Question Number	Scheme	Marks
1.	$\omega = \frac{10\pi}{60} \text{ (rad s}^{-1}\text{)}$	B1
	$F = mg\mu$ (N)	B1
	$F = m \times 0.2 \left(\frac{\pi}{6}\right)^2 = \frac{m\pi^2}{180}$	M1A1ft
	$mg\mu \ge \frac{m\pi^2}{180}$	dM1
	$\mu_{\min} = \frac{\pi^2}{180g}, (0.0056, 0.00560)$	A1
		[6]
B1 B1 M1 A1ft dM1 A1	Correct angular speed in radians per second, seen anywhere Correct inequality or equation for Friction, seen or used anywhere Attempt the equation of motion along the radius. Must only contain friction and rest BOD unless clearly not friction). Allow with their ω or just ω . Correct equation. Follow through their ω Eliminate <i>F</i> and solve to find μ . Allow with an inequality or equation. Dependent of Correct answer, as shown or 2/3 sf decimal (0.00560). Must not be an inequality not	ultant force (give on previous M1. w.

Special Case: If $F \ge mg\mu$ or $F < mg\mu$ used, leading to $\mu = \frac{\pi^2}{180g}$ award max B1B0 M1A1

M1A0

<u>M3 2020 01 MS</u>

Questio n Number	Scheme	 Marks
2(a)	$v = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{(4x+3)}$	
	$\frac{\mathrm{d}t}{\mathrm{d}x} = 4x + 3$	
	$t = \int (4x+3) dx, = \frac{1}{2} \times 4x^2 + 3x + c$	M1,dM1A1
	OR $\int_{0}^{2} dt = \int_{0}^{x} (4x+3) dx$, $= \left\lfloor \frac{1}{2} \times 4x^{2} + 3x \right\rfloor_{0}$	
	c = 0 $t = 2 - \frac{1}{2} \times 4r^{2} + 3r = 2r^{2} + 3r = 2 - 0$	dM1
	$x = \frac{1}{2} (x = -2)$	Alcso (5)
(b)	$a = v \frac{dv}{dx} \qquad alt: a = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$	M1
	$=\frac{1}{4x+3} \times \frac{-4}{(4x+3)^2}$	dM1A1
	$ F = \frac{1}{2} \times \frac{4}{(2+3)^3} = \frac{2}{125} = 0.016 \mathrm{N}$	M1 A1cso (5)
(a)		[10]
M1	Rewrite as $\frac{dx}{dx}$ and separate variables to reach a form ready for integration	
dM1	<i>dt</i> Attempt the integration (at least one power going up).	
A1 dM1	Correct integration. Constant/limits not needed. Use $t = 2$ in their expression or substitute correct limits, and solve their 3 term q x. If solving an incorrect quadratic, evidence of a correct method must be seen. D	uadratic to find Depends on the
A1cso	previous with mark. Obtain $x = \frac{1}{1}$ (and raised 2 if seen) from completely correct work. Constant of i	ato motion monat
	basis here seen although we do not need to see avidence of evaluation	integration must
(b)		
M1	Use $a = v \frac{dv}{dr}$	
dM1	Differentiate the given expression for v and obtain an expression for a . We need	to see a power of
	2 (or a power of 3 if using $\frac{d}{dx} \left(\frac{1}{2}v^2\right)$). Depends on the previous M mark.	
A1 M1	dx (2)' Correct expression, any form. Use their acceleration in an equation of motion to obtain a value for <i>F</i> . Mass must be included and they must use their value of <i>x</i> . Independent, but must have found an expression for	
A1cso	Correct magnitude of F . Correct solution only. Can be fraction or decimal. Must	be positive.
3 (a)	$\angle PBA = 30^{\circ}$	B1

<u>M3 2020 01 MS</u>

Questio n Number	Scheme	Marks	
	$R(\uparrow) T\cos 30^\circ + R\cos 60^\circ = mg$	M1	
	NL2 horizontally: $T \cos 60^\circ + R \cos 30^\circ = mr\omega^2$, $= ma\omega^2 \cos 30^\circ$	M1A1,A1	
	$T = \frac{m\sqrt{3}}{2} \left(2g - a\omega^2\right)_{\text{o.e.}}$	dM1A1 (7)	
(b)	$R = 2mg - \frac{3m}{2}\left(2g - a\omega^2\right) = \frac{3ma\omega^2}{2} - mg$	M1A1	
	Use $R \ge 0$	M1	
	$\omega \ge \sqrt{\frac{2g}{3a}} *$	Alcso (4)	
(a)			
B1	Correct angle, seen explicitly, implied by a correct trig ratio, or used.]
M1	Attempt a vertical equation with 3 forces, T and R resolved. Angles can be algebra	raic. Condone	
M1	sin/cos confusion and use of the same angle for both forces.	Attempt at	
IVII	radius not needed. Angles can be algebraic. Condone sin/cos confusion and use c	of the same angle	
	for both forces.		
A1	Correct LHS		
AI dM1	Correct acceleration with correct radius (which might be seen later in part (a)). Eliminate R and solve to find expression for T . Depends on both previous M marks. Allow this		
UIVII	mark even if they have not found an angle.		
A1	Correct expression for T (any correct equivalent).		
(h)			
(0) M1	Attempt to obtain an expression in R. Independent of the M marks in (a), but must	st have come	
	from 2 equations in T and R .		
A1	Correct unsimplified expression in R		
M1 A1cso*	Obtain given result from fully correct working		
111050	Sound given result nom runy concer working.		

|--|

Question Number	Scheme	Marks
4(a)	$mg\sin\alpha \times \left(\frac{3l}{2} + e\right) = \mu mg\cos\alpha \times \left(\frac{3l}{2} + e\right) + \frac{1}{2} \times \frac{2mg}{l}e^2$	M1B1B1A1
	$\frac{3}{5}\left(\frac{3l}{2}+e\right) = \frac{4\mu}{5}\left(\frac{3l}{2}+e\right) + \frac{e^2}{l}$	
	$\mu = \frac{9l^2 + 6le - 10e^2}{4l(3l + 2e)} $	dM1A1cso (6)
(b)	$e = l \implies \mu = \frac{1}{4}$ or 0.25	B1
	$F = \frac{1}{5}mg$	B1ft
	Change in acceleration is due to change of direction of F	
	$F_1 = 2mg - mg\sin\alpha + F_r \left(=\frac{8}{5}mg\right) \text{ and } F_2 = 2mg - mg\sin\alpha - F_r \left(=\frac{6}{5}mg\right)$	M1
	Mag of change in accel = $\frac{F_1 - F_2}{m} = \frac{2g}{5} = 3.92 \text{ or } 3.9 \text{ (m s}^{-2}\text{)}$	M1A1 (5)
(a) M1	Attempt a work-energy equation with a GPE term, a single EPE term and the work λx^2	done against
	friction. (Allow $EPE = k \frac{m}{l}$)	
B1 B1	Correct EPE at C. (Ignore any extra EPE terms for this mark) Correct GPE	
Alft	Correct equation. Follow through their EPE and GPE terms providing they are of th	e correct form
dM1	At least one line of correct working to rearrange towards $\mu =$. They do not need to reach $\mu =$ for this mark	
A1cso*	Given result obtained with no errors seen and at least one line of correct rearrangem exactly as printed on paper.	nent. Must be
(b)		
B1 B1ft	Correct numerical value for μ seen anywhere in (b). This might be implied by later working. Correct value for <i>F</i> , seen anywhere in (b). Follow through their μ but must be dimensionally correct. μ	
M1	Attempt 2 equations of motion to find resultant force. (Use of $Change = 2F$) wou	ld imply this
M1	Subtract and divide by m to obtain the mag of the change in the acceleration.	
A1	Must be $\frac{2g}{5}$, or 3.9 or 3.92 (m s ⁻²)	

МЗ	2020	01	MS

Question Number	Scheme	Marks
5(a)	$3amg = \frac{1}{2}m \times 7ag - \frac{1}{2}mv^2$	M1A2
	$v^2 = ag v = \sqrt{ag}$	A1 (4)
(b)	$amg = \frac{1}{2}mw^2 - \frac{1}{2}m \times 7ag$	M1
	$w^2 = 9ag$	
	$T_1 - mg = \frac{mw^2}{4a}$	M1
	$T_1 = \frac{13mg}{4}$	A1
	Speed immediately after impact $=\frac{1}{2}\sqrt{ag}$	
	$4amg = \frac{1}{2}mV^2 - \frac{1}{2}m \times \frac{1}{4}ag$	M1
	$V^2 = \frac{33}{4}ag$	
	$T_2 - mg = \frac{mV^2}{4a}$	M1
	$T_2 = \frac{49}{16}mg$	A1
	$T_1: T_2 = \frac{13}{4}: \frac{49}{16} = 52: 49$	A1 (7)
(a)		[11]
M1	Energy equation from projection to reaching the ceiling. Must have at least one GPI	E term and 2 KE
A2	Correct equation1 for each error.	
A1cso (b)	Correct expression for <i>v</i> from fully correct work	
M1	Energy equation from the point of projection to <i>B</i> . Must have all required terms	
M1	Form equation of motion at <i>B</i> and eliminate w^2 to obtain an expression for T_1 Must	have attempted a
A1	velocity at <i>B</i> . Condone $r = a$. Correct expression for T_1	
M1	Form energy equation from leaving the ceiling to reaching <i>B</i> . Must have attempted restitution to find the initial speed for this equation. Condone $r = q$.	to use the coeff of
M1	Attempt an equation of motion at <i>B</i> and eliminate V^2 to obtain an expression for T_2 .	Must have
A1	attempted a velocity at B . Correct expression for T_2	
A1cao	Correct ratio. Question asks for simplest form, so must be 52:49 (Condone $\frac{52}{49}$)	

MJ ZUZU UI MJ	МЗ	2020	01	MS
---------------	----	------	----	----

Question Number	Scheme	Marks
	20(0.2 - r) = 20(0.2 + r)	
6(a)	$\frac{20(0.2-x)}{0.4} - \frac{20(0.2+x)}{0.4} = 0.4\ddot{x}$	M1A1
	$-100x = 0.4\ddot{x}$	
	$\ddot{x} = -250x$ \therefore SHM	dM1A1cso (4)
	\mathbf{p} : 2π	
(b)	$Period = \frac{1}{\sqrt{250}}$ oe	Blft (1)
	$\frac{2}{5} = 5 = e^{-1}$	D1
(C)	$v_{\rm max} = \frac{1}{0.4} = 5 {\rm m s}$	BI
	$a\omega = 5$ $a = \frac{5}{\sqrt{250}} = \frac{1}{\sqrt{10}} (= 0.3162) \mathrm{m}$	M1A1ft (3)
(d)	$x = a \cos \omega t$ $0.1 = \frac{1}{\sqrt{10}} \cos \sqrt{250t}$ or $x = a \sin \omega t$ $0.1 = \frac{1}{\sqrt{10}} \sin \sqrt{250t}$	M1A1ft
	$t = \frac{1}{\sqrt{250}} \cos^{-1} \left(0.1 \times \sqrt{10} \right) \text{ or } t = \frac{1}{\sqrt{250}} \sin^{-1} \left(0.1 \times \sqrt{10} \right)$	A1
	Time for which $AP > 0.5$	
	$=\frac{2\pi}{\sqrt{250}} - 2\frac{1}{\sqrt{250}}\cos^{-1}\left(0.1 \times \sqrt{10}\right) \text{ or } =\frac{\pi}{\sqrt{250}} + 2\frac{1}{\sqrt{250}}\sin^{-1}\left(0.1 \times \sqrt{10}\right)$	dM1
	= 0.2393s	A1cso (5) [13]
(a)		
M1	Attempt an equation of motion using a difference of 2 tensions obtained from Hook	e's law and
A1	naving different variable extensions. x or a allowed. Can be in algebraic form.	me direction as
AI	\ddot{x} Can be in algebraic form.	ine direction as
dM1	Rearrange their equation to the required form $\ddot{x} = -\omega^2 x$. Must be \ddot{x} They cannot i	just lose terms to
	get to the required form.	
A 1 ft	Correct equation, can be numerical as shown or algebraic $\left(\rho g \ddot{x} = -\frac{4\lambda}{2} x\right)$, an	d state
AIIt	$\begin{pmatrix} c.g. & ml \end{pmatrix}, ml \end{pmatrix}, ml \end{pmatrix}$	
	conclusion. If algebraic this must include stating that their " ω^2 " is positive.	
(b) D1ft	Competencied (annuarical) as charge an equivalent Fallow through their co from "	$\sim 1 \sim 2$
DIII	(0.40 or better) (0.40 or better)	$u = \perp w x$
(c)B1	Correct max speed, seen explicitly or used	
M1	Using $v_{\text{max}} = a\omega$ to obtain a value for a	
A1ft (d)	Correct value, exact or decimal (0.32 or better)	
M1	Use $x = a \cos \omega t$ or $x = a \sin \omega t$ with $x = \pm 0.1$, their ω, a .	
A1ft	Correct equation, follow through their ω, a	
A1	Correct expression for time from their choice of equation (if only decimal seen, awa	rd for 2sf or
dM1	Complete correct method to obtain the required time. Dependent on previous M mai	rk.
A1cso	Correct final answer. 2s.f. or better. Must have come from fully correct work in (a) a they might not have used \ddot{x}	and (d), although

L

|--|

Question Number	Scheme	Marks
7 (a)(i)	$V = \pi \int_{1}^{2} (x^{2} + 4)^{2} dx = \pi \int_{1}^{2} (x^{4} + 8x^{2} + 16) dx$	
	$=\pi \left[\frac{1}{5}x^5 + \frac{8}{3}x^3 + 16x\right]_1^2 = \frac{613\pi}{15} \text{ (cm}^3\text{)} \qquad \texttt{*}$	M1A1 A1cso
(ii)	$(\pi)\int_{1}^{2} x(x^{2}+4)^{2} dx = (\pi)\int_{1}^{2} (x^{5}+8x^{3}+16x) dx$	
	$= (\pi) \left[\frac{1}{6} x^{6} + 2x^{4} + 8x^{2} \right]_{1}^{2} \qquad alt(\pi) \left[\frac{(x^{2} + 4)^{3}}{6} \right]_{1}^{2}$	M1A1
	$\overline{x} = \frac{(\pi) \left[\frac{1}{6}x^6 + 2x^4 + 8x^2\right]_1^2}{\frac{613}{15}(\pi)} = \frac{\frac{129}{2}}{\frac{613}{15}} = 1.578 = 1.58 \text{ (cm)}$	M1dM1A1 (8)
(b)	Mass $\frac{613\pi}{15}M = 9\pi M = 45\pi M \left(36\pi + \frac{613\pi}{15}\right)M = \frac{1153\pi}{15}M$	B1
	Dist from $B = 0.578 = 0.5 = 0.5 = \overline{y}$	B1ft
	$\frac{613\pi}{15} \times 0.578 - 9\pi \times 0.5 + 45\pi \times 0.5 = \left(36\pi + \frac{613\pi}{15}\right)\overline{y}$	M1A1ft
	$\overline{y} = \frac{1249}{2306} = 0.5416 = 0.54$ (cm)	A1 (5)
		[13]

(a)(i)M1 A1 A1*cso	Attempt the squaring and integrating (at least one power going up). Allow w/o π Correct integration allow w/o π Correct volume, with no errors seen. (Must include π and no $V =$ w/o π must have been seen.)
(ii)M1	Attempt $\int x(x^2+4)^2 dx$. Must either expand or obtain $k(x^2+4)^3$. π not needed. Limits not needed
A1	Correct algebraic integration, π not needed. Limits not needed
M1	Substitute the (correct) limits in their integrated function. Independent, but must have been attempting $\int xy^2 dx$
M1	Divide the two integrals (correct way up). Depends on the 1st and 2nd M marks. π and ρ in both or neither.
A1	Correct final result. Must be 3 sf.
	(SC Correct answer with no algebraic integration shown can score M0A0 M1 M0A0)
(b)	
B1	Correct masses seen explicitly or in an equation.
B1ft	Correct distances from <i>B</i> (or any vertical axis). Follow through distance from (a).
M1	Form a moments equation, with lighter cylinder subtracted and the heavier one added
A1ft	Correct equation, follow through their distance from (a).
A1	Correct distance from <i>B</i> , 2 sf or better

Alt (b) Find mass and CoM of S_1 first

Mass = $\frac{478\pi}{15}M$ $CoM = \frac{287}{478} \approx 0.6004$

Award B1B1 when all component masses and distances are seen. Complete method needed for M1. Award first A1 for correct masses/distances initially used in forming both equations.

(Note: Use of 0.58 leads to $\overline{x} = 0.603$ (cm) for S_1 . This gives a final answer 0.543. If they give 0.54, award full marks, as premature approximation does not affect final answer, but penalise 0.543)

SC – If the use M and 5M for the masses, award max B0B1 M1A0A0