Question Number	Scheme		Marks		
1	Slant height = $5a$			B1	
		Hemisphere	Cone	Total	
	Mass	$2\pi (4a)^2 k\lambda$	$\pi \times 4a \times 5a \times \lambda$	$32\pi a^2 k\lambda + 20\pi a^2\lambda$	B1
	Mass ratio(m)	8 <i>k</i>	5	8 <i>k</i> +5	
	Distance from vertex (y)	5a	2 <i>a</i>	4a	B1
	ту	40 <i>ka</i>	10 <i>a</i>	4a(8k+5)	
	40ka + 10a = 4a	u(8k+5)		1	M1A1
	<i>k</i> = 1.25 oe				A1
					[6]
	Alternatives for the	he moments equation:			
ALT 1	Moments about the	he centre of mass (G) of	f the toy:		
	Distances: (Accept <i>a</i> provide	(-) <i>a</i> ed the minus appears in	2 <i>a</i> the equation)	0	B1
	Equation:	-8ka+10a=0			M1A1
ALT 2	Moments about the	he lowest point of the h	nemisphere:		
	Distances:	2 <i>a</i>	5 <i>a</i>	3 <i>a</i>	B1
	Equation:	16ka - 5a = a(8k + 5))		M1A1
ALT 3	Moments about the shell	ne centre of the circular	base of the conical s	shell/hemispherical	
	Distances:	2 <i>a</i>	(-) <i>a</i>	а	B1
	Equation:	16ka + 25a = 3a(8k +	-5)		M1A1

B 1	Slant height = $5a$ seen anywhere (could be on diagram)	
B 1	Correct masses/mass ratio for hemisphere, cone and combined shape.	
B1	Correct distances seen. If using Alts 1 or 3 minus signs not needed here.	
M1	Moments equation attempted with all 3 terms (2 terms if about <i>G</i>). Condone inconsistent mass dimensions, if they are clearly using what they consider to be a mass. The equation can be formed using actual masses or a ratio of masses.	
A1	Correct moments equation, with actual masses or a ratio of masses and all signs correct.	
A1	Correct value for k. 1.25, $\frac{5}{4}$, $1\frac{1}{4}$ or any other equivalent fraction.	

M3_2021_06_MS

Question Number	Scheme	Marks	
2a)	$\sin\theta = \frac{3}{5}, \cos\theta = \frac{4}{5}$		
	$T\cos\theta = mg$	M1A1	
	$\frac{4}{5}T = mg \to T = \frac{5mg}{4}$	A1	
			(3)
2b)	$r = a + \frac{5a}{4} \times \frac{3}{5} = \frac{7a}{4}$	B1	
	$T\sin\theta = m\omega^2 \left(\frac{7a}{4}\right)$	M1A1A1	
	$\frac{3}{5}\left(\frac{5mag}{4}\right) = \frac{7}{4}ma\omega^2$	DM1	
	$\omega = \sqrt{\frac{3g}{7a}}$	A1	(6)
			[9]
a)			
M1	Resolving vertically. $T\cos\theta$ or $T\sin\theta$ accepted		
A1	Correct equation		
A1	Correct tension		
b)			
B1	Correct radius of motion seen explicitly or used in N2L		
M1	Attempt at horizontal equation of motion. Allow either form of acceleration. $T \cos \theta$ or $T \sin \theta$ accepted. Allow this mark if $r = \frac{3a}{4}$ used.		
A1	Correct LHS		
A1	Correct RHS. Acceleration must now be in $r\omega^2$ form.		
DM1	Substitute in trig and eliminate T to find value for $\omega \text{ or } \omega^2$. Depends on first M mark in (b)		
A1	Correct value for ω . (Square root sign must cover all terms)		

M3_2021_06_MS

Question Number	Scheme	Marks
3 a)	\int_{0}^{9}	В1
	$V = \left(\pi\right) \int_0^9 \left(3 - \sqrt{x}\right)^2 \mathrm{d}x$	M1
	$V = \left(\pi\right) \int_0^9 \left(9 - 6\sqrt{x} + x\right) \mathrm{d}x$	
	$V = \left(\pi\right) \left[9x - 4x^{\frac{3}{2}} + \frac{x^2}{2}\right]_0^9$	A1
	$V = \left(\pi\right) \left[81 - 108 + \frac{81}{2} \right] \left(-\pi \left[0\right]\right)$	
	$V = \frac{27}{2}\pi *$	A1*
		(4)
3 b)	$(\pi)\int xy^2 dx = (\pi)\int \left(9x - 6x^{\frac{3}{2}} + x^2\right) dx$	M1
	$= \left(\pi\right) \left[\frac{9}{2}x^2 - \frac{12}{5}x^{\frac{5}{2}} + \frac{x^3}{3}\right]_0^9$	A1
	$= \left(\pi\right) \left(\left[\frac{729}{2} - \frac{2916}{5} + \frac{729}{3}\right] - [0] \right)$	
	$=\frac{243}{10}(\pi)$	A1
	$\overline{x} = \frac{(\pi)\int xy^2 dx}{(\pi)\int y^2 dx}$	DM1
	$\overline{x} = \frac{\left(\frac{243}{10}\right)}{\left(\frac{27}{2}\right)} = 1.8$	A1
		(5)
		[9]

(a)		
B1	Identifying correct limits.	
M1	Attempt at $(\pi) \int_0^9 (3 - \sqrt{x})^2 dx$. π not needed. Limits may be missing. Minimum accepted for the squaring is $9 \pm k\sqrt{x} \pm x$. At least one term must be integrated (power increased) and none to be differentiated (power decreased)	
A1	Correct integration. π not needed but (correct) limits now needed.	
A1*	Given result reached from fully correct working. π must not just appear on final line without justification (as this is a "show that" question).	
(b)		
M1	$(\pi)\int xy^2 dx = (\pi)\int \left(9x - 6x^{\frac{3}{2}} + x^2\right) dx. \ \pi \text{ not needed.}$	
A1	Correct integration. π not needed.	
A1	Correct result from substitution of correct upper limit. (Lower limit is 0 and substitution of 0 gives 0)	
DM1	Use of $\overline{x} = \frac{(\pi) \int xy^2 dx}{(\pi) \int y^2 dx}$. π must appear in both or neither. Depend on both previous M marks	
A1	1.8. Accept any exact equivalent $eg \frac{18}{10}, \frac{9}{5}, 1\frac{4}{5}$ etc.	

Question Number	Scheme	Marks	
4 a)	Initially $T_{IN} = mg\cos 60$	M1	
	$T_{IN} = \frac{mg}{2}$	A1	
			(2)
4b)	Energy to the lowest point $\frac{1}{2}mv^{2} - mg(l) = -mg(l\sin 30)$	M1A1A1	
	$T_{FI} - mg = m\frac{v^2}{r}$	M1A1	
	$T_{FI} = m \left(\frac{gl}{l}\right) + mg$	DM1	
	$T_{FI} = 2mg = 4T_{IN} *$	A1*	(7)
			[9]
(a)			
M1	Equation of motion towards centre at <i>A</i> . Must have $v = 0$. Weight must be resolved and tension not resolved. Allow with cos or sin of 60° or 30°.		
A1	Correct tension		
(b)			
M1	Energy equation from <i>A</i> to the lowest point. One KE and a difference in GPE required.		
A2	Correct equation1 for each error.		
M1	Equation of motion at the lowest point, with acceleration in either form. Tension and weight needed.		
A1	Correct equation. Acceleration must now be in the correct form.		
DM1	Solve to find tension at the lowest point. Must reach $T =$ but need not be simplified. Depends on both M marks in (b)		
A1*	Achieve the given result, from fully correct working. c.s.o.		
NB	If the equations in (b) are found at a general point, mark the equations as above. The final M mark will require some evidence of maximising the tension.		

Question Number	Scheme	Marks
5a)	$0.5v\frac{\mathrm{d}v}{\mathrm{d}x} = -\sin 2x$	M1
	$\int 0.5v \mathrm{d}v = \int -\sin 2x \mathrm{d}x$	DM1
	$0.25v^2 = \frac{1}{2}\cos 2x(+c)$	A1
	$v^2 = 2\cos 2x + c$	
	$x = 0, v = 2 \Longrightarrow 4 = 2 + c$	DM1
	$v^2 = 2\cos 2x + 2(=4\cos^2 x)$	A1
	$v = 2\cos x$ *	A1*
		(6)
ALT	Using definite integration	
	$0.5v\frac{\mathrm{d}v}{\mathrm{d}x} = -\sin 2x$	M1
	$\int_{2}^{v} 0.5v dv = \int_{0}^{x} -\sin 2x dx \left(\text{or } \int_{0}^{x} \sin 2x dx \right)$	DM1
	$\left[0.25v^2\right]_2^v = \left[\frac{1}{2}\cos 2x\right]_0^x \left(\operatorname{or}\left[-\frac{1}{2}\cos 2x\right]_x^0\right)$	A1
	$0.25(v^2 - 4) = \frac{1}{2}\cos 2x - \frac{1}{2}$	DM1A1
	$v = 2\cos x$ *	A*
		(6)

M3_2021_06_MS

Question Number	Scheme	Marks
5b)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\cos x$	M1
	$\int \sec x \mathrm{d}x = \int 2 \mathrm{d}t$	
	$\ln\left \sec x + \tan x\right = 2t + k$	DM1
	$t = 0, x = 0 \ln 1 = 2(0) + k \Longrightarrow k = 0$	A1
	$t = \frac{1}{2} \ln \left \sec x + \tan x \right = \frac{1}{2} \ln \left(\sec \frac{\pi}{4} + \tan \frac{\pi}{4} \right)$	DM1
	$t = \frac{1}{2} \ln\left(\sqrt{2} + 1\right) *$	A1*
		(5)
ALT	Using definite integration	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\cos x$	M1
	$\int_0^{\frac{\pi}{4}} \sec x dx = \int_0^t 2dt$	
	$\left[\ln\left \sec x + \tan x\right \right]_{0}^{\frac{\pi}{4}} = \left[2t\right]_{0}^{t}$	DM1A1
	$2t = \ln\left(\sec\frac{\pi}{4} + \tan\frac{\pi}{4}\right)$	DM1
	$t = \frac{1}{2} \ln \left(\sqrt{2} + 1 \right) \dots *$	A1*
		(5)
		[11]

(a)	Indefinite integration	
M1	Equation of motion, with acceleration in the form $v \frac{dv}{dx}$. Condone sign error.	
DM1	Separate variables to prepare for integration. Depends on the M mark above.	
A1	Correct integration. Constant not needed.	
DM1	Substitute $x = 0$, $v = 2$ to find the constant. Depends on both M marks above.	
A1	A correct result for v^2	
A1*	Given result reached through use of double angle formula. (Formula need not be shown.).	
ALT	Definite integration	
M1	Equation of motion, with acceleration in the form $v \frac{dv}{dx}$. Condone sign error.	
DM1	Separate variables, to prepare for integration. Limits not needed for this mark. Depends on the M mark above.	
A1	Correct integration – limits not needed	
DM1	Correct substitution of correct limits in their integrated function. Limits must be "paired" correctly. Depends on both previous M marks in (a) (Formula need not be shown.).	
A1	Correct expression which can yield v^2	
A1*	Given result reached through use of double angle formula. (Formula need not be shown.).	
(b)		
M1	Use of $v = \frac{\mathrm{d}x}{\mathrm{d}t}$	
DM1	Correct separation of variables and attempt integration (integral is in the formula book). Depends on first M of (b)	
A 1	Modulus signs may be missing.	
A1	Correct integration and use limits to find correct value for constant.	
DM1	Substitute $x = \frac{\pi}{4}$ and solve for <i>t</i> . Depends on both previous M marks in (b)	
A1*	Given result reached from fully correct working. (Modulus signs may be missing throughout.).	

ALT	Definite integration	
M1	Use of $v = \frac{\mathrm{d}x}{\mathrm{d}t}$	
DM1	Correct separation of variables and attempt integration. Limits not needed. Depends on first M of (b). Modulus signs may be missing.	
A1	Correct integration including correct limits.	
DM1	Substitute their limits and solve for <i>t</i> . Depends on both previous M marks in (b)	
A1*	Given result reached from fully correct working. (Modulus signs may be missing throughout.).	

Question Number	Scheme	Marks
6a)	$F_r = \frac{1}{7} \times 0.4 \times 9.8 \ (= 0.56)(N)$	B1
	$\frac{1}{2} \times 0.4v^2 = \frac{1}{2} \times 0.4(1.8)^2 - 0.8 \times "0.56"$	M1A1A1 (ft their <i>F</i> _r)
	$v^2 = 1.00 \Rightarrow v = 1.0 \text{ or } 1.00 \text{ (m s}^{-1})$	A1
		(5)
6b)	$\frac{1}{2} \times 0.4(1.0)^2 = 0.56x + \frac{0.6x^2}{2(0.8)}$	M1A1B1
	$0.375x^2 + 0.56x - 0.2 = 0$	DM1
	x = 0.2977	A1
	Total distance = 1.1 (m) (or 1.10)	A1
		(6)
ALT 1	Work from A to C with total distance as the unknown	
	$\frac{1}{2} \times 0.4(1.8)^2 = 0.56y + \frac{0.6(y - 0.8)^2}{2(0.8)}$	M1A1B1
	$0.375y^2 - 0.046y - 0.408 = 0$	DM1
	<i>y</i> = 1.0977	A1
	<i>y</i> = 1.1 or 1.10	A1
ALT 2	Work from A to C with distance BC as the unknown	
	$\frac{1}{2} \times 0.4(1.8)^2 = 0.56(y+0.8) + \frac{0.6y^2}{2(0.8)}$	M1A1B1
	Rest as main scheme	DM1A1A1
6c)	$T = \frac{0.6 \times "0.2977"}{0.8} (= 0.223)$	M1A1ft
	0.223 < 0.56 Tension less than F_{max} . Therefore particle will not move. cso.*	A1cso*
		(3)
		[14]

(a)		
B 1	Correct friction seen. (Might be contained in WD) g or 9.8 acceptable.	
M1	Work-Energy equation with 2 KE terms and their WD by friction. All terms must be dimensionally correct.	
A1A1	One each for the KE terms.	
A1	v = 1.0 or 1.00 (2 or 3 sf as g has been used to obtain the speed at B)	
(b)		
M1	Work-Energy equation with KE, WD and EPE. EPE term to be of the form $\frac{\lambda x^2}{k \times \text{natural length}} \text{ with } k = 1 \text{ or } 2$	
B1	Correct EPE term. M mark for the equation not needed for this mark.	
A1ft	Fully correct equation. Follow through their EPE	
DM1	Reducing to a 3 term quadratic in <i>x</i> , terms in any order. Depends on the first M of (b)	
A1	x = 0.2977	
A1	1.1 (m) or 1.10 (m) (2 or 3 sf as g has been used to obtain the speed at B)	
ALT 1		
	First 4 marks as main scheme notes.	
A1A1	Award A1A1 if final answer is correct, from a correct equation.	
	Award A1A0 if answer correct but not rounded.	
ALT 2	Notes as for main scheme.	
(c)		
M1	Use of Hooke's Law for their extension at <i>C</i> .	
A1ft	Correct tension. Follow through their extension. No need to simplify.	
A1cso*	Correct conclusion, from fully correct working including evaluation of tension.	

Question Number	Scheme	Marks
7a)	$\frac{4(x-2)}{2} = \frac{2(7-x-3)}{3}$	M1A1A1
	6(x-2) = 2(4-x)	
	x = 2.5 (m) *	A1
		(4)
ALT	$(T_A =) \frac{4x}{2} = \frac{2y}{3} (=T_B) x + y = 2$	M1A1
	$x = \frac{1}{2}$ or $y = 1.5$	A1
	Distance $AO = 2.5$ (m)	A1
7bi)	$2\ddot{y} = \frac{2(1.5 - y)}{3} - \frac{4(y + 0.5)}{2} \text{OR} 2\ddot{y} = \frac{4(-y + 0.5)}{2} - \frac{2(1.5 + y)}{3}$ (y measured towards B) (y measured towards A)	M1A1
	$\ddot{y} = -\frac{4}{3}y = -\omega^2 y \therefore \text{ SHM}$	M1A1
		(4)
7bii)	$\omega^2 = \frac{4}{3}$	B1
	$(2v_{\rm max} = 6 \Longrightarrow)v_{\rm max} = 3({\rm ms}^{-1})$	B1
	$v_{\text{max}} = a\omega = \frac{2a}{\sqrt{3}}$ Accept 1.2 <i>a</i> or better	M1
	$3 = a \frac{2}{\sqrt{3}}$ $a = \frac{3\sqrt{3}}{2}$ (m) Accept 2.6 or better	A1
		(4)
7c)	$v^{2} = \frac{4}{3} \left(\frac{27}{4} - \left(\frac{3}{2} \right)^{2} \right)$	M1
	$v = \sqrt{6} (\text{ms}^{-1})$ Accept 2.4 or better	A1 (2)

Question Number	Scheme	Marks
7d)	$\frac{3}{2} = \frac{3\sqrt{3}}{2}\sin(\omega t)$	M1A1
	t = 0.53(s) or better	A1
		(3)
ALT	$x = a\cos\omega t \Longrightarrow 1.5 = \frac{3\sqrt{3}}{2}\cos\left(\frac{2}{\sqrt{3}}\right)t$	
	time $=\frac{\pi}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$	M1A1
	t = 0.53 or better	A1
		[17]

(a)		
M1	Equate tension in the two strings. Must be using $k\lambda \frac{x}{l}$ and the sum of the extensions must be 2	
A1	Correct LHS	
A1	Correct RHS	
A1*	Given result found from fully correct working.	
ALT		
M1	Obtain 2 equations using the tensions in the 2 strings and sum of extensions = 2 Must be using $k\lambda \frac{x}{l}$	
A1	2 correct equations	
A1	Correct extension for either string	
A1*	Obtain given result from fully correct working.	

b i)		
M1	Equation of motion with two variable tensions. Allow <i>a</i> or \ddot{y}	
A1	Correct equation. Allow a or ÿ	
M1	Rearrange to required form. Must now be \ddot{y}	
A1	Correct result, from fully correct working and concluding statement.	
(ii)		
B1	Correct ω or ω^2	
B1	$v_{\text{max}} = 3$ or $2v_{\text{max}} = 6$ seen explicitly or used	
M1	Use $v_{\text{max}} = a\omega$ with their ω or use $v^2 = \omega^2 (a^2 - x^2)$ with their ω and $x = 0$	
A1	$a = \frac{3\sqrt{3}}{2}$ (allow 2.6 or better)	
(c)		
M1	Use of $v^2 = \omega^2 (a^2 - x^2)$ with $x = 1.5$ and their ω and a OR attempt an energy equation with the correct number of terms	
A1	$v = \sqrt{6}$ (2.4 or better)	
7(d)		
M1	Use of $x = a \sin(\omega t)$, with $x = 1.5$ and their ω and a	
A1ft	Correct equation. Ft their ω and a	
A1	t = 0.53 or better $(t = 0.533021)$	
ALT		
M1	Complete method using cosine.	
A1ft	Correct equation (or equations) follow through their ω and a	
A1	t = 0.53 or better $(t = 0.533021)$	