1a			Form differential equation in <i>v</i> and <i>x</i>
10	maD^2 du		only. Need to see $\frac{dv}{dx}$ or $v\frac{dv}{dx}$
	$-\frac{mgR^2}{2x^2} = mv\frac{\mathrm{d}v}{\mathrm{d}x}$	M1	
	Δx dx		Cannot get this mark using <i>t</i> . Allow with both <i>m</i> 's cancelled.
			Condone sign error.
	$D^2 \subset I$		Separate variables correctly and
	$-\frac{gR^2}{2}\int \frac{1}{r^2}dx = \int vdv$	M1	integrate at least one side.
	$2 J x^2 J$		Cannot get this mark using <i>t</i> . Condone sign error.
			Obtain given answer from correct
			work. Must include at least one line of
			working between integral and final
			answer. Correct signs seen throughout
			working. $v^2 = gR^2$
	σR^2		Condone $\frac{v^2}{2} = \frac{gR^2}{2x} + C$ followed by
	$v^2 = \frac{gR^2}{x} + C *$	A1*	$v^2 = \frac{gR^2}{r} + C$
			Note: If the first line of working is
			$\frac{1}{2}v^2 = -\int \frac{gR^2}{2r^2} dx$ followed by
			integration of RHS, this scores
			M0M1A0*
ALT1	$\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = \int \frac{gmR^2}{r^2} dx$	N/1	Form an energy equation with 2 KE
(a)	$\frac{1}{2}mu - \frac{1}{2}mv = \int \frac{1}{x^2} dx$	M1	terms and the integral of the variable force. Condone sign errors.
	1 $_2$ 1 $_2$ gmR^2	N/1	Integrate the force wrt <i>x</i> . Condone sign
	$\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = -\frac{gmR^2}{x} + A$	M1	errors.
			Obtain given answer from correct
	$v^2 = \frac{gR^2}{R^2} + C *$	A1*	work. Must include at least one line of
	x		working and correct signs seen throughout working.
		[3]	
b	$x = 3R, v^2 = 3gR$	M1	Use initial conditions to evaluate C
		1411	in the given answer.
	$\Rightarrow C = 3gR - \frac{gR^2}{3R} \left(= \frac{8gR}{3} \right)$	A1	Or equivalent
			Accept $\frac{\sqrt{33gR}}{3}$
	$x = R \Longrightarrow v = \sqrt{\frac{11gR}{3}}$	A1	Accept <u>3</u>
	y S	503	Answer must be in terms of g and R
ALT1	Use of definite integral instead of	[3]	
(b)	Use of definite integral instead of finding $+ C$		
	$\left[v^2\right]_{\sqrt{3gR}}^v = \left[\frac{gR^2}{x}\right]_{3R}^R$	M1	Use initial conditions in a definite integral.
L	L _3K	1	

$v^2 - 3gR = \frac{gR^2}{R} - \frac{gR^2}{3R}$	A1	Or equivalent
$v = \sqrt{\frac{11gR}{3}}$	A1	Accept $\frac{\sqrt{33gR}}{3}$ Answer must be in terms of g and R
	(6)	

2a	Change in GPE	M1	Condone sin / cos confusion
24	0	1411	
	$= mg \times 1.3l \sin \theta (= 0.5lmg)$		
	$\lambda l^2 \qquad \lambda (0.3l)^2$	B1	One correct term for EPE
	$EPE = \frac{\pi}{2l}$ or $EPE = \frac{\pi}{2l}$		
	$EPE = \frac{\lambda l^2}{2l} \text{ or } EPE = \frac{\lambda (0.3l)^2}{2l}$ Energy equation <i>B</i> to <i>A</i>	N/1	
	Energy equation B to A	M1	Dimensionally correct with all the
			required terms. Condone sign errors
			and sin / cos confusion
	$\lambda l^2 = \lambda (0.3l)^2$	A1	Correct unsimplified equation
	$\frac{\lambda l^2}{2l} - \frac{\lambda (0.3l)^2}{2l} = 0.5lmg$ $\Rightarrow \lambda = mg \frac{1}{1 - 0.09} = \frac{100}{91} mg$		
	1 100	A1*	Obtain given answer from correct
	$\Rightarrow \lambda = mg \frac{1}{1-0.09} = \frac{1}{91}mg$		working. Must see evidence of
	1 0.09 91		simplification.
		[5]	
2b	Equation of motion	M1	Dimensionally correct with all the
	1		required terms. Condone sign errors
			and sin/cos confusion.
	$T - mg\sin\theta = ma$	A1	~
			Correct unsimplified equation
	$\lambda \times l$ masin $\theta = ma$		
	$\frac{\lambda \times l}{l} - mg\sin\theta = ma$		Correct unsimplified equation with
	(100 5)	A1	HL used to replace T
	$\left \frac{100}{01}mg - \frac{3}{12}mg = ma\right $		THE used to replace T
	$\left(\frac{100}{91}mg - \frac{5}{13}mg = ma\right)$ $a = \frac{5}{7}g$		
	$a = \frac{5}{2} \sigma$	A1	Accept 0.71g or better.
	~ 7 ⁸		If $g = 9.8$ is used, accept 7.
	Note: If $g = 9.81$ is used then penalise o	nce per	complete question.
	SHM equations can only be used if the	motion i	is proven to be SHM first.
		[4]	
		(9)	

3aMoment of S about the y-axisM1Use of formula $(\pi)(\rho) \int xy^2 dx$ No need to see the correct limits here. The curve equation must be substituted correctly and an attempt to integrate seen (at least one term must have a power of x raised by 1 Note the correct expression for integrating is $x\left(\frac{1}{4}x(3-x)\right)^2 = \frac{1}{16}x^3(3-x)^2$ $= \frac{1}{16}(9x^3 - 6x^4 + x^5)$ $=(\pi)(\rho)\frac{1}{16}\left[\frac{9}{4}x^4 - \frac{6}{5}x^5 + \frac{1}{6}x^6\right]$ A1Correct integrated expression. $=\frac{31}{60}(\pi)(\rho)$ A1Correct use of correct limits (0 and 2). No need to see a line of workin showing substitution of limits. However, must see $\frac{31}{60}$ or equivalent numerical evaluation of	npt m (1)
$=(\pi)(\rho)\frac{1}{16}\left[\frac{1}{4}x^{4} - \frac{5}{5}x^{5} + \frac{1}{6}x^{6}\right]$ $=\frac{31}{60}(\pi)(\rho)$ A1 Correct use of correct limits (0 and 2). No need to see a line of working substitution of limits. However, must see $\frac{31}{60}$ or	
showing substitution of limits. However, must see $\frac{31}{60}$ or	
equivalent numerical evaluation of	-
integral.	of
$\overline{x} = \frac{\frac{31}{60}(\pi)(\rho)}{\frac{2}{5}(\pi)(\rho)}$ M1 Complete method to find the distance. Formula must be the right way up $\overline{x} = \frac{(\pi)(\rho)\int xy^2 dx}{M}$ Must have consistent use of π and of ρ .	st
$=\frac{31}{24} * $ A1* Obtain given answer from correct working	t
3bCorrect use of trigM1Correct trig ratio to find a relevant angle, α° or $(90 - \alpha)^{\circ}$ α° $\frac{1}{2}$ M1Must use curve equation with $x = 2$ α° $\frac{1}{24}$ $\frac{1}{24}$ $\frac{1}{24}$	
$\tan \alpha^{\circ} = \frac{1}{2} \div \frac{17}{24} \left(= \frac{12}{17} \right)$ A1 Or equivalent. Condone reciprocal	al.
$\alpha = 35$ A1 2 sf or better (35.2175) A0 for use of radians. [3]	

4			If angle is between incline and
	3a V mg		vertical then $\sin\theta = \frac{4}{5}, \cos\theta = \frac{3}{5}$
	Resolve vertically		Need all terms. Dimensionally
	Resolve vertically	M1	correct. Condone sign errors and sin/cos confusion.
	$R\sin\theta = mg + F\cos\theta$	A1	Unsimplified equation with at most one error.
		A1	Correct unsimplified equation
	Equation for horizontal motion	M1	Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion. Accept any form of acceleration for the method mark only.
	$R\cos\theta + F\sin\theta = mr\omega^2$	A1	Unsimplified equation with at most one error. Direction of F consistent with vertical resolution. Incorrect form of acceleration is one error.
		A1	Correct unsimplified equation
	Use of $F = \mu R$		Used, not just quoted.
		M1	$F = \frac{1}{4}R$
	Substitute for trig and solve for max ω	DM1	Dependent on all preceding M marks. If more than two equations are produced, the correct two must be used. $\left(R = \frac{20mg}{13}, F = \frac{5mg}{13}\right)$
	$\Rightarrow \omega = \sqrt{\frac{16g}{13r}}$	A1*	Obtain given answer from correct working
		[9]	
		(9)	
Alt1	Using N2L parallel and perpendicular to the incline.		Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion. Note that the acceleration must have a sin/cos component. Accept any form of
	Perpendicular $R - mg\sin\theta = mr\omega^2\cos\theta$	M1 A1A1	acceleration for the method mark only. Mark A's as above.
	Parallel $F + mg\cos\theta = mr\omega^2\sin\theta$	M1 A1A1	A1A0 Unsimplified equation with at most one error A1A1 Correct unsimplified equation

5			Curve equation $x^2 + y^2 = r^2$
5a	Using x-axis $(\rho)\int x \times 2\sqrt{r^2 - x^2} dx$		Use of correct integral. Limits not needed here.
	or Using y-axis $(\rho)\frac{1}{2}\int 2(\sqrt{r^2-x^2})^2 dx$	M1	Accept an integral of the form: x-axis: $k \int x \sqrt{r^2 - x^2} dx$ y-axis: $k \int r^2 - x^2 dx$
	x-axis $= -\frac{2}{3}(\rho)(r^2 - x^2)^{\frac{3}{2}}$ y-axis $= (\rho)\left(xr^2 - \frac{x^3}{3}\right)$ $= \frac{2}{3}(\rho)r^3$	A1	Correct integration, ignore limits. Correct expression.
	$=\frac{2}{3}(\rho)r^{3}$	A1	Correct use of limits, 0 and r or $-r$ and r .
	Using x-axis $\frac{1}{2}\pi r^{2}\rho \overline{x} = \rho \int_{0}^{r} 2xy dx$ Using y-axis $\frac{1}{2}\pi r^{2}\rho \overline{y} = \rho \frac{1}{2} \int_{-r}^{r} y^{2} dx$ or $\frac{1}{2}\pi r^{2}\rho \overline{y} = \rho \int_{0}^{r} y^{2} dx$	M1	Complete method to obtain distance. Use of a correct formula, consistent with the axis and limits used, to find centre of mass with curve equation. ρ must appear on both sides or neither.
	$\overline{x} = \frac{\frac{2}{3}r^{3}}{\frac{1}{2}\pi r^{2}} = \frac{4r}{3\pi} *$	A1*	Obtain given answer from correct working
ALT 1 5(a)	Parametric approach $x = r \cos \theta, \ y = r \sin \theta$		Curve equation $x^2 + y^2 = r^2$
	Using x-axis $2r^3 \int_0^{\frac{\pi}{2}} \sin^2\theta \cos\theta \mathrm{d}\theta$	M1	Use of correct integral. Limits not needed here. Accept an integral of the form: $kr^3 \int \sin^2 \theta \cos \theta d\theta$

	$=2r^3\left[\frac{\sin^3\theta}{3}\right]_0^{\frac{\pi}{2}}$	A1	Correct integration, ignore limits. Correct expression.
	$=\frac{2}{3}r^{3}$	A1	Correct use of limits
	$=\frac{2}{3}r^{3}$ $\overline{x} = \frac{\frac{2}{3}r^{3}}{\frac{1}{2}\pi r^{2}}$	M1	Complete method to obtain distance. Use of correct formula. ρ must appear on both sides or neither.
	$=rac{4r}{3\pi}$ *	A1*	Obtain given answer from correct working
		[5]	
ALT 2 5(a)	Using y-axis $r^{3}\int_{0}^{\frac{\pi}{2}}\sin^{3}\theta \ d\theta$	M1	Use of correct integral. Limits not needed here. Accept an integral of the form: $kr^3 \int \sin^3 \theta d\theta$
	$r^{3} \int_{0}^{\frac{\pi}{2}} (1 - \cos^{2} \theta) \sin \theta d\theta$ $= r^{3} \left[-\cos \theta + \frac{\cos^{3} \theta}{3} \right]_{0}^{\frac{\pi}{2}}$	A1	Correct integration, ignore limits. Correct expression.
	$=\frac{2}{3}r^3$	A1	Correct use of limits
	$=\frac{2}{3}r^{3}$ $\overline{x} = \frac{\frac{2}{3}r^{3}}{\frac{1}{2}\pi r^{2}}$	M1	Complete method to obtain distance. Use of correct formula. ρ must appear on both sides or neither.
	$=rac{4r}{3\pi}$ *	A1*	Obtain given answer from correct working
		[5]	
5b	largeSmall removedSmall addedmass $8\pi a^2$ $2\pi a^2$ $2\pi a^2$ From AC $\frac{16a}{3\pi}$ $\frac{8a}{3\pi}$ $(-)\frac{8a}{3\pi}$	B1 B1	Correct mass ratios Correct distances
	Moments about AC	M1	All terms required. Dimensionally correct or equivalent for a parallel axis. Condone sign errors. If column vectors are used, this mark is awarded once the equation is written separate to the column vectors.

	$8\pi a^2 \times \frac{16a}{3\pi} - 2\pi a^2 \times \frac{8a}{3\pi} - 2\pi a^2 \times \frac{8a}{3\pi}$ $= 8\pi a^2 d$	A1	Correct unsimplified equation.
	$\frac{96a}{3\pi} = 8d \implies d = \frac{4a}{\pi} *$	A1*	Obtain given value from correct working. Need to see at least some simplification.
5		[5]	D' ' 11 (
5c	Moments about perpendicular axis through A	M1	Dimensionally correct. Need all terms. Or equivalent for a parallel axis
	From A	A1ft	Unsimplified equation with at
	$4a \times 8\pi a^2 - 2a \times 2\pi a^2 + 6a \times 2\pi a^2 = 8\pi a^2 \overline{x}$	Alft	most one error. Correct unsimplified equation Follow their mass ratio
	$\Rightarrow \overline{x} = 5a$	A1	Correct only. If measured from <i>B</i> , distance is <i>a</i>
	Correct use of trig to find an expression for $\tan \theta$	M1	$ \tan \theta = \frac{d}{\overline{x}} \text{ or } \tan \theta = \frac{\overline{x}}{d} \text{ where} $ $ \overline{x} \text{ is distance from } A. $
	$\tan\theta = \frac{4}{5\pi}$	A1	Only
		[6]	
		(16)	

6a	In equilibrium		Need all three forces.
ou	in equinorium	M1	Dimensionally correct
	<u>l-e</u> e	A1	Unsimplified equation with at
	$mg + 4mg \frac{l-e}{l} = 4mg \frac{e}{l}$		most one error
	l l	A1	Correct unsimplified equation
	51 9 51		
	$5l = 8e \Longrightarrow e = \frac{5l}{8},$		Obtain given answer from
		A1*	correct working.
	$AE = l + \frac{5l}{8} = \frac{13l}{8}$		Must see $AE =$
ALT1	0 0	M1	Need all three forces.
	(2l - AE) $(AE - l)$		Dimensionally correct
	$mg + 4mg \frac{(2l - AE)}{l} = 4mg \frac{(AE - l)}{l}$	A1	Unsimplified equation with at
	ι ι		most one error
		A1	Correct unsimplified equation
	$AE = \frac{13l}{8}$ *		Obtain given answer from
	8	A1*	correct working. Must see AE
ALT2			
AL12		M1	Need all three forces.
	$\left(\frac{l}{2}-e\right)$ $\left(\frac{l}{2}+e\right)$	A 1	Dimensionally correct
	$mg + 4mg \frac{\left(\frac{l}{2} - e\right)}{l} = 4mg \frac{\left(\frac{l}{2} + e\right)}{l}$	A1	Unsimplified equation with at most one error
		A1	Correct unsimplified equation
	1 1 121		
	$e = \frac{l}{8}, AE = l + \frac{l}{2} + \frac{l}{8} = \frac{13l}{8} *$	A1*	Obtain given answer from correct working
	8 2 8 8	[4]	
6b	Equation of motion	M1	Need all terms. Dimensionally
00	Equation of motion	1011	correct. Condone use of a for
			acceleration.
	51 31	A1	Unsimplified equation with at
	$4mg\frac{\frac{5l}{8} + x}{l} - 4mg\frac{\frac{3l}{8} - x}{l} - mg = -m\ddot{x}$		most one error.
	$4mg \frac{d}{l} - 4mg \frac{d}{l} - mg = -mx$	A1	Correct unsimplified equation
			Note: the question states x is
	0	A 1 -1-	measured vertically down.
	$\Rightarrow -m\ddot{x} = \frac{8mg}{l}x, \ \ddot{x} = -\frac{8g}{l}x *$	A1*	Obtain given answer from
	l l		correct working. Must use \ddot{x}
	21	[4]	
6c	Use of $v^2 = \omega^2 \left(a^2 - x^2\right)$ with $a = \frac{3l}{8}$		Or use of equivalent correct
	× / 8	M1	formula
	$9 \sim (0 1)$		Comment and sime 1: C = 1
	$\nabla \mathcal{G}(\mathcal{Y}_{2} \mathcal{I}_{2})$	A1	Correct unsimplified
	$=\frac{\sigma_{8}}{l}\left \frac{r}{c_{1}}l^{2}-\frac{1}{c_{1}}l^{2}\right $	AI	· c 2
	$=\frac{8g}{l}\left(\frac{9}{64}l^{2}-\frac{1}{64}l^{2}\right)$	AI	expression for v or v^2
	$=\frac{\frac{\sigma_{S}}{l}\left(\frac{\sigma_{I}}{64}l^{2}-\frac{1}{64}l^{2}\right)}{v=\sqrt{gl}}$	A1 A1	expression for v or v^2 Correct only

6d	$x = \frac{3l}{8}\cos\omega t$	B1	Use of relevant formula with correct amplitude $x = \frac{3l}{8} \cos \omega t$ or $x = \frac{3l}{8} \sin \omega t$
	Use of $-\frac{l}{8} = \frac{3l}{8} \cos \omega t$ or $\frac{l}{8} = \frac{3l}{8} \sin \omega t \text{ and correct use of } \frac{1}{2} \times \frac{2\pi}{\omega}$ or $\frac{l}{8} = \frac{3l}{8} \cos \omega t \text{ and correct use of}$ $\pi - \cos^{-1}\left(\frac{1}{3}\right)$	M1	Complete method to find t or required time $t = \frac{1}{\omega} \cos^{-1} \left(-\frac{1}{3} \right)$ or $t = \frac{1}{\omega} \sin^{-1} \left(\frac{1}{3} \right) \text{ with } \frac{1}{2} \text{ period}$ or $t = \frac{1}{\omega} \cos^{-1} \left(\frac{1}{3} \right) \text{ with } \pi$
	Required time $\frac{2}{\omega}\cos^{-1}\left(\frac{-1}{3}\right) = \sqrt{\frac{l}{2g}}\cos^{-1}\left(\frac{-1}{3}\right)$ or $\frac{\pi}{\omega} + \frac{2}{\omega}\sin^{-1}\left(\frac{1}{3}\right) = \sqrt{\frac{l}{8g}}\left(\pi + 2\sin^{-1}\left(\frac{1}{3}\right)\right)$ or $\frac{2}{\omega}\left[\pi - \cos^{-1}\left(\frac{1}{3}\right)\right] = \sqrt{\frac{l}{2g}}\left[\pi - \cos^{-1}\left(\frac{1}{3}\right)\right]$	A1	Or equivalent, accept $1.91\sqrt{\frac{l}{2g}}, 1.35\sqrt{\frac{l}{g}}, 0.43\sqrt{l}$ $3.82\sqrt{\frac{l}{8g}}$ $\cos^{-1}\left(\frac{-1}{3}\right) = 1.91$
		[3] (14)	

7a	Conservation of mechanical energy:	M1	All terms required. Dimensionally correct $\cos \theta = \frac{5}{13}, \sin \theta = \frac{12}{13}$
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mg\left(r + r\cos\theta\right)$	A1	Correct unsimplified equation
	$\frac{1}{2}mu^{2} = \frac{1}{2}mv^{2} + mg(r + r\cos\theta)$ $v^{2} = u^{2} - \frac{36}{13}gr *$	A1*	Obtain given answer from correct working
		[3]	
7b	Equation of motion	M1	All terms required. Dimensionally correct. Condone sign errors and sin/cos confusion. Condone use of $R = 0$
	$R + mg\cos\theta = \frac{mv^2}{r}$	A1	Correct unsimplified equation. Condone (strict) inequality the right way round.
	Use $R0$ and solve for u^2	M1	Complete method to obtain u^2 Condone use of $R = 0$ or $R > 0$
	$\frac{mv^2}{r} - mg\cos\theta0 $ $\Rightarrow u^2 - \frac{36}{13}gr\frac{5}{13}gr, u^2\frac{41}{13}gr$	A1*	Obtain given answer from correct working. Must have stated the inequality $R \ge 0$ If there is no reference to <i>R</i> , the max mark in (b) is M1A1M1A0*
		[4]	
7c	$BC = 2r\sin\theta = \frac{24}{13}r$ Relevant vertical motion	B1	Or equivalent $BC = 1.846r$
	Eg time to return to the level of <i>BC</i>	M1	Complete method vertically using <i>suvat</i>
	$t = \frac{2v\sin\theta}{g} = \frac{24v}{13g}$	A1	Correct unsimplified expression for time Accept $\frac{24}{13g} \times 4\sqrt{\frac{gr}{13}}$, $\frac{24}{13}\sqrt{\frac{16r}{13g}}$ $\frac{96}{13}\sqrt{\frac{r}{13g}}$, $0.65\sqrt{r}$
	Relevant horizontal motion Eg distance travelled by <i>P</i>	M1	Complete method horizontally
	$= (v\cos\theta)t = v^2 \times \frac{120}{169g}$	A1	Correct unsimplified expression for distance $0.87r, \frac{1920}{2197}r, 0.0892gr$
	$=\frac{16gr}{13} \times \frac{120}{169g} = \frac{160r}{169} \times \frac{12}{13} < 2r \times \frac{12}{13}$	A1*	Obtain given conclusion from correct working

	hence falls into the bowl *		
ALT 1	Horizontal: time, <i>T</i> , required to travel	M1	Complete method horizontally
for last	the length <i>BC</i>		
3 marks	2 : 0 0 T		
	$2r\sin\theta = v\cos\theta \times T$	A1	
	$T = \frac{2r\frac{12}{13}}{4\sqrt{\frac{gr}{13}} \times \frac{5}{13}} = 1.38\sqrt{r}$		Correct unsimplified expression for <i>T</i>
	$t < T$ since $0.654\sqrt{r} < 1.38\sqrt{r}$ hence falls into the bowl *	A1*	Obtain given conclusion from correct working
ALT 2 for last 3 marks	Horizontal: speed, V, required to reach C	M1	Complete method horizontally
	$-V\sin\theta = V\sin\theta - g\frac{2r\sin\theta}{V\cos\theta}$ $\Rightarrow V = \sqrt{\frac{gr}{\cos\theta}} = \sqrt{\frac{13gr}{5}}$	A1	Correct unsimplified expression for V
	$v < V$ since $\sqrt{\frac{13gr}{5}} < \sqrt{\frac{16gr}{13}}$ hence falls into the bowl *	A1*	Obtain given conclusion from correct working
	SC: If range formula is quoted		
	correctly award M1A1M1A1.		
	Range = $\frac{2v^2 \sin \theta \cos \theta}{1-2v^2 \sin \theta \cos \theta}$		
	g		
		[6]	
		(13)	