Question Number	Scheme	Ma	rks
	$T\cos\alpha = mg$	M1A	l
	$T \cos \alpha = mg$ $\frac{\lambda a}{4a} \times \frac{3}{5} = mg \Longrightarrow \lambda = \frac{20mg}{3} *$ $T \sin \alpha = kmg$	A1*	(4)
1(b)	$T\sin\alpha = kmg$	M1A	[
	$\frac{20mg}{3} \times \frac{1}{4} \times \frac{4}{5} = kmg$ $k = \frac{4}{3}$	M1	
	$k = \frac{4}{3}$	A1	(4)
		_	(8)
	Notes for question 1		
1(a)	Mark parts (a) and (b) together		
B1	Use of Hooke's Law		
M1	For a relevant equation in <i>T</i> . Must be dimensionally correct with the number of terms, condone sign errors and sin/cos confusion. Eg • Resolve vertically: $T \cos \alpha = mg$ • Parallel to string: $T = kmg \sin \alpha + mg \cos \alpha$ • Triangle of forces: $T = \sqrt{(mg)^2 + (kmg)^2}$	correct	
A1	Correct unsimplified equation		
A1*	Given answer obtained from complete and correct working. Must in of working before reaching the given answer.	clude a	line
1(b)			
M1	For a relevant equation in k (a second equation). Must be dimension with the correct number of terms, condone sign errors and sin/cos co Eg • Resolve horiz: $T \sin \alpha = kmg$ • Perp to string: $mg \sin \alpha = kmg \cos \alpha$ • Triangle of forces: $\tan \alpha = \frac{kmg}{mg} = \frac{4}{3}$		
A1	Correct unsimplified equation		
M1	Complete method to produce an equation in k only (replace T and tr	ig)	
A1	Any equivalent fraction. Accept 1.3 or better		
	Lami: $\frac{T}{\sin 90} = \frac{kmg}{\sin(180-\alpha)} = \frac{mg}{\sin(90+\alpha)}$ M0 for an EPE approach		

Question Number	Sch	eme	Marks
	$\frac{\sin \theta}{\frac{\sqrt{a^2 - d^2}}{a}} = \sqrt{\frac{a^2 - d^2}{a^2}} = \sqrt{1 - \frac{d^2}{a^2}}$	$\frac{\cos \theta}{a^{2} - d^{2}} = \sqrt{\frac{a^{2} - d^{2}}{a^{2}}} = \sqrt{1 - \frac{d^{2}}{a^{2}}}$	
2(a)	$R\cos\theta = mg$	$R\sin\theta = mg$	M1A1
	$R = \frac{mga}{d}$		A1 (3)
2(b)	$R\sin\theta = \frac{mv^2}{r}$	$R\cos\theta = \frac{mv^2}{r}$	M1A1A1
	$\frac{mga}{d} \times \frac{\sqrt{a^2 - d^2}}{a} = \frac{mv^2}{\sqrt{a^2 - d^2}}$ $v = \sqrt{\frac{g(a^2 - d^2)}{d}}$		DM1
	$v = \sqrt{\frac{g(a^2 - d^2)}{d}}$		A1 (5)
			(8)
	Notes for	question 2	
2(a)	Desclare contineller to forme on a sur	tion with the compation has a fite	
M1	Resolve vertically to form an equation with the correct number of terms and the correct structure. Dimensionally correct, condone sign errors and sin/cos confusion		
A1	Correct equation		
A1	Correct answer.		
2(b)			
M1	Form a horizontal equation of motion with the correct number of terms, condone sign errors and sin/cos confusion. Dimensionally correct. Accept $\frac{v^2}{r}$ or $r\omega^2$ for of acceleration. Condone use of <i>a</i> for radius at this point but M0 if <i>a</i> is used for acceleration.		
A1	Equation with at most one error. An error in the acceleration term is one error (incorrect form of acceleration or radius).		
A1	Correct equation (must use the con	rrect form of acceleration and corre	ect radius).
DM1		ate <i>R</i> and trig to form an equation i	
A1	Correct answer ISW		

Question Number	Scheme	Ma	rks
3(a)	$v\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{3\sqrt{x+1}}{4}$	M1	
	$\frac{1}{2}v^2 = \frac{1}{2}(x+1)^{\frac{3}{2}} (+C)$	M1A1	
	$x = 15, v = 8 \Longrightarrow C = 0$ so $v = (x+1)^{\frac{3}{4}*}$	A1*	(4)
3(b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = (x+1)^{\frac{3}{4}}$	M1	
	$4(x+1)^{\frac{1}{4}} = t \ (+C)$	M1A1	
	$x = 15, t = 0 \Longrightarrow C = 8$ so $4v^{\frac{1}{3}} = t + 8$	M1	
	$t = 4v^{\frac{1}{3}} - 8$	A1	(5)
	OR		
	$\frac{1}{\mathrm{d}t} = \frac{1}{4} V^3$	M1	
	$\frac{dv}{dt} = \frac{3}{4}v^{\frac{2}{3}}$ $3v^{\frac{1}{3}} = \frac{3}{4}t \ (+C)$	M1A1	
	$t = 0, v = 8 \implies C = 6$ so $3v^{\frac{1}{3}} = \frac{3}{4}t + 6$	M1	
	$t = 4v^{\frac{1}{3}} - 8$	A1	(5)
			(9)
3 (a)	Notes for question 3		
M1	Set up a differential equation in v and x only M0 if acceleration is $\frac{dv}{dx}$ or $\frac{dv}{dt}$ M0 if there is no differential equation eg starting with $\frac{1}{2}v^2 = \int \frac{3\sqrt{x+1}}{4} dx$		
M1	Clear attempt to separate variables and integrate acceleration in term At least one of the powers must increase by 1.	ns of v a	nd <i>x</i> .
A1	Correct integration, condone missing + C		
A1*	Given answer obtained from complete and correct working. Must include use of the boundary conditions and the initial differential equation. A0 if +C is not dealt with correctly eg If +C is only considered <i>after</i> the square root.		
3(b)			
M1	Set up a differential equation in x and t only. Using the given answe		aast
M1	Clear attempt to separate the variables and integrate in terms of x an one of the powers must increase by 1	u <i>i</i> . At l	east
A1	Correct integration, condone missing + C		
M1	Use of boundary conditions in an integrated equation and use of (a) equation in v and t . M0 if boundary conditions are not used.	to form	an
A1	Correct answer		
M1	OR Set up a differential equation in <i>v</i> and <i>t</i> only		
IVI I	1 Set up a unification equation in <i>v</i> and <i>t</i> only		

M3_2024_06_MS

Question Number	Scheme	Marks
M1	Clear attempt to separate the variables and integrate in terms of v and one of the powers must increase by 1	d <i>t</i> . At least
A1	Correct integration, condone missing + C	
M1	Use of boundary conditions in an integrated equation to form an equ and <i>t</i> . M0 if boundary conditions are not used.	ation in v
A1	Correct answer	

Question Number	Scheme	Marks
4(a)	a = 3 (m)	B1
	$\frac{38}{3} = \frac{2\pi}{\omega} \Longrightarrow \omega = \frac{3\pi}{19}$	M1A1
	$x = -a\cos\omega t \Rightarrow v = a\omega\sin\omega t$ or similar	M1
	$v = 3 \times \frac{3\pi}{19} \sin\left(\frac{3\pi}{19} \times \frac{95}{60}\right)$	M1
	$=\frac{9\pi\sqrt{2}}{38}, 1.1, 1.05, 1.052, \dots (m h^{-1})$	A1 (6)
4(b)	$-1.5 = 3\cos\frac{3\pi t}{19}$	M1A1ft
	$t = \frac{38}{9}$ (h)	A1
	Time is 16:13 or 16:14	A1 (4)
		(10)
4(-)	Notes for question 4	
4(a) B1	a = 3 seen or implied	
M1	For use of $T = \frac{2\pi}{\omega}$ to give an equation in ω where $T = 2 \times \frac{19}{3}$ (double the time	
	between 12:00 and 18:20). Condone use of $T = 760 \text{ min or } 45600$	seconds.
A1	A correct equation using hrs, min or seconds. Form a relevant equation in v and t using their a and ω	
M1	Eg • $x = -a\cos(\omega t) \Rightarrow v = a\omega\sin(\omega t)$ • $x = a\cos(\omega t) \Rightarrow v = -a\omega\sin(\omega t)$	
M1	• $x = a \cos(\omega t) = (2.12) \Rightarrow v^2 = \omega^2 (a^2 - x^2)$ Use correct equation with an appropriate value of t	
A1	Correct answer, must be positve and must be in metres per hour.	
4(b)		
	A complete method to find the required time eg • Use of $-1.5 = a \cos \omega t$ to find required time is $\frac{1}{\omega} \cos^{-1} \left(\frac{x}{a}\right)$	
M1	• Use of $1.5 = a \sin \omega t$ to find required time is $\frac{1}{4}$ Period $+\frac{1}{\omega} \sin \omega t$	$n^{-1}\left(\frac{x}{a}\right)$
	• Use of 1.5 = $a \cos \omega t$ to find required time is $\frac{1}{\omega} \cos^{-1} \left(\frac{x}{a}\right) \sin 18:20$	btracted from
A1ft	A correct equation, ft on their <i>a</i> and $\omega = \frac{1}{4} \left(\frac{38}{3}\right) + \frac{1}{\omega} \sin^{-1} \left(\frac{x}{a}\right)$	
A1	A correct <i>t</i> value in hours or minutes or seconds $t = \frac{38}{9}$ (h) , $t = \frac{760}{3}$ (min) $t = 15200$ (s)	
A1	For the correct time . Accept 4.13pm or 4.14 pm or 16:13 or 16:14	
A1	1 of the contest time. Accept 4.13pm of 4.14 pm of 10.15 of 10.14	

Question Number	Scheme	Marks
5(a)	$\overline{x} = \frac{\pi \int_{0}^{4r} x \left(\frac{1}{4}x\right)^{2} dx}{\frac{4\pi r^{3}}{3}} \text{or} \overline{x} = \frac{\pi \int_{0}^{4r} x \left(r - \frac{1}{4}x\right)^{2} dx}{\frac{4\pi r^{3}}{3}}$	M1A1
	$\frac{1}{3}$ $=\frac{3}{256r^3} \left[x^4\right]_0^{4r}$	A1
	$=3r^*$	A1*
		(4)
5(b)	ConeCylinderSMass ratio $\frac{4\pi r^3}{3}$ $\pi \left(\frac{1}{2}r\right)^2 \times r$ $\left(\frac{4\pi r^3}{3} - \pi \left(\frac{1}{2}r\right)^2 \times r\right)$ $\frac{4}{3}$ $\frac{1}{4}$ $\frac{13}{12}$ Distance from vertex $3r$ $\left(4r - \frac{1}{2}r\right)$ \overline{y} Distance from 	B1 B1
	$\left(\frac{4\pi r^3}{3} \times 3r\right) - \left(\pi \left(\frac{1}{2}r\right)^2 \times r\right) \left(4r - \frac{1}{2}r\right) = \left(\frac{4\pi r^3}{3} - \pi \left(\frac{1}{2}r\right)^2 \times r\right)\overline{y}$	M1A1
	$\overline{y} = \frac{75}{26}r^*$	A1*
		(5)
5(c)	$\tan \alpha = \frac{r}{4r - \frac{75}{26}r}$	M1A1
	$\tan \alpha = \frac{26}{29}$	A1
		(3)
		(12)
5 (-)	Notes for question 5	
5(a) M1	Correct method to find the distance of the centre of mass from verter face, using $\overline{x} = \frac{\pi \int_{0}^{4r} xy^2 dx}{\frac{4\pi r^3}{3}}$. The formula must be correct but allow	
	multiple if it appears in both numerator and denominator or cancell	ed π . The y

M3_2024_06_MS

Question Number	Scheme	Marks	
	must be replaced with $y = \frac{1}{4}x$ or $y = r - \frac{1}{4}x$. Condone a gradient of $\pm \frac{r}{h}$ if h is		
	later replaced with $4r$. There must be an attempt to integrate the numerator i.e.		
	the power of x must increase by 1. The denominator of $\frac{4\pi r^3}{3}$ is given in the		
	question. Condone sight of vol = $\pi \int_{0}^{4r} (\frac{1}{4}x)^2 dx$ as denominator. Ignore limits for		
	the method mark.		
	Correct equation for the distance of the centre of mass from vertex of	or plane face.	
A1	$\overline{x} = \frac{\pi \int_{0}^{4r} x(\frac{1}{4}x)^{2} dx}{\frac{4\pi r^{3}}{3}} \text{ or } \overline{x} = \frac{\pi \int_{0}^{4r} x(r - \frac{1}{4}x)^{2} dx}{\frac{4\pi r^{3}}{3}} \text{ Ignore limits.}$		
	A correct expression for the distance of the centre of mass from vert	ex or plane	
A1	face following integration and division by $\frac{4\pi r^3}{3}$. Limits must be con		
	point. $\frac{3}{256r^3} \left[x^4 \right]_0^{4r}$ or $\frac{3}{4r^3} \left[\frac{r^2x^2}{2} - \frac{rx^3}{6} + \frac{x^4}{64} \right]_0^{4r}$		
A1*	Given answer obtained from complete and correct working. If distance is f		
	from plane face this must be subtracted to find required distance.		
5(b)			
B1	Correct mass ratios		
B1	Correct distances (for their parallel axis) Ignore signs.	ut a mamallal	
M1	Form a moments equation with correct number of terms (allow about axis). Equation must be dimensionally correct (mass ratio × distance)		
A1	Correct unsimplified equation		
A1*	Given answer obtained from complete and correct working. Workin include a line of simplification. The simplification could occur betw moments equation and the given answer or in the initial stage eg in a	een the	
5(c)			
- (-)	Use of tan to obtain an equation for a relevant angle, allow reciproca	ıl	
M1	$\frac{r}{4r - \frac{75}{26}r}$		
A1	For a correct equation, condone reciprocal.		
A1	Correct answer, $\tan \alpha = \frac{26}{29}$ o.e. Must be an exact value for $\tan \alpha$.		
	A0 if they got straight to α .		

Question Number	Scheme	M3_2024_06 Marks
6(a)	$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = mgr(1 - \cos\theta)$ $mg\cos\theta = \frac{mv^2}{r}$	M1A2
	$mg\cos\theta = \frac{mv^2}{r}$	M1A1
	Eliminate v^2 and solve for $\cos \theta$	M1
	$\cos\theta = \frac{2gr + u^2}{3gr} *$	A1*
		(7)
6(b)	$\cos\theta = \frac{4}{5}$	B1
	$v^2 = rg\cos\theta$ $\left(v = \sqrt{\frac{4rg}{5}}\right)$	M1
	Horiz cpt at C: $H = v \cos \theta$ $\left(H = \frac{4}{5}\sqrt{\frac{4rg}{5}} = \sqrt{\frac{64rg}{125}}\right)$	
	Vert cpt at C: $V = \sqrt{(v \sin \theta)^2 + 2gr \cos \theta}$	
	$\left(V = \sqrt{\frac{236rg}{125}}\right)$	
	Speed at C: W where	M1 M1
	A to C: $\frac{1}{2}m\left(W^2 - \frac{2gr}{5}\right) = mgr$	
	OR	
	B to C: $\frac{1}{2}m(W^2 - v^2) = mgr\cos\theta$	
	$\left(W = \sqrt{\frac{12rg}{5}}\right)$	
	$\tan \alpha = \frac{V}{H} = \frac{\sqrt{W^2 - H^2}}{H} = \frac{V}{\sqrt{W^2 - V^2}}$	DM1
	$=\frac{\sqrt{59}}{4}$	A1
		(6)
		(13)
6(a)	Notes for question 6	
6(a)	Use conservation of energy to form a dimensionally correct equation	ion All terms
M1	present and no extras. Condone sign errors and sin/cos confusion. should be resolved has been resolved.	
A1	An unsimplified equation with at most one error.	
A1	A correct unsimplified equation.	
M1	Use N2L to form an equation of motion towards <i>O</i> . Equation must be dimensionally correct. All terms present and no extras. Condone sign errors and sin/cos confusion. Anything that should be resolved has been resolved Allow this mark with or without <i>R</i> .	

Question Number	Scheme M3_2024_06_N Marks
	Condone $\pm R + mg \cos \theta = \frac{mv^2}{r}$
A1	$\frac{r}{\text{Correct equation } (R = 0 \text{ must be used now at some point)}}$ A0 if R never becomes 0
M1	Solve to find an expression for $\cos \theta$ in terms <i>g</i> , <i>r</i> and <i>u</i>
A1*	Given answer obtained from correct and complete working. Working should include a line with v^2 eliminated before reaching the given answer.
6(b)	
B1	For $\cos\theta = \frac{4}{5}$ seen or implied
M1	Solve to find v in terms of g, r and θ
M1	Correct method to find at least one of <i>H</i> , <i>V</i> or <i>W</i> in terms of <i>g</i> , <i>r</i> and θ Condone finding H^2 , V^2 or W^2 Equation must be dimensionally correct. All terms present and no extras. Condone sign errors and sin/cos confusion. Anything that should be resolved has been resolved. M0: If they use the speed from (a) instead of <i>v</i>
M1	Correct method to find any two of <i>H</i> , <i>V</i> or <i>W</i> in terms of <i>g</i> , <i>r</i> and θ Condone finding H^2 , V^2 or W^2 Equation must be dimensionally correct. All terms present and no extras. Condone sign errors and sin/cos confusion. Anything that should be resolved has been resolved. M0: If they use the speed from (a) instead of <i>v</i>
DM1	Dependent on previous two M's. Complete method to find $\tan \alpha$ Condone if they go straight to $\alpha = \tan^{-1}()$ and never state $\tan \alpha =$
A1	A correct value for $\tan \alpha \frac{\sqrt{59}}{4}$ Accept any equivalent surd, eg $\sqrt{\frac{59}{16}}$ but must be exact. A0 if they go straight to α and never find $\tan \alpha$

Question Number	Scheme	Marks
7(a)	$\frac{1}{2}mU^{2} - \frac{1}{2}mv^{2} = \frac{2mgx^{2}}{2l}$ $v^{2} = U^{2} - \frac{2gx^{2}}{l} *$	M1 A1A1
	$v^2 = U^2 - \frac{2gx^2}{l} *$	A1* (4)
7(b)	$2v\frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{4gx}{l}$	M1A1
	$\ddot{x} = -\frac{2g}{l}x$, SHM $(\omega = \sqrt{\frac{2g}{l}})$	A1
	Period = $\frac{2\pi}{\omega} = \pi \sqrt{\frac{2l}{\sigma}} *$	DM1A1* (5)
7(c)	$\sqrt{\frac{gl}{2}} = a\sqrt{\frac{2g}{l}} \qquad \text{OR} \qquad 0 = \frac{gl}{2} - \frac{2ga^2}{l}$ $a = \frac{1}{2}l$	M1
	$a = \frac{1}{2}l$	A1
	time from $x = a$ to $x = \frac{1}{4}l$, t given by: $\frac{1}{4}l = \frac{1}{2}l\cos\sqrt{\frac{2g}{l}t}$	M1
	$t = \frac{\pi}{3} \sqrt{\frac{l}{2g}}$	A1
	Time = $\frac{1}{4}$ period + time from $x = a$ to $x = \frac{1}{4}l$	M1
	$=\frac{5\pi}{6}\sqrt{\frac{l}{2g}}$	A1 (6)
		(15)
7(2)	Notes for question 7	
7(a) M1	Use conservation of energy equation with 2KE terms and 1EPE term. Note there are rearrangements. Dimensionally correct, terms of the correct structure, condone sign errors. EPE of the form $\frac{1}{2}k x^2$	
A1	For an unsimplified equation with at most one error	
A1	For a correct unsimplified equation	
A1*	Given answer obtained from complete and correct working. Must include a line of working before reaching the given answer.	
7(b)	Note: In (b) it is possible to score M1A1A0 DM1A1*	
M1	For differentiating wrt x. Powers of v and x to reduce by 1 and $\frac{dv}{dx}$ seen. M0 for an approach that does not involve differentiating with respect to x eg N2L	
A1	A correct differentiated equation	CLUCAUS INZL
Al	Correct SHM equation. Must use \ddot{x} for acceleration and conclude \ddot{x}	SHM.
DM1	Dependent on previous M. Correct use of period = $\frac{2\pi}{\omega}$	

Question Number	Scheme	Marks
A1*	Given answer correctly obtained. Must include a line of working bet $\ddot{x} = -\omega^2 x$ and the given answer. Eg period $= \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{2g}{l}}} = \pi \sqrt{\frac{2l}{g}}$ Or $\omega = \sqrt{\frac{2g}{l}}$, period $= 2\pi \sqrt{\frac{l}{2g}} = \pi \sqrt{\frac{2l}{g}}$	ween
7(c)		
M1	For use of $U = a\omega$ OR energy equation with $v = 0$ and $x = a$ to find amplitude.	the
A1	For correct amplitude, $\frac{t}{2}$	
M1	For a complete method to find the partial time with their calculated <i>a</i> • Use of $x = a \cos(\omega t)$ where $\frac{1}{4}l = \frac{1}{2}l \cos \sqrt{\frac{2g}{l}}t$ to give a part • Use of $x = a \sin(\omega t)$ where $\frac{1}{4}l = \frac{1}{2}l \sin \sqrt{\frac{2g}{l}}t$ to give a part	rtial time.
A1	For a correct partial time • Use of $x = a \cos(\omega t) \Rightarrow t = \frac{1}{\omega} \frac{\pi}{3}$ • Use of $x = a \sin(\omega t) \Rightarrow t = \frac{1}{\omega} \frac{\pi}{6}$ or $\frac{1}{\omega} \frac{5\pi}{6}$	
M1	For a complete method to find the total time • Using $x = a \cos(\omega t)$ Total time $= \frac{1}{4} \operatorname{period} + \operatorname{time} \operatorname{from} x = a \operatorname{to} x = \frac{1}{4}l$ $= \frac{1}{4}\pi \sqrt{\frac{2l}{g}} + \frac{\pi}{3}\sqrt{\frac{l}{2g}}$ • Using $x = a \sin(\omega t)$ with $\frac{1}{\omega} \frac{5\pi}{6}$ Total time $= \frac{1}{\omega} \frac{5\pi}{6}$ • Using $x = a \sin(\omega t)$ with $\frac{1}{\omega} \frac{\pi}{6}$ Total time $= \frac{1}{2} \operatorname{period} - \operatorname{time} \operatorname{from} x = 0$ to $x = \frac{1}{4}l$ Total time $= \frac{1}{2}\pi \sqrt{\frac{2l}{g}} - \frac{\pi}{6}\sqrt{\frac{l}{2g}}$	
A1	Correct answer of $\frac{5\pi}{6}\sqrt{\frac{l}{2g}} = \frac{5\pi}{3}\sqrt{\frac{l}{8g}} = \pi\sqrt{\frac{25l}{72g}}$ o.e	