Q	Solution	Mark	Notes
1	Driving force $(F) = \frac{3500}{V}$	B1	Use of $P = Fv$
	Equation of motion: $F - 20V + 480g \sin \theta = 0$	M1	Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion
	$\frac{3500}{V} - 20V + 40g = 0$	A1	Correct unsimplified equation in <i>V</i> .
	$20V^2 - 392V - 3500 = 0$	M1	Form a 3 term quadratic equation $(=0)$ in V
	V = 26.3 (26)	A1	3 sf or 2 sf Not $\frac{49+22\sqrt{14}}{5}$ (follows use of 9.8)
		(5)	

2a			Allow column vectors throughout
	Use $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Differentiate – at least 3 powers going down by 1
	$\mathbf{a} = (10t - 3t^2)\mathbf{i} + (6t^2 - 8)\mathbf{j}$	A1	
	$\mathbf{F} = 1.5 \times \left((20 - 12)\mathbf{i} + (24 - 8)\mathbf{j} \right)$	DM1	Substitute $t = 2$ and use $\mathbf{F} = m\mathbf{a}$ Dependent on preceding M1
	$=12\mathbf{i}+24\mathbf{j}$	A1	Ignore magnitude of F if found
		(4)	
2b	$5t^2 - t^3 = 0 \Rightarrow t = 5$	B1	(Not moving when $t = 0$ so no need to mention $t = 0$)
	Use of $\mathbf{r} = \int \mathbf{v} dt$	M1	Integrate to find \mathbf{r} – at least 3 powers going up by 1.
	$\mathbf{r} = \left(\frac{5}{3}t^3 - \frac{1}{4}t^4\right)\mathbf{i} + \left(\frac{1}{2}t^4 - 4t^2\right)\mathbf{j}$	A1	Condone if no constant of integration seen (since $t = 0, \mathbf{r} = 0$)
	$\mathbf{r} = \left(\frac{625}{12}\right)\mathbf{i} + \left(\frac{425}{2}\right)\mathbf{j}$	A1	Final answer $52\mathbf{i} + 210\mathbf{j}$ or better ($52.08\dot{3}\mathbf{i} + 212.5\mathbf{j}$)
		(4)	
		[8]	

					-			
3a		square	triangle	circle	T			
	mass	36	8	π	$28-\pi$			
	c from	3 <i>a</i>	$\frac{7}{3}a$	4 <i>a</i>	d			
	AD	54	3	10	u			
	Mass 1	atio					B1	
			n AD or	a parall	el axis		B1	
			llel axis)		er unit		M1	Moments equation. Need all
	mm	or puru	ner anis)	•			1011	terms and dimensionally
								correct. Condone sign errors.
		7					A1	Correct unsimplified equation
	36×30	$a-8\times\frac{7}{3}$	$a-\pi \times 4$	a = (28)	$(-\pi)d$		711	for their parallel axis
	$\left(108a\right)$	$-\frac{56}{3}a$	$-4\pi a = ($	$28-\pi$	d			
	$d = \frac{32}{32}$	$\frac{24-56}{3(28-1)}$	$\frac{-12\pi}{\pi}a =$	$\frac{4(67-3)}{3(28-3)}$	$\frac{(-3\pi)}{(-\pi)}a^*$		A1*	Obtain given answer from correct working
			,	`	,			Distance from <i>BC</i> is
								_
								$\frac{(236-6\pi)a}{3(28-\pi)}$
								$3(28-\pi)$
								Allow 4/5 if seen.
							(5)	
3b	0r reso	5($X \times 6a$ M(G), wh	ere G	M1	Complete method to form an equation in k and W only Dimensionally correct but condone use of incorrect
		W = W	;					distsance(s)
	11		$\left(\frac{b}{b}\right) = k V$	$W\left(6a-\right)$	$\frac{4(67-3)}{3(28-2)}$	$\left(\frac{\pi}{\pi}\right)a$		
							A1	Correct unsimplified equation
								$\left(\text{NB} \frac{4(67 - 3\pi)}{3(28 - \pi)} a = 3.088a \right)$
		k = 0.5	51				A1	Q asks for 2dp
							(3)	- 4
							[8]	
							<u> </u>	
	1						1	
L								1

		1	
4	$\frac{\theta}{60^{\circ}} \frac{P}{J \text{ Ns}}$		Resolving parallel and perpendicular to the original direction of motion
	Use of $J = m(v - u)$	M1	Use of $J = m(v-u)$ parallel or
			perpendicular to original direction
	$J\cos 30^\circ = 2.4\cos\theta$ or $J\cos 60^\circ = 2.4\sin\theta - 1.5$	A1	One correct unsimplified equation
	Use of $J = m(v-u)$	M1	Use of $J = m(v-u)$ to form
		A1	second equation 2 nd correct unsimplified equation
	The first 4 marks are available for a correct equation in vector form.		$\begin{pmatrix} -2.4\cos\theta\\ 2.4\sin\theta \end{pmatrix} = \begin{pmatrix} -J\cos 30^\circ\\ J\cos 60^\circ + 1.5 \end{pmatrix}$
	$2.4^{2} = \frac{3J^{2}}{4} + \frac{J^{2}}{4} + 1.5J + 1.5^{2}$ $(J^{2} + 1.5J - 3.51 = 0)$	DM 1	Form an equation in <i>J</i> only Dependent on previous two M1 marks
	J = 1.3	A1	1.3 or better (1.268)
		(6)	
	NB Use of initial velocity parallel to final vel is a method error, not a misread	ocity or	final velocity parallel to impulse
			See over for alternatives

4 Al t1	8 ms ⁻¹ a $p60^{\circ} J Ns5$ ms ⁻¹		Resolving parallel and perpendicular to the direction of the impulse.
	Use of $J = m(v-u)$	M1	Use of $J = m(v-u)$ in any
	$J = 0.3 (8 \cos \alpha - 5 \cos 60^{\circ})$ Or $5 \sin 60^{\circ} = 8 \sin \alpha$	Al	direction Correct unsimplified equation $(2.4 \cos \alpha = J + 1.5 \cos 60^{\circ})$
			$\left(2.4\sin\alpha = 1.5\sin 60^\circ \right)$
	Use of $J = m(v-u)$	M1	Use of $J = m(v-u)$ in
		A 1	perpendicular direction
	$(2)^2 (2)^2 2$	A1	Correct unsimplified equation Form an equation in <i>J</i> only
	$2.4^{2} = \left(J + \frac{3}{4}\right)^{2} + \left(\frac{3}{2}\right)^{2} \times \frac{3}{4}$	DM 1	Dependent on previous two M1 marks
	$\left(J^2 + 1.5J - 3.51 = 0\right)$		
	J = 1.3	A1	1.3 or better (1.268)
	Could have a mixture of the first 2 alternative equations. DM1A1 for solving	es. M1A	A1M1A1 for 2 independent
	equations. DivitAT for solving	(6)	
4 Al t 2	J 120° 2.4 1.5		Using vector triangle.
	Impulse momentum triangle	M1	Form dimensionally correct vector triangle (for impulse or momentum)
	Use of cosine rule	M1	Use of cosine rule in momentum or velocity triangle
	$2.4^2 = J^2 + 1.5^2 - 3J\cos 120^\circ$	A1 A1	unsimplified equation in v or mv with at most one error Correct unsimplified equation
	$J^2 + 1.5J - 3.51 = 0$	DM 1	Form a simplified equation in J Dependent on previous two M1 marks
	<i>J</i> = 1.3	A1	1.3 or better (1.268)

5a			
	С		
	Т		
	55°		
	$3a$ B 55°		
	70° $5a$ 70° \uparrow^{V}		
	$Mg \downarrow H \land A$		
	Moments about A:	M1	Nacidall tarras and
	Moments about A:	IVI I	Need all terms and dimensionally correct.
			Condone sign errors, incorrect
			angles and sin/cos confusion
			Or complete method to form
	F TT : 550 4 200 37		equation in T (and M).
	$5a \times T\sin 55^\circ = 4a\cos 20^\circ \times Mg$	A1	Correct unsimplified equation $T(and M)$
	$4\cos 20^{\circ}$		in T (and M). Or equivalent
	$T = \frac{4\cos 20^\circ}{5\sin 55^\circ} Mg \left(= 0.918 Mg\right)$	A1	(Exact or $0.92Mg$ or better)
	581155	(3)	
5b	Resolve vertically	M1	Need all terms. Condone sign
			errors, incorrect angle and
			sin/cos confusion
	$ T: Mg = V + T \cos 55^{\circ} $	A1	Correct unsimplified equation in <i>T</i> or their <i>T</i>
	(V = 0.47Mg)		In T of their T
	Resolve horizontally	M1	Condone consistent sin/cos
			confusion
	$H = T\sin 55^{\circ}$	A1	Correct unsimplified equation T
	(H = 0.75Mg)		in T or their T
	Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$	M1	Substitute for <i>T</i> and use
	•	A 1	Pythagoras
	= 0.89	A1	The Q asks for 2 sf
		(6)	
			See over for further alternative
1			
<u> </u>			

5b	Moments about <i>B</i>		Dimensionally correct. Need
alt		M1	all terms. Condone sign
			errors and sin/cos confusion
	$Mga\cos 20^\circ + 5aH\cos 70^\circ = 5aV\cos 20^\circ$	A1	Correct unsimplified equation
	Moments about C		Dimensionally correct.
		M1	Condone sign errors and
			sin/cos confusion
	$5aH = 4aMg\cos 20^\circ$	A1	Correct unsimplified equation
	Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$	M1	Use Pythagoras
	= 0.89	A1	The Q asks for 2 sf
	M1A1M1A1 for 2 independent equations M1	A1 to s	olve for λ

6a	GPE lost	M1	Need all terms. Condone sign errors and sin/cos confusion
	$= 3g \times 2 - 2g \times 2\sin\theta$		Correct unsimplified. Accept
	$\left \left(= 6g - 4g \times \frac{5}{13} \right) \right $	A1	±
	$(=6g-4g\times\frac{5}{13})$ = $\frac{58}{13}g = 43.7(44)(J)$	A1	Must be positive. Exact multiple of g or 3 sf or 2 sf
		(3)	
6b	Normal reaction $= 2g\cos\theta \left(=\frac{24}{13}g\right)$	B1	Condone $\frac{1176}{65}$
	$F_{\max} = \frac{3}{8} \times R \left(= \frac{9g}{13} \right)$	M1	Use $F = \mu R$ with their R $\left(\frac{441}{65}\right)$
	Work done = $2 \times F_{\text{max}}$	M1	Their $F_{\rm max}$
	$\left(=\frac{18g}{13}\right)=13.6(J)$ 14(J)	A1	Exact multiple of g or 3 sf or 2 sf. Not $\frac{882}{65}$
		(4)	
6c	Total KE gained = GPE lost - total WD against friction	M1	Must be using work-energy. Dimensionally correct. Required terms and no extras. Condone sign errors.
	$\frac{1}{2}(2+3)v^{2} = (their(a)) - (their(b))$ $\left(\frac{5}{2}v^{2} = \frac{58}{13}g - \frac{18}{13}g = \frac{40}{13}g\right)$	A2ft	Follow their (a) and (b) -1 each error
	$v = \sqrt{\frac{16}{13}g} = 3.47 (m s^{-1}) \text{ or } 3.5 (m s^{-1})$	A1	3 sf or 2 sf (need to substitute for g)
		(4)	
6d	KE lost = GPE gained + WD against friction	M1	Must be using work-energy. Dimensionally correct. Required terms and no extras. Condone sign errors.
	$\frac{1}{2} \times 2 \times \frac{16}{13}g = 2g \times d\sin\theta + \frac{3}{8} \times 2g \times \frac{12}{13}d$ $\frac{1}{2} \times 2 \times v^2 = 2g \times d\sin\theta + d \times F_{\max}$ $\frac{16}{13}g = \left(\frac{10}{13}g + \frac{9}{13}g\right)d$	A2ft	Follow their (c) and their F_{max} -1 each error
	$d = \frac{16}{19}$	A1	g cancels. 0.84 or better (0.8421)
		[15]	

7a	-12 = 12 - gt	M1	Use <i>suvat</i> to find time taken
	$t = \frac{24}{g} (= 2.45)$	A1	
	AB = 6t	M1	Horizontal distance
	=14.7(15)(m)	A1	3 sf or 2 sf Not $\frac{720}{49}$ (follows use of 9.8) Not $\frac{144}{g}$ (do not accept g in the denominator)
		(4)	
7b	Vertical component of velocity = $(\pm)8$	B1	
	$v^2 = u^2 + 2as$	M1	Complete method using <i>suvat</i> to find h
	$\Rightarrow 8^2 = 12^2 - 2gh$	A1	Correct unsimplified equation
	h = 4.08 (4.1)	A1	3 sf or 2 sf Not $\frac{200}{49}$ (follows use of 9.8) Not $\frac{40}{g}$ (do not accept g in the denominator)
		(4)	
7b alt	$\mathbf{v} = \begin{pmatrix} 6\\12 \end{pmatrix} - \begin{pmatrix} 0\\g \end{pmatrix} t \implies 12 - gt = (\pm)8$ $h = 12t - \frac{1}{2}gt^{2}$	B1	Correct expression for critical value(s) of <i>t</i>
	$h = 12t - \frac{1}{2}gt^2$	M1	Complete method using <i>suvat</i> to find h
	$=\frac{48}{g}-\frac{8}{g}$ or $=\frac{240}{g}-\frac{200}{g}$	Al	Correct unsimplified equation
	h = 4.08 (4.1)	A1	3 sf or 2 sf
		(4)	
7b alt	Conservation of energy	M1	Need all terms and dimensionally correct
	$mgh + \frac{1}{2}m \times 10^2 = \frac{1}{2}m(12^2 + 6^2)$	A(B)1	Unsimplified equation with at most one error
	h = 4.08 (4.1)	Al	Correct unsimplified equation
	n = 4.08 (4.1)	A1	3 sf or 2 sf
		(4)	
			See over for (c)
	1		

7c	$\begin{pmatrix} 6 \\ -12 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ v \end{pmatrix} = 0$	M1	Complete method to find vertical component at <i>C</i> .		
	$\Rightarrow v = 3$	A1			
	$\mathbf{v} = 6\mathbf{i} + 3\mathbf{j} \ \left(\mathbf{m} \mathbf{s}^{-1}\right)$	A1	Must be a vector in terms of i and j		
	If see $\begin{pmatrix} 6 \\ 12 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ v \end{pmatrix} = 0$ leading to $\mathbf{v} = 6\mathbf{i} - 3\mathbf{j}$ mark as a misread: M1A0A0				
		(3)			
		[11]			
	Accept working in column vectors throug	hout apa	rt from the final A1		

8a	$\longrightarrow 2u$ \longleftarrow u		
	\sim		
	$\left(\begin{array}{c}A\\2m\end{array}\right) \qquad \left(\begin{array}{c}B\\m\end{array}\right) \qquad \left(\begin{array}{c}C\\3m\end{array}\right)$		
	$\rightarrow \qquad \qquad$		
	\rightarrow v \rightarrow r \rightarrow v		
	Use CLM: $4mu = 2mv + mw$	M1	Need all terms. Condone sign
		1011	errors. Dimensionally correct
			but allow with <i>m</i> cancelled
	(4u = 2v + w)	A1	Correct unsimplified. Signs
		MI	correct for their <i>v</i> , <i>w</i>
	Use Impact law	M1	Used the right way round. Condone sign errors.
	w-v=2ue	A1	Correct unsimplified. Signs
	,, , , , , , , , , , , , , , , , , , , ,		consistent with CLM equation.
	$\Rightarrow 4u = 2(w - 2ue) + w$	DM1	Solve for <i>v</i> or <i>w</i> .
			Dependent on previous 2 M
	A	A1*	marks Obtain given result from
	$3w = 4u + 4ue, w = \frac{4}{3}u(1+e) *$	AI	correct working
		A1	Or equivalent.
	$v = \frac{2}{3}u(2-e)$		Must be positive
	5	(7)	
8b	2 > e so A moving towards centre	B1	Correct statement about
	2 2) <i>(</i> 1	direction of travel for A
	mw - 3mu = mx + 3my	M1	Use CLM and impact law correctly to form simultaneous
	$y - x = e\left(u + \frac{4u}{3} + \frac{4eu}{3}\right)$		equations in x and y.
		A1	Both equations correct
	$\frac{4}{3}eu - \frac{5}{3}u = x + 3y$		unsimplified in <i>u</i> , <i>e</i> , <i>x</i> and <i>y</i>
	3y - 3x = e(7u + 4ue)		
		DM1	Solve for <i>x</i>
	$4x = \frac{4}{3}ue - \frac{5}{3}u - 7ue - 4ue^2$		
	$r = -\frac{5}{10} u - \frac{17}{10} u - \frac{12}{10} $	A1	Allow for a correct constant
	$x = -\frac{5}{12}u - \frac{17}{12}ue - ue^2$		multiple of x
	e > 0, u > 0 so <i>B</i> moving towards centre	A1*	Obtain given answer from
	from opposite direction, hence they		correct working
	collide.*	(6)	
	Alternative for last 3 marks;		
	<i>C</i> moving towards centre implies <i>B</i> moving		
	towards centre, so collision.		
	C moving away from centre , so $y > 0$,	DM1	Consider direction of C
	$x = w - 3u - 3y = -\frac{8u}{3} + \frac{4eu}{3} - 3y$		
	3 3 3		

$=-\frac{u}{3}(8-4e)-3y$	A1	
< 0 because $e \le 1$ and $y > 0$ hence <i>B</i> moving towards centre from opposite direction, and they will collide.*	A1*	Obtain given answer from correct working
	[13]	