Question	Scheme	Mark	Notes	
1	Accept column vectors throughout this question			
1a	Differentiate r (both components)	M1	In each component at least one power going down by 1	
	$\mathbf{v} = \left(4t^3 - 16t\right)\mathbf{i} + \left(12t - 3\sqrt{t}\right)\mathbf{j}$	A1	Accept as two separate components	
	Equate i component of v to zero and solve for <i>t</i>	DM1	Dependent on the first M1. Must start with a component of the vector for v Can have more than one value at this stage.	
	Obtain $(24-3\sqrt{2})\mathbf{j} (\mathbf{m} \mathbf{s}^{-1})$	A1	Accept $20j(ms^{-1})$ or better. (19.757359) Correct answer only Answer must be a vector	
		[4]		
1b	Differentiate v (both components)	M1	For differentiating their v , even if the method for obtaining it was incorrect. Their v must be a vector. In each component at least one power going down by 1	
	Obtain $\mathbf{a} = (12t^2 - 16)\mathbf{i} + (12 - \frac{3}{2}t^{-\frac{1}{2}})\mathbf{j}$	A1	Any equivalent form for acceleration	
	Obtain $176i + \frac{45}{4}j(ms^{-2})$	Al	Accept $180\mathbf{i} + 11\mathbf{j} (m s^{-2})$ or better ISW	
		[3]		
		(7)		

Question	Scheme				Mark	Notes
2a		PQUY	RSTU	VWXY		
	Mass	$16a^2$	$2 \times 4a^2$	$2 \times 4a^2$	B1	Correct mass ratios (accept
	From				B1	2:1:1)
	PX	2 <i>a</i>	5 <i>a</i>	а		Correct vertical distances
	Moments about <i>PX</i> or a parallel axis			llel axis	M1	Dimensionally correct
						equation.
						All terms required
						Allow for an equation within a
	$16a^2 \times 2a + 8a^2 \times 5a + 8a^2 \times a = 32a^2d$					vector equation. Correct unsimplified equation
				$= 520 \ u$	A1	Allow for an equation within a
	(=(16-	$+8+8)a^{2}$	(d)			vector equation.
	or equivalent for a parallel axis					Could have y for d here o.e.
					A1*	Obtain given answer from
	80a = 52c	$80a = 32d \Longrightarrow d = \frac{5}{2}a *$				correct working. At least one
						stage of simplifying the
						moments equation is required.
						e.g. $32a^3 + 40a^3 + 8a^3$ seen,
						or they might have simplified the mass ratios at the start.
						Must get to $d = \dots$ in the final
						line $u = \dots$ in the final
				[5]		
2b	Moments	about PQ	or a para	llel axis	M1	Dimensionally correct
						equation.
						All terms required
	$16a^2 \times 2a + 8a^2 \times 3a + 8a^2 \times 5a$				A1ft	Unsimplified equation with at
	=(16+	$(8+8)a^2 \times$	h		A1	most one error. Follow their mass ratios.
	``	lent for a p		kis		Correct unsimplified equation
	$\Rightarrow h = 3a$	*			A1	<i>a</i> from <i>YT</i> , 3 <i>a</i> from <i>XW</i>
	The working for the first 4 marks must be seen or used in part (b)					·
		se of trig. t			M1	With their 3a e.g.
	of a releva	of a relevant angle.				$\tan \theta = \frac{3}{2}$
						$\tan\theta = \frac{3}{4 - \frac{5}{2}}$
	$\tan \theta = 2$				A1	Correct only
					[6]	
2c	Complete	method to	o obtain a	n	M1	e.g. Moments about Q
	equation i	n M and F	7			Dimensionally correct
		· -				equation.
	$3a \times Mg =$	$=4a \times F$			A1	Correct unsimplified equation
						Condone if <i>a</i> missing
		2			A1	throughout Correct only
	$F = \frac{2}{2}$	$\frac{1}{1}Mg$			AI	Contectomy
		+			[3]	
<u> </u>					(14)	

Question	Scheme	Mark	Notes
3	Form impulse-momentum equation	M1	Dimensionally correct.
			Accept answers in "vector" form, or as
			separate components. Condone sine /
			cosine confusion.
	One correct equation	A1	e.g. one correct component of
			$\begin{bmatrix} I\cos 60^{\circ}\\ I\sin 60^{\circ} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 12\cos\alpha\\ 12\sin\alpha \end{bmatrix} - \begin{bmatrix} 8\\ 0 \end{bmatrix}$
			$\left[\left(I \sin 60^{\circ} \right)^{-} 4 \left[\left(12 \sin \alpha \right) \left(0 \right) \right] \right]$
			$\left(\left(3\cos\alpha - 2 \right) \right)$
			$ \begin{pmatrix} = \begin{pmatrix} 3\cos\alpha - 2\\ 3\sin\alpha \end{pmatrix} \end{pmatrix} $
			$(L\cos 60^\circ)$ $1[(v) (8)]$
			$ \begin{pmatrix} I\cos 60^{\circ} \\ I\sin 60^{\circ} \end{pmatrix} = \frac{1}{4} \begin{bmatrix} v_x \\ v_y \end{bmatrix} - \begin{pmatrix} 8 \\ 0 \end{bmatrix} $
			$\left(\left(3\cos\alpha - 2 \right) \right)$
			$ \begin{pmatrix} = \begin{pmatrix} 3\cos\alpha - 2\\ 3\sin\alpha \end{pmatrix} \end{pmatrix} $
			if working parallel and perpendicular to the initial direction
			or one of $8\sin 60^\circ = 12\cos(30^\circ + \alpha)$
			or $I = 0.25(12\sin(30^\circ + \alpha) - 8\cos 60^\circ)$
			if working parallel and perpendicular to the impulse
	Form a second impulse-momentum	M1	
	equation		
	correct second equation	A1	
	Complete method to solve for <i>I</i>	DM1	Dependent on the two preceding M marks. e.g. from
			$36 = (I+4)^2 + 3I^2 (4I^2 + 8I - 20 = 0)$
	$I = \sqrt{6} - 1$ (or 1.45 or 1.4)	A1	
		[6]	
3	2	M1	Use of $I = mv - mu$ to draw a vector
alt			triangle. Dimensionally consistent.
	120° I 3	A1	Correct diagram
	Form an equation in <i>I</i>	M1	e.g. by using cosine rule
	$4 + I^2 - 4I\cos 120^\circ = 9$	A1	Correct unsimplified equation
			A correct cosine rule equation can imply the first M1A1 if no diagram seen
	Solve for <i>I</i>	DM1	Dependent on the 2 preceding M marks $I^2 + 2I - 5 = 0$
	$I = \sqrt{6} - 1$ (or 1.45 or 1.4)	A1	
<u> </u>		(6)	
			<u> </u>

Question	Scheme	Mark	Notes
4a	$-\sqrt{32}\sin 45^\circ$	M1	Complete method using suvat
	$4 - gT_1 = 0$ or $T_1 = \frac{\sqrt{32}\sin 45^\circ}{g}$		
	$T_1 = 0.408(0.41)$	A1	3 sf or 2 sf only. Not $\frac{20}{49}$
		[2]	
4b	Height of <i>Q</i> above <i>P</i> :	M1	Complete method using <i>suvat</i> and 7 and 4 for the initial vertical components
	$h = \left(7T_1 - \frac{1}{2}gT_1^2\right) - \left(4T_1 - \frac{1}{2}gT_1^2\right) (= 3T_1)$	A1	Correct unsimplified expression in T_1 or their T_1 They do not need to have substituted for T_1 (2.0408 0.8163)
	h = 1.2 (m)	Alft	2 sf only $(3 \times their T_1)$
		[3]	
4c	Correct time for <i>P</i> to reach <i>B</i> . ($\frac{40}{49}$, 0.816, or $\frac{8}{g}$ or better)	B1	Seen or implied.
	Vertical component of speed	M1	Complete method using suvat with
	$=7-g \times 2T_1$ (=-1)		$2T_1$ or their <i>t</i> for the time at <i>B</i> M0 if not using 7
	$\tan \alpha = \pm \frac{their1}{5}$	M1	Correct use of <i>their</i> 1 and 5 to find an equation in a relevant angle (e.g. $90 - \alpha$)
	$\alpha = 11$	A1	11 or better (e.g. 11.3)
	If they use T ₁ in place of 2T ₁ can score B	0M0M1	<u>A0</u>
		[4]	
4d	Form an equation in T_2 only	M1	Complete method using <i>suvat</i> and perpendicular gradients. e.g. $\binom{5}{7}$. $\binom{5}{7-gT_2} = 0$
			$\left \begin{array}{c} \text{e.g.} \\ 7 \\ -gT_2 \end{array} \right = 0$
			Condone sign errors
			(Vertical component of speed $=\pm\frac{25}{7}$)
			(perpendicular direction is downwards at 35.5° to the horizontal)
	$-\frac{25}{7} = 7 - gT_2$	A1	Correct unsimplified equation
	$T_2 = 1.08 \text{ or } T_2 = 1.1$	A1	3 sf or 2 sf only
		[3]	
		(12)	

Question	Scheme	Mark	Notes
5a	Use of $P = Fv \left(F = \frac{500}{6}\right)$	M1	
	Equation of motion	M1	Dimensionally correct.
			Required terms and no extras
	F - 60 = 80a	A1	Correct unsimplified equation in <i>F</i>
	$a = \frac{7}{24} \left(\mathrm{m s^{-2}} \right)$	A1	0.29 or better (0.2916666666)
		[4]	
5b	Gain in KE = $\frac{1}{2} \times 80 \times 8^2$ (J) (= 2560(J))		
	Gain in GPE =	B1	Any one correct (seen or
	$80 \times 9.8 \times 300 (J) (= 235200(J))$	B1	implied)
	Work done against resistance		A second term correct (seen or
	$=20000\times60$		implied)
			(KE gain + GPE gain = 237760 J)
	Use of <i>suvat</i> and $F = ma$ is M0A0A0	•	
	expression for combined work and energy	M1	All terms required and no double counting. Mass replaced with 80. Condone sign errors. Dimensionally correct. Condone error in zeros in 20000
	Total work done = $40 \times 64 + 80 \times 9.8 \times 300 + 20000 \times 60$	A1	Correct unsimplified expression for the work done
	1440(kJ)or 1400(kJ)	A1	Accept answers in joules. 3 sf or 2 sf (1437760)
		[5]	
5c	Equation of motion	M1	Dimensionally correct. Required terms and no extras
	$F - 60 - 80g \times \sin \alpha = 0$	A1	Unsimplified equation in <i>P</i> or
	$\frac{P}{7} - 60 - 80g \times \frac{1}{20} = 0$		F with at most one error
	1 2 2 3 20 20	A1	Correct unsimplified equation in <i>P</i>
	P = 694 or P = 690	A1	3sf or 2 sf only
		[4]	
		(13)	

Question	Scheme	Mark	Notes
6a			
	$B \xrightarrow{5a} D$ $C \xrightarrow{5a} 5a$ $\frac{1}{4}W$ $W \xrightarrow{4a} H$ A		
	Moments about A:	M1	Need all terms and no extras. Dimensionally consistent. Condone sign
	M0 if there is no resolving		errors and sine/cosine confusion.
	$4a\cos 30^{\circ} \times W + 8a\cos 30^{\circ} \times \frac{W}{4}$ $= 5a\cos 30^{\circ} \times T$	A1	Correct unsimplified equation
	$= 5a\cos 30^{\circ} \times T$ $6W = 5T \Longrightarrow T = \frac{6}{5}W *$	A1*	Obtain given answer from correct working, e.g. show cancelling of the common factors or some simplification of the moments equation
		[3]	
6b	They need 2 equations. Award M1A1 second correct equation. Common alf $M(B)$: $T \cos 30^{\circ} \times 3a + V \cos 30^{\circ} \times 8a =$ $M(C)$: $W \cos 30^{\circ} \times a + H \cos 60^{\circ} \times 5a =$	ernatives: W cos 30°>	
	Perpendicular to $\operatorname{rod}: \frac{1}{4}W\cos 30^\circ + Wc$	$\cos 30^\circ + H$	$\cos 60^\circ = T \cos 30^\circ + V \cos 30^\circ$
	Parallel to rod: $\frac{1}{4}W\cos 60^\circ + T\cos 60^\circ$	$+W\cos 60^\circ$	$^{\circ} = V \cos 60^{\circ} + H \cos 30^{\circ}$
	First equation dimensionally correct. Condone sine/cosine confusion and sign errors	M1	e.g. Resolve horizontally
	Correct unsimplified equation	A1	$H = T\cos 30^{\circ} \left(H = \frac{3\sqrt{3}}{5}W\right)$
	Second equation dimensionally correct. Condone sine/cosine confusion and sign errors	M1	e.g. resolve vertically
	Correct unsimplified equation	A1	$V + T\cos 60^\circ = W + \frac{W}{4} \left(V = \frac{13}{20}W\right)$
	$ R = \sqrt{V^2 + H^2}$ or $ R ^2 = V^2 + H^2$	DM1	Correct use of Pythagoras Dependent on two preceding M marks.
	$ R = \frac{W}{20}\sqrt{3 \times 144 + 169} = \frac{\sqrt{601}}{20}W$	A1	1.2W or better (1.22576)
		[6]	
		(9)	

Question	Scheme	Mark	Notes
7a	2u $(3u)$		
	\xrightarrow{a} $\xrightarrow{3u}$		
	$\left(\begin{array}{c}P\\4m\end{array}\right) \qquad \left(\begin{array}{c}Q\\2m\end{array}\right)$		
	Equation for CLM	M1	Dimensionally correct.
			All terms required. Condone sign errors.
	8mu - 6mu = 2my - 4mx	A1	Correct unsimplified equation
	(u = y - 2x)		1 1
	``````````````````````````````````````	2.61	
	Equation for kinetic energy	M1	Dimensionally correct. Correct masses paired with correct velocities. All terms required. No
	$\left(\frac{1}{2} \text{ or } 2 \text{ must be used}\right)$		sign errors. Condone 2 on the wrong side.
	$2mx^{2} + my^{2} = \frac{1}{2} \left( 2m \times 4u^{2} + m \times 9u^{2} \right)$	A1	Correct unsimplified equation
		1	
	$\left(17u^2 = 4x^2 + 2y^2\right)$		
	Solve for <i>y</i> :	DM1	Some working must be shown to obtain the
	$17u^2 = 2y^2 + (y - u)^2$		quadratic in y (and u). Dependent on the preceding M marks
	$\Rightarrow 3y^2 - 2yu - 16u^2 = 0$		((3y-8u)(y+2u)=0)
	$\Rightarrow y = \frac{8}{3}u$ *	A1*	Obtain given answer from correct working
		[6]	
7b	Use of Impact Law: $x + y = e \times 5u$	M1	Condone sign errors but must be used the right
	1/0 0		way round.
	$e = \frac{\frac{1}{2}\left(\frac{8}{3}u - u\right) + \frac{8}{3}u}{1}$	A1	Correct unsimplified equation. $\left(x = \frac{5u}{6}\right)$
	$e = \frac{2(5)}{5u}$	AI	
	<i>3u</i> 7	A1	Correct only
	$=\frac{7}{10}$		concert only
		[3]	
7c	W1 : 60 6 : 6 . 6 . 8	B1	Allow ±
	Velocity of Q after impact = $f \times \frac{8}{3}u$		
	No collision if $f \times \frac{8}{3}u \le \frac{5}{6}u$	M1	Correct inequality with their values
	i.e. speed of $P \ge$ speed of $Q$		Accept strict inequality. Dimensionally correct.
	$\Rightarrow 0 < f \le \frac{5}{16}$	A1	Both ends required. $(0 < f \le 0.3125)$
		[3]	
7d	Use of $I = \pm 2\pi \left( \frac{1}{2} \right)$	M1	Subtraction seen or implied with <i>their</i> $\frac{1}{4}y$
	Use of $I = \pm 2m\left(y - \left(-\frac{1}{4}y\right)\right)$		Requires correct mass
		A 1	Requires correct impact law
	$ I  = \frac{20}{3}mu$	A1	Or equivalent. Must be positive 6.7 <i>mu</i> or better
	3		
			Condone $-\frac{20}{3}mu \rightarrow \frac{20}{3}mu$ with no
			explanation
		[2]	
		(14)	