Question Number	Scheme	Marks
1(a)	$\frac{2\pi}{\omega} = \frac{1}{2} \Rightarrow \omega = \dots$	M1
	$\omega = 4\pi$	A1
	$v = "\omega" \times 0.3$	M1
	$v = 1.2\pi$, 3.8 or better (m s ⁻¹)	A1 (4)
(b)	$x = a \sin \omega t \Longrightarrow 0.15 = 0.3 \sin 4\pi t \implies t = \dots$	M1
	$t = \frac{1}{4\pi} \times \frac{\pi}{6} = \frac{1}{24}$ (s) 0.04166 = 0.042 or better	A1 (2) [6]
	Notes	
(a) M1 A1	Use period = 1/frequency to find a value for ω . Must be correct way up. Correct value for ω	
M1	Use of $v = a\omega$ or $v^2 = \omega^2(a^2 - x^2)$ with $x=0$.	
A1	cao	
(b)	Use 0.15 win up to obtain a value for t. Use their g and c	
A1	Correct value 0.042 or better	
ALT 1(b)	Using cos Complete method using $x = a \cos \omega t$ AND $\frac{T}{t}$ to obtain a value for t	
MI	$x = a \cos \omega t \Longrightarrow 0.15 = 0.3 \cos 4\pi t \implies t = \dots$	
	$\frac{T}{4} - t = \frac{0.5}{4} - t = \dots$	
A1	Correct value, 0.042 or better	

Question Number	Scheme	Marks
2.	$R\sin\theta = m \times 6r\sin\theta \times \frac{g}{R}$	M1A1A1
	$4r$ $R = \frac{3}{2}mg$ $R\cos\theta = mg$ 3	M1A1
	$\frac{3}{2}mg\cos\theta = mg$ $\cos\theta = \frac{2}{3}$ $OC = 6r\cos\theta = 6r \times \frac{2}{3} = 4r$	DM1 A1 M1A1
	3	[9]
N#1	Notes	
MI A1 A1	Attempt NL2 along <i>CP</i> with correct number of terms and forces resolved. Either side correct Fully correct equation Note: If R is not resolved then M0 but do allow if $\sin\theta$ is cancelled from both sides: $R = R$	$n \times 6r \times \frac{g}{4r}$ would
	score M1A1A1	
	If r is used instead of the radius: $R \sin \theta = m \times r \times \frac{s}{4r}$ would score M1A1A0 (force r on LHS but error in radius on RHS)	resolved correctly
M1 A1	Resolve vertically Correct equation	
DM1 A1 M1 A1	Eliminate <i>R</i> between the two equations. Depends on both M marks above Correct value for $\cos \theta$ seen or implied Attempt to obtain <i>OC</i> (allow sin/cos confusion) OC = 4r	
	Note: If θ is the angle with the horizontal then all equations above will appear with si reversed.	n θ and $\cos\theta$

Question Number	Scheme	Marks
ALT 1	Case: using trig ratios where radius, L, and ω^2 are never replaced M1 A1 A1: $R \sin\theta = m L \omega^2$ M1 A1: $R \cos\theta = mg$ $DM1 A1: \tan \theta = \frac{L\omega^2}{g} = \frac{L}{4r}$ M1 A1: $\tan \theta = OC \Rightarrow OC = 4r$	
ALT 2	Case: resolving tangentially where R is never seen $mg \sin \theta = m \times (6r \sin \theta) \times \frac{g}{4r} \cos \theta$ scores M1A1A1 M1A1 DM1 $\cos \theta = \frac{2}{3}$ leads straight to	

Question Number	Scheme	Marks
3(a)	$v = \frac{50}{2x+3}$	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$	M1
	$=\frac{-100}{(2x+3)^2} \times \frac{50}{2x+3} \left(=\frac{-5000}{(2x+3)^3}\right)$	DM1A1
	$x = 12$ $\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{5000}{27^3} = -0.2540 = -0.25$ or $-0.254 \mathrm{ms^{-2}}$	M1
	deceleration = 0.25 (m s ^{-2}) or better	A1 (5)
(b)	$v = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{50}{2x+3}$	M1
	$\int (2x+3) \mathrm{d}x = \int 50 \mathrm{d}t$	
	$x^2 + 3x = 50t (+c)$	M1A1
	$t = 1, x = 4 \Longrightarrow 28 = 50 + c, c = -22$	A1
	$x = 12 \Longrightarrow 50t = 12^2 + 36 + 22$ $t = \frac{202}{50} = 4.04$ (accept 4.0)	A1 (5)
	Notes	[10]
(a)		
M1	Uses chain rule of the form $\frac{dv}{dt} = \frac{dv}{dt} \times \frac{dx}{dt}$ or $\frac{d(\frac{1}{2}v^2)}{dt}$	
	$\frac{dt}{dx} \frac{dx}{dt} \frac{dx}{dx}$	
	Note, $\frac{1}{2}v^2 = \frac{1}{(2x+3)^2} \implies \text{acc} = \frac{1}{2}(2x+3)^3 = -\frac{1}{(2x+3)^3} \times 2$	
	However, M0 for acc = $\frac{1}{2}v^2$	
DM1 A1	Differentiate <i>v</i> wrt <i>x</i> Correct differentiation.	
M1	Sub $x = 12$ into their expression for acceleration to obtain the deceleration. Must have differentiate	e attempted to
A1	Correct deceleration – must be positive	
(b)		
M1	Use $v = \frac{dx}{dx}$	
M1	dt Attempt at integration	
A1	Correct integration but <i>c</i> may be missing	
A1 A1	Use $t = 1$, $x = 4$ to obtain the correct value of c for their correct integration Sub $x = 12$ to obtain the correct value of t	

ALT 3(b)	Using definite integration: $\int_{4}^{12} (2x+3)dx = \int_{1}^{T} 50 dt$
M1	Integrate $\begin{bmatrix} x^2 + 3x \end{bmatrix}_{1}^{12} = \begin{bmatrix} 50t \end{bmatrix}_{1}^{T}$
A1	Correct integration
A1	Sub in limits $12^2 + 3(12) - 4^2 - 3(4) = 50T - 50$
AI	Obtain correct value

Question Number	Scheme	Marks	
4 (a)	Energy from C to D $mg \frac{l}{4} \sin 30^{\circ} = \frac{\lambda}{2l} \left(\frac{l}{4}\right)^{2}$	M1A1A1	
	$\lambda = 4mg$ *	A1* (4)	
(b)	The greatest speed is when the acceleration of B is zero		
	$(\mathbb{N}) \qquad T = mg\sin 30^\circ = \frac{4mge}{l}$	M1	
	$e = \frac{l}{8}$	A1	
	Energy: $\frac{1}{2}mv^2 + \frac{4mg}{2l}\left(\frac{l}{8}\right)^2 = mg\frac{l}{8}\sin 30^\circ$	M1A1A1	
	$v = \sqrt{\left(\frac{gl}{16}\right)} = \frac{\sqrt{gl}}{4}$	DM1A1 (7)	
		[11]	
	Notes		
(a) M1 A1 A1 A1* (b) M1 A1 M1	Attempt the energy equation from C to D. Must use a vertical height for PE. EPE must kx^2 Must have 1 PE term and 1 EPE term. Correct loss of PE Correct final EPE Correct answer correctly obtained Resolve along the plane using HL to find T Correct value for the extension Form the energy equation with an extension they have found. M0 if $l/4$ is used for the	st have the form	
A1 A1 DM1 A1	Must use a vertical height for PE. EPE must have the form kx^2 Must have 1 PE term, EPE term. Two correct terms Completely correct equation Solve for v. Dependent on previous M. Correct expression for v	, 1 KE term and 1	
4(b) ALT 1	Using integration		
M1 A1 M1	As above, for finding correct value for <i>e</i> . This may be embedded in a complete method. Uses F=ma to and attempts to integrate. Must have the correct number of terms and vertices $\int g \sin 30 - \frac{4gx}{l} dx = \int v dv$ leading to $\frac{gx}{2} - \frac{2gx^2}{l} = \frac{v^2}{2} + c$	od. veight resolved,	
A1 A1	Correct integration with at most one slip/error Completely correct integration but c may be missing		
DM1 A1	Find value for <i>c</i> (when $x = \frac{1}{4}$, $v = 0$ gives $c = 0$) and sub in <i>e</i> to find an expression for <i>v</i> Correct expression for <i>v</i>	,	

4(b) ALT 2 M1 A1	Using SHM As above, for finding correct value for e. This may be embedded in a complete method.
M1 A1	Correctly uses F=ma to show that the motion is SHM
A1	Correct proof of SHM
M1	Uses $v = aw$ to find an expression for v
A1	Correct expression for v

Question Number	Scheme	Marks
5(a)	$(\pi\rho)\int_0^r xy^2 \mathrm{d}x$	
	$=(\pi\rho)\int_0^r x(r^2-x^2)\mathrm{d}x$	M1
	$=(\pi\rho)\left[\frac{1}{2}x^2r^2-\frac{x^4}{4}\right]_0^r$	A1
	$=(\pi\rho)\frac{r^4}{4}$	A1
	$\frac{2\pi\rho r^3}{3}\overline{x} = \pi\rho\int xy^2 \mathrm{d}x$	M1
	$\overline{x} = \frac{\pi \rho r^4}{4} \div \frac{2\pi \rho r^3}{3} = \frac{3}{8}r *$	A1* (5)
(b)	Hemisphere Cone	
	Mass $\frac{2}{3}\pi r^3$ $\frac{1}{3}\pi kr^3$	B1
	Dist of c of m from	DI
	centre of common plane $\frac{3}{8}r$ $\frac{1}{4}kr$	BI
	$\frac{2}{3} \times \frac{3}{8}r = \frac{k}{3} \times \frac{1}{4}kr$	M1A1ft
	$k^2 = 3$ $k = \sqrt{3}$	A1 (5)
(a)		
M1	Use of $(\pi\rho)\int_0^r xy^2 dx$ with $y^2 = r^2 - x^2$ and attempt the integration. Limits not need	eded.
A1 A1	Correct integration – limits not needed Sub correct (upper) limit. (Sub of 0 not needed)	
M1	Use of $V\rho \overline{x} = \pi \rho \int xy^2 dx$ with their result to obtain $\overline{x} =$ where V is the volume	e of the
	hemisphere or sphere (π , <i>p</i> must be on both sides or neither)	
A1*	$\overline{x} = \frac{3}{8}r$	
(b) B1 B1	Correct mass ratio for hemisphere and cone. Total mass not needed for this mark. Correct distances of c of m for cone and hemisphere from centre of common plane (o Both can be positive or one can be negative.	r another point).
	Distances from vertex of cone (H) $kr + \frac{3}{8}r$ (C) $\frac{3}{4}kr$	
	Distances from peak of hemisphere (H) $\frac{5}{8}r$ (C) $r + \frac{1}{4}kr$	
M1	Form a dimensionally correct moments equation with the correct value for \overline{x} dependence they have taken moments. (0 from plane face, kr from vertex of cone, r from peak of Allow even if formula for sphere is used. Ignore signs.	nding on where f hemisphere)

A1ft	Correct equation, follow through their masses and distances, signs to be correct here.
A1	Correct exact result.

Question Number	Scheme	Marks
6(a)	$S - mg\cos\theta = \frac{mv^2}{2}$	M1A1
	$\frac{1}{2} \times mv^2 - \frac{1}{2} \times m \times \frac{9ag}{5} = mga\cos\theta$	M1A1
	$mv^2 = 2mga\cos\theta + \frac{9}{5}mga$	
	$S = mg\cos\theta + 2mg\cos\theta + \frac{9}{5}mg$	DM1
	$S = \frac{3}{5}mg\left(5\cos\theta + 3\right) *$	A1* cso (6)
(b)	$S = 0 \cos \theta = -\frac{3}{5}$	B1
	$v^2 = \frac{3ag}{5} \qquad v = \sqrt{\frac{3ag}{5}} *$	M1A1*
		(3)
(c)	vert comp = $\sqrt{\frac{3ag}{5} \times \frac{4}{5}}$	M1
	Vert distance to highest point: $0 = \frac{16}{25} \times \frac{3ag}{5} - 2gs$	M1
	$s = \frac{24}{125}a$	A1
	Total distance above $O = \frac{24}{125}a + \frac{3}{5}a = \frac{99}{125}a$, 0.79 <i>a</i> or better	Alft
	Notes	(4) [13]
(a) M1	Equation of motion along the radius. Must have 3 terms with weight resolved. Accele	eration in either
A1 M1	form. Fully correct equation with acceleration v^2/r Energy equation from A to general position. Difference of 2 KE terms and loss of PE terms) required. M0 for $v^2 = u^2 + 2as$	(one or two
A1 DM1 A1 *cso	Fully correct equation Eliminate v^2 between the 2 equations. Depends on both preceding M marks Obtain the given result from fully correct working.	
(b) B1	$\cos\theta = -\frac{3}{5}$ seen explicitly or used	
M1 A1*	Use their value of $\cos \theta$ to obtain the value of v^2 or v Correct answer from correct working	
(c) M1 M1 A1	Use their values for θ and v to obtain the vertical comp of velocity (allow sin/cos con Correct method to find the vertical distance to highest point using their vertical comp Correct expression for this vertical distance (may be implied)	nfusion) of vel
A1ft	Find the total distance above <i>O</i> by adding $\frac{3a}{5}$ to their previous answer. Both M mark	s needed.

ALT 1	Conservation of Energy from <u>slack</u> to find vertical height
M1	Uses their value of θ and v to obtain the horizontal component at the highest point $\sqrt{\frac{3ag}{5}} \cos \theta$
M1	Forms an energy equation. Must have 2 KE terms and gain in PE
	$\frac{1}{2}m\frac{3ag}{5} - \frac{1}{2}m\frac{3ag}{5}\left(\frac{3}{5}\right)^2 = mgs$
A1	Correct expression for this vertical distance $s = \frac{24}{125}a$
A1ft	Find the total distance above O by adding $\frac{3a}{5}$ to their previous answer. Both M marks needed. $\frac{99}{125}a$,
	0.79a or better
ALT 2	Conservation of Energy from initial position (A) to find vertical height
M1	Uses their value of θ and v to obtain the horizontal component at the highest point $\sqrt{\frac{3ag}{5}}\cos\theta$
M1	Forms an energy equation. Must have 2 KE terms and gain in PE
A1	$\frac{1}{2}m\frac{9ag}{5} - \frac{1}{2}m\frac{3ag}{5}\left(\frac{3}{5}\right)^2 = mgh$
A1	Gives the total distance above <i>O</i> as $h = \frac{99}{125}a$ (do not isw)

Question Number	Scheme	Ma	arks
7(a)	$(T=)\frac{20(1)}{2} = \frac{\lambda \times 0.8}{1.2}$	M1A1	
	$\lambda = 15 *$	A1*	(3)
(b)	Either $1.25\ddot{x} = \frac{15(0.8 - x)}{1.2} - \frac{20(1 + x)}{2}$ Or $1.25\ddot{x} = \frac{20(1 - x)}{2} - \frac{15(0.8 + x)}{1.2}$ $\ddot{x} = -18x$	M1A1A A1*	.1 (4)
(c)	$10 = a\sqrt{18} \implies a = \frac{10}{\sqrt{18}}$ oe	B1	
	When string <i>PB</i> becomes slack $v^2 = 18 \left(\left(\frac{10}{\sqrt{18}} \right)^2 - 0.8^2 \right)$	M1	
	$v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$	A1	(3)
(d)	$0.8 = \frac{10}{\sqrt{18}} \sin \sqrt{18} t_1$	M1A1	
	$t_1 = \frac{1}{\sqrt{18}} \sin^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.0816)$	A1	
	PA becomes slack when $x = -1$		
	$(\pm 1) = \frac{10}{\sqrt{18}} \sin \sqrt{18}t_2$	M1	
	$t_2 = \frac{1}{\sqrt{18}} \sin^{-1} \left(\frac{\sqrt{18}}{10} \right) (= 0.1032)$	A1	
	$T = 2(t_1 + t_2) = 2\left(\frac{1}{\sqrt{18}}\sin^{-1}\left(0.8\frac{\sqrt{18}}{10}\right) + \frac{1}{\sqrt{18}}\sin^{-1}\left(\frac{\sqrt{18}}{10}\right)\right)$	A1	(6)
	= 0.3697 = 0.37 or 0.370 Notes		[16]
(a) M1 A1 A1*	Form an equation by equating the 2 tensions (found using HL) Equation correct Correct answer correctly obtained		
(b) M1 A1 A1 A1*	Equation of motion for <i>P</i> . Acceleration can be <i>a</i> Correct equation of motion with at most one error, acceleration may be <i>a</i> Fully correct equation of motion, acceleration may be <i>a</i> Correct given equation, correctly obtained		

(c)	
B1	Correct amplitude, $a = \frac{10}{\sqrt{18}}, \frac{5\sqrt{2}}{3}, \frac{\sqrt{50}}{3}, 2.4$ oe
M1	Use $v^2 = \omega^2 (a^2 - x^2)$ with $x = 0.8$ and their <i>a</i> and ω
A1	Correct speed when $x = 0.8$
(d)	
MI	Use $x = 0.8$ to find the time until <i>PB</i> becomes slack using their <i>a</i> and ω
	Correct equation
AI	NB There are alternative method for finding this time but a complete method for the time until <i>PB</i>
	becomes slack must be used for the M mark to be awarded
M1	Use $x = \pm 1$ to find the time until PA becomes slack (as before alternative methods must be complete)
	using their a and ω
A1	Correct time obtained. Ignore consistent use of degrees.
A1	Complete to obtain the correct value of <i>T</i>
ALT (c)	Conservation of Energy, O to slack
M1	Dimensionally correct energy equation with 3 EPE terms and 2 KE terms
B1 (treat	$\frac{20 \times 1^{2}}{1.25 \times 10^{2}} + \frac{1.25 \times 10^{2}}{1.5 \times 0.8^{2}} = \frac{20 \times 1.8^{2}}{1.25 \times v^{2}} + \frac{1.25 \times v^{2}}{1.25 \times v^{2}}$
as A1)	2×2 2 2×1.2 2×2 2
A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$
A1 ALT	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ m s}^{-1}$ Using cos
A1 ALT 7 (d)	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos
A1 ALT 7 (d)	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ m s}^{-1}$ Using cos
A1 ALT 7 (d) M1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$
A1 ALT 7 (d) M1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$
A1 ALT 7 (d) M1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$ $t_1 = \frac{1}{\sqrt{16}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{\sqrt{18}} \right) (= 0.2886)$
A1 ALT 7 (d) M1 A1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18} t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$
A1 ALT 7 (d) M1 A1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$
A1 ALT 7 (d) M1 A1 A1 M1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18} t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$
A1 ALT 7 (d) M1 A1 A1 M1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$ $-1 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_2$
A1 ALT 7 (d) M1 A1 A1 M1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$ $-1 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_2$ $1 = (-\sqrt{18})$
A1 ALT 7 (d) M1 A1 A1 M1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$ $-1 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_2$ $t_2 = \frac{1}{\sqrt{18}} \cos^{-1} \left(-\frac{\sqrt{18}}{10} \right) (= 0.4735)$
A1 ALT 7 (d) M1 A1 A1 M1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18} t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$ $-1 = \frac{10}{\sqrt{18}} \cos \sqrt{18} t_2$ $t_2 = \frac{1}{\sqrt{18}} \cos^{-1} \left(-\frac{\sqrt{18}}{10} \right) (= 0.4735)$
A1 ALT 7 (d) M1 A1 A1 M1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$ $-1 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_2$ $t_2 = \frac{1}{\sqrt{18}} \cos^{-1} \left(-\frac{\sqrt{18}}{10} \right) (= 0.4735)$
A1 ALT 7 (d) M1 A1 A1 M1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ ms}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$ $-1 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_2$ $t_2 = \frac{1}{\sqrt{18}} \cos^{-1} \left(-\frac{\sqrt{18}}{10} \right) (= 0.4735)$ $T = 2(t_1 - t_1) = 2 \left(\frac{1}{\sqrt{16}} \cos^{-1} \left(-\frac{\sqrt{18}}{10} \right) - \frac{1}{\sqrt{16}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{\sqrt{18}} \right) \right)$
A1 ALT 7 (d) M1 A1 A1 M1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ m s}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$ $-1 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_2$ $t_2 = \frac{1}{\sqrt{18}} \cos^{-1} \left(-\frac{\sqrt{18}}{10} \right) (= 0.4735)$ $T = 2(t_2 - t_1) = 2 \left(\frac{1}{\sqrt{18}} \cos^{-1} \left(-\frac{\sqrt{18}}{10} \right) - \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) \right)$
A1 ALT 7 (d) M1 A1 A1 A1 A1 A1	Correct answer. $v = 9.4063 v = 9.4 \text{ or } 9.41 \text{ m s}^{-1}$ Using cos $0.8 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_1$ $t_1 = \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) (= 0.2886)$ $-1 = \frac{10}{\sqrt{18}} \cos \sqrt{18}t_2$ $t_2 = \frac{1}{\sqrt{18}} \cos^{-1} \left(-\frac{\sqrt{18}}{10} \right) (= 0.4735)$ $T = 2(t_2 - t_1) = 2 \left(\frac{1}{\sqrt{18}} \cos^{-1} \left(-\frac{\sqrt{18}}{10} \right) - \frac{1}{\sqrt{18}} \cos^{-1} \left(0.8 \frac{\sqrt{18}}{10} \right) \right)$ = 0.3697 = 0.37 or 0.370