Q	Scheme	Marks	Notes
1(a)	Expression for total KE before collision	M1	Dimensionally correct. Condone confusion between before and after for <i>A</i> . Allow if vectors seen in the working but the modulus is used correctly. The two parts must be added together Allow confusion of 2 kg and 3 kg
	$\frac{1}{2} \times 2 \times 5^{2} + \frac{1}{2} \times 3 \times (3^{2} + (-1)^{2})$	A1	correct unsimplified expression
	= 40 (J)	A1	cao
		(3)	
1(b)	2((3i+2j)-5j)	M1	change in momentum of <i>A</i> , must be a difference but allow subtraction in either order Must be using the correct mass, 2 kg
	=(6i-6j) (N s)	A1	Cao The final answer should be in terms of i and j because this is asked for in the question. Accept $2(3i - 3j)$ ISW
		(2)	
1(c)	impulse-momentum equation for <i>B</i>	M1	must use negative of their answer to (b) and the initial velocity of <i>B</i> Must be using the correct mass, 3 kg or CLM with correct terms (allow slip) and plus signs
	$3(\mathbf{v}_B - (3\mathbf{i} - \mathbf{j})) = (-6\mathbf{i} + 6\mathbf{j})$ or $2 \times 5\mathbf{j} + 3(3\mathbf{i} - \mathbf{j}) = 2(3\mathbf{i} + 2\mathbf{j}) + 3\mathbf{v}_B$	Alft	correct unsimplified equation ft on their impulse from (b)
	$\mathbf{v}_B = (\mathbf{i} + \mathbf{j}) \ (\mathbf{m} \ \mathbf{s}^{-1})$	A1	Cao Accept column vector ISW
		(3) (8)	

Q	Scheme	Marks	Notes
2(a)	$\frac{3}{4}t = \sqrt{2t+1}$	M1	Equate the two expressions Allow M1 only if they verify that it works for $k = 4$
	$9t^2 - 32t - 16 = 0$	A1	Correct 3 term quadratic In <i>t</i> or in <i>k</i> . Any equivalent form without the root
	$t = 4 \text{ or } -\frac{4}{9}, \text{ so } k = 4 \ k \ge 0 \ *$	A1*	Given answer for <i>k</i> correctly explained The Q asks for an explanation, so they must explain why they reject the negative root.
		(3)	
2(b)	Differentiate v to obtain a	M1	power decreasing by 1, condone incorrect chain rule
	$a = \frac{dv}{dt} = \frac{1}{2}(2t+1)^{-\frac{1}{2}} \times 2$	A1	Correct derivative (any equivalent form)
	When $t = 1.5$, $a = 0.5$ (m s ⁻²)	A1	cao
		SC	Allow M1A1A0 for correct differentiation seen as part of a vector approach
		(3)	
2(c)	$x = \int \sqrt{2t+1} \mathrm{d}t$	M1	Attempt to integrate: power increasing by 1 Must see working – the question excludes calculators for this step
	$=\frac{2}{3}(2t+1)^{\frac{3}{2}}\times\frac{1}{2} (+C)$	A1	Correct indefinite integral
	Correct use of correct limits	M1	Use of $t = 0$, $x = 0$ and $t = 4$ as limits in a definite integral or to obtain the constant of integration and hence x when $t = 4$ $(C = -\frac{1}{3})$ "Correct use" means (value when 4 substituted) – (value when 0 substituted)
	$x = \frac{26}{3}$	A1	Accept 8.7 or better
	$\int \frac{3}{4}t \mathrm{d}t$	M1	Attempt to integrate: power increasing by 1 Must see working – the question excludes calculators for this step NB It is correct to use <i>suvat</i> in place of this second interval, but if they do then M1 includes use of the correct initial speed (3 ms ⁻¹)
	$=\left[\frac{3}{8}t^{2}\right]_{4}^{8}$	A1	Correct definite integral. Accept $\frac{3 \times 64}{8} - \frac{3 \times 16}{8}$ or equivalent unsimplified expression
	Total = $\frac{80}{3}$ (m) (=18 (m))	A1	Accept 27 or better $(26.\dot{6})$
		SC	Correct integration seen as part of a vector approach can score M1A1M0A0M1A0A0
		(7)	
		(13)	

Q		Scheme			Marks	Notes
3 (a)	Large disc	Small disc	Template			correct area ratios and distances seen
	πR^2	πr^2	$\pi R^2 - \pi r^2$		B1	or implied
	0	R-r	$\pm kr$			Allow $+ kr$ or $-kr$
	Moments about axis through X				M1	Or moments about a parallel axis. Need all terms but condone sign errors Do not need to see the zero term Dimensionally consistent Could be part of a vector equation
	Moments about diameter throut	$r^{2} \times (R - r) = (\pi$ at the left-hand agh X and Y giv $2R - r) = \pi (R^{2})$	end of the ves:		A1	Correct unsimplified equation Do not need to see the zero term Must be using $-kr$ (unless they have changed the sign on the left-hand side)
	$r = \frac{k}{1-k}R *$				A1*	Obtain given answer from correct working e.g. via $\frac{r}{R+r} = k$ If they use \overline{x} in place of $\pm kr$ and
						If they use \overline{x} in place of $\pm kr$ and never substitute $\pm kr$ they can score B0M1A0A0
					(4)	
3(b)	$0 < \frac{k}{1-k}R < R$	2			M1	use of correct inequality
	(0 <)k < (1 - k)	$) => (0 <)k < \frac{1}{2}$			A1	Correct only Only need the right-hand value. A0 with an incorrect left hand value
					(2)	
3(c)	$k = \frac{4}{9} \Longrightarrow r = \frac{4}{5}$	$\frac{1}{5}R$			B1	Seen or implied (this mark could be implied by the correct expression for $\tan \alpha$ in terms of k)
	$\tan \alpha = \frac{R}{kr} \left(= \frac{1-k}{k^2} \right)$	$=\frac{R}{\frac{4}{9}\times\frac{4}{5}R}=\frac{45}{16}$			M1	Correct use of trig in a correct triangle Available for finding 90 - α
	$\alpha = 70^{\circ}$,			A1	or better (70.426) Accept 109.6, 250.4 and 289.6
					(3)	

Q	Scheme	Marks	Notes
3(d)	Moments about an axis through <i>P</i>	M1	dimensionally consistent, condone sign errors and missing g throughout The equation should be of the form $M_1gR = Mg \ge a$ distance(in r or R) Moments about any other axis requires use of the forces acting at P
	M(P), $M_1gR = Mg \times \frac{4}{9}r$ Or $M_1gR = Mg \times \frac{16}{45}R$	A1	correct unsimplified equation in r and / or R
	$M_1 = \frac{16}{45}M$	A1	Accept 0.36 <i>M</i> or better
		(3)	
		(12)	

M2_2024_06_MS

Q	Scheme	Marks	Notes
4(a)	$F = \frac{1}{7} \times mg \cos \alpha \left(= \frac{1}{7} \times mg \times \frac{4}{5} \right)$	M1	condone sin/cos confusion
	$=\frac{4mg}{35}*$	A1*	obtain given answer from correct working Correct trig value must be seen as it is a given answer – could be against the Q
		(2)	
4(b)	Energy equation: PE gain + WD against Fr = KE lost or equivalent	M1	NB: The question tells them to use work-energy. Need all terms, dimensionally correct but condone sign errors. Condone sine / cosine confusion
	$\frac{4mgd}{35} + mgd\sin\alpha = \frac{1}{2}m \times 10ag$ Or $\frac{4mgd}{35} + mgd \times \frac{3}{5} = \frac{1}{2}m \times 10ag$	A1 A1	unsimplified equation with at most one error correct unsimplified equation
	d (= AB) = 7a	A1	cao
		(4)	
4(c)	Energy equation	M1	NB: The question tells them to use work-energy. Need all terms, dimensionally correct but condone sign errors
	$\frac{4mg}{35} \times 14a = \frac{1}{2}m \times 10ag - \frac{1}{2}mV^{2}$ $4mg = -\frac{3}{2}mV^{2}$	A1ft	unsimplified equation with at most one error, ft on their <i>AB</i> correct unsimplified equation
	or $\frac{4mg}{35} \times 7a = mg \times 7a \times \frac{3}{5} - \frac{1}{2}mV^{2}$ or $\frac{4mg}{35} \times d = mg \times d \times \frac{3}{5} - \frac{1}{2}mV^{2}$	Alft	Allow A1A1 if they have substitued for g
	$V = \sqrt{\frac{34ag}{5}}$	A1	accept 2.6 \sqrt{ag} , $\sqrt{6.8ag}$ or better. Accept $\sqrt{\frac{170ag}{25}}$
		(4)	
		(10)	

Q	Scheme	Marks	Notes
5(a)	$ \begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & & &$		
	Use of CLM (or equal and opposite impulses):	M1	correct no. of terms, dim correct, condone sign errors
	mu = -mv + 2mw	A1	Or equivalent
	Use of NEL:	M1	correct way round, condone sign errors
	eu = v + w	A1	Or equivalent
	Solve for <i>v</i>	DM1	Dependent on both preceding M marks
	$v = \frac{u(2e-1)}{3}$	A1	Or equivalent
	<i>v</i> consistently in the wrong direction gives $v = \frac{u(1-2e)}{3}$		Mark as a misread and allow M1A0M1A0M1A1, but full marks if they later take account of the change in direction to give the correct final answer
	If the direction of <i>v</i> is correct in one equation and incorrect in the other then mark as seen		
		(6)	
5(b)	NEL at the wall: $x = \frac{1}{3}w$	B1	Allow + / -: they might be working with velocities
	$w = \frac{u(e+1)}{2}$	B1	Or equivalent expression for <i>w</i>
	$\frac{1}{3} \times \frac{u(e+1)}{3} > \frac{u(2e-1)}{3}$	M1	use of <i>their</i> $x >$ <i>their</i> v
	$e < \frac{4}{5}$	A1	cao
	$\frac{1}{2} < e < \frac{4}{5}$	A1	cao
		(5)	
		(11)	

Q	Scheme	Marks	Notes
6(a)	$S \longleftrightarrow B$ R M M M M M M M M		
	$F = \frac{1}{3}R$	B1	For a correct statement seen anywhere e.g. on a diagram
either	Horizontal forces: $S = F\left(=\frac{1}{3}mg\right)$	B1	
	Equation for M(<i>A</i>)	M1	need correct terms, condone sign errors and sin/cos confusion. Condone <i>a</i> missing throughout.
	$S \times 2a \cos \alpha = mga \sin \alpha$	A1	Correct unsimplified
or	R = mg	B1	
	Equation for M(<i>B</i>)	M1	need correct terms, condone sign errors and sin/cos confusion. Condone <i>a</i> missing throughout.
	$F \times 2a \cos \alpha + mga \sin \alpha = R \times 2a \sin \alpha$	A1	Correct unsimplified
or	$S = F\left(=\frac{1}{3}mg\right)$	B1	
	Equation for $M(G)$	M1	need correct terms, condone sign errors and sin/cos confusion. Condone <i>a</i> missing throughout.
	$Fa\cos\alpha + Sa\cos\alpha = mga\sin\alpha$	A1	Correct unsimplified
SC	$S = F(=\frac{1}{3}mg)$ or $R = mg$ and no moments equation	B1	And no further marks
	Solve for $\tan \alpha$	M1	
	$\tan \alpha = \frac{2}{3} *$	A1*	Obtain given answer from correct working
SC	A candidate who never uses <i>g</i> can score B1B0M1A0M1A0		
		(6)	

M2_2024_06_MS

6(b) $N \leftarrow B$ $F \leftarrow M$ R	
eitherUse of $R = mg$ and $M(A)$ M1	
	a
AI Contect only	
Resolve horizontally: $kmg = \frac{1}{3}R + N$ and solve for k DM1 DM1 DM1 DM1	
$k = \frac{2}{3}$ A1 correct equation	
or M(A) and M1 need correct terms, condone sign errors sin/cos confusion. Condone a missing throughout.	and
$mga \sin \alpha = N \times 2a \cos \alpha \qquad A1 \qquad Correct unsimplified equation$	
Resolve horizontally : $kmg = \frac{1}{3}R + N$ and use $R = mg$ and $\tan \alpha = \frac{2}{3}$ to solve for k DM1 DM1 DM1 DM1 DM1 DM1 DM1 DR could use a second moments equation	n
$k = \frac{2}{3}$ A1 Correct only	
or $M(B)$,M1need correct terms, condone sign errors sin/cos confusion. Condone a missing throughout.	and
$mga \sin \alpha + kmg \times 2a \cos \alpha$ = $R \times 2a \sin \alpha + \frac{1}{3}R \times 2a \cos \alpha$ A1	
Use of $R = mg$ and $\tan \alpha = \frac{2}{3}$ to solve for k DM1 Dependent on the moments equation OR could use a second moments equation	n
$k = \frac{2}{3}$ A1 Correct only	
	1
or $M(G)$,M1need correct terms, condone sign errors sin/cos confusionNaccos $\alpha + kmaa cos \alpha = Rasin \alpha + Faccos \alpha$ A1Correct unsimplified equation	and
$Na \cos \alpha + kmga \cos \alpha = Ra \sin \alpha + Fa \cos \alpha \qquad A1 Correct unsimplified equation$	
Resolve horizontally : $kmg = \frac{1}{3}R + N$ and use $R = mg$ and $\tan \alpha = \frac{2}{3}$ to solve for k DM1 Dependent on the moments equation OR could use a second moments equation	'n
$k = \frac{2}{3}$ A1 Correct only	
(10)	

Q	Scheme	Marks	Notes		
7(a)	Horizontal distance	M1	equation with correct terms, condone sign errors		
	2ut = 80	A1	correct equation		
	Vertical distance or vertical speed	M1	equation with correct terms, condone sign errors		
	$0 = ut - \frac{1}{2}gt^2$	A1	correct equation in t Alternatives include $-u = u - gt$ or $0 = u - g \frac{1}{2}t$		
	Solve for u $\left(\text{e.g. } u \times \frac{80}{2u} = \frac{1}{2}g\frac{80^2}{4u^2}\right)$	DM1	Dependent on the two previous M marks		
	$u = 14^*$	A1*	obtain given answer correctly		
	If they consistently have u horizontal and $2u$ Fortuitously, they do obtain the given answe		vertically, then mark as a misread. M1A0M1A0M1A1		
		(6)			
7(b)	$v^2 = (7\sqrt{17})^2 - 28^2$	M1	form an equation in v only (v is vertical component)		
	=> v = 7 (or -7)	A1	second value not needed		
	Use of <i>suvat</i> to find the required time Check their logic. Have they found the time speed is $< 7\sqrt{17}$ or the time the speed is $> 7\sqrt{17}$?	DM1	Dependent on the first M mark. Complete method to obtain the required time. condone sign errors		
	is $> 7\sqrt{17}$? $7 = 14 - gt \implies t = \frac{5}{7} = 0.71$	A1	Obtain a relevant value of <i>t</i>		
	Total time = $2 \times \frac{5}{7} = 1.4$ or 1.43 (s)	A1	For the required time to 2 sf or 3 sf A0 for $\frac{10}{7}$; follows the use of an approximate value for g		
	The misread from (a) will give $v = \pm \sqrt{637} = \pm 7\sqrt{13}$ (±25.2), critical value of time $t = 0.282$, required time 0.56 (s)	(5)	No further penalty for the misread if the penalty is already applied in (a)		
		(5)			

7(b) alt	$\frac{1}{2}m(28^2+14^2) - \frac{1}{2}m(7\sqrt{17})^2 = mgh$	M1	form an equation in <i>h</i> only
	=> <i>h</i> = 7.5	A1	Correct only
	Use of <i>suvat</i> to find the required time Check their logic. Have they found the time speed is $< 7\sqrt{17}$ or the time the speed is $> 7\sqrt{17}$?	DM1	Dependent on the first M mark. Complete method to obtain the required time, condone sign errors
	$7.5 = 14t - \frac{1}{2} \times 9.8t^2 \Rightarrow t = \frac{5}{7}, t = \frac{15}{7}$	A1	Obtain at least one relevant value for <i>t</i>
			For the required time to 2 sf or 3 sf
	Total time $=\frac{20}{7} - \left(\frac{15}{7} - \frac{5}{7}\right) = 1.4 \text{ or } 1.43(\text{s})$	A1	A0 for $\frac{10}{7}$; follows the use of an approximate
			value for g
	The misread from (a) will give the same value for h (7.5), $t = 5.43$ and $t = 0.28$, so required time 0.56 (s)		
		(5)	
7b alt	Use $7\sqrt{17}$ to form an equation in <i>t</i> only	M1	
	$=>7\sqrt{17}=\sqrt{\left(14-gt\right)^2+28^2}$	A1	Or equivalent
	Solve to find the required time Check their logic. Have they found the time speed is $< 7\sqrt{17}$ or the time the speed is $> 7\sqrt{17}$?	DM1	Dependent on the first M mark. Complete method to obtain the required time, condone sign errors
	$147 = 2gt - g^2 t^2 \implies t = \frac{5}{7}, t = \frac{15}{7}$	Al	Obtain at least one relevant value for <i>t</i>
	Total time = $\frac{20}{7} - \left(\frac{15}{7} - \frac{5}{7}\right) = 1.4$ or 1.43(s)	A1	For the required time to 2 sf or 3 sf A0 for $\frac{10}{7}$; follows the use of an approximate
			value for g
		(5)	
		(11)	