Question Number	Scheme	Mark	S
1(a)	$\int k(3-t^2)\mathrm{d}t$	M1	
	$\int k(3-t^2)dt$ = $k(3t - \frac{1}{3}t^3) + (C)$ $t = 0, v = 0 \Rightarrow C = 0 \text{ and } t = 1.5, v = 13.5$	A1	
	$t = 0, v = 0 \Longrightarrow C = 0$ and $t = 1.5, v = 13.5$		
	OR $ \left[k(3t - \frac{1}{3}t^3) \right]_0^{1.5} = 13.5 $		
	$=> k(3\times1.5 - \frac{1}{3}\times1.5^3) = 13.5 => k = 4*$	A1*	
1(b)	. 1		(3)
1(0)	$s = \int 4(3t - \frac{1}{3}t^3) dt$	M1	
	$s = 4(3 \times \frac{1}{2}t^2 - \frac{1}{3} \times \frac{1}{4}t^4) = \frac{1}{3}t^2(18 - t^2) + D \text{ and } t = 0, s = 0 => D = 0$		
	OR $s = \left[4(3 \times \frac{1}{2}t^2 - \frac{1}{3} \times \frac{1}{4}t^4) \right]_0^t$		
	so $s = \frac{1}{3}t^2(18-t^2)$ *	A1*	
	Accept any equivalent factorised form e.g. $s = \frac{(18-t^2)t^2}{3}$		
4()			(2)
1 (c)	$v = 0 \Rightarrow (k)(3t - \frac{1}{3}t^3) = 0$	M1	
	t=3	A1	
	When $t = 3$, $s = 27$	M1	
	Total distance = 54 (m)	A1	(4)
	Notes for question 1		(4) (0)
1(a)	Notes for question 1 M1 Integrate <i>a</i> wrt <i>t</i> , with both powers increasing by 1		(9)
1(4)	A1 Correct integral		
	A1* k = 4 correctly obtained.		
	t = 0 and $v = 0$ must be referred to but do not need to be actually		
	substituted in.		
	We must see the substitution of 1.5 and 13.5		
1 (b)	M1 Integrate <i>their</i> v wrt t , with both powers increasing by 1, where v has		
	come from a valid attempt at an integral of a.		
	N.B. Allow without k being substituted. A1* Given answer correctly obtained including " s = "		
	Must see reference to $t = 0$, $s = 0$ but do not need to be actually		
	substituted in.		
1(c)	M1 Equate their v to 0 and solve for t		
	A1 cao		
	M1 Put their non-zero t, which must have come from $v = 0$, into s		

Question Number	Scheme	Marks
	A1 cao	
	N.B. $t = 3$ could come from a correct sketch of the graph of their v	

2.	$\frac{\mathrm{d}}{\mathrm{d}t}(4t^{\frac{1}{2}}\mathbf{i}-3t\mathbf{j})$	M1
	$2t^{-\frac{1}{2}}\mathbf{i} - 3\mathbf{j}$	A1
	$t=4$: $\mathbf{i}-3\mathbf{j}$	M1
	$(6\mathbf{i} - 3\mathbf{j}) = 3(\mathbf{v} - (\mathbf{i} - 3\mathbf{j}))$	M1
	$\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$	A1
	Speed = $\sqrt{3^2 + (-4)^2} = 5 \text{ (m s}^{-1})$	M1A1
		(7)
	Notes for question 2	
	N.B. Column vectors are acceptable throughout.	
2.	M1 for differentiating \mathbf{r} wrt to t with both powers decreasing by 1, must	
	be a vector. M0 if i or j is missing and never reappear(s).	
	A1 Correct vector	
	M1 for putting $t = 4$ in their v , allow a slip, must have attempted to	
	differentiate e.g. $\mathbf{v} = \frac{d\mathbf{r}}{dt}$ seen.	
	M1 for use of impulse-momentum (M0 if g included or 3 missing) to	
	form an equation in v only using their u, which must have come from an	
	attempt at finding a velocity at $t = 4$.	
	M0 if they use \mathbf{r} at $t = 4$.	
	Condone $(6\mathbf{i} - 3\mathbf{j}) = 3((\mathbf{i} - 3\mathbf{j}) - \mathbf{v})$ and a slip.	
	A1 correct v , seen or implied.	
	M1 Use of Pythagoras on their v	
	A1 cao from a correct v	

3(a)		arc AB	arc CD	AC + DB	L		
	Length:	$\pi(2a)$	πa	2a	$3\pi a + 2a$	B1	
	(mass) or ratios:	2π	π	2	$3\pi + 2$		
	Distance : from AB	$\frac{4a}{\pi}$	$\frac{2a}{\pi}$	0	d	B1	
	$\pi(2a) \times \frac{4a}{\pi}$	$\frac{a}{a} - \pi a \times \frac{2a}{\pi}$	$= (3\pi a + 2a)$)d		M1A1	
			$= (3\pi a + 2a)$ uivalent form	n with whole nur	nbers.	A1*	(5)
3(b)	tan OAG ($\alpha = \frac{\frac{66}{(3\pi + 1)}}{26}$	$\frac{a}{a+2)} = \frac{3}{(3\pi + 1)^2}$	2)		B1	(5)
	$\tan \theta = \tan \theta$	$n(45^{\circ}-\alpha)$	or $tan(\theta + a)$	α) = tan 45° or	$\tan\alpha = \tan(45^\circ - \theta)$	M1	
	$\tan \theta = \frac{1}{1}$	$-\tan \alpha$ + $\tan \alpha$	$\frac{\tan\theta + \tan\theta}{1 - \tan\theta}$	$\frac{\tan \alpha}{\tan \alpha} = 1$	$\tan \alpha = \frac{1 - \tan \theta}{1 + \tan \theta}$	D M1	
	Substitute	for $\tan \alpha$	e.g. $\tan \theta =$	$\frac{\tan \alpha}{\tan \alpha} = 1$ $1 - \frac{3}{(3\pi + 2)}$ $1 + \frac{3}{(3\pi + 2)}$		DM1	
	$\tan\theta = \frac{3\pi}{3\pi}$	$\frac{-1}{+5}$ (n		s and integers)		A1	
	OR						
	Let F be o	on <i>AE</i> wher	e <i>GF</i> is perp	endicular to AE.			
	GF = GE		FF			B1	
	$\tan \theta =$		$GE \sin 45^{\circ}$ $E - GE \cos 4$			M1	
		$=\frac{1}{2\alpha}$	$(2a-x)\sin^2(2a-x)\sin^$	$\frac{1}{x} \sin 45^{\circ}$		D M1	
		$=\frac{(2}{(2)^{2}}$	$\frac{\overline{a-x}}{(a+x)}$ where		is substituted in.	DM1	
		$=\frac{3\pi}{3\pi}$	$\frac{\tau - 1}{\tau + 5}$			A1	
							(5) (10)
			Notes fo	or question 3			(10)

3(a)	N.B. If they treat it as a lamina, can score max B0B0M1A0A0*
	B1 Mass (length) ratios
	B1 Distances from AB or a parallel axis
	M1 Moments about AB or parallel axis, dimensionally correct, condone
	sign errors, using their 'masses' and distances, including all terms.
	A1 Correct unsimplified equation
	N.B. Condone missing brackets on RHS here but penalise the A1*
	A1* Given answer correctly obtained with no errors seen
	N.B. Need to see reference to AC and DB , either in the table or in the
	equation.
3(b)	B1 Correct unsimplified expression for tan <i>OAG</i> , seen or implied
	N.B. B0 if they have $OAG = \theta$
	M1 Correct method seen or implied. May see arctan1 instead of 45°
	N.B. If their first line of working is:
	$\tan \theta = \tan 45^{\circ} - \tan \alpha$ oe, treat as a correct method but wrong formula.
	DM 1 Dependent on previous M for use of a correct formula used to
	give an equation in $\tan \theta$ and $\tan \alpha$ only
	DM 1 Dependent on previous M for substitution for their $\tan \alpha$ to give
	an equation in $\tan \theta$ only
	A1 cao. Must be simplified.

4(a)	20000		
4(a)	$F = \frac{20000}{V}$	M1	
	$F - 750g\sin\alpha - 200 = 0$	M1	
	$\frac{20000}{V} - 750g \sin \alpha - 200 = 0$	A1	
	Speed = $16 \text{ (m s}^{-1})$	A1	
			(4)
4 (b)	$D - 750g\sin\alpha - 200 = 750a$	M1	
	$\frac{20000}{10} - 750g\sin\alpha - 200 = 750a$	A1A1	
	$a = 1 \text{ (m s}^{-2})$	A1	
			(4)
4 (c)	$\frac{1}{2} \times 750 \times 10^2 - 750gh = 200d$	M1	
	$\frac{1}{2} \times 750 \times 10^2 - 750 gd \sin \alpha = 200 d$		
	OR	A1A1	
	$\frac{1}{2} \times 750 \times 10^2 - 750 gh = 200 \times \frac{h}{\sin \alpha}$		
	d = 30 (m)	A1	
			(4)
			(12)
	Notes for question 4		
4 (a)	M1 for use of $P = Fv$, condone wrong number of 0's		
	M1 for equation of motion with correct terms, condone sign errors and		
	\sin/\cos confusion, F does not need to be substituted		
	A1 Correct equation in V and α		
	A1 cao		
4.7	N.B. Allow use of $-F$ and/or $-V$ throughout.		
4(b)	M1 for equation of motion with correct terms, condone sign errors and		
	sin/cos confusion, <i>D</i> does not need to be substituted.		
	A1 correct equation in a only with at most one error		
	A1 correct equation in <i>a</i> A1 cao		
4(c)	M1 for work-energy equation, dimensionally correct, with correct terms,		
4(0)	condone sign errors and allow with h and d		
	N.B. Treat use of 16 instead of 10 an A error.		
	N.B. M0 for $\frac{1}{2} \times 750 \times 10^2 - 750gh = 200h$		
	A1 correct equation in d only or h only with at most one error		
	A1 correct equation in <i>d</i> only or <i>h</i> only A1 correct equation in <i>d</i> only or <i>h</i> only		
	A1 cao		
	111 000	1	

5(a)	$\rightarrow u \rightarrow 0$	
	$P(2m) \qquad Q(m) \qquad \rightarrow v_0 $	
	$P(2m) \qquad Q(m) \qquad \Rightarrow v_Q \qquad fv_Q \leftarrow \qquad fv_Q $	
	CLM: $2mu = 2mv_P + mv_Q$	M1A1
	NEL: $eu = -v_P + v_O$	M1A1
	~	
	$(v_Q =) \frac{2(1+e)u}{3} *$	A1*
		(5)
5(b)	e.g. $v_P = \frac{2(1+e)u}{3} - eu \left(= \frac{u}{3}(2-e) \right)$	B1
	KE After = $\frac{1}{2} \times 2m \left(\frac{u}{3} (2 - e) \right)^2 + \frac{1}{2} m \left(\frac{2(1 + e)u}{3} \right)^2$	M1A1
	$KE Loss = \frac{1}{2} \times 2mu^2 - \text{ their KE after}$	DM1
	$= \frac{1}{3}(1 - e^2)mu^2 \text{ so } k = \frac{1}{3}$	A1
		(5)
5(c)	$\frac{8mu}{9} = m \times \frac{2(1+e)u}{3} \qquad \mathbf{OR} \qquad -\frac{8mu}{9} = 2m\left(\frac{u}{3}(2-e) - u\right)$	M1
	$e = \frac{1}{3}$	A1
		(2)
5(d)	$\frac{2(1+e)uf}{3}$ seen or implied, e does not need to be substituted.	B1
	$\frac{2\left(1+\frac{1}{3}\right)uf}{3} = \text{their speed of } P, \text{ with their value of } e \text{ used to give an equation in } f \text{ only}.$	M1
	$f = \frac{5}{9} \text{ or } 0.625$	A1
	0	(3)
		(15)
	Notes for question 5	
5(a)	N.B. Mark CLM equation first.	1
	M1 for a CLM equation, dimensionally correct with correct no. of	
	terms, condone sign errors, consistent extra <i>g</i> 's or cancelled <i>m</i> 's A1 for a correct equation	
	M1 for a NEL equation, with e on the correct side, condone sign errors	+
	A1 for a correct equation, consistent with the CLM equation.	
	A1* for given answer correctly obtained, with at least one line of	1
	intermediate working.	
	N.B. Allow any fully factorised equivalent form.	
5(b)	B1 for a correct unsimplified expression in e and u for v_p seen or	

	implied.	_
	M1 for correct unsimplified expression, using their v_p and the given v_Q	\neg
	2	
	for KE after (must be adding the KE's)	
	A1 for a correct unsimplified expression for the KE After	
	DM1 for $\left(\frac{1}{2} \times 2mu^2 - \text{ their KE after}\right)$ using their v_P and the given v_Q ,	
	condone Final KE – Initial KE.	
	A1 Accept 0.33 or better.	
	N.B. Must be from correct working.	
5 (c)	M1 for a correct impulse-momentum equation for either <i>Q</i> or <i>P</i>	
	i.e. do NOT condone sign errors.	
	A1 Accept 0.33 or better.	
5(d)	B1 cao	
	M1 for equating their speeds of P and Q , with their e substituted, to	
	give an equation $\inf f$ only, allow slip when substituting in their e value,	
	provided the method is clear.	
	N.B. Must be using a value of e where $0 < e$,, 1	
	A1 Accept 0.63	

6(a)	$M(A)$, $S \times 1.5a = mga \cos \theta$	M1A1
	$S = \frac{2mg\cos\theta}{3} *$	
	3	A1*
	N.B. Allow RHS in any equivalent form with the same terms in any	
	order.	(3)
6(b)	$V = mg - S\cos\theta$	M1A1
	$*V = \frac{mg}{3}(3 - 2\cos^2\theta)$	A1*
		(3)
6 (c)	$\frac{4}{7}V$ seen or implied	B1
	7	
	Horizontal: $F = S \sin \theta$	
	Other possible equations:	
	Perp to rod: $F \cos \theta + V \sin \theta = mg \sin \theta$	M1A1
	Parallel to rod: $F \sin \theta + mg \cos \theta = V \cos \theta + S$	WITAI
	M(B): $F \times 2a \sin \theta + mga \cos \theta = V \times 2a \cos \theta + S \times 0.5a$	
	$M(C)$: $F \times 1.5a \sin \theta + mg \times 0.5a \cos \theta = V \times 1.5a \cos \theta$	
	$M(G)$: $Fa \sin \theta + S \times 0.5a = Va \cos \theta$	
	e.g. $\frac{4}{7} \times \frac{mg}{3} (3 - 2\cos^2 \theta) = \frac{2mg\cos\theta}{3} \times \sin\theta$	DM1
	Divide by $\cos^2 \theta$ to produce an equation in $\tan \theta$	DM 1
	$6 \tan^2 \theta - 7 \tan \theta + 2 = 0$	A1
		(6)
		(12)
	Notes for question 6	
6(a)	M1 for moments about A equation, dimensionally correct, correct no. of	
	terms, condone sin/cos confusion and sign errors N.B. M0 if a's missing	
	A1 for a correct equation (allow a different letter for S e.g. R_C provided	
	it's clear that $R_C = S$)	
	A1* for given answer correctly obtained including " $S =$ "but not	
	necessarily in the final line of working	
6(b)	M1 for resolving vertically, correct no. of terms, condone sin/cos	
	confusion and sign errors	
	A1 for a correct equation (allow a different letter for V e.g. R_A provided	
	it's clear that $R_A = V$)	
	A1* for obtaining the given answer from fully correct working	
	including " $V =$ " but not necessarily in the final line of working. N.B. If S is never seen, can score max M1A1A0*	
6(c)	N.B. The first 3 marks below can be earned if the 'equations' appear in	
	(a) or (b).	

B	1 $\frac{4}{7}V$ seen or implied	
of	If for another equation: either resolving or taking moments, correct no. If terms, dimensionally correct, condone sin/cos confusion and sign rors	
A	1 for a correct equation	
Di	M1, dependent on previous M, for substituting for V and S and using	
F	$T = \frac{4}{7}V$ to give an equation in θ and m or g or both only	
Di	M1, dependent on previous M, for dividing by $\cos^2 \theta$ and using	
se	$ec^2 \theta = 1 + tan^2 \theta$ to produce an equation in $tan \theta$	
	1 for answer, or an integer multiple of answer, correctly obtained	
N.	.B. Allow the terms in a different order.	

7(a)	Use of concernation of energy	M1
7(a)	Use of conservation of energy	M1
	$\frac{1}{2}m \times 20^2 - \frac{1}{2}mv^2 = mg \times 11$	A1
	$\frac{\frac{1}{2}m \times 20^2 - \frac{1}{2}mv^2 = mg \times 11}{\frac{1}{2}m \times 20^2 - \frac{1}{2}m(V^2 + (2V)^2) = mg \times 11}$	A1
	V = 6 *	A1*
		(4)
7(b)	At A , $12 30^{\circ}$	
	$S = \frac{12}{\cos 30^{\circ}} \qquad (8\sqrt{3})$ $\frac{1}{2}m \times 20^{2} - \frac{1}{2}mS^{2} = mgH \qquad (from O to A)$	M1A1
	$\frac{1}{2}m \times 20^2 - \frac{1}{2}mS^2 = mgH \qquad (from O \text{ to } A)$	
		M1A1
	OR $\frac{1}{2}mS^2 - \frac{1}{2}m \times (6^2 + 12^2) = mgh$ (from ht. 11m to A)	
	Solve for H or h (0.6)	DM1
	H = 10 m (2sf)	A1
		(6)
	OR	
	At A, $12 \to 30^{\circ}$ W $W = 12 \tan 30^{\circ} (4\sqrt{3}) \qquad (\mathbf{OR}: 12 = S \cos 30^{\circ} \mathbf{AND} W = S \sin 30^{\circ})$	M1A1
	$W^{2} = \left(20 \times \frac{4}{5}\right)^{2} - 2gH \qquad \text{(from } O \text{ to } A\text{)}$	
	OR $W^2 = (20^2 - 12^2) - 2gH$ (from <i>O</i> to <i>A</i>)	M1A1
	OR $W^2 = 6^2 - 2gs$ (from ht. 11m to A)	
	N.B. All 3 equations are using positive UP	
	Solve for <i>H</i> (10.4) OR $s = -0.6$ so height is $11 - 0.6 = 10.4$	DM1
	Height is 10 m (2sf)	A1
		(6)
	Notes for question 7	(10)
7(a)	M1 for an energy equation, dimensionally correct with correct terms, condone sign errors N.B. M0 if not using energy.	
	N.B. If clearly using V, must include both horizontal and vertical cpts. At correct equation in v. May find v first $(v^2 - 180)$	+
	A1 correct equation in v May find v first: $(v^2 = 180)$	
	A1 correct equation in V then $V^2 + (2V)^2 = 180$	1
	A1* for correct given answer correctly obtained, by putting $g = 10$,	

	cancelling <i>m</i> 's and solving for <i>V</i> .
7(b)	M1 for using perpendicularity at A to find S, the speed at A
	Condone sin/cos confusion.
	A1 for correct unsimplified speed
	M1 for complete method using energy to find an equation in <i>S</i> and <i>H</i> , or
	S and h, correct no. of terms, condone sign errors
	A1 correct equation without S replaced
	DM1, dependent on both M marks, solve for H
	A1 cao
	OR
	M1 for using perpendicularity at A to find W, the vertical velocity
	component at A.
	Condone 30° / 60° confusion.
	A1 for correct unsimplified vertical component. Allow + or
	M1 for complete method using <i>suvat</i> to find an equation in W and H,
	condone sign errors,
	N.B. They may find <i>t</i> first and then use that to form this equation.
	A1 correct equation without W replaced
	DM1, dependent on both M marks, solve for H
	A1 cao