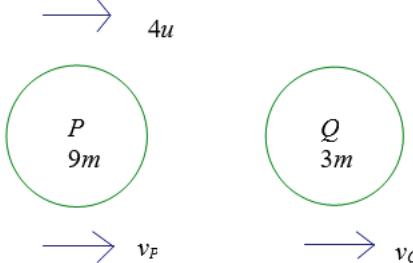


Question Number		Mark	Note
	Use the mass to determine which part of the system is being considered.		
1a	Equation of motion for the car and trailer or for each with T eliminated	M1	Need all terms. Dimensionally correct. M0 if they use power as a force. Condone sign errors.
	$F - 350 - 200 = (500 + 150)a$	A1	Correct unsimplified equation in F and a
	Use of $(F =) \frac{10500}{14} (=750)$ seen	M1	Independent M0 for just $14F = 10500$, with no subsequent working.
	$a = \frac{4}{13}$	A1	Accept 0.31 or better. 0.30769.....
		[4]	
1b	Equation of motion for the car or the trailer to give an equation in T and a only.	M1	Need all relevant terms. Dimensionally correct. M0 if they use power as a force. Condone sign errors.
	$T - 200 = 150 \times \frac{4}{13}$, or $750 - 350 - T = 500 \times \frac{4}{13}$,	A1ft	Correct unsimplified equation, follow their a .
	$T = \frac{3200}{13}$	A1	Accept 250 or better 246.15338.....
		[3]	
		(7)	

Question Number		Mark	Note
2a			
	Impulse momentum equation	M1	<p>Must be subtracting but condone subtraction in the wrong order</p> <p>Condone poor notation e.g. $\sqrt{29} = 2(3\mathbf{i} + \lambda\mathbf{j}) - 2(4\mathbf{i}) (= 2(-\mathbf{i} + \lambda\mathbf{j}))$</p>
	$(\mathbf{I} =) 2(3\mathbf{i} + \lambda\mathbf{j}) - 2(4\mathbf{i}) (= 2(-\mathbf{i} + \lambda\mathbf{j}))$	A1	<p>Correct unsimplified expression for \mathbf{I}</p> <p>Accept $2(\mathbf{i} - \lambda\mathbf{j})$</p>
	Correct use of magnitude for their impulse e.g. $29 = 4(1 + \lambda^2)$	M1	Allow with square roots on both sides
	$\lambda = 2.5$	A1	Or equivalent. Must be positive.
		[4]	
2b	<p>Correct use of trig or scalar product to find ratio for a relevant angle, for $4\mathbf{i}$ and their \mathbf{I}</p> <p>e.g. $\tan \theta = \pm \frac{2}{2\lambda}$ or $\pm \frac{2\lambda}{2}$ or equivalent sin or cos equation.</p>	M1	<p>M0 if they use $(3\mathbf{i} + \lambda\mathbf{j})$</p> <p>M0 for $\tan^{-1} \frac{2}{5} - \tan^{-1} 4$ or similar</p>
	<p>Correct ratio for a relevant angle</p> <p>e.g. $\tan \theta = \pm \frac{2}{5}$ or $\pm \frac{5}{2}$ or equivalent sin or cos equation</p> <p>e.g. $\cos \theta = \frac{-2}{\sqrt{29}}$</p>	A1ft	Follow their λ
	111.801409...° or 1.9513027.... radians	A1	Accept 110° or 2, 2.0 radians or better
		[3]	
		(7)	


Question Number		Mark	Note
	Accept column vectors throughout apart from in the answer to part (b).		
3a	Use of $\mathbf{a} = \frac{d\mathbf{v}}{dt}$ ($\mathbf{a} = 2\mathbf{i} + (2t-5)\mathbf{j}$) $t = 4 \Rightarrow \mathbf{a} = 2\mathbf{i} + 3\mathbf{j} (\text{ms}^{-2})$	M1 A1	At least two powers of t going down by 1. Isw if they find the magnitude.
		[2]	
3b	Use $\mathbf{r} = \int \mathbf{v} dt$ $\mathbf{r} = (t^2 + 3t + A)\mathbf{i} + \left(\frac{1}{3}t^3 - \frac{5}{2}t^2 - 15t + B\right)\mathbf{j}$	M1 A1	At least two powers of t going up by 1 Allow without constant of integration
	Use of $t = 1$, $\mathbf{r} = 6\mathbf{i} - 2\mathbf{j}$ to find the (vector) constant of integration	M1	$\left(1+3+A=6, \frac{1}{3}-\frac{5}{2}-15+B=-2\right)$ Must find A and B .
	$(t^2 + 3t + 2)\mathbf{i} + \left(\frac{1}{3}t^3 - \frac{5}{2}t^2 - 15t + \frac{91}{6}\right)\mathbf{j}$	A1	Cao (exact)
		[4]	
3c	Use the velocity and the direction to form an equation in T .	M1	Condone if 5 and -3 on the wrong sides of the equation.
	$-3 \times (2T + 3) = 5 \times (T^2 - 5T - 15)$ oe	A1	Correct unsimplified equation in T or t
	$5T^2 - 19T - 66 = 0$ $((5T+11)(T-6)=0)$ $\Rightarrow T = 6$	DM1	Simplify and solve for T , dependent on M1.
	Use of Pythagoras with their T : $v = \sqrt{(2 \times 6 + 3)^2 + (6^2 - 5 \times 6 - 15)^2}$	M1	Independent but not available if they have more than one positive T value.
	$v = \sqrt{306} (= 3\sqrt{34}) (\text{ms}^{-1})$	A1	Must be exact, accept either. Isw if they go on to give a decimal.
		[5]	
		(11)	

Question Number						Mark	Note
4a		<i>ABDE</i>	<i>BCD</i>	<i>PQR</i>	template	B1 B1	Correct mass ratios Correct distances from <i>BD</i> or from a parallel axis (Condone sign error)
	Mass	16	8π	2π	$6\pi+16$		
	From <i>BD</i>	$-a$	$\frac{16a}{3\pi}$	$\frac{8a}{3\pi}$	(d)		
	Moments about <i>BD</i> , using their table N.B. c of m of 'RH part' = $\frac{112a}{18\pi}$ then $\left(\frac{112a}{18\pi} \times 6\pi\right) - 16a = (6\pi+16)d$					M1	Allow use of a parallel axis. Dimensionally consistent terms. All terms required. Correct pairings Condone sign error(s)
	$-16a + 8\pi \times \frac{16a}{3\pi} - 2\pi \times \frac{8a}{3\pi} = (6\pi+16)d$					A1	Correct unsimplified equation for their parallel axis.
	$d = \frac{64a}{3(16+6\pi)} = \frac{32a}{3(8+3\pi)} *$					A1*	Obtain given answer from full and correct working. Need $d =$ not \bar{x}
	[5]						
4b	Vertical distance of c of m from <i>B</i> = $4a$					B1	Seen or implied
	Use of trigonometry to obtain a relevant angle $\tan \phi = \frac{32a}{3(8+3\pi) \times 4a}$ e.g. $\left(= \frac{8}{3(8+3\pi)} \right) \quad (= 0.153....)$					M1	M0 if they don't use $4a$
	$\phi = 8.7$					A1	8.7 or better (8.700966...)
	[3]						
4c	Moments about <i>B</i> or any other complete method to obtain in equation in <i>k</i> , <i>W</i> and <i>a</i> only. e.g. resolve horizontally (<i>X</i> = <i>W</i>) and					M1	All terms required. Terms dimensionally consistent. Condone sign

	vertically ($Y = (15 + k) W$) and Moments about another point.		errors.
	$\frac{32}{3(8+3\pi)} a \times 15W - 2akW = 8a \times W$	A1 A1	Unsimplified equation with at most one error Correct unsimplified equation
	$(k) = \frac{48 - 12\pi}{8 + 3\pi}$ or equivalent single fraction	A1	0.59 or better (0.59116.....)
		[4]	
		(12)	

Question Number		Mark	Note
5a	Correct use of Pythagoras e.g. $AC = \sqrt{(25a)^2 - (7a)^2} = 24a *$	B1*	Allow quotation of the Pythagorean triple without detailed working. Need 'AC =' B0 if error(s) in working e.g. $\sqrt{576a}$
		[1]	
5b	Moments about A or equivalent complete method.	M1	Dimensionally consistent. Condone sine/cosine confusion. Allow M1AOAO if a's never appear. M0 if they use 25a instead of 24a
	$W \times 15a \times \cos \theta = 24aN$	A1	Correct unsimplified equation
	$N = \frac{15}{25}W = \frac{3}{5}W *$	A1*	Obtain given answer from correct working. Must see use of $(\cos \theta =) \frac{24}{25}$
		[3]	
5c	Resolve vertically:	M1	First equation (enter first on ePEN). Condone sine/cosine confusion. Condone sign error.
	$R_A + N \cos \theta = W \left(R_A = \frac{53}{125}W \right)$	A1	Correct unsimplified equation
	Resolve horizontally:	M1	Second equation (enter second on ePEN). Condone sine/cosine confusion. Condone sign error.
	$F_A = N \sin \theta \left(= \frac{21}{125}W \right)$	A1	Correct unsimplified equation
	Alternatives for either of the above equations: Resolve perpendicular to the rod: $N + R_A \cos \theta = W \cos \theta + F_A \sin \theta$ Resolve parallel to the rod: $W \sin \theta = F_A \cos \theta + R_A \sin \theta$ M(C): $9a \times W \cos \theta + 24a \times F_A \sin \theta = 24a \times R_A \cos \theta$		

	$M(B): 6aN + 30a \times R_A \cos \theta = 30a \times F_A \sin \theta + 15a \times W \cos \theta$ $M(G): 15a \times F_A \sin \theta + 9aN = 15a \times R_A \cos \theta$		
	Use $F_A = \mu R_A$ to obtain an equation in μ only.	DM1	Substitute their values correctly, dependent on both M's, to obtain an equation in μ only. This mark is only available if they use the equations for which they have been awarded marks.
	$\mu = \frac{21}{53}$ or an equivalent fraction	A1	Accept 0.4, 0.40 or better (0.39622....)
		[6]	
		(10)	

Question Number		Mark	Note
6a			
	Use of CLM	M1	Need all terms. Dimensionally consistent Must be using the correct masses.
	$9m \times 4u = 9mv_P + 3mv_Q$	A1	Correct unsimplified equation
	Impact Law	M1	Used the correct way round ($v_{sep} = e \times v_{app}$)
	$v_Q - v_P = 4ue$	A1	Correct unsimplified equation
	Obtain $(v_Q) = 3u(1+e)$ *	A1*	Obtain given answer correctly with at least one line of intermediate working.
		[5]	
6b	$v_P = u(3-e) \left(= \frac{7}{3}u \right)$ or negative of these	B1	Seen or implied
	KE lost $= \frac{1}{2} \cdot 9m \cdot (4u)^2 - \frac{1}{2} \cdot 9m \cdot (v_P)^2 - \frac{1}{2} \cdot 3m \cdot (v_Q)^2$	M1	Correct form for KE. Need all terms. Condone subtraction the wrong way round i.e. all signs reversed.
	$= \frac{1}{2} \cdot 9m \cdot (4u)^2 - \frac{1}{2} \cdot 9m \cdot \left(\frac{7u}{3} \right)^2 - \frac{1}{2} \cdot 3m \cdot (5u)^2$ $(= 72mu^2 - 24.5mu^2 - 37.5mu^2)$ $(= 18mu^2(1-e^2))$	A1ft	Correct unsimplified expression in m and u only Follow their v_P
	$(k =) 10$	A1	cao
		[4]	

6c	$w = 5uf$ or $-5uf$	B1	Or equivalent. Seen or implied Condone a sign error here.
	$21mu = 3m \times 5u - 3m \times w$ ($w = -2u$)	M1	Impulse momentum equation. Dimensionally correct. Must be using $3m$. Condone sign error and in terms of e .
	$(f =) \frac{2}{5} \text{ oe}$	A1 cso	
		[3]	
		(12)	

Question Number		Mark	Note
7a	$F_{\max} = \frac{1}{3} \times 0.5g \times \frac{12}{13}$	M1	Use of $F = \mu R$. Allow $\cos \alpha$ Condone sine/cosine confusion
	Work done = $F_{\max} \times 5$	DM1	For their F_{\max} Dependent on previous M1
	Work done = 7.5 (J)	A1	7.5(J) or 7.54 (J) or $\frac{10g}{13}$ Not $\frac{98}{13}$ (follows substitution for g).
		[3]	
7b	Work-energy equation	M1	Need all terms. Condone sign errors and sine/cosine confusion.
	$\frac{1}{4}U^2 = \frac{1}{4} \cdot 26^2 + \frac{1}{2}g \cdot 5 \sin \alpha + \text{their WD}$	A1ft A1ft	Unsimplified equation with at most one error Correct unsimplified equation
	(U =) 27	A1	27 or 27.3 (2 sf or 3 sf)
		[4]	
7c	Use of $v = u + at$	M1	Complete method using suvat
	$-26 \sin \alpha = 26 \sin \alpha - gT \quad (20 = gT)$ OR $0 = 26 \sin \alpha \times T - \frac{1}{2}gT^2$ OR $T = 2 \times \frac{26 \sin \alpha}{g}$	A1	Correct unsimplified equation in T or t.
	(T =) 2.0	A1	2, 2.0 or 2.04 (2sf or 3sf)
		[3]	
7d	Use of $s = ut + \frac{1}{2}gt^2$	M1	Complete method for time to ground using suvat
	$-5 \sin \alpha = 26 \sin \alpha t - \frac{1}{2}gt^2$	A1	Unsimplified equation with at most one error

	$(t = 2.2177\dots)$	A1	Correct unsimplified equation
	ALT 1: time up + time down	M1	Complete method using suvat
	$\frac{26\sin\alpha}{g} + \frac{2}{g} \sqrt{\left(\frac{(26\sin\alpha)^2}{2g} + 5\sin\alpha\right)}$ $= (1.0204 + 1.1973)$	A1 A1	Unsimplified equation with at most one error Correct unsimplified equation
	Horizontal distance, $X = 26\cos\alpha \times t$ (53.22)	DM1	Use of $u \cos \alpha t$ or equivalent, dependent on M1.
	Total distance $= 5\cos\alpha + 26\cos\alpha \times t$ $= 58$ (m)	M1 A1	Use of: their $X + 5\cos\alpha$ 58 or 57.8 (2sf or 3sf)
		[6]	
		(16)	