1.	Gain in GPE = $2.6g \times 20 \sin \alpha \left(= 2.6g \times 20 \times \frac{5}{13} \right)$	M1	Or equivalent. Condone sine / cosine confusion
	$F_{\text{max}} = \frac{1}{5} \times 2.6g \cos \alpha \left(= \frac{1}{5} \times 2.6g \times \frac{12}{13} \right)$	M1	Or equivalent. Condone sine / cosine confusion
	Work done against friction = $20F_{\text{max}}$	M1	Follow their F_{max} . Must have an expression for F_{max} . Independent of the preceding M1
	Total work done = $2.6g \times 20\sin \alpha + 4 \times 2.6g \cos \alpha$	DM1	Dependent on preceding M marks Must be adding the two relevant expressions
	= 290(J)	A1	2 sf or 3 sf Do not ISW NB: Omission of g should be
		[5] (5)	marked as an accuracy error

2a	NB If they use $a = 0$ then max score is $1/7$	7 (3 rd M	1 only)
	Equation of motion for van + trailer:	M1	First equation: Dimensionally correct. Need all terms. In F or P . Condone sign errors.
	F - (500 + 200) = (900 + 300)a	A1	Correct unsimplified equation
	Equation of motion for the trailer	M1	Second equation: Dimensionally correct. Need all terms. In <i>F</i> or <i>P</i> . Condone sign errors. Correct mass
	T - 200 = 300a	A1	Correct unsimplified equation. Follow their <i>a</i> .
	Equation of motion for van $F - T - 500 = 900a$		There are 3 possible equations. They need 2 of them. M1A1 for each correct unsimplified equation.
	$F = \frac{18000}{12} (=1500)$	M1	Use of $P = Fv$ Need to have substituted relevant values Condone use of 18 in place of 18000 (or incorrect number of zeros)
	Solve for <i>T</i>	DM1	Dependent on previous 3 M marks
	T = 400	A1	Correct only
			NB: Inclusion of g should be marked as an accuracy error
		[7]	
2b	Equation of motion for van + trailer	M1	Dimensionally correct. Need all terms. Condone sign errors. Condone sine / cosine confusion Alt: Obtains separate equations for van and trailer and eliminates <i>T</i>
	$F - (200 + 500) - (300 + 900)g\sin\alpha = 0$ $\left(\frac{18000}{v} = 700 + \frac{1200g}{15}\right)$	A1 A1	Unsimplified equation in F or v with at most one error. Consistent trig confusion is one error. Consistent sign error is one error. Missing g is one error. Correct unsimplified equation in v Allow with trig value not
	v = 12 or v = 12.1	Al	substituted 2 sf or 3 sf
	, 1201, 1201	111	
		[4]	
		[4] (11)	

3a	Use $\mathbf{v} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}t}$	M1	Differentiate the vector. At least 3 powers going down			
	$\mathbf{v} = \left(3 - \left(t + 1\right)^{-\frac{1}{2}}\right)\mathbf{i} + \left(2t - 6\right)\mathbf{j}$	A1 A1	one component correct both components correct.			
	$(2t-6) = 0 \Longrightarrow t = 3$	M1	Equate their j component of velocity to zero and solve for <i>t</i> Must have seen a clear attempt to differentiate			
	Speed = $2.5(ms^{-1})$ or equivalent	A1	Must be a scalar. A0 for 2.5i			
		[5]				
3b	Use $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Differentiate the vector. Powers going down and at least one constant goes to zero.			
	$\mathbf{a} = \frac{1}{2} \left(t + 1 \right)^{-\frac{3}{2}} \mathbf{i} + 2\mathbf{j}$	A1	Or equivalent correct expression Allow if correct derivative implied by correct substitution			
	$\left(\mathbf{a} = \frac{4}{\sqrt{125}}\mathbf{i} + 2\mathbf{j}\right) \left \mathbf{a}\right = \sqrt{\frac{16}{125} + 2^2}$	DM1	Correct use of Pythagoras Dependent on the preceding M1			
	$= 2.03 \left(\text{m s}^{-2} \right)$ or better	A1	$\frac{2\sqrt{645}}{25}$ or 2.0317			
		[4]				
3c	For $\mathbf{r} = 0$, $(3t + 2 - 2\sqrt{t+1}) = 0$ and $(t^2 - 6t) = 0$	M1	No need to consider $t = 0$ as this is excluded in the Q			
	$t \neq 0 \Longrightarrow t = 6$ but $(3 \times 6 + 2 - 2\sqrt{6+1}) \neq 0$ Hence no solution and does not return	A1	Clear explanation of the given result with no errors seen. e.g. $(3t+2-2\sqrt{t+1})=0$			
			$\Rightarrow 9t^2 + 8t = 0$ has no solution for t > 0 (need something to indicate impossible)			
	There will be other alternatives e.g. Show that the horizontal component of the velocity is always > 2, so no return M1 for correct strategy A1 for correct conclusion with no errors seen and sufficient justification. Conclusion needs to be clear but does not need to be the exact work from the question.					
	An argument dependent solely on acceleration is unlikely to work – do send to review if you find one worthy of merit.					
		[2]				
		(11)				

NB: For the whole of this question, confus a misread	ion bety	ween horizontal and vertical is not
<i>x</i> = 3	B1	Seen or implied anywhere Do not accept $x = 3i$
Use of $v^2 = u^2 + 2as$	M1	Complete method using <i>suvat</i> or energy to form an equation in <i>y</i> . Condone sign errors
$15^2 = y^2 + 2 \times g \times 10$	A1	Correct unsimplified equation
$y^2 = 29, y = 5.4$ or 5.39	A1	2 sf or 3 sf. If final answer is $y = 5.4$ j do not penalise inclusion of a vector a second time.
	[4]	SC allow $4/4$ for $x\mathbf{i} + y\mathbf{j} = 3\mathbf{i} + 5.4\mathbf{j}$
	[4]	
<i>x</i> = 3	B1	Seen or implied anywhere Do not accept $x = 3i$
Equation for conservation of energy	M1	Require all 3 terms and no extras. Dimensionally correct. Condone sign errors. Must include <i>m</i>
$\frac{1}{2}m \times (3^2 + 15^2) = mg \times 10 + \frac{1}{2}m(x^2 + y^2)$	A1	Correct unsimplified equation – any equivalent form
$y^2 = 29, y = 5.4$ or 5.39	A1	2 sf or 3 sf. If final answer is $y = 5.4\mathbf{j}$ do not penalise inclusion of a vector a second time.
	[4]	
Time from <i>B</i> to <i>C</i> :	M1	Complete method using <i>suvat</i> and their vertical speed. Condone sign errors
-15 = 5.39 - gt ($t = 2.08$)	A1ft	Correct equation in t only e.g. $10 = 15t - \frac{1}{2}gt^2$ ft on their 5.39 if used
Horizontal distance	DM1	Complete method using <i>suvat</i> and
$= 3t (= their \ x \times their \ t)$		their x value. Dependent on preceding M1
(AC =) 6.2(m) or 6.24(m)	A1	2 sf or 3 sf NB Penalise over-accuracy only once per question
	[4]	
	ניין	
	a misread x = 3 Use of $v^2 = u^2 + 2as$ $15^2 = y^2 + 2 \times g \times 10$ $y^2 = 29, y = 5.4 \text{ or } 5.39$	a misread $x = 3$ B1 Use of $v^2 = u^2 + 2as$ M1 $15^2 = y^2 + 2 \times g \times 10$ A1 $y^2 = 29, y = 5.4 \text{ or } 5.39$ A1 $x = 3$ B1 Equation for conservation of energy M1 $\frac{1}{2}m \times (3^2 + 15^2) = mg \times 10 + \frac{1}{2}m(x^2 + y^2)$ A1 $y^2 = 29, y = 5.4 \text{ or } 5.39$ A1 $y^2 = 29, y = 5.4 \text{ or } 5.39$ A1 $1 = 15 = 5.39 - gt$ ($t = 2.08$) A1ft Horizontal distance DM1 $= 3t (= their x \times their t)$ DM1 $(AC =) 6.2(m) \text{ or } 6.24(m)$ A1

5a	Impulse-momentum equation.	M1	Dimensionally correct.
Ju	impulse memerican equation		Subtraction seen or implied.
			Condone subtraction in wrong
			order.
	(±I=)	A1	Or equivalent
			Ignore $4\sqrt{10}$ if seen here
	$2(\lambda \mathbf{i} + \lambda \mathbf{j}) - 2(4\mathbf{i}) (= (2\lambda - 8)\mathbf{i} + 2\lambda \mathbf{j})$		
	$(\mathbf{I} ^2 =) 160 = (2\lambda - 8)^2 + (2\lambda)^2$	DM1	Use of Pythagoras to obtain an
			equation in λ Dependent on the
			previous M1
	$(\Rightarrow 0 = \lambda^2 - 4\lambda - 12)$	A1	Or any correct unsimplified
		. 1	equation in λ
	$\Rightarrow (\lambda =) 6$	A1	Correct only.
	SC Allow 5/5 in (a) if working with -I. The	1	ose marks later.
		[5]	
5a	Form vector triangle for impulse or for	M1	Dimensionally correct. Must be
alt	momentum.		subtracting. Condone
	a a b b b b b b b b b b		subtraction in wrong order.
	Correct triangle	A1	8
			4\sqrt{10}
			$7 \qquad 7_{2\sqrt{2}\Delta}$
		DM1	e.g. ⁷ Use of Cosine Rule to obtain an
	$160 = 64 + 8\lambda^2 - 32\sqrt{2}\lambda \times \frac{1}{\sqrt{2}}$	DIVIT	equation in λ Dependent on the
			previous M1
	$\Rightarrow 0 = 8\lambda^2 - 32\lambda - 96$	A1	Or equivalent equation in λ
	$\Rightarrow (\lambda =) 6$	Al	Correct only
	$\Rightarrow (n-)^{\circ}$		
51.	I 4: + 12:	[5]	
5b	$\mathbf{I} = 4\mathbf{i} + 12\mathbf{j}$	B1ft	Follow their λ
			$(\mathbf{I} = (2\lambda - 8)\mathbf{i} + 2\lambda\mathbf{j})$
			B0 for a column vector. B0 if
			still in terms of lambda. Ignore
			second solution for negative
<u> </u>			lambda if seen
		[1]	
5c	$\tan \theta^{\circ} = \frac{12}{4} \text{ or } \cos \theta^{\circ} = \frac{16}{4 \times 4\sqrt{10}}$	M1	Correct use of trig or scalar
	$4 \qquad 4 \times 4\sqrt{10}$		product for the required angle
			with <i>their</i> I provided both
			components are non-zero
├	0.72	A 1	Do not allow for the reciprocal $72 \text{ are better } (715(505))$ from
	$\theta = 72$	A1	72 or better (71.56505) from
			correct work only
			Ignore second solution for
┝──┤		[2]	negative lambda if seen
		[2]	

6a		rectangle	triangle	lamina		
	area	$8ka^2$	$3ka^2$	$5ka^2$	B1	Correct area ratio seen or implied
	From AD	4 <i>a</i>	2 <i>a</i>	d	B1	Correct distances from <i>AD</i> or a
		1	1	11		parallel axis seen or implied.
						Condone if <i>d</i> not used
	Moments about AD					Or a parallel axis. Need all terms.
						Dimensionally consistent.
	2	2	2			Condone sign error.
	$8ka^2 \times 4a$	$-3ka^2 \times 2a$	$a = 5ka^2 \times a^2$	l	A1	Correct unsimplified equation
	26a = 5d	$\rightarrow d = \frac{26}{2}$	a *		A1*	Obtain given answer from correct
	200 50	\rightarrow $\frac{1}{5}$	л			working. Must obtain <i>d</i> =
					[5]	
		4 20				
6b	Moments	about <i>PS</i>			M1	Or a parallel axis. Need all terms.
						Dimensionally consistent.
						Must be using the 3 correctly with
						areas, so $5ka^2$, $15ka^2$, $15ka^2$ is M0.
						Allow a slip on one value.
					4.1	Condone sign error.
	$5k \times \frac{26}{a}a +$	$-2 \times 3 \times 4k \times$	4a = (5k +	$(24k)\overline{x}$	A1	Unsimplified equation with a slip
	5				A1	on at most one value
					AI	Correct unsimplified equation. Allow with common factors
						cancelled
	122				A1	Correct only
	$\overline{x} = \frac{122}{29}a$					
	$\overline{y} = ka$ $\tan \theta = \frac{122}{29k}$				B1	Distance from PQ seen or implied
					A1ft	Follow their \overline{x} . $\left(\frac{\overline{x}}{ka}\right)$
					[6]	
					(11)	
L						ıJ

7a	$\begin{bmatrix} D \\ \theta \\ 5a \\ T \\ 8a \\ V \\ 0 \\ 4a \\ 12W \\ H \end{bmatrix}$		NB: This is a "show that" question. The working must give a clear indication of where the lengths in the moments equation come from. Check the diagram. Could be resolving or using similar triangles. Might have resorted to using a calculator to evaluate the angles. Each term should include a trig ratio
	Moments about A	M1	Or an alternative complete method to form an equation in <i>T</i> . Condone sign errors and sine / cosine confusion. Need all terms and dimensionally consistent. (accept with no <i>a</i>)
	$12W \times 4a \sin \theta + W \times 8a \sin \theta = 5a \times T \sin 2\theta$ or $48aW \sin \theta + 8aW \sin \theta = 8aT \sin \theta$ $48aW \sin \theta + 8aW \sin \theta$ or $= 3aT \cos \theta + 4aT \sin \theta$ $\left(48 \times \frac{3}{5}W + 8 \times \frac{3}{5}W = T \times 10 \times \frac{3}{5} \times \frac{4}{5}\right)$	A1 A1	Unsimplified equation with at most one error Correct unsimplified equation Allow A1A0 if angle <i>DCB</i> used and not in terms of θ If no trig in the moments equation then M0 – given answer, so no BOD
	$56W = 8T \Longrightarrow T = 7W *$	A1*	Obtain given answer from correct working
7b	First equation e.g. resolve horizontally	[4] M1	Condone sign errors and sine / cosine confusion
	$(\pm)H = T\sin\theta \left(=\frac{21}{5}W\right)$	A1	Correct unsimplified equation Alt: resolving parallel to the rod: $13W \cos \theta = T \cos 2\theta + R \cos \alpha$
	Second equation e.g. resolve vertically	M1	Condone sign errors and sine / cosine confusion
	$(\pm)V + T\cos\theta = 13W\left(V = \frac{37}{5}W\right)$	A1	Correct unsimplified equation Alt resolving perpendicular to the rod: $13W \sin \theta = R \sin \alpha + T \sin 2\theta$
	Another alternative is to use a second more. e.g $M(C): 5a \times R \sin \alpha + W \times 3a \sin \theta = 12W$ $M(B): R \sin \alpha \times 8a + T \sin 2\theta \times 3a = 12W$	$W \times a \sin \theta$	θ
	$\alpha^{\circ} = \tan^{-1} \frac{3}{4} - \tan^{-1} \frac{H}{V}$ or $\tan^{-1} \frac{V}{H} - \tan^{-1} \frac{4}{3}$	DM1	Complete method to obtain α Dependent on the two preceding M marks Alt gives $R \sin \alpha = \frac{27}{25}W, R \cos \alpha = \frac{211}{75}$
	$\alpha = 7.3$	A1	7.29205 or better. Mark 0.127 radians as a misread
		[6]	

0	、 、	1	
8a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Use of impact law	M1	Used the right way round. Condone sign errors
	$\frac{3v-2v}{6u+u} = \frac{1}{3}$	A1	Correct unsimplified equation e.g. If see just $\frac{v}{5u} = \frac{1}{3}$ assume a sign slip and allow M1A0A0
	$v = \frac{7}{3}u$	A1	Correct only. CSO
		[3]	
8b	Use of CLM (or equal and opposite impulses)	M1	Dimensionally consistent. Need all terms. Condone sign errors. Condone one slip in matching speeds and masses. Condone consistent omission of <i>m</i> .
	6mu - kmu = 3kmv + 2mv or 6u - ku = 3kv + 2v	A1	Correct unsimplified equation Allow the marks if CLM stated correctly in (a) and used here.
	$6-k = 3k \times \frac{7}{3} + 2 \times \frac{7}{3}, 8k = \frac{4}{3}, k = \frac{1}{6}$	A1	Correct only from correct work only
		[3]	
0			
8c	This method looks at the total time betwee	en the tw	~~~~~
	Speed of Q after rebound = $f \times 3v (= f \times 7u)$	B1ft	Seen or implied ft is for correct use of their v
	t_P between collisions = $\frac{6d}{7 \times 2v} \left(= \frac{3d}{7v} = \frac{9d}{49u} \right)$	B1ft	Seen or implied For <i>P</i> distance $6d/7$ at $2v$ ft is for correct use of their <i>v</i>
	t_Q between collisions $= \frac{d}{3v} + \frac{d}{7 \times 3 fv}$ $\left(= \frac{d}{7u} + \frac{d}{49 fu}\right)$	M1	For Q distance d at $3v$ and distance $d/7$ at $3vf$
	$t_{Q} = t_{P} \Longrightarrow \frac{3d}{7v} = \frac{d}{3v} + \frac{d}{21fv}$	DM1	Equate times and solve for <i>f</i> Dependent on preceding M1
	$\frac{3}{7} = \frac{1}{3} + \frac{1}{21f}, \frac{2}{21} = \frac{1}{21f}, f = \frac{1}{2}$	A1	Correct only from correct working
		[5]	
	See over for alternatives		

8c	This method looks at the time between the co	Ilision	between Ω and the wall and the
alt	second collision between <i>P</i> and <i>Q</i>	11151011	between Q and the wall and the
un	Speed of <i>Q</i> after rebound		Soon or implied
	$= f \times 3v (= f \times 7u)$	B1ft	Seen or implied ft is for correct use of their v
	Distance apart when Q hits wall		Seen or implied ft is for correct use of their v
	$=d-\frac{14u}{3}\times\frac{d}{7u}\left(=\frac{d}{3}\right)$	B1ft	Distance moved by Q – distance
	3 7u (3)		moved by P
	t_p for extra distance		Additional time to second
	1	M1	collision = extra distance
	$=\frac{4d}{21}\div\frac{14u}{3}\left(=\frac{4d}{21}\div2v\right)$	111	divided by speed of P
	21 3 (21)		
	$t_Q = t_P \Longrightarrow \frac{4d}{21} \div \frac{14u}{3} = \frac{d}{7} \div 7uf$	DM1	Equate times to second collision
	$i_Q - i_P \rightarrow \frac{1}{21} \div \frac{1}{3} = \frac{1}{7} \div i_Q$	DIVIT	and solve for <i>f</i> Dependent on preceding M1
	12 1 1		
	$\frac{12}{3 \times 2 \times 49} = \frac{1}{49f}, f = \frac{1}{2}$	A1	Correct only from correct working
	3×2×49 495 2	[5]	working
8c	This method looks at how far <i>Q</i> travels after	[5]	l
alt	This method looks at now far Q travels after	the reot	Juna
un	Speed of <i>Q</i> after rebound		Seen or implied
	$= f \times 3v (= f \times 7u)$	B1ft	ft is for correct use of their v
	· · · · · · · · · · · · · · · · · · ·	B1	
	t_P between collisions $= \frac{6d}{7 \times 2v} \left(= \frac{3d}{7v} \right)$	DI	
	Distance travelled by Q if $f = 1$	M1	
	3d 9 d		
	$=\frac{3d}{7v}\times 3v=\frac{9}{7}d$		
	$f = \frac{\text{actual distance after rebound}}{0}$	M1	This is equivalent to
	$J = \frac{9}{7}d - d$		$\frac{3d}{7} \times 3v = \frac{d}{2} \times 3v + \frac{d}{21c} \times 3v$
	$\frac{-a}{7}$		$\frac{7v}{7v} \xrightarrow{5v} \frac{3v}{3v} \xrightarrow{5v} \frac{1}{21fv} \xrightarrow{5v}$
			or $\frac{9d}{7} = d + \frac{d}{7f}$
	=1	A1	v
	$=\frac{1}{2}$		
	_	[5]	
8c	This method looks at distances		
alt			
	Speed of Q after rebound	D10	Seen or implied
	$= f \times 3v \left(= f \times 7u\right)$	B1ft	ft is for correct use of their v
	If t_1 is the time for Q to the wall and t_2 is	B1	
	the time between wall and second collision		
	distance travelled by P is $(t + t)^{14}$		
	distance travelled by <i>P</i> is $(t_1 + t_2)\frac{14}{3}u$		

$(t_1 + t_2)\frac{14}{3}u = \frac{6}{7} \times 7ut_1$	M1	Equate distances for P and Q
Use $\frac{d}{7} = 7uf \times t_2$ and solve	M1	
Obtain $f = \frac{1}{2}$	A1	
	[5]	