Q	Solution	Mark	Guidance
1a			Allow column vectors.
	Use of $\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$	M1	Powers going down by 1. At least 2 powers going down .
	$\mathbf{v} = (3t^2 - 8)\mathbf{i} + (t^2 - 2t + 2)\mathbf{j}$	A1	Any equivalent form
	Use of $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Powers going down by 1. At least 2 powers going down .
	$\mathbf{a} = 6t\mathbf{i} + (2t - 2)\mathbf{j}$	A1	Any equivalent form
	$= 24\mathbf{i} + 6\mathbf{j} \left(\mathbf{m} \mathbf{s}^{-2} \right)$	A1	Must see acceleration stated as a correct simplified vector. ISW
		[5]	
1b	Direction 2i + j	M1	Form equation in t or T only using direction. Condone use of 2 on the wrong side. Using their v
	$\Rightarrow (3T^2 - 8) = 2(T^2 - 2T + 2)$ $(T^2 + 4T - 12 = 0)$	A1ft	Correct unsimplified equation in <i>t</i> or <i>T</i> . Solving not required for the M1 Follow their v: i component = 2(j component)
	T = 2	A1	Only Do not need to see method of solution.
		[3]	
		(8)	

2a	Speed after first collision $=\frac{2}{3}u$	B1	Seen or implied (possibly on diagram)
	Speed after second collision $=\frac{4}{9}u$	B1	Seen or implied (possibly on diagram)
	Correct method for total time	M1	Correct formula, dimensionally correct and including all 3 elements.
	$T_{1} = \frac{d}{u} + \frac{3d}{\frac{2}{3}u} + \frac{2d}{\frac{4}{9}u} \left(= \frac{d}{u} + \frac{9d}{2u} + \frac{18d}{4u} \right)$	A1	Correct unsimplified expression for T_1
	$T_1 = \frac{10d}{u}$	A1	Correct single term. Allow unsimplified fraction e.g. $T_1 = \frac{40d}{4u}$
		[5]	
2b	$T_2 = \frac{10d}{\frac{4}{9}u} = \frac{45d}{2u} \qquad \left(T_2 = \frac{9}{4}T_1\right)$	B1ft	Follow through is on their T_1 and / or their $\frac{4}{9}u$ Any equivalent form e.g $\frac{90d}{4u}$.
		[1]	
		(6)	

3			Allow column vectors
	Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$	M1	Must be subtracting
	$(\mathbf{I} =) \pm 0.5((4 - \lambda)\mathbf{i} + (-\lambda)\mathbf{j})$	A1	Accept \pm correct unsimplified expression on right hand side. (Ignore the left hand side) Allow $2\mathbf{i} - \frac{\lambda}{2}(\mathbf{i} + \mathbf{j})$ or equivalent
	Use of magnitude to form an equation in one variable	M1	Correct use of Pythagoras
	$\frac{5}{2} = \frac{1}{4} \left(\left(4 - \lambda \right)^2 + \left(-\lambda \right)^2 \right)$	A1ft	Follow their I
	$0 = 2\lambda^2 - 8\lambda + 6 (= (2\lambda - 6)(\lambda - 1))$	DM1	Form a 3 term quadratic (seen or implied). Not necessarily stated "= 0" From $\mathbf{I} = a\mathbf{i} + b\mathbf{j}$ can obtain $4a^2 - 8a + 3 = 0$ or $4b^2 + 8b + 3 = 0$ Dependent on the preceding M1 Solving not required for the M1
	$\lambda = 3$ and $\lambda = 1$	Alcso	From correct solution only. Do not need to see method of solution.
		[6]	
3alt	Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$ to form a vector triangle	M1	
	Triangle with sides of length	A1	
	$\sqrt{\frac{5}{2}}$, $ 2\mathbf{i} $ and $ \frac{\lambda}{2}(\mathbf{i}+\mathbf{j}) $		
	Use of cosine rule with $45^{\circ}\left(\frac{\pi}{4}\right)$	M1	
	$\frac{5}{2} = 2^2 + \left(\frac{\lambda}{2}\right)^2 \times 2 - 2 \times 2 \times \frac{\lambda}{2} \sqrt{2} \cos 45^\circ$	A1ft	Correct unsimplified equation Follow their magnitudes
		DM1	Form a 3 term quadratic (seen or implied)
	$0 = \lambda^2 - 4\lambda + 3 (= (\lambda - 3)(\lambda - 1))$	Diiii	Dependent on the preceding M1
	$0 = \lambda^{2} - 4\lambda + 3 (= (\lambda - 3)(\lambda - 1))$ $\lambda = 3 \text{ and } \lambda = 1$	Al	Dependent on the preceding M1 Correct solution only
	$0 = \lambda^2 - 4\lambda + 3 (= (\lambda - 3)(\lambda - 1))$ $\lambda = 3 \text{ and } \lambda = 1$	A1 [6]	Dependent on the preceding M1 Correct solution only
	$0 = \lambda^{2} - 4\lambda + 3 (= (\lambda - 3)(\lambda - 1))$ $\lambda = 3 \text{ and } \lambda = 1$	A1 [6] (6)	Dependent on the preceding M1 Correct solution only
	$0 = \lambda^{2} - 4\lambda + 3 (= (\lambda - 3)(\lambda - 1))$ $\lambda = 3 \text{ and } \lambda = 1$	A1 [6] (6)	Dependent on the preceding M1 Correct solution only

4	Use of $F = \frac{P}{v}$	M1	Formula with a speed substituted correctly At least once.				
	Equation for horizontal motion	M1	Dimensionally correct in <i>P</i> or <i>F</i> . Condone sign errors. Need all terms				
	$\frac{P}{15} - R = -0.2 \times 900 \left(\frac{P}{15} - R = -180\right)$	A1	Correct unsimplified equation in P and R				
	Equation for motion down hill	M1	Dimensionally correct in P or F_D . Condone sign errors. Condone sin / cos confusion. Need all terms. M0 if using F(down) = F(horizontal)				
	$F_D + 900g \times \sin\theta - R = 900 \times 0.4$	A1	Unsimplified equation in F_D or P and R with at most one error.				
	$\left(\frac{P}{12} + 30g - R = 360\right) \left(\frac{P}{12} = R + 66\right)$	A1	Correct unsimplified equation in (<i>P</i> and) <i>R</i> with trig substituted. e.g. $\frac{5}{4}(R-180) = 360 - 30g + R$				
	Solve for <i>R</i>	DM1	Dependent on the 3 preceding M marks. Condone slips in the algebra.				
	R = 1160 or $R = 1200$	A1	3 sf or 2 sf only NB the answer follows the use of 9.8, so a final answer 1164 is A0. Clear use of 9.81 is a rubric infringement. It gives (P = 14742 and) R = 1162.8 and scores a maximum of 7/8 (final A0)				
		[8]					
		(8)					
	Some candidates work through with the two driving forces.						
	They score M1M1 as above A1 for 4 x F(down) = 5 x F(horizontal) or equivalent M1A1 as above A1 for Correct unsimplified equation in $R \in g^{\frac{5}{2}}(R-180) = 360 = 30g + R$						
	M1A1 as above	0 ⁻ 4 (1	,				

5a						
	B					
	$ \begin{array}{c} V_{N} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & &$					
	Moments about A	M1	Dimensionally correct equation i.e. force x distance = force x distance. Condone sin/cos confusion Mark 50g as an accuracy error			
	$4T = 2\cos\alpha \times 50$		Correct unsimplified equation.			
	$\left(=2\times\frac{4}{5}\times50\right)$	A1	Need to see $\cos \alpha$ OR $\frac{4}{5}$ Might see LHS =			
			$\frac{1}{1}\cos\alpha \times 4\cos\alpha + 1\sin\alpha \times 4\sin\alpha$			
	T = 20 *		working.			
			Must see $\frac{4}{5}$ used correctly.			
		[3]				
71	D 1 1 1 1 1 1) (1				
<u>5</u> b	Resolve horizontally	MI	Condone sin/cos confusion			
	$H = I \sin \alpha$	AI	Correct equation			
	Resolve vertically	M1	error and sin/cos confusion.			
	$T\cos\alpha + V = 50$	A1	Correct equation			
	Either or both of the above equations could be replaced by a moments equation					
	e.g. M(B): $4\cos\alpha \times V = 4\sin\alpha \times H + 2\cos\alpha \times 50$					
	or by resolving perpendicular & parallel to the rod: $T + V \cos \alpha = 50 \cos \alpha + V \sin \alpha$ & $50 \sin \alpha = H \cos \alpha + V \sin \alpha$					
			$(H = \mu V)$ Used, not just stated			
	Use $F = \mu R$ to form an equation in μ	M1	i.e. they must get as far as substituting their values.			
	$\mu = \frac{6}{17}$	A1	$\mu = 0.35$ or better Accept $\frac{12}{34}$			
		[6]				
		(9)				

6a	$\longrightarrow x y \longleftarrow$		
	$\left(\begin{array}{c} P \end{array}\right) \left(\begin{array}{c} O \end{array}\right)$		
	km m		
	$\longrightarrow v \longrightarrow 2v$		
	They need to form three equations, one of	fwhich	must be the impact law. Mark them
	as you see them, so the first M1A1 on epe	en is ava	ailable for the first equation seen,
	the second MIAIIs for the second equation	on seen	etc. If there are more than 3
	equations, mark this as multiple attempts	and all	the marks for the equations actually
	marks if they are substituting values the	ev have	e already found.
			Dimensionally correct. Need all
	Use of $I = mv - mu$ for P or Q	MI	terms. M0 if m is missing on RHS
	5mv = m(2v - (-y)) or		
	-5mv = km(v-x)	A1	Correct unsimplified equation
	(· ···)		Dimensionally correct Need all
			terms.
	Use of CLM	M1	In CLM allow cancelled <i>m</i> and
	or second use of $I = mv - mu$		extra common factor (eg g)
			throughout
	kmx - my = kmv + 2mv		
	(kx - y = kv + 2v)	A1	Correct unsimplified equation
	or $-5mv = km(v-x)$		
	Use of impact law	M1	Must be used with <i>e</i> on the correct
	Use of impact law	IVII	side. Condone sign errors
	$2v - v = \frac{1}{2}(x + v)$	A1	Correct unsimplified equation
	5(***)		
	y = 3v	Al	cao
	x = 2v	Al	cao
	<i>K</i> = 5	A1 [0]	cao
6h		[א]	Dimensionally correct
00	/		Accept change in KE.
	KE lost	M1	Not scored until they form the
			complete substituted equation.
			Correct unsimplified expression.
	$-\frac{1}{2} \times km(x^2 - y^2) + \frac{1}{2} \times m(y^2 - 4y^2)$		Follow their x, y, k
	$-\frac{1}{2}$	۸1£	Condone sign change without
	$\left(-\frac{15}{10}mv^{2}+\frac{5}{10}mv^{2}\right)$	AIII	explanation.
	$\left(\frac{-2}{2}mv+\frac{-2}{2}mv\right)$		KE before = $14.5mv^2$
			$\left(\text{KE after} = 4.5mv^2\right)$
	$=10mv^2$	A1	Only
		[3]	
		(12)	

7a		POUV	URST	ORU	total		
/ u	Mass ratio	$9a^2$	36 <i>a</i> ²	$18a^2$	$63a^2$	B1	Correct mass ratios (1:4:2:7)
	Displacement From <i>QT</i>	$-\frac{3a}{2}$	3 <i>a</i>	2 <i>a</i>	d	B1	Correct displacements from <i>QT</i> or a parallel axis seen or implied. Signs consistent
	Equation for moments about <i>QT</i>						(or a parallel axis) Dimensionally correct. Condone sign errors
	$18 \times 2a + 36 \times 3a - 9 \times \frac{3a}{2} = 63d$ $\left(4a + 12a - \frac{3a}{2} = 7d\right)$						Or equivalent Correct unsimplified equation Check consistent in <i>a</i> .
	$d = \frac{\frac{29a}{2}}{7} \left(= \frac{\frac{261a}{2}}{63} \right) = \frac{29a}{14} *$						Obtain given answer from correct working. Need to see at least one interim step with all the <i>a</i> terms collected. Check <i>a</i> is in final answer.
						[5]	
7b	Condone if "a	<i>i</i> " is mis	sing th	rougho	ut the w	orking iı	n part (b) because they have not
	been asked fo	r the dis	tance h	ere.			
	Vertical distances from <i>Q</i> :						
	$\frac{3a}{2}, 6a(=3a+3a), 2a, (v)$						Seen or implied
	From 1: /.5a, 3a, /a						
	Equation for moments about <i>PQ</i>						(Or a parallel axis) Dimensionally correct. Condone sign errors
	$9 \times \frac{3a}{2} + 18 \times 2a + 36 \times 6a = 63v$ $\left(\frac{3a}{2} + 2 \times 2a + 4 \times 6a = 7v\right)$						Correct unsimplified equation
	$v = \frac{59a}{14} \left(\frac{67}{14} a \text{ above } T, \frac{17}{14} a \text{ below } U \right)$					A1	4.2 <i>a</i> or better (4.214)
	The working for (a) and (b) might be combin (b) are scored if the work is used in (b).						vector equation. The marks for
	$\begin{array}{c} 0\\ \overline{}\\ 3a\\ 14\\ 0\\ \overline{}\\ 3a\\ \overline{}\\ 3a\\ \overline{}\\ 3a\\ \overline{}\\ 3a\\ \overline{}\\ $	6a		R			
	$\tan\alpha = \frac{29}{59} (=$	= 26.175	5°)			M1	Use trig and their v to find a relevant angle Allow for $90^{\circ} - 26.17^{\circ}$

	$\theta^{\circ} = \tan^{-1} 2 - \tan^{-1} \left(\frac{29}{59}\right)$	M1	Use their v to find the required angle $(63.43^{\circ} - 26.175^{\circ})$
	$\theta = 37.3$	A1	37 or better
		[7]	
		(12)	
8a	Normal reaction between <i>P</i> and the ramp = $3g \cos \alpha \qquad \left(= \frac{18g}{\sqrt{37}} = 29.0 \right)$	B1	cao ISW
	Use of $F = \frac{3}{4}R$	M1	$\frac{3}{4}$ × their <i>R</i> (Must have an <i>R</i>)
	Work done $= 4F$	M1	Their F (Must have an F)
	= 87.0(87)(J)	A1	3 sf or 2 sf only (follows 9.8) do not allow $\frac{54}{\sqrt{37}}g$ (this is an acceleration)
		[4]	
8b	Work-energy equation	M1	M0 if not using work-energy. All terms required. Condone sign errors Condone sin/cos confusion
	$\frac{1}{2} \times 3U^2 - \text{their}(a) - 3g \times 4\sin\alpha = \frac{1}{2} \times 3 \times 25$	A1ft	Unsimplified equation with at most one error. Follow their (a) Correct unsimplified equation
		AIII	Follow their (a)
	U = 9.79 or U = 9.8	A1	3 sf or 2 sf only (follows 9.8)
		[4]	
8c	Time taken:	M1	Complete method using <i>suvat</i> and $u = 5$ to form an equation in <i>t</i> only
	$-4\sin\alpha = (5\sin\alpha)t - \frac{1}{2}gt^2$ $\left(4.9\sqrt{37}t^2 - 5t - 4 = 0\right)$	A1	Correct unsimplified equation for <i>t</i> .
	t = 0.45969	A1	Seen or implied
	Horizontal distance	M1	Complete method using <i>suvat</i> and $u = 5$
	$= (5\cos\alpha)t \qquad \left(=\frac{30}{\sqrt{37}}t\right)$	A1ft	Follow their <i>t</i>
	= 2.27 or 2.3 (m)	A1	3 sf or 2 sf only
		[6]	
	Alternative: First M1A1 as above Second M1A1 as above Second A1 correct quadratic in horizontal di Final A1 as above	stance e	e.g. $\frac{37\times4.9}{35\times25}d^2 - \frac{1}{6}d - \frac{4}{\sqrt{37}} = 0$
		(14)	