2 + 0.0000000000000000000000000000000000$	(a) $(.686")$ 1.686") 1.686") 1.686") 1.686" 1.6	"+ 0.698) ====================================	M1
		Note that	125 at the calcula	tor answer f	or the i	ntegr	sw if necessal is 0.62655	*		
		-,515 011								(3)
										Total 4

Question Number	Scheme	Notes	Marks
3(a)	$a(-4)^3 - (-4)^2 + b(-4) + 4 = -108$ Attempts to set $f(-4) = -108$ to obtain an equation in a and b . Score when you see "-4" embedded in the equation or 2 correct terms (excluding the "+ 4") on lhs. May be implied by e.g. $-64a - 16 - 4b + 4 = -108$ Condone minor slips on the lhs e.g. one sign error between terms but must use -108		
	As an alternative for the first mark we will condone an attempt at long division. This requires a complete method to divide $(ax^3 - x^2 + bx + 4)$ by $(x + 4)$ to obtain a remainder in terms of a and b which is then equated to -108 . For reference, the quotient is $ax^2 - (1+4a)x + 16a + b + 4$ and the remainder is $-4b - 64a - 12$.		
	$-64a - 16 - 4b + 4 = -108$ $\Rightarrow 16a + b = 24*$	Correct equation obtained with no errors and at least one line of intermediate working if starting with e.g. $a(-4)^3 - (-4)^2 + b(-4) + 4 = -108$	A1*
(b)	(1)3 (1)2		(2)
	$a\left(\frac{1}{2}\right)^3 - \left(\frac{1}{2}\right)^2 + b\left(\frac{1}{2}\right) + 4 = 0$ Attempts to set $f\left(\frac{1}{2}\right) = 0$ to obtain an equation in a and b . Condone slips. Score when you see " $\frac{1}{2}$ " embedded in the equation or 2 correct terms (excluding the "+ 4") on lhs. May be implied by e.g. $\frac{a}{8} - \frac{1}{4} + \frac{b}{2} + 4 = 0$		
	The "= 0" may be implied when they at		
	An alternative for the first mark. This requires a complete method to divide remainder in <i>a</i> and <i>b</i> whi	$(ax^3 - x^2 + bx + 4)$ by $(2x - 1)$ to obtain a ch is then equated to 0	
	For reference, the quotient is $\frac{a}{2}x^2 + \left(\frac{a}{4} - \frac{1}{2}\right)x + \frac{a}{4}x^2 +$	$-\left(\frac{b}{2} - \frac{1}{4} + \frac{a}{8}\right)$ and the remainder is $\frac{15}{4} + \frac{b}{2} + \frac{a}{8}$	
	$16a + b = 24, \ a + 4b = -30$ $\Rightarrow a =, b =$	Attempts to solve $16a + b = 24$ simultaneously with their equation in a and b . This may be implied if values of a and b are obtained (e.g. calculator)	M1
	a = 2, b = -8	Correct values	A1
(c)	$f(x) = 2x^3 - x^2 - 8x + 4$ $\Rightarrow f'(x) = 6x^2 - 2x - 8$	Correct derivative (follow through their <i>a</i> and <i>b</i>). Allow unsimplified and apply isw if necessary. Allow with the letters " <i>a</i> " and " <i>b</i> " and a "made up" " <i>a</i> " and " <i>b</i> ".	B1ft (1)
			(1)

(d)	$6x^{2} - 2x - 8 = 0$ $\Rightarrow (3x - 4)(x + 1) = 0$ $\Rightarrow x = \dots$	Sets their $f'(x) = 0$ (may be implied) and solves a 3 term quadratic. Apply general guidance if necessary. You may need to check if a calculator has been used.	M1
	$x = \frac{4}{3}, -1 \Rightarrow y = \dots$	Uses at least one of their x values to find a value for y using their $f(x)$ where x is from an attempt to solve $f'(x) = 0$. You may need to check their y values if working is not shown.	M1
	$\left(\frac{4}{3}, -\frac{100}{27}\right) \text{ or } (-1, 9)$ Or e.g. $x = \frac{4}{3}$, $y = -\frac{100}{27}$ and $x = -1$, $y = 9$ One correct point. The fractional coordinates must be exact but allow 1.3 with a dot over the 3 and 3.703 with dots over the 7 and 3. Note that it is not necessary for the points to be written as coordinates as long as the pairing is clear. Depends on having scored both previous M marks.		
	$\left(\frac{4}{3}, -\frac{100}{27}\right) \text{ and } (-1, 9)$ Or e.g. $x = \frac{4}{3}$, $y = -\frac{100}{27}$ and $x = -1$, $y = 9$ Both correct points. The fractional coordinates must be exact but allow 1.3 with a dot over the 3 and 3.703 with dots over the 7 and 3. Note that it is not necessary for the points to be written as coordinates as long as the pairing is clear. Depends on having scored both previous M marks. Fully correct answers with no working scores 4/4 following a correct part (c) i.e.		
	$\Rightarrow f'(x) = 6x$		
			(4) Total 10

Question Number	Scheme	Notes	Marks
4(a)(i)	(-0)	x = -7 or $y = 9$	B1
	(-7, 9) or e.g. $x = -7, y = 9$	x = -7 and $y = 9$	B1
	Award the marks in (a) once co	orrect answers are seen.	
4 3 445	Special case: If all you see in	s (9, -7) award B1B0	
(a)(ii)	Examples: $r = \sqrt{(-3 - ("-7"))^2 + (12 - "9")^2}$ or $r = \sqrt{(-11 - ("-7"))^2 + (6 - "9")^2}$ or $r = \frac{1}{2}\sqrt{(-3 + 11)^2 + (12 - 6)^2}$	Correct strategy for the radius. Must be a correct method for their centre (if used) but allow 1 sign slip within one of the brackets. A correct answer scores both marks. Must see the ½ if finding the length of the diameter.	M1
	r = 5	Correct radius	(4)
(b)	$(x+7)^2 + (y-1)^2 + (y-1$,	(4)
	$x^{2} + y^{2} + 2 \times 7x - 2 \times 9y$ M1: Correct attempt at circle eq Allow for $(x \pm (their - 7))^{2} + (y \pm (their 9))$ or e.g. $x^{2} + y^{2} \pm 2 \times (their - 7)x \pm 2 \times (their 9)y + (their - 4)$ A1: Correct equation	uation using their values. or $(r)^{2} = (their numerical r)^{2}$ $(r)^{2} + (their 9)^{2} - (their numerical r)^{2} = 0$	M1A1
	711. Confect equation	In in any form	(2)
(c)	$m_{radius} = \frac{12 - 9}{-3 + 7} \left(= \frac{3}{4} \right) \text{ or}$ $m_{tangent} = -1 \div \left(\frac{12 - 9}{-3 + 7} \right) \left(= -\frac{4}{3} \right) \text{ or}$ $m_{tangent} = -\left(\frac{-3 + 7}{12 - 9} \right) \left(= -\frac{4}{3} \right)$	This mark is for an attempt to find the radius gradient or the tangent gradient. If the method is not clear allow one sign error in the numerator or denominator.	M1
	Alternative for the	ne first M:	
	$(x+7)^2 + (y-9)^2 = 5^2 \Rightarrow 2(x+7)^2 = 5$	$(x+7)+2(y-9)\frac{\mathrm{d}y}{\mathrm{d}x}=0$	
	$\frac{dy}{dx} = \frac{x+7}{9-y} = \frac{-3+4}{9-1}$	$\frac{7}{12}\left(=-\frac{4}{3}\right)$	
	Allow for $(x+7)^2 + (y-9)^2 = 5^2 \Rightarrow \alpha(x)$	$(x+7) + \beta(y-9)\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \dots$	
	$y-12=-\frac{4}{3}$	(x+3)	
	Uses a correct straight line method for the tanger work here so must be a clear attempt at the tange is found previously, must apply negative red If using $y = mx + c$ must re	ent not the radius. So if the radius gradient ciprocal rule to their radius gradient.	M1
	4x + 3y - 24 = 0	Allow any integer multiple	A1
			(3)
			Total 9

Question Number	Scheme	Notes	Marks
5(a)	$t_{40} = 100 + (40 - 1) \times 5$	Uses $a + (n-1)d$ with $a = 100$, $d = 5$ and $n = 40$. This may be implied by a correct expression e.g. $100 + 39 \times 5$	M1
	= (£)295	Cao. Correct answer with no working scores both marks.	A1
			(2)
(b)	$S_{60} = \frac{1}{2} (60) (2 \times 100 + (60 - 1) \times 5)$ or $l = 100 + (60 - 1) \times 5 = 395$	Uses a correct sum formula with $a = 100$, $d = 5$ and $n = 60$ or $n = 40$. May be implied by a correct numerical expression. If using $\frac{1}{2}n(a+l)$ with $n = 40$ you may see $\frac{1}{2}(40)(100+295)$ using their result from	M1
	$S_{60} = \frac{1}{2} (60) (100 + 395)$	(a) and this scores M1 also. Correct numerical expression with <i>n</i> = 60. If there are any missing brackets then this mark should be withheld unless the correct expression is implied by their answer.	A1
	=(£)14850	Cao. Correct answer with no working scores 3 marks. Apply isw if necessary and award this mark once a correct answer is seen.	A1
			(3)
(c)	$\frac{1}{2}n(2\times600+(n-1)\times-10)=18200$	Attempts to use a correct sum formula with $a = 600$, $d = -10$ and sets = 18 200. Condone poor use of brackets.	M1
		Correct equation which may be implied by subsequent work.	A1
	$600n - 5n^{2} + 5n = 18200$ $5n^{2} - 605n + 18200 = 0$ $n^{2} - 121n + 3640 = 0$	Obtains the printed answer with at least one intermediate line and no errors. Allow other variables to be used for <i>n</i> but the final answer must be as printed including "= 0"	A1*
			(3)
(d)	$(n-56)(n-65) = 0$ $\Rightarrow (n=)56,65$	Attempts to solve the given quadratic. This may be implied by correct answers. Apply general guidance if necessary but must reach at least one value for n . (Allow them to use x rather than n)	M1
		Correct values (ignore how they are labelled e.g. allow $x =$)	A1
(e)	E.g. (n =) 65 because e.g. the money has already been saved after 56 months	States (<i>n</i> =) 65 and gives a suitable reason – see below for examples of acceptable comments. There must be no contradictory statements and any calculations must be correct.	B1 (1)
-			Total 11

Acceptable comments for 5(e):

n = 65 means $t = 600 - 10 \times 64 = -40$ which is not possible/doesn't make sense/etc.

n = 65 because Lina will have saved the money after 56 months

n = 65 because Lina will have saved the money before then

 $600 + (n-1) \times -10 = 0 \Rightarrow n = 61$ so she will have paid off the loan before n = 65

Condone "because 65 > 60" or equivalent e.g. it is only over 60 months (or 5 years)

n = 65 means $t = 600 - 10 \times 64 = -40$ so reject (but not just "it is negative")

P2_2020_10_MS

Question Number	Scheme	Notes	Marks	
6(a)	$x^3 - 6x + 9 = -2x^2 + 7x - 1$ $\Rightarrow \dots$	Sets $C_1 = C_2$, and collects terms	M1	
	$\Rightarrow \pm \left(x^3 + 2x^2 - 13x + 10\right) = 0$	Correct cubic equation. The "= 0" may be implied by their attempt to solve.	A1	
	$x^{3} + 2x^{2} - 13x + 10 = (x - 1)(x^{2} + \dots x + \dots$			
	Attempts to factorise using $(x-1)$ as a factor or uses long division by $(x-1)$ to obtain a quadratic factor and proceeds to solve quadratic or factorise and solve NB $x^3 + 2x^2 - 13x + 10 = (x-1)(x^2 + 3x - 10)$			
	or			
	$x^{3} + 2x^{2} - 13x + 10 = (x - 1)(x)$ Attempts 3 factors directly (bound or $x^{3} + 2x^{2} - 13x + 10 = 0$	by considering roots) $= 0 \Rightarrow x = \dots$		
	Solves (using calculator) to obtain 3 roots (material $x = 2, y = 5$ or			
	Correct values from a Allow as a coordinate pair of If there are any errors in the algebra e.g. wrong fact be withheld even if they have (2, 5) and score a	r written separately. etors, wrong working etc. this mark should	A1	
	Special Ca If you see: $x^3 - 6x + 9 = -2x^2 + 7x - 7x + 9 = -2x^2 + 7x - 7x + 9 = -2x^2 + 7x + 7$	ase		
	$\Rightarrow x = 2, y = 5 \text{ c}$			
	Score M1A1B1(Second	M on EPEN)A0	(4)	
			(4)	

(b)	$x^n \to x^{n+1}$ For increasing any power of x by 1 for C_1 or C_2 or for $\pm (C_1 - C_2)$	M1	
	$\pm \int \left\{ -2x^2 + 7x - 1 - \left(x^3 - 6x + 9\right) \right\} dx = \pm \int \left(-x^3 - 2x^2 + 13x - 10 \right) dx$		
	$=\pm\left(-\frac{x^4}{4} - \frac{2x^3}{3} + \frac{13x^2}{2} - 10x\right)$		
	or $\pm \left\{ \int \left(-2x^2 + 7x - 1 \right) dx - \int \left(x^3 - 6x + 9 \right) dx \right\}$		
	$=\pm\left(-\frac{2x^3}{3} + \frac{7x^2}{2} - x - \left(\frac{x^4}{4} - \frac{6x^2}{2} + 9x\right)\right)$	dM1A1	
	or $\int (-2x^2 + 7x - 1) dx = -\frac{2x^3}{3} + \frac{7x^2}{2} - x, \int (x^3 - 6x + 9) dx = \frac{x^4}{4} - \frac{6x^2}{2} + 9x$		
	dM1: For correct integration of 1 term for C_1 and one term for C_2 or for correct integration for 2 terms of their $\pm (C_1 - C_2)$ A1: Fully correct integration of both C_1 and C_2 or for $\pm (C_1 - C_2)$. Award this mark as soon as fully correct integration is seen and ignore subsequent work.		
	$= -\frac{2^4}{4} - \frac{2(2)^3}{3} + \frac{13(2)^2}{2} - 10(2) - \left(-\frac{1^4}{4} - \frac{2(1)^3}{3} + \frac{13(1)^2}{2} - 10(1)\right)$	ddM1	
	Fully correct strategy for the area. Depends on both previous M marks. Uses the limits "2" and 1 in their "changed" expression(s) and subtracts either way round.		
	$= \frac{13}{12}$ If the attempt is correct apart from subtracting the wrong way round (for limits or functions)	A1	
	and $-\frac{13}{12}$ is obtained, allow recovery if they then make their answer positive.		
		(5) Total 9	

Some values for reference:

$$\left[\frac{-2x^3}{3} + \frac{7x^2}{2} - x\right]_1^2 = \frac{20}{3} - \frac{11}{6} = \frac{29}{6} \qquad \left[\frac{x^4}{4} - \frac{6x^2}{2} + 9x\right]_1^2 = 10 - \frac{25}{4} = \frac{15}{4}$$

$$=-\frac{2^4}{4}-\frac{2(2)^3}{3}+\frac{13(2)^2}{2}-10(2)-\left(-\frac{1^4}{4}-\frac{2(1)^3}{3}+\frac{13(1)^2}{2}-10(1)\right)=-\frac{10}{3}-\left(-\frac{53}{12}\right)$$

Question Number	Scheme	Notes	Marks
7(i)	$\tan \theta + \frac{1}{\tan \theta} = \frac{\sin \theta}{\cos \theta} + \frac{1}{\frac{\sin \theta}{\cos \theta}}$ or $\tan \theta + \frac{1}{\tan \theta} = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$	Uses $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$ on both terms	M1
	$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta} \text{o}$ Uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$ and attention with a 2 term numerator one of which is correct denominator of $\sin \theta \cos \theta$ one of which is correct denominator.	empts common denominator of $\sin\theta\cos\theta$ t. Or attempts 2 separate fractions with a	d M1
	$= \frac{1}{\sin \theta \cos \theta} *$ or $\frac{1}{\cos \theta \sin \theta}$	Correct proof with no notation errors or missing variables but allow "=" instead of "=". If there are any spurious "= 0"'s alongside the proof score A0.	A1*
	Altomotive 1	for (i)	(3)
	Alternative 1 $\tan \theta + \frac{1}{\tan \theta} = \frac{\tan^2 \theta + 1}{\tan \theta} \left(\text{or } \frac{\tan^2 \theta}{\tan \theta} + \frac{1}{\tan \theta} \right)$	Attempts common denominator of $\tan \theta$	M1
	$= \frac{\sec^2 \theta}{\tan \theta} = \frac{1}{\cos^2 \theta} \times \frac{\cos \theta}{\sin \theta}$ $= \frac{\frac{\sin^2 \theta}{\cos^2 \theta} + 1}{\frac{\sin \theta}{\cos \theta}} = \frac{1}{\cos^2 \theta} \times \frac{\cos \theta}{\sin \theta}$	Applies appropriate and correct identities to obtain in terms of $\sin\theta$ and $\cos\theta$ only and eliminates "double decker" fractions if necessary	d M1
	$= \frac{1}{\sin \theta \cos \theta} *$ or $\frac{1}{\cos \theta \sin \theta}$	Correct proof with no notation errors or missing variables but allow "\(\equiv \) instead of "\(\equiv \)". If there are any spurious "\(\equiv \) 0"'s alongside the proof score A0.	A1*
	Alternative 2		
	$\tan \theta + \frac{1}{\tan \theta} = \frac{1}{\sin \theta \cos \theta} \Rightarrow$ Uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and multiplie	$\frac{\sin^2 \theta}{\cos \theta} + \cos \theta = \frac{1}{\cos \theta}$ es through by $\sin \theta$ or $\cos \theta$	M1
	$\Rightarrow \sin^2 \theta + \cos^2 \theta + \cos^2 \theta$ Uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and multiplie		dM1
	$\sin^2 \theta + \cos^2 \theta = 1$ is true hence proved	Fully correct work reaching a correct identity with a conclusion. If there are any spurious "= 0""s alongside the proof score A0.	A1*

	T		1
(ii)	$3\cos^2(2x+10^\circ)=1 \Rightarrow \cos^2(2x+10^\circ)=\frac{1}{3} \Rightarrow \cos(2x+10^\circ)=(\pm)\sqrt{\frac{1}{3}}$		
	Divides by 3 and takes square root of bo	oth sides. The "±" is not required.	
	$2x+10^{\circ}=\cos^{-1}\left("(\pm)\sqrt{\frac{1}{3}}"\right)$	Applies $x = \frac{\cos^{-1}\left("(\pm)\sqrt{\frac{1}{3}}"\right)\pm 10^{\circ}}{2}$	M1
	$\Rightarrow x = \frac{\cos^{-1}\left("(\pm)\sqrt{\frac{1}{3}}"\right) - 10^{\circ}}{2}$	You may need to check their values if no working is shown.	IVII
	For reference $2x + 10^{\circ} = 5$	4.735, 125.264	
	$x = 22.4^{\circ} \text{ or } x = 57.6^{\circ}$	Awrt one of these	A1
	$x = 22.4^{\circ} \text{ and } x = 57.6^{\circ}$	Awrt both with no extras in range	A1
	If mixing degrees and radians	allow the method marks.	
			(4)
	Alternative 1 fo	r part (b)	
	$3\cos^2(2x+10^\circ) = 1 \Rightarrow 3(1-$		
	$\Rightarrow \sin^2(2x+10^\circ) = \frac{2}{3} \Rightarrow \sin(2x+10^\circ) = (\pm)\sqrt{\frac{2}{3}}$		
		rect identity, rearranges and takes square root of both sides. The "±" is not required.	
	$2x + 10^{\circ} = \sin^{-1}\left("(\pm)\sqrt{\frac{2}{3}}"\right)$	Applies $x = \frac{\sin^{-1}\left("(\pm)\sqrt{\frac{2}{3}}"\right)\pm 10^{\circ}}{2}$	
	$\Rightarrow x = \frac{\sin^{-1}\left("(\pm)\sqrt{\frac{2}{3}}"\right) - 10^{\circ}}{2}$	You may need to check their values if no working is shown.	M1
	$x = 22.4^{\circ} \text{ or } x = 57.6^{\circ}$	Awrt one of these	A1
	$x = 22.4^{\circ} \text{ and } x = 57.6^{\circ}$	Awrt both with no extras in range	A1
	Alternative 2 fo		
	$3\cos^2(2x+10^\circ) = 3\left(\frac{1+\cos(4x+10^\circ)}{2}\right)$	• ` ` ′	M1
	Uses a correct identity, rearranges to r	make $\cos(4x+20)$ the subject	
	$2x + 10^{\circ} = \cos^{-1}\left(" - \frac{1}{3}"\right)$	Applies $\Rightarrow x = \frac{\cos^{-1}\left("-\frac{1}{3}"\right) - 20^{\circ}}{4}$	
	$\Rightarrow x = \frac{\cos^{-1}\left("-\frac{1}{3}"\right) - 20^{\circ}}{4}$	You may need to check their values if no working is shown.	M1
	For reference $4x + 20^{\circ} = 1$	-	
	$x = 22.4^{\circ} \text{ or } x = 57.6^{\circ}$	Awrt one of these	A1
	$x = 22.4^{\circ}$ or $x = 57.6^{\circ}$ $x = 22.4^{\circ}$ and $x = 57.6^{\circ}$	Awrt both with no extras in range	A1
	x = 22.1 mag x = 37.0	The source of th	Total 7

Question Number	Scheme	Notes	Marks	
8(a)	$S_n = a + ar + ar$ $rS_n = ar + ar$ Writes down at least 3 correct terms of a geome There may be extra incorrect terms but allow to sequences and at least one "+" in both sequences.	$^{2} + + ar^{n}$ tric series and multiplies their sequence by r . his mark if there are 3 correct terms in both	M1	
	$S_n - rS_n = a - ar^n$ or Obtains either equation where both S_n and rS_n h one other correct term but no incorrect term	and the correct first and last terms and at least	A1(M1 on EPEN)	
	$(1-r)S_n = a(1-r^n) \Rightarrow S_n = \frac{a(1-r^n)}{1-r} *$ Factorises both sides and divides by $1-r$ to obtain the printed answer Should be as printed but allow e.g. $S_n = \frac{a(1-r^n)}{(1-r)}$ but not $S_n = \frac{a(r^n-1)}{(r-1)}$ unless followed by			
	Special If terms are listed rather than added and the See next page for pr	case: e working is otherwise correct score 110	(3)	
	Alternative	e for (a):	(3)	
	$S_n = a + ar + (1-r)S_n = (1-r)(a + ar + + ar^{n-1})$ Writes down at least 3 correct terms of a geometric multiplies the right has	or $S_n = \frac{(1-r)(a+ar++ar^{n-1})}{(1-r)}$ ric series and multiplies both sides by $1-r$ or and side by $\frac{1-r}{1-r}$	M1	
	$(1-r)S_n = a - ar^n$ Obtains the above equation where S_n had the corcorrect term and no incorrect terms. Right hand was factored	rrect first and last terms and at least one other side must be seen unfactorised unless the "a"	A1 (M1 on EPEN)	
	$(1-r)S_n = a - ar^n = a(1-r)$ or $S_n = \frac{a - ar^n}{1 - r} \Rightarrow x$ Should be as printed but allow e.g. $S_n = \frac{a(1-r^n)}{(1-r)}$ correct vo	$(-r^n) \Rightarrow S_n = \frac{a(1-r^n)}{1-r} *$ $S_n = \frac{a(1-r^n)}{1-r} *$ $S_n = \frac{a(1-r^n)}{1-r} *$ but not $S_n = \frac{a(r^n-1)}{(r-1)}$ unless followed by	A1*	

(b)	Mark (b) and (c) together		
	$r^3 = -\frac{20.48}{320} \Rightarrow r = \sqrt[3]{-\frac{20.48}{320}}$ [1]	Correct strategy for <i>r</i> . Allow for dividing the 2 given terms either way round and attempting to cube root.	M1
	= -0.4	Correct value (and no others) but allow equivalents e.g2/5. Correct answer only scores both marks.	A1
	Note that some candidates take $ar^2 = -320$ and	$ar^5 = \frac{512}{25}$ and use these correctly to give	
	$r^{3} = -\frac{20.48}{320} \Rightarrow r = \sqrt[3]{-\frac{20.48}{320}} = -0.4$		
	In such cases you can allow full marks for (b) but see note * in (c)		
			(2)

(c)	$r = -0.4 \Rightarrow a = \frac{-320}{-0.4} (=800)$ or $r = -0.4 \Rightarrow a = \frac{512}{25} \div \left(-\frac{2}{5}\right)^4 (=800)$	Correct attempt at the first term using \pm their r and the -320 or the $\frac{512}{25}$. May be implied by their a but must be using e.g. $ar = -320$ or $ar^4 = \frac{512}{25}$ not $ar^2 = -320$ or $ar^5 = \frac{512}{25}$ *	M1
	$S_{13} = \frac{"800"(1}{1-1}$	-"-0.4" ¹³) "-0.4"	
	Correct attempt at the sum using their a and their r and $n = 13$ to find a value for S_{13} . Must be a fully correct attempt at the sum here using $n = 13$, their a and their r . Note that $\frac{800(1+0.4^{13})}{1+0.4}$ is equivalent to $\frac{800(1-(-0.4)^{13})}{1-(-0.4)}$ and is acceptable for this mark.		M1
	= 571.43	Correct value. Note that S_{∞} is also 571.43 so working must be seen i.e. correct answer only scores no marks.	A1
			(3)
			Total 8

Proof by induction for part (a):

$$n = 1 \Rightarrow S_1 = \frac{a(1-r^1)}{1-r} = a \text{ so true for } n = 1$$
Assume true for $n = k$ so $S_k = \frac{a(1-r^k)}{1-r}$

$$Add (k+1)^{th} \text{ term } S_{k+1} = \frac{a(1-r^k)}{1-r} + ar^k = \frac{1-ar^k + ar^k - ar^{k+1}}{1-r}$$

$$= \frac{a-ar^{k+1}}{1-r} = \frac{a(1-r^{k+1})}{1-r}$$

So if true for n = k it has been shown true for n = k + 1 and as it is true for n = 1 it is true for (for all n)

Mark as follows:

M1: Shows true for n = 1 and assumes true for n = k and adds the $(k + 1)^{th}$ term

A1(M1 on EPEN): Finds common denominator obtains $\frac{a-ar^{k+1}}{1-r}$ using correct algebra

A1: Fully correct proof reaching $\frac{a(1-r^{k+1})}{1-r}$ with all steps shown and conclusion

If you are in any doubt about awarding marks in this case or any other cases that you think deserve credit, send to your Team Leader using Review

Question Number	Scheme	Notes	Marks		
9(i)	$4 = \log_3 81 \text{ or}$	$4 = \log_3 3^4$			
	May be implied by e.g. $\log_3 \frac{x+5}{2x-1} = 4 \Rightarrow \frac{x+5}{2x-1} = 3^4$ (or 81)				
	$\log_3(x+5) - \log_3 81 = \log_3 \frac{x+5}{81}$				
	or 81				
	$\log_3(x+5) - \log_3(2x-1) = \log_3 \frac{x+5}{2x-1}$ or $\log_3(2x-1) + \log_3 81 = \log_3 81(2x-1)$ This mark is for combining 2 log terms correctly and can be awarded following an incorrect rearrangement e.g. $\log_3(x+5) - 4 = \log_3(2x-1) \Rightarrow \log_3(x+5) + \log_3(2x-1) = 4$				
	$\Rightarrow \log_3(2x-1)(x+5) = \dots$				
	r±5	Obtains this equation in any form e.g.			
	$\frac{x+5}{81} = 2x-1$	$\frac{x+5}{2x-1} = 3^4$	A1		
	$x = \frac{86}{161}$	Cao	A1		
	Condone the omission of the base throughout				
	Alternative for first 3 marks:				
	$\log_3(x+5) - 4 = \log_3(2x-1) \Rightarrow 3^{\log_3(x+5)-4} = 3^{\log_3(2x-1)}$				
	$\Rightarrow 3^{\log_3(x+5)} \times 3^{-4} = 2x - 1 \Rightarrow \frac{x+5}{81} = 2x - 1$				
	Score B1 for sight of 3^{-4} and M1 for applying $3^{a\pm b} = 3^a \times 3^{\pm b}$ and A1 as above				
	()5	16			
	$\log_3(x+5) - \log_3(2x-1) = 4 \Rightarrow \frac{\log_3(x+5)}{\log_3(2x-1)} = 4 \Rightarrow \frac{x+5}{2x-1} = 81 \Rightarrow x = \frac{86}{161}$				
	Scores B1(implied) M0 A0 A1				
(ii)(a)	$3^{y+3} = 3^y \times 3^3$				
	$2^{1-2y} = 2 \times 2^{-2y} \text{ or } \frac{2}{2^{2y}} \text{ or } 2 \times 4^{-y} \text{ or } \frac{2}{4^{y}}$	One correct index law seen or implied anywhere in their working	B1		
	$3^{y+3} \times 2^{1-2y} = 27 \times 3^y \times 2 \times 2^{-2y} = \dots$	Applies both correct index laws to the lhs of the equation	M1(B1 on EPEN)		
	$3^{y} \times 2^{-2y} = \frac{108}{27 \times 2} \text{ or } \frac{3^{y}}{4^{y}} = \frac{108}{27 \times 2} \text{ or } \frac{3^{y}}{2^{2y}} = \frac{108}{54}$ Isolates the terms in y (as powers of 3 and 2(or 4)) on the lhs and the constants on the rhs. There must be no incorrect work to combine terms e.g. $3^{y} \times 3^{3} = 27^{y}$ etc.				
	$(0.75)^y = 2*$	Cso. Reaches the given answer with no errors and all steps shown with 2^{2y} appearing as 4^y at some point.	A1*		
			(4)		

	Alternative 1 for (ii)(a) using logs:			
	$\log(3^{y+3} \times 2^{1-2y}) = \log 3^{y+3} + \log 2^{1-2y}$ Or $\log 3^{y+3} = (y+3)\log 3$ Or $\log 2^{1-2y} = (1-2y)\log 2$	One correct log law seen or implied anywhere in their working. No bracketing errors allowed for this mark.	B1	
	$\log 3^{y+3} + \log 2^{1-2y} = (y+3)\log 3 + (1-2y)\log 2$ Applies the correct log laws to the lhs. You can condone missing brackets around the $y+3$ and/or $1-2y$		M1(B1 on EPEN)	
	$(y+3)\log 3 + (1-2y)\log 2 = \log 108 \Rightarrow \log 3^y - \log 2^{2y} = \log 108 - 3\log 3 - \log 2$ $\Rightarrow \log \frac{3^y}{2^{2y}} = \log \frac{108}{3^3 \times 2}$ Proceeds to isolate the terms in y on the lhs and combines the constants on the rhs or e.g.			
	$(y+3)\log 3 + (1-2y)\log 2 = \log 108 \Rightarrow y(\log 3 - 2\log 2) = \log \frac{108}{3^3 \times 2}$ Proceeds to isolate the terms in y on the lhs and combines the constants on the rhs			
	$(0.75)^{v} = 2*$	Cso. With e.g. $2\log 2$ seen as $\log 4$ or $\log 2^2$ or implied at some point.	A1*	
	Alternative 2 for (ii)(a) using factors of 108:			
	$3^{y+3} \times 2^{1-2y} = 108 = 2^{2} \times 3^{3}$ $\Rightarrow \frac{3^{y+3} \times 2^{1-2y}}{2^{2} \times 3^{3}} = \dots$ $\Rightarrow 3^{y} \times 2^{-1-2y} = \dots$	One correct index law seen or implied anywhere in their working e.g. $\frac{3^{y+3}}{3^3} = 3^y$ or $\frac{2^{1-2y}}{2^2} = 2^{-1-2y}$	B1	
	$\Rightarrow 3^y \times 2^{-1-2y} = \dots$	Applies both correct index laws to the lhs of the equation	M1(B1 on EPEN)	
	$\Rightarrow 3^y \times 2^{-2y} = 2$	Proceeds to isolate the terms in y (as powers of 3 and 2(or 4)) on the lhs and the constants on the rhs	M1	
	$(0.75)^{y} = 2*$	Cso. Reaches the given answer with no errors and all steps shown with 2^{2y} appearing as 4^y at some point.	A1*	
(b)	$(0.75)^{y} = 2 \Rightarrow y = \frac{\log 2}{\log 0.75}$ or $(0.75)^{y} = 2 \Rightarrow y = \log_{0.75} 2$	Correct processing to obtain a value for y May be implied by awrt – 2.4	M1	
	y = -2.409	Awrt -2.409 A correct answer implies both marks	A1 (2)	
			Total 10	