1a	Equation of motion	M1	Dimensionally correct. Condone sign error.	
	F - R = 1500a	A1	Correct unsimplified equation in F or P	
	Use of $P = Fv$: $\left(\frac{30000}{20} - R = 1500 \times 0.6\right)$	M1	Must be trying to use 30 kW but condone error in zeros	
	R = 600	A1	Correct answer only	
		4		
1b	Equation of motion	M1	Dimensionally correct. Need all relevant terms. Condone sign errors and sin/cos confusion. Allow with <i>F</i> .	
	$\frac{30000}{V} - 1500g \times \frac{1}{8} - 500 = -1500 \times 0.2$	A1 A1	Unsimplified equation with F substituted and at most one error Correct unsimplified equation with F substituted. If F is never substituted, A0A0	
	V = 14.7 (15)	A1	3 sf or 2 sf	
		4		
		(8)		
2	1 st equation e.g. Equation for change in KE	M1	Dimensionally correct. Must be subtracting but condone sign error.	
	$\frac{1}{2} \times 0.5 \left(x^2 + y^2 - (5^2 + 3^2) \right) = 22$ $\left(x^2 + y^2 = 122 \right) \left(1^2 + (2\lambda + 3)^2 = 122 \right)$	A1	Correct unsimplified equation seen or implied (They might have used impulse- momentum first and done some work before substituting x and y .)	
	2 nd equation e.g. Impulse-momentum equation	M1	Dimensionally correct. Must be subtracting but condone sign error.	
	$0.5(x\mathbf{i} + y\mathbf{j}) - 0.5(5\mathbf{i} + 3\mathbf{j}) = (-2\mathbf{i} + \lambda\mathbf{j})$ $((x-5)\mathbf{i} + (y-3)\mathbf{j} = -4\mathbf{i} + 2\lambda\mathbf{j})$	A1	Correct unsimplified equation	
	NB: epen has M1A1A1 for the final 3 mark	s but this should be marked DM1DM1A1		
	Form a quadratic equation in λ	DM1	e.g. $1^2 + (3+2\lambda)^2 = 122$ Dependent on the 2 preceding M marks	
	Solve for 2 values of λ	DM1	e.g. solve $4\lambda^2 + 12\lambda - 112 = 0$ or $(3+2\lambda)^2 = 121$ Dependent on the preceding M1	
	$\Rightarrow \lambda = 4$ or $\lambda = -7$	A1	Correct only and no errors seen (watch out for $x = -1$ used)	
alt	Form a quadratic in y	DM1	e.g. $1+y^2 = 122$ ($y^2 = 121$) Dependent on the 2 preceding M marks	
	Solve for 2 values of y and use these to obtain 2 values of λ	DM1	Dependent on the preceding M1	
	$\Rightarrow \lambda = 4$ or $\lambda = -7$	A1 _		
1		7		

3a	arearectangle $48a^2$ triangle $18a^2$ lamina $30a^2$	distance from AE 4a 8a-2a(=6a)	B1 B1	Mass ratio correct Distances from <i>AE</i> (or parallel axis) correct
	M(AE)		M1	Allow use of a parallel axis. The moments equation should include <i>a</i> but condone if the mass ratio does not include a factor of a^2 . Dimensionally correct.
	$48a^2 \times 4a - 18a^2 \times 6a = 30a^2\overline{x}$		A1	Correct unsimplified equation for their axis. Accept as part of a vector equation.
	$\overline{x} = \frac{84}{30}a = \frac{14}{5}a$ *		A1*	Obtain given answer from correct working (including correct use of a)
				If they take moments about <i>BD</i> they get $d = 5.2a$ Allow B1B1M1A1A0 if they get this far.
			5	
3b	Find trig ratio of a re	levant angle	M1	Correct use of trig.
	$\tan\theta^{\circ} = \frac{3a}{2.8a}$		A1	Correct equation for the required angle. (DO NOT ISW: If they obtain 47 and then use $90 - 47 = 43$ they score M1A0A0)
	$\theta = 47$		A1	The Q asks for a whole number of degrees. 0.82 radians scores M1A1A0
			3	
			(8)	

4a	Use $t = 2$ and $3t^{2} + 2t = t^{3} + kt$ (12 + 4 = 8 + 2k)	M1	Allow verification.
	k=4 *	A1*	Obtain given answer from correct working. Verification requires a clear conclusion.
		2	
4b	Use of $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Differentiate the vector v Majority of powers going down
	$\mathbf{a} = (6t+2)\mathbf{i} + (3t^2+4)\mathbf{j}$	A1	Correct only
	Use $ \mathbf{F} = m \mathbf{a} $	DM1	Correct use of Pythagoras and N2L Dependent on the preceding M1
	$\left \mathbf{F}\right = 1.5 \times \sqrt{14^2 + 16^2} = 3\sqrt{113}$	A1	Or $\frac{3}{2}\sqrt{452}$ or 32 or better (31.89)
		1	
		4	
4c	Use of $\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	4 M1	Majority of powers going up
4c	Use of $\mathbf{r} = \int \mathbf{v} dt$ $\mathbf{r} = \left(t^3 + t^2 \left(+A\right)\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2 \left(+B\right)\right)\mathbf{j}$	4 M1 A1	Majority of powers going up Allow without constant of integration
4c	Use of $\mathbf{r} = \int \mathbf{v} dt$ $\mathbf{r} = \left(t^3 + t^2 \left(+A\right)\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2 \left(+B\right)\right)\mathbf{j}$ Correct use of $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j}$ when $t = 0$ to find r when $t = 2$	M1 A1 DM1	Majority of powers going up Allow without constant of integration $\left(\mathbf{r} = \left(t^3 + t^2 + 3\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2 + 4\right)\mathbf{j}\right)$ Dependent on the preceding M1 Use of $\mathbf{r} = -3\mathbf{i} - 4\mathbf{j}$ is M0
4c	Use of $\mathbf{r} = \int \mathbf{v} dt$ $\mathbf{r} = (t^3 + t^2 (+A))\mathbf{i} + (\frac{1}{4}t^4 + \frac{4}{2}t^2 (+B))\mathbf{j}$ Correct use of $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j}$ when $t = 0$ to find r when $t = 2$ $\mathbf{r} = 15\mathbf{i} + 16\mathbf{j}$	4 M1 A1 DM1 A1	Majority of powers going up Allow without constant of integration $\left(\mathbf{r} = \left(t^3 + t^2 + 3\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2 + 4\right)\mathbf{j}\right)$ Dependent on the preceding M1 Use of $\mathbf{r} = -3\mathbf{i} - 4\mathbf{j}$ is M0 Correct answer only.
4c	Use of $\mathbf{r} = \int \mathbf{v} dt$ $\mathbf{r} = (t^3 + t^2 (+A))\mathbf{i} + (\frac{1}{4}t^4 + \frac{4}{2}t^2 (+B))\mathbf{j}$ Correct use of $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j}$ when $t = 0$ to find r when $t = 2$ $\mathbf{r} = 15\mathbf{i} + 16\mathbf{j}$	4 M1 A1 DM1 A1	Majority of powers going up Allow without constant of integration $\left(\mathbf{r} = \left(t^3 + t^2 + 3\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2 + 4\right)\mathbf{j}\right)$ Dependent on the preceding M1 Use of $\mathbf{r} = -3\mathbf{i} - 4\mathbf{j}$ is M0 Correct answer only. Accept column vector
4c	Use of $\mathbf{r} = \int \mathbf{v} dt$ $\mathbf{r} = (t^3 + t^2 (+A))\mathbf{i} + (\frac{1}{4}t^4 + \frac{4}{2}t^2 (+B))\mathbf{j}$ Correct use of $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j}$ when $t = 0$ to find \mathbf{r} when $t = 2$ $\mathbf{r} = 15\mathbf{i} + 16\mathbf{j}$	4 M1 A1 DM1 A1 4	Majority of powers going up Allow without constant of integration $\left(\mathbf{r} = \left(t^3 + t^2 + 3\right)\mathbf{i} + \left(\frac{1}{4}t^4 + \frac{4}{2}t^2 + 4\right)\mathbf{j}\right)$ Dependent on the preceding M1 Use of $\mathbf{r} = -3\mathbf{i} - 4\mathbf{j}$ is M0 Correct answer only. Accept column vector

5a	Use of $F_{\text{max}} = \mu R$: $F_{\text{max}} = \frac{2}{\pi} \times 1.5g \cos\theta$		(3.87) Condone trig confusion.
		M1	Trig substitution not required.
			Allow W1 If there is a clear statement for F "correct" and then used in a
			calculation including the gain in GPE
	Use of WD $-25F$	M1	Trig substitution not required
	0.5001 WD = 2.31 max		M0 if they have included the gain in GPE
			If the method for F is incorrect but
			involves the use of μ to obtain F and then
			they use the "work done" formula correctly allow M0M1
	WD = 9.69 (9.7)(J)	A1	3 sf or 2 sf not $\frac{126}{13}$
		3	
5b	Work-energy equation	M1	The Q asks for work-energy. Need all
			terms and dimensionally correct. Condone
			sign errors and sin / cos confusion
	If their answer to (a) included the GPE then it must be used for the total work done here to score the M1		
	$\frac{1}{1}$ × 1.5 $U^2 = WD + 1.5 \times 9.8 \times 2.5 \times \sin \theta$	Alft	Unsimplified equation with at most one
	$\frac{-1}{2}$		error.
		Alft	Correct unsimplified equation Follow
		4.1	their WD against friction
	U = 5.64 (5.6)	AI	3 st or 2 st
		4	
5c	Work-energy equation for A to A	M1	The Q asks for work-energy. Need all terms and dimensionally correct.
	$\frac{1}{2} \times 1.5v^2 = \frac{1}{2} \times 1.5U^2 - 2WD$	Alft	Correct unsimplified equation. Follow their WD against friction and their U
	$\frac{2}{2}$ $\frac{2}{2}$		then wD against metion and then 0
	$v = 2.43(2.4)(ms^{-1})$	Al	3 sf or 2 sf
		3	
5c	Work-energy equation for B to A	M1	The Q asks for work-energy. Need all
alt	4	A 1 0	terms and dimensionally correct.
	$\frac{1}{2} \times 1.5v^2 = 1.5 \times 9.8 \times 2.5 \times \sin \theta - WD$	Altt	Correct unsimplified equation. Follow
	2		
	$v = 2.43 (2.4) (m s^{-1})$	Al	3 st or 2 st
		3	
		(10)	

6a	$H \xrightarrow{A} 60^{\circ} 3 \text{ m} \xrightarrow{2 \text{ m}} B$ $H \xrightarrow{A} 60^{\circ} 3 \text{ m} \xrightarrow{V} T$ $W N$ $W N$ $50 N$		
	M(A)	M1	Or equivalent method to form an equation in <i>W</i> only. Equation(s) must be dimensionally correct and contain all relevant terms. Condone sin / cos confusion and sign error(s)
	$50 \times 3\cos 30^\circ + W \times 6\cos 30^\circ = 60\sqrt{3} \times 4\sin 30^\circ$	A1	Unsimplified equation with at most one error.
	W 15 ¥	AI	Correct unsimplified equation
	W = 13 *	AI*	Correct answer only
610	First aquation a g Desalve ventically	4 M1	Or receive normalial to male
00	First equation e.g. Resolve vertically		
	$(\pm)V + 50 + 15 = T\cos 30^{\circ} (V = 25)$	AI	Or: $P + 50\cos 60^\circ + 15\cos 60^\circ = 60\sqrt{3} \times \frac{\sqrt{3}}{2}$
	Second equation e.g. Resolve horizontally	M1	Or resolve perpendicular to the pole
	$(\pm)H = T\cos 60^{\circ} (= 30\sqrt{3} = 51.96)$	A1	Or:
			$50\cos 30^\circ + 15\cos 30^\circ = 60\sqrt{3}\cos 60^\circ + Q$
	NB: One of the equations could be a second m	oments	s equation
	$\frac{1}{1}$	DM	Dependent on the 2 preceding M marks
	$ R = \sqrt{25^2 + (30\sqrt{3})}$	1	$\left(\sqrt{57.5^2 + 3 \times 6.25}\right)$
	$=5\sqrt{133}(57.662)$ (N)	A1	58 N or better
		6	Full marks available using $\pm V, \pm H, \pm P, \pm Q$
6b alt	Form vector triangle for the vertical forces, the thrust and the resultant Correct triangle	M1 A1	R 50+15 30°
	Use cosine rule	M1	
	$R^{2} = T^{2} + (50 + W)^{2} - 2T(50 + W)\cos 30^{\circ}$	A1	Correct unsimplified equation
	$R^{2} = (60\sqrt{3})^{2} + (65)^{2} - 2 \times 60\sqrt{3} \times 65\cos 30^{\circ}$	DM 1	Substitute values and solve for $ R $
	$ R = 5\sqrt{133} (57.662)$ (N)	A1	58 N or better
		6	
		(10)	

7a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Use CLM	M1	Need all terms and dimensionally correct. Condone sign errors. Might see them using equal (and opposite) impulses.
	$6mu - 3kmu = 3mu + kmv \ \left((3 - 3k)u = kv \right)$	A1	Correct unsimplified equation
	$\Rightarrow v = \frac{(3-3k)}{k}u *$	A1*	Obtain given answer from full and correct working
		3	
7b	Use of Impulse = change in momentum	M1	Must be subtracting. Can be for either particle.
	$ I_{Q} = I_{P} = 3mu - 3m.2u = 3mu$ or $ kmv - (-3mku) = \left km.\frac{3 - 3k}{k}u + 3mku\right = 3mu$	A1	Correct only (Do not need to state that $ I_Q = I_P $ if find $ I_P $)
		2	
7c	Use impact law:	M1	Seen or implied. If stated in (a) must be used here. Must be used correctly but condone sign errors
	$\frac{v-u}{5u} = e \text{ or } \frac{3-3k}{k}u - u = 5ue$	A1	Correct unsimplified equation
	NB: the second and third M mark are not dependent on the first M mark		
	Use $v > u$ or $e > 0$ to form an inequality in k	M1	Could use $e0$ followed by $v \neq u$
	Use $e_{,,1}$ to form an inequality in k	M1	
	$\frac{3-3k}{k} > 1$ and $3-3k$, $\overline{6k} \implies \frac{1}{3}$, $k < \frac{3}{4}$	A1	Correct answer only.
		5	
		(10)	

8a	Condone use of θ or a mixture of θ and α throughout but final answer should be in one variable.		
	Equation for horizontal distance	M1	Complete method using <i>suvat</i> . Condone sine / cosine confusion
	$x = u \cos \alpha t$	A1	Correct only
	Equation for vertical distance		Complete method using <i>suvat</i> .
	I	M1	Condone sine / cosine confusion and
			sign error
	$y = u\sin\alpha t - \frac{1}{2}gt^2$	A1	Correct only
	$t = \frac{x}{\mu \cos \alpha} \Longrightarrow$		Substitute for t to obtain y in terms of x and α
	$r \sigma (r)^2$	DM1	Dependent on the 2 preceding M
	$y = u \sin \alpha \cdot \frac{\pi}{u \cos \alpha} - \frac{s}{2} \left(\frac{\pi}{u \cos \alpha} \right)$		marks
	$\Rightarrow v = x \tan \alpha - \frac{gx^2}{2} (1 + \tan^2 \alpha) *$		Obtain given answer from full and
	$2u^2$	A1*	torrect working. Need some evidence
		111	for the final step. $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$
			is not sufficient.
		6	
8b	Conservation of energy:	M1	Method specified in the question.
			Need all terms and dimensionally
	1 1		correct. Condone sign errors
	$\frac{1}{2}m \times 25^2 = \frac{1}{2}mU^2 + mg \times 20$	A1	Correct unsimplified equation
	U = 15.3 (15)	A1	3 sf or 2 sf only
		3	
8c	Use part (a) or work from first principles to form an equation in $\tan \theta$	M1	$\left(-20 = 30 \tan \theta - \frac{9.8 \times 900}{2U^2} \left(1 + \tan^2 \theta\right)\right)$
	Obtain $18.9 \tan^2 \theta - 30 \tan \theta - 1.07 = 0$		Or 3 term equivalent Follow their U
	$\left(\frac{4410}{233}\tan^2\theta - 30\tan\theta - \frac{250}{233} = 0\right)$	A1ft	Can be implied by a correct final
	$ \rightarrow \theta - 58 3^{\circ} \text{ or } 58^{\circ} $	A 1	2 of or 2 of only
		A1 2	5 51 01 2 51 0111y
		(12)	
		(12)	