FP3_2020_10_MS	2
FP3_2021_01_MS	15
FP3_2021_06_MS	36
FP3_2021_10_MS	48
FP3_2022_01_MS	66
FP3_2022_06_MS	84
FP3_2023_01_MS	99
FP3_2023_06_MS	117
FP3_2024_01_MS	132

IAL FP3 Mark Scheme

Question Number	Scheme	Notes	Marks
1(a)	1(a) $4 \sinh^{3} x + 3 \sinh x = 4 \left(\frac{e^{x} - e^{-x}}{2}\right)^{3} + 3 \left(\frac{e^{x} - e^{-x}}{2}\right)$ $= 4 \left(\frac{e^{3x} - 3e^{x} + 3e^{-x} - e^{-3x}}{8}\right) + 3 \left(\frac{e^{x} - e^{-x}}{2}\right)$ Uses $\sinh x = \frac{e^{x} - e^{-x}}{2}$ on both sinh terms and attempts to cube the bracket (min accepted is a linear x a quadratic bracket)		
	$= \frac{1}{2}e^{3x} - \frac{3}{2}e^{x} + \frac{3}{2}e^{-x}$ $= \frac{e^{3x} - e^{-3x}}{2}$	$-\frac{1}{2}e^{-3x} + \frac{3}{2}e^{x} - \frac{3}{2}e^{-x}$ -= sinh 3x*	A1*
			(2)
(b)	$sinh 3x = 19 sinh x \Rightarrow 4 sin\Rightarrow 4 sinh^3 x -Uses the result from ($	nh ³ $x + 3 \sinh x = 19 \sinh x$ -16 sinh $x = 0$ a) and combines terms	M1
	$(\sinh x = 0 \text{ or}) \sinh^2 x = 4$	$\sinh^2 x = 4 \text{ or } \sinh x = (\pm)2$	A1
	(0, 0)	States the origin as one intersection	B1
	$\ln\left(2+\sqrt{5}\right)$ and $-\ln\left(2+\sqrt{5}\right)$	Two correct non-zero x values(allow e.g. $\ln(-2 + \sqrt{5})$ for $-\ln(2 + \sqrt{5})$)	A1
	$\left(\ln\left(2+\sqrt{5}\right),38\right)$ and $\left(-\ln\left(2+\sqrt{5}\right),-38\right)$	Two correct points (allow e.g. $\ln(-2+\sqrt{5})$ for $-\ln(2+\sqrt{5})$)	A1
			(5)
	Alternative for (b)	using exponentials	
	$\sinh 3x = 19 \sinh x \Rightarrow \frac{e^{3x}}{2}$ Substitutes the correct exponential	$\frac{-e^{-3x}}{2} = \frac{19(e^x - e^{-x})}{2} \Longrightarrow \dots$ forms and collects terms to one side	M1
	$\Rightarrow e^{6x} - 19e^{4x} + 19e^{2x} - 1 = 0$	Correct equation (or equivalent)	Al
	(0, 0)	States the origin as one intersection	B1
	$\frac{1}{2}\ln\left(9+4\sqrt{5}\right)\mathbf{or}\frac{1}{2}\ln\left(9-4\sqrt{5}\right)$	Two correct non-zero <i>x</i> values (oe)	A1
	$\left(\frac{1}{2}\ln\left(9+4\sqrt{5}\right),38\right)$ and $\left(\frac{1}{2}\ln\left(9-4\sqrt{5}\right),-38\right)$	Two correct points (oe)	A1
			Total 7

FP3 2020 10 MS

Question Number	Scheme	Notes	– – Marks
2(i)	$3x^{2} + 12x + 24 = 3(x^{2} + 4x + 8)$ $= 3((x+2)^{2} + 4)$	Obtains $3((x+2)^2 +)$ or $3(x+2)^2 +$ Must include 3 now or later	M1
	$3((x+2)^2+4)$ or $3(x+2)^2+12$		A1
	$\int \frac{1}{3x^2 + 12x + 24} dx = \frac{1}{3} \int \frac{1}{(x+2)}$ M1: Use of A1: Fully correct expression (6)	$\frac{1}{e^{2}+4} dx = \frac{1}{6} \arctan \frac{x+2}{2} (+c)$ arctan condone omission of + c)	M1A1
			(4)
(ii)	$27 - 6x - x^{2} = -(x^{2} + 6x - 27)$ $= -((x + 3)^{2} - 36)$	Obtains $-((x+3)^2 +)$ or $-(x+3)^2 +$	M1
	$-((x+3)^2-36)$ or $36-(x+3)^2$		A1
	$\int \frac{1}{\sqrt{27 - 6x - x^2}} \mathrm{d}x = \int \frac{1}{\sqrt{36 - (x^2)^2}} \mathrm{d}x$	$\overline{x+3}^2 dx = \arcsin\left(\frac{x+3}{6}\right)(+c)$	
	$(Or = -\arccos\left(\frac{\lambda}{2}\right))$	$\left(\frac{c+3}{6}\right)(+c)$	M1A1
	M1: Use of arcsin	(or – arccos)	
	A1: Fully correct expression (condone omission of $+ c$)	
			(4)
			Total 8

Question Number	Scheme	Notes	Marks
3	$\mathbf{M} = \begin{pmatrix} 3 & -4 \\ 1 & -2 \\ 1 & -5 \end{pmatrix}$	$\begin{pmatrix} k \\ k \\ 5 \end{pmatrix}$	
(a)	$ \mathbf{M} - \lambda \mathbf{I} = \mathbf{M} = \begin{vmatrix} 3 - \lambda & -4 \\ 1 & -2 - \lambda \\ 1 & -5 \end{vmatrix}$ $(0) + 4[2 - k] + k$ Attempts $ \mathbf{M} - \lambda \mathbf{I} $	$\begin{vmatrix} k \\ k \\ 5 - \lambda \end{vmatrix} = \begin{vmatrix} 0 & -4 & k \\ 1 & -5 & k \\ 1 & -5 & 2 \end{vmatrix}$ $\begin{bmatrix} -5 + 5 \end{bmatrix}$ using $\lambda = 3$	M1
	(0)+4[2-k]+k[-5+5] Uses $ \mathbf{M}-\lambda\mathbf{I} =0$ and	$b = 0 \Rightarrow k = \dots$ solves for k	M1
	k = 2 Cac)	A1
(b)			(3)
(0)	$(3-\lambda)\lfloor(\lambda+2)(\lambda-5)+10\rfloor+4(5-$	$(\lambda - 2) + 2(-5 + 2 + \lambda) = 0$	M1
	Attempts $ \mathbf{M} - \lambda \mathbf{I} = 0$ usin	g their value of k	
	$\Rightarrow (3-\lambda) \big[(\lambda+2)(\lambda+2)(\lambda+2)(\lambda+2)(\lambda+2)(\lambda+2)(\lambda+2)(\lambda+2)$		
	$(\lambda+2)(\lambda-5)+12 \Rightarrow \lambda^2-3\lambda+2=0 \Rightarrow (\lambda-2)(\lambda-1)=0 \Rightarrow \lambda=$		M1
	Uses $\lambda = 3$ as a factor to obtain and solve a β (Alternatively may use calculator to s	3TQ to find the other eigenvalues olve $\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$)	
	$\lambda = 1, 2$ Cor	rect values	A1
			(3)
(c)	$ \begin{pmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \xrightarrow{3x-4y+2z=3x} x -2y+2z=3y \\ x-5y+5z=3z $	Uses the eigenvalue 3 and their k to form at least 2 equations in x, y and z	M1
	$\alpha \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ (\alpha a constant)	Any correct eigenvector. Allow any constant multiple of $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$	A1
	$\frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix}$	Correct normalised vector	A1
			(3)
			Total 9

Question Number	Scheme	Notes	Marks
4.	$I_n = \int x^n$	$\cos x \mathrm{d}x$	
(a)	$\int x^n \cos x dx = x^n \sin x$ M1: Parts in the c A1: Correct	$x - \int nx^{n-1} \sin x dx$ orrect direction expression	M1A1
	$= x^{n} \sin x - \left\{ -nx^{n-1} \cos x + \int n(n-1)x^{n-2} \cos x dx \right\}$ Uses integration by parts again (dependent on the first M)		
	$= x^{n} \sin x + nx^{n-1} \cos x$ Fully correct proo	$\frac{(\text{dependent on the Instan)}}{(n-1)I_{n-2}} *$	A1*
			(4)
	$I_n = \int x^n \cos x \mathrm{d}x =$	$\int x^{n-1} (x \cos x) \mathrm{d}x$	
	$= x^{n} \sin x + x^{n-1} \cos x - (n-1) \int x^{n-2} (x \sin x) dx$ M1: Parts in the c	$+\cos x$ dx	M1A1
	A1: Correct expression		
	$= x^{n} \sin x + x^{n-1} \cos x - (n-1) \int x^{n-1} \sin x dx - (n-1) I_{n-2}$		
	$= x^{n} \sin x + x^{n-1} \cos x - (n-1) \{-x^{n-1} \cos x + (n-1) \{-x^{n-1} \cos x + (n-1) \} $ Uses integration by parts again	$\{(n-1)I_{n-2}\} - (n-1)I_{n-2}$ (dependent on the first M)	dM1
	$= x^{n} \sin x + nx^{n-1} \cos x$ Fully correct proo	$f(x-n(n-1)I_{n-2})^*$ of with no errors	A1*
(b)	$I_{a} = \sin x \ (\pm k)$		B1
	$I_4 = x^4 \sin x + 4x^3 \cos x - 12I_2$ Ap I ₂	plies the reduction formula once for <i>I</i> ⁴ or	M1
	$= x^{4} \sin x + 4x^{3} \cos x - 12 ($ Applies the reduction formula again and include <i>I</i> ₀ t	$x^{2} \sin x + 2x \cos x - 2I_{0}$) obtains an expression for I_{4} which can put not I_{2}	M1
	$= (x^{4} - 12x^{2} + 24) \sin x -$ Award A1 for either brack If the answer is not factorised but is	+ $(4x^3 - 24x)\cos x + c$ ket and A1 for the other s otherwise correct, award A1A0	A1A1
		,	(5) Total 9
1	1		1 Utal 7

Question Number	Scheme	Notes	Marks
5	$\frac{x^2}{25} - \frac{y^2}{4} = 1$ y	= mx + c	
(a)	$\frac{x^2}{25} - \frac{(mx+c)^2}{4} = 1 \Longrightarrow 4x^2 - 25($ Substitutes to obtain a quadratic in	$m^2x^2 + 2cmx + c^2 = 100$ n x and eliminates fractions	M1
	$4x^2 - 25(m^2x^2 + 2cm)$	$ix + c^2 = 100$	
	$\left(\Rightarrow\left(25m^2-4\right)x^2+50cm^2\right)$	$x + 25c^2 + 100 = 0$	A1
	Correct 3	ΓQ	
	$"b2 = 4ac" \Rightarrow (50cm)2 = 4(2)$ Uses 'b ² = 4ac' or	$(25m^2-4)(25c^2+100)$ requivalent	M1
	$2500c^{2}m^{2} = 2500c^{2}m^{2} + 100$ $10000m^{2} = 400$ $25m^{2} = c^{2}$ Fully correct proof v	$000m^2 - 400c^2 - 1600$ $c^2 + 1600$ + 4* with no errors	A1*
	TT ' 1 1 1'		(4)
ALTI	$x = 5\cosh t, y = 2\sinh t$	$\Rightarrow \frac{dy}{dx} = \frac{2\cosh t}{5\sinh t}$	
	$\frac{2\cosh t}{5\sinh t} (x - 5\cosh t) = y - 2\sinh t$ M1: Attempts the equation of the tangent A1: Correct equation (no simplification needed)		M1A1
	$y = \frac{2\cosh t}{5\sinh t} x - \frac{2\cosh^2 t - 25\sinh^2 t}{\sinh t}$		
	$25m^{2} = \frac{4\cosh^{2} t}{\sinh^{2} t}, \ 4 + c^{2} = 4 + \frac{4}{\sinh^{2}}$ Extracts $25m^{2}$ and $4 + c^{2}$ f	$\frac{1}{t} = \frac{4\left(\sinh^2 t + 1\right)}{\sinh^2 t} = \frac{4\cosh^2 t}{\sinh^2 t}$ From their equation	M1
	$\therefore 25m^2 = 4 +$	$-c^2 *$	A1*
	Fully correct proof v	with no errors	(4)
ALT 2	Using trigonometric	parameters:	
	$x = 5 \sec t, y = 2 \tan t =$	$\Rightarrow \frac{dy}{dr} = \frac{2 \sec t}{5 \tan t}$	
	$\frac{2 \sec t}{5 \tan t} (x - 5 \sec t)$ M1: Attempts the equation of the tangent A1: C	$= y - 2 \tan t$ orrect equation (no simplification needed)	M1A1
	$y = \frac{2 \sec t}{5 \tan t} x + \frac{2 \tan^2}{2 \tan t}$	$\frac{t - 2\sec^2 t}{\tan t}$	
	$25m^{2} = \frac{4\sec^{2} t}{\tan^{2} t} = \frac{4}{\sin^{2} t} \qquad 4 + c^{2} = 4\left(1 + \frac{1}{\tan^{2}}\right)^{2}$	$\frac{1}{t} = 4 \left(\frac{\sin^2 t + \cos^2 t}{\sin^2 t} \right) = \frac{4}{\sin^2 t}$ Extracts their equation	M1
	$\therefore 25m^2 = 4 + $ Fully correct proof v	$-c^2 *$ with no errors	A1*
			(4)

Page 6 of 152

(b)	$25m^2 = c^2 + 4$ at	nd $2 = m + c$	
	$25m^2 = (2-m)^2 + 4 \text{ or } 2$	$25(2-c)^2 = c^2 + 4$	M1
	Uses the given hyperbola and the straight lin	he with the result from (a) to obtain an	
	equation in <i>r</i>	<i>n</i> or <i>c</i>	
	$24m^2 + 4m - 8 = 0$		
	or	Correct 3TQ in <i>m</i> or <i>c</i>	A1
	$24c^2 - 100c + 96 = 0$		
	$24m^2 + 4m - 8 = 0 \Longrightarrow m = \frac{1}{2}, -\frac{2}{3}$		
	Or	Solves their 3TQ in <i>m</i> or <i>c</i>	M1
	$24c^2 - 100c + 96 = 0 \Longrightarrow c = \frac{3}{2}, \frac{8}{3}$		
	$y = \frac{1}{2}x + \frac{3}{2}$ or $y = -\frac{2}{3}x + \frac{8}{3}$	One correct tangent	A1
	$y = \frac{1}{2}x + \frac{3}{2}$ and $y = -\frac{2}{3}x + \frac{8}{3}$	Both correct tangents	A1
			(5)
(c)	$m = \frac{1}{2}, c = \frac{3}{2} \Longrightarrow \frac{9}{4}x^2 + \frac{75}{2}$	$x + \frac{625}{4} = 0 \Longrightarrow x = \dots$	
	or		M1
	$m = -\frac{2}{3}, c = \frac{8}{3} \Rightarrow \frac{64}{9}x^2 - \frac{800}{9}$	$\frac{0}{9}x + \frac{2500}{9} = 0 \Longrightarrow x = \dots$	
	Uses one of their <i>m</i> and <i>c</i> p	pairs and solves for x	
	$x = -\frac{25}{3}, y = -\frac{8}{3}$ or $x = \frac{25}{4}, y = -\frac{3}{2}$	One correct point	A1
	$x = -\frac{25}{3}, y = -\frac{8}{3}$ and $x = \frac{25}{4}, y = -\frac{3}{2}$	Both correct points	A1
			(3)
			Total 12

Question Number	Scheme	Notes	Marks
6(a)	$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 1 \\ 1 \end{pmatrix}$	$ \begin{array}{ccc} -1 & 1 \\ 1 & 1 \\ 2 & a \end{array} $	
	$ \mathbf{A} = a - 2 + a - 1 + 2 - 1(= 2a - 2)$	Correct determinant in any form	B1
	$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & a-1 \\ -a-2 & a-1 \\ -2 & 0 \end{pmatrix}$ Applies the correct method to rea 2 correct rows or 2 cor	$ \begin{array}{c} 1\\3\\2 \end{array} \rightarrow \begin{pmatrix} a-2 & 1-a & 1\\a+2 & a-1 & -3\\-2 & 0 & 2 \end{pmatrix} \\ \text{ch at least a matrix of cofactors} \\ \text{rect columns needed} \end{array} $	M1
	$\begin{pmatrix} a-2 & 1-a & 1\\ a+2 & a-1 & -3\\ -2 & 0 & 2 \end{pmatrix} \rightarrow$ Correct transpose	$ \begin{pmatrix} a-2 & a+2 & -2 \\ 1-a & a-1 & 0 \\ 1 & -3 & 2 \end{pmatrix} $ se of cofactors	A1
	$\mathbf{A}^{-1} = \frac{1}{2a-2} \begin{pmatrix} a-2 & a+2 & -2\\ 1-a & a-1 & 0\\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse	A1
			(4)
(b)	$a = 4 \Longrightarrow \mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse (follow through their matrix from (a))	B1ft
	$=\frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12-6\lambda \\ 4+2\lambda \\ 6+3\lambda \end{pmatrix} = \dots$	Attempt to multiply the parametric form of l_2 by their inverse	M1
	$= \begin{pmatrix} 6-\lambda\\ -4+4\lambda\\ 2-\lambda \end{pmatrix}$	Correct parametric form	A1
	$\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$	Correct equation (allow equivalent forms) but if given as $l =$ award A0	A1
			(4)
			Total 8
		·	

	Altornativos for (b)	<u>FP3_2020</u>	
	And manyes for (D)		
(i)	$a = 4 \Rightarrow \mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse (follow through their matrix from (a))	B1ft
	$\frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ 4 \\ 6 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 36 \\ -24 \\ 12 \end{pmatrix}$	Attempt \mathbf{A}^{-1} (point on l_2) and \mathbf{A}^{-1} (direction of l_2)	M1
	$\begin{vmatrix} \frac{1}{6} \begin{vmatrix} 2 & 0 & 2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{vmatrix} \begin{vmatrix} 0 \\ 2 \\ 3 \end{vmatrix} = \frac{1}{6} \begin{vmatrix} 0 \\ 24 \\ -6 \end{vmatrix}$	Both correct (NB No ft)	A1
	$\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$	Correct equation (allow equivalent forms) but if given as $l =$ award A0	A1
			(4)
(ii)	$a = 4 \Rightarrow \mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse (follow through their matrix from (a))	B1ft
	$ \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ 4 \\ 6 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 36 \\ -24 \\ 12 \end{pmatrix} $ $ \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \\ 9 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 30 \\ 0 \\ 6 \end{pmatrix} $	Attempt \mathbf{A}^{-1} (point on l_2) for 2 points Both correct (NB No ft)	M1 A1
	$\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$	Obtain the direction vector and deduce correct equation (allow equivalent forms) but if given as $l =$ award A0	A1
			(4)

Question		FP3_2020	<u>MS</u>
Number	Scheme	Notes	Marks
7	$x = \cosh t + t ,$	$y = \cosh t - t$	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sinh t + 1, \frac{\mathrm{d}y}{\mathrm{d}t} = \sinh t - 1$	Correct derivatives	B1
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \sinh^2 t + 2s$ $= 2 \sinh^2 t + 2s$ M1: Squares correctly, c	$\sinh t + 1 + \sinh^2 t - 2\sinh t + 1$ $h^2 t + 2$ ancels and collects terms	M1
	$= 2(1 + \sinh^2 t) = 2\cosh^2 t^*$	Uses $\cosh^2 t = 1 + \sinh^2 t$ to complete the proof with no errors	A1*
(b)	$S = 2\pi \int y \mathrm{d}s = 2\pi \int (\cosh t - t) \sqrt{2} \cosh t$	t dt Uses $S = 2\pi \int y ds$ with the given y and the result from part (a)	(3) M1
	$=2\sqrt{2}\pi\int_0^{\ln 3}\left(\cosh^2 t-t\cosh t\right)\mathrm{d}t^*$	Correct proof with no errors	A1*
(c)	$\int \cosh^2 t \mathrm{d}t = \int \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t \mathrm{d}t$	Uses $\cosh^2 t = \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t$	(2) M1
	$\int t \cosh t \mathrm{d}t = t \sinh t - \int \sinh t \mathrm{d}t$	Attempts integration by parts the right way round on <i>t</i> cosh <i>t</i>	M1
	$S = \left(2\sqrt{2}\pi\right) \int \left(\cosh^2 t - t\cosh t\right) dt = \left(2\sqrt{2}\pi\right) dt$	$\frac{1}{2}\left[\frac{1}{2}t + \frac{1}{4}\sinh 2t - t\sinh t + \cosh t\right]$	AI
	A1: 2 cor A1: All	rect terms correct	
	$(S=)2\sqrt{2}\pi\left\{\left(\frac{1}{2}\ln 3+\right.\right.\right.$	$\frac{10}{9} - \frac{4}{3}\ln 3 + \frac{5}{3} - (1) \bigg\}$	dM1
	dM1: Correct use of limits 0 and ln3	depends on both preceding M marks	
	$S = \frac{1}{9}\sqrt{2}\pi \left(32 - 15\ln 3\right)$	cao	A1 (7)
			Total 12
	$\int \cosh^2 t dt = \int \left(\frac{e^t + e^{-t}}{2}\right)^2 dt$ $= \frac{1}{4} \int \left(e^{2t} + 2 + e^{-2t}\right) dt$	Substitutes the exponential form and attempts to square	M1
	$\int t \cosh t \mathrm{d}t = \frac{1}{2} \int t \left(\mathrm{e}^t + \mathrm{e}^{-t} \right) \mathrm{d}t$	Substitutes the exponential form	M1
	$=\frac{1}{2}te^{t}-\frac{1}{2}\int te^{t}dt-\left\{\frac{1}{2}te^{-t}-\frac{1}{2}\int e^{-t}dt\right\}$	the right way round Correct expression	A1
	$(S =) \left(2\sqrt{2}\pi \right) \left\{ \frac{1}{4} \left(\frac{1}{2} e^{2t} + 2t - \frac{1}{2} e^{2t} \right) \right\}$ A1: either integral correct A1: other integral cor	$-\frac{1}{2}te^{t} + \frac{1}{2}e^{t} + \frac{1}{2}te^{-t} - \frac{1}{2}e^{-t}$ ral correct but both must be in a complete on for S	A1A1
	Depends on both M marks above	Correct use of limits 0 and ln3	dM1
	$S = \frac{1}{9}\sqrt{2}\pi (32 - 15\ln 3)$	cao	A1
Page 1	D of 152		1

	<u>FP3 2020</u>	<u> 10 MS </u>
Alternative for the first 3 marks of (c)		
$=2\sqrt{2}\pi\int \left(\cosh^2 t - t\cosh t\right) \mathrm{d}t$		
$= 2\sqrt{2}\pi \int \cosh t \left(\cosh t - t\right) \mathrm{d}t$		
$2\sqrt{2}\pi \left(\left[\sinh t \left(\cosh t - t \right) \right] - \int \sinh t \left(\sinh t - 1 \right) dt \right)$		
· · · · · · · · · · · · · · · · · · ·		
$2\sqrt{2}\pi \left(\left[\sinh t \left(\cosh t - t \right) \right] - \left[\cosh t \left(\sin t \right) \right] \right)$	$\sinh t - 1 \end{bmatrix} + \int \cosh^2 t dt $	M1A1
M1 (2 nd on e-PEN): Use parts twice	A1 Correct expression	
$\int \cosh^2 t \mathrm{d}t = \int \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t \mathrm{d}t$	Uses $\cosh^2 t = \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t$	M1 (1st on e-PEN)
Rest as main scheme		

Question Number	Scheme	Notes	Marks
8(a)	$\mathbf{n} = \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} \times \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -10+6 \\ -(2-9) \\ -2+15 \end{pmatrix}$	Attempt vector product between normal vectors	M1
	$= \begin{pmatrix} -4\\7\\13 \end{pmatrix}$	Correct vector	A1
	$x = 0 \Rightarrow -5y + 3z = 11, -2y + 2z = 7$ $\Rightarrow y = -\frac{1}{4}, z = \frac{13}{4}$ or $y = 0 \Rightarrow x + 3z = 11, 3x + 2z = 7$	Correct strategy to find a point on <i>l</i>	M1
	$\Rightarrow x = -\frac{1}{7}, z = \frac{26}{7}$ or $z = 0 \Rightarrow x - 5y = 11, 3x - 2y = 7$ $\Rightarrow x = 1, y = -2$	Correct position vector of point on <i>l</i>	A1
	$\mathbf{r} = \mathbf{i} - 2\mathbf{j} + \lambda \left(-4\mathbf{i} + 7\mathbf{j} + 13\mathbf{k}\right)$	Correct equation. (follow through their position and direction vectors but must be " $\mathbf{r} =$ ")	A1ft
	11.5.2		(5)
ALI	x = 11 + 5y - 3z		
	$3x - 2y + 2z = 7 \Rightarrow 3(11 + 5y)$ $\Rightarrow y - \frac{7z}{13} = -\frac{26}{13} \left(z = \frac{13y}{25}\right)$ Eliminate one va	$\frac{(-3z) - 2y + 2z = 7}{(-3z)^2}$	M1
	$x = 11 + 5\left(-\frac{26}{13} + \frac{7z}{13}\right) \Longrightarrow z = \frac{13 - 13x}{4}$	Obtain 2 correct expressions for one of the variables	A1
	$\frac{x-1}{-\frac{4}{13}} = \frac{y+2}{\frac{7}{13}} = z$	M1 Obtain a Cartesian equation for <i>l</i> A1 Correct equation	M1A1
	$\mathbf{r} = (\mathbf{i} - 2\mathbf{j}) + \lambda \left(-\frac{4}{13}\mathbf{i} + \frac{7}{13}\mathbf{j} + \mathbf{k} \right)$ oe	Deduce a vector equation for <i>l</i> Follow through their Cartesian equation	A1ft
			(5)

		FP3 2020	10 MS
(b)	$ \begin{pmatrix} 3\\2\\1 \end{pmatrix} - \begin{pmatrix} 2\\0\\3 \end{pmatrix} = \begin{pmatrix} 1\\2\\-2 \end{pmatrix} $	Correct vector joining P to Q	B1
	$\begin{pmatrix} -4\\7 \end{pmatrix}_{X} \begin{pmatrix} 1\\2 \end{pmatrix}_{Z} \begin{pmatrix} -40\\5 \end{pmatrix}$	Attempt vector product between the direction of l and their $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$	M1
	$\begin{pmatrix} 7\\13 \end{pmatrix}^{\wedge} \begin{pmatrix} 2\\-2 \end{pmatrix}^{-15} \begin{pmatrix} -15\\-15 \end{pmatrix}$	Correct vector	A1
	$\sin \theta = \frac{\left -40\mathbf{i} + 5\mathbf{j} - 15\mathbf{k}\right }{\left -4\mathbf{i} + 7\mathbf{j} + 13\mathbf{k}\right \left \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}\right }$	Angle between PQ and line n	
	$d = \left \overrightarrow{PQ} \right \sin \theta$		
	$d = \frac{ -40\mathbf{i} + 5\mathbf{j} - 15\mathbf{k} }{ -4\mathbf{i} + 7\mathbf{j} + 13\mathbf{k} } = \frac{1}{\sqrt{234}}\sqrt{40^2 + 5^2 + 15^2}$	Fully correct method for the distance	M1
	$d = \frac{5\sqrt{481}}{39}$	Cao Allow equivalent exact forms e.g. $d = \frac{5\sqrt{74}}{\sqrt{234}}$	A1
			(5)
ALT 1	$\mathbf{r}_{m} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \lambda \begin{pmatrix} -\frac{4}{7}\\1\\\frac{13}{7} \end{pmatrix} \text{ or } \mathbf{r}_{n} = \begin{pmatrix} 3\\2\\1 \end{pmatrix} + \mu \begin{pmatrix} -\frac{4}{7}\\1\\\frac{13}{7} \end{pmatrix}$	Vector equation for either line with their direction vector from (a)	B1ft
	$\overrightarrow{OP} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} \overrightarrow{ON} = \begin{pmatrix} 3 - \frac{4}{7}\mu\\2 + \mu\\1 + \frac{13}{7}\mu \end{pmatrix} \overrightarrow{NP} = \begin{pmatrix} -1 + \frac{4}{7}\mu\\-2 - \mu\\2 - \frac{13}{7}\mu \end{pmatrix}$	Uses either P and the parametric form of a point on n OR Q and the parametric form of a point on m	
	$\begin{pmatrix} -1 + \frac{4}{7}\mu \\ -2 - \mu \\ 2 - \frac{13}{7}\mu \end{pmatrix} \begin{pmatrix} -\frac{4}{7} \\ 1 \\ \frac{13}{7} \end{pmatrix} = 0$	M1: Forms scalar product of vector <i>NP</i> and direction vector of <i>l</i> and equates to zero A1: Correct vectors	M1A1
	$\Rightarrow \mu = \frac{56}{117}$	Solves	M1
	$\Rightarrow d = \sqrt{\left(-\frac{85}{117}\right)^2 + \left(-\frac{290}{117}\right)^2 + \left(\frac{10}{9}\right)^2} = \frac{5\sqrt{481}}{39}$	Obtains the correct distance	A1
			(5)
	Alternative for M1A1M1		
	$\overrightarrow{NP} = \begin{pmatrix} -1 + \frac{4}{7}\mu \\ -2 - \mu \\ 2 - \frac{13}{7}\mu \end{pmatrix} \Rightarrow d = \sqrt{\left(-1 + \frac{4}{7}\mu\right)^2 + \left(-2 - \mu\right)^2}$	$\overline{\left(2-\frac{13}{7}\mu\right)^2} \Rightarrow d \text{ is min when } \Rightarrow \mu$	$x = \frac{56}{117}$
	M1: Find d in terms of a parameter		
	M1: use calculus (or simplify and complete the squa	are) to find the parameter corresponding to	the min d
Page 13 of 152			

		RD3 2020	10 MS
ALT 2	Correct vector PQ		-B1-110
	$\begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \begin{pmatrix} -4 \\ 7 \\ 13 \end{pmatrix} = \begin{vmatrix} 1 \\ 2 \\ -2 \end{vmatrix} \begin{vmatrix} -4 \\ 7 \\ 13 \end{vmatrix} \cos \theta$	Forms the scalar product and attempts to evaluate the LHS	M1
	$\cos\theta = \frac{-16}{3\sqrt{234}}$	Correct value for $\cos \theta$ exact or decimal	A1
	$d = PQ \sin\theta = 3\sqrt{1 - \left(\frac{-16}{3\sqrt{234}}\right)^2} = \frac{5\sqrt{74}}{\sqrt{234}}$	M1: Correct method for the distance. A1: Correct EXACT distance	M1A1
			(5)
			Total 10

Question Number	Scheme	Notes	Marks
1(a)	$\pm \overrightarrow{AB} = \pm \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix}, \pm \overrightarrow{BC} =$	$=\pm \begin{pmatrix} -1\\5\\2 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \begin{pmatrix} 3\\1\\1 \end{pmatrix}$	M1
	E.g. $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -7 \\ 16 \end{pmatrix}$	Attempts the vector product of 2 appropriate vectors. If no working is shown, look for at least 2 correct elements.	d M1
	Area = $\frac{1}{2}\sqrt{3^2 + 7^2 + 16^2} = \frac{1}{2}\sqrt{314}$	Correct exact area. Allow recovery from sign errors in the vector product e.g. allow following a vector product of $\pm 3\mathbf{i} \pm 7\mathbf{j} \pm 16\mathbf{k}$	A1
	Note that a correct exact area of $\frac{1}{2}\sqrt{31}$	$\overline{4}$ with no evidence of any incorrect work	
	scores	ull marks	(3)
	Alternative 1 us	ing cosine rule:	(3)
	$\pm \overrightarrow{AB} = \pm \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix}, \pm \overrightarrow{BC} =$	$=\pm \begin{pmatrix} -1\\5\\2 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \begin{pmatrix} 3\\1\\1 \end{pmatrix}$	M1
	$\left \pm \overline{AB} \right = \sqrt{4^2 + 4^2 + 1^2}, \left \pm \overline{BC} \right = \sqrt{4^2}$ $\left \pm \overline{AB} \right = \sqrt{4^2 + 4^2 + 1^2}, \left \pm \overline{BC} \right = \sqrt{4^2}$ $\left \cos A \right = \frac{33 + 11 - 30}{2\sqrt{33}\sqrt{11}} = \frac{7\sqrt{3}}{33} \text{ or } \cos B = \frac{30 + 32}{2\sqrt{30}}$ (For reference $A = 68.44°$, Attempts the magnitude of all 3 sides are using a correctly using a correctly $\cos A = \frac{\overline{AB}}{\sqrt{33}\sqrt{33}}$ Finds the magnitude of 2 sides and the constrained applied so	$\overline{\sqrt{1^2 + 5^2 + 2^2}}, \pm \overline{AC} = \sqrt{3^2 + 1^2 + 1^2}$ $\overline{\sqrt{33} - 11} = \frac{13\sqrt{2}}{3\sqrt{55}} \text{ or } \cos C = \frac{30 + 11 - 33}{2\sqrt{30}\sqrt{11}} = \frac{\sqrt{8}}{\sqrt{165}}$ $B = 34.27^\circ, \ C = 77.27^\circ)$ and attempts the cosine of one of the angles applied cosine rule $\frac{e.g.}{\overline{4C}} = \frac{12 - 4 - 1}{\sqrt{33}\sqrt{11}}$ by sine of the included angle using a correctly alar product	dM1
	Area $= \frac{1}{2}\sqrt{11}\sqrt{33}\sin A = \frac{1}{2}\sqrt{314}$ or Area $= \frac{1}{2}\sqrt{30}\sqrt{33}\sin B = \frac{1}{2}\sqrt{314}$ or Area $= \frac{1}{2}\sqrt{30}\sqrt{11}\sin C = \frac{1}{2}\sqrt{314}$	Correct exact area. Allow recovery from sign errors in the vectors that do not affect the calculations e.g. allow $\pm \overrightarrow{AB} = \pm 4\mathbf{i} \pm 4\mathbf{j} \pm \mathbf{k},$ $\pm \overrightarrow{BC} = \pm \mathbf{i} \pm 5\mathbf{j} \pm 2\mathbf{k},$ $\pm \overrightarrow{AC} = \pm 3\mathbf{i} \pm \mathbf{j} \pm \mathbf{k}$ And allow work in decimals as long as a correct exact area is found.	A1

Page 15 of 152

FP3 2021 0			
Alternative 2 using scalar product:			
$\pm \overrightarrow{AB} = \pm \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix}, \pm \overrightarrow{BC} = \pm \begin{pmatrix} 4 \\ -4 \\ -1 \end{pmatrix}$ Attempts any 2 of	$\begin{pmatrix} -1\\5\\2 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \begin{pmatrix} 3\\1\\1 \end{pmatrix}$ These vectors	M1	
$A ext{ to } BC ext{ is } \sqrt{AB^2 - \left(\frac{\overline{AB}}{B}\right)^2}$	$\frac{\overrightarrow{B} \cdot \overrightarrow{BC}}{BC} \right)^2 = \sqrt{\frac{157}{15}}$		
$B \text{ to } CA \text{ is } \sqrt{BC^2 - \left(\frac{\overline{BC}}{B}\right)^2}$	$\frac{\overrightarrow{C} \cdot \overrightarrow{CA}}{CA} \right)^2 = \sqrt{\frac{314}{11}}$	d M1	
or			
$C \text{ to } BA \text{ is } \sqrt{AC^2 - \left(\frac{\overline{AC}}{C}\right)^2}$	$\left(\frac{\overrightarrow{C} \cdot \overrightarrow{AB}}{AB}\right)^2 = \sqrt{\frac{314}{33}}$		
Attempts one of the altitudes of trians	gle ABC using a correct method		
Area $=\frac{1}{2}\sqrt{30}\sqrt{\frac{157}{15}} = \frac{1}{2}\sqrt{314}$			
Area $= \frac{1}{2}\sqrt{11}\sqrt{\frac{314}{11}} = \frac{1}{2}\sqrt{314}$	Correct exact area. Allow work in decimals as ong as a correct exact area is found.	A1	
Area $=\frac{1}{2}\sqrt{33}\sqrt{\frac{314}{33}} = \frac{1}{2}\sqrt{314}$			
		(3)	
Alternative 3 u	ising vector products:		
	$\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} -3 \end{pmatrix}$		
$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 4 \\ -16 \end{bmatrix}, \ \mathbf{b} \times \mathbf{c} = \begin{bmatrix} 4 \\ -16 \end{bmatrix}$	$ \begin{vmatrix} -8\\20 \end{vmatrix}, \mathbf{c} \times \mathbf{a} = \begin{vmatrix} -3\\12 \end{vmatrix} $	M1	
Attempts these ver	ector products		
	(-3)		
$\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} >$	$\times \mathbf{a} = \begin{bmatrix} -7\\ -7\\ 16 \end{bmatrix}$	d M1	
Adds the appropriate vector products			
Area = $\frac{1}{2}\sqrt{3^2 + 7^2 + 16^2} = \frac{1}{2}\sqrt{314}$	Correct exact area. Allow work in decimals as	A1	
		(3)	
		(3)	

Question Number	Scheme	Notes	Marks
(b)	$\pm \overrightarrow{AD} = \pm \begin{pmatrix} 2 \\ -2 \\ k-1 \end{pmatrix}, \pm \overrightarrow{BD} =$ Attempts one	$= \pm \begin{pmatrix} -2\\2\\k \end{pmatrix}, \pm \overrightarrow{CD} = \pm \begin{pmatrix} -1\\-3\\k-2 \end{pmatrix}$ of these vectors	M1
	E.g. $\overrightarrow{AB} \times \overrightarrow{AC}.\overrightarrow{AD} = \begin{pmatrix} -3 \\ -7 \\ 16 \end{pmatrix}$ E.g. $\overrightarrow{AB} \times \overrightarrow{AC}.\overrightarrow{BD} = \begin{pmatrix} -3 \\ -7 \\ 16 \end{pmatrix}$ E.g. $\overrightarrow{AB} \times \overrightarrow{AC}.\overrightarrow{CD} = \begin{pmatrix} -3 \\ -7 \\ 16 \end{pmatrix}$ Attempts a suitable triple product to obta They must be forming the triple product to obta Used and a scalar of the set		d M1
	$Volume = \frac{1}{3} 8k - 4 $	Correct volume. Must see modulus and must be 2 terms but allow equivalents e.g. $\frac{4}{3} 2k-1 , \frac{1}{6} 16k-8 , \frac{1}{6} 8-16k $ Award once a correct answer is seen and apply isw if necessary.	A1
			(3)
			Total 6

Question Number	Scheme	Notes	Marks
2(a)	$v = \ln(\tanh 2r) \rightarrow \frac{dy}{dt}$	$V = \frac{1}{2} \times 2 \operatorname{sech}^2 2r$	
	$y = \ln(\tanh 2x) \rightarrow \frac{1}{dx}$	$x = \frac{1}{\tanh 2x} \times 2 \operatorname{seen}^{-2x} x$	
		or	
	$y = \ln(\tanh 2x) \Rightarrow e^y = \tanh 2x \Rightarrow$	$e^{y} \frac{dy}{dx} = 2 \operatorname{sech}^{2} 2x \Longrightarrow \frac{dy}{dx} = \frac{2 \operatorname{sech}^{2} 2x}{\tanh 2x}$	
	M1: Applies the chain rule or eliminate	es the "ln" and differentiates implicitly to	M1A1
	obtain to obtain $\frac{dy}{dx} = \frac{k \operatorname{sech}^2 2x}{\tanh 2x}$		
	A1: Correct derivative in any form		
	Note that some candidates now conve	ert to exponential form to complete this	
	part – see below in the alterna	ative for scoring the final M1A1	
	$2\cosh 2x$ 1 2	Converts to $\sinh 2x$ and $\cosh 2x$ correctly	
	$= \frac{1}{\sinh 2x} \times \frac{1}{\cosh^2 2x} = \frac{1}{\sinh 2x \cosh 2x}$	to obtain $\frac{k}{\sinh 2x \cosh 2x}$	Ml
	$=\frac{2}{\frac{1}{2}\sinh 4x}=4\cosh 4x$	Correct answer. Note that this is not a given answer so you can allow if e.g. a sinh becomes a sin but is then recovered but if there are any obvious errors this	A1
		mark should be withheld.	(4)
	Alternative usi	ng exponentials:	(+)
	$\left(e^{2x} - e^{-2x}\right)$		
	$y = \ln \left(\tanh 2x \right)$	$) = \ln \left(\frac{e^{2x}}{e^{2x} + e^{-2x}} \right)$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{2x} + \mathrm{e}^{-2x}}{\mathrm{e}^{2x} - \mathrm{e}^{-2x}} \left(\frac{(\mathrm{e}^{2x} + \mathrm{e}^{-2x})(2\mathrm{e}^{2x} + \mathrm{e}^{-2x})}{\mathrm{e}^{2x} + \mathrm{e}^{-2x}} \right)$	$\frac{+2e^{-2x}) - (e^{2x} - e^{-2x})(2e^{2x} - 2e^{-2x})}{(e^{2x} + e^{-2x})^2}$	
		or	
	$y = \ln(\tanh 2x) = \ln\left(\frac{e^{2x} - e^{-2x}}{e^{2x} + e^{-2x}}\right)$	$= \ln \left(e^{2x} - e^{-2x} \right) - \ln \left(e^{2x} + e^{-2x} \right)$	M1A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\mathrm{e}^{2x} + 2\mathrm{e}}{\mathrm{e}^{2x} - \mathrm{e}^{-2}}$	$\frac{e^{-2x}}{e^{2x}} - \frac{2e^{2x} - 2e^{-2x}}{e^{2x} + e^{-2x}}$	
	$M_1 \cdot W_2$ writes tanh $2r$ correctly in terms of	c + c	
	quotient rule or uses the subtraction	law of logs and applies the chain rule	
	A1: Correct deri	vative in any form	
	$=\frac{2(e^{2x}+e^{-2x})^2-2(e^{2x}-e^{-2x})^2}{e^{4x}-e^{-4x}}$	$=\frac{8}{e^{4x}-e^{-4x}}$ Obtains $\frac{k}{e^{4x}-e^{-4x}}$	M1
		Correct answer. Note that this is not a	
	4	given answer so you can allow if e.g. a	
	$=\frac{1}{\sinh 4x}=4\cosh 4x$	sinh becomes a sin but is then recovered but if there are any obvious errors this mark should be withheld.	A1

Page 18 of 152

		<u>FP3 2021</u>	-01 1	<u>4S</u>
(b) Way 1	$4\operatorname{cosech} 4x = 1 \Longrightarrow \sinh 4x = 4 \Longrightarrow 4x = \ln\left(4 + \sqrt{4^2 + 1}\right)$ Changes to sinh $4x = \dots$ and uses the correct logarithmic form of arsinh to reach $4x = \dots$		M1	
	$x = \frac{1}{4}\ln\left(4 + \sqrt{17}\right)$	This value only. Allow e.g. $x = \ln \left(4 + \sqrt{17}\right)^{\frac{1}{4}}$	A1	
				(2)
(b) Way 2	$4\operatorname{cosech} 4x = 1 \Longrightarrow 4 \times \frac{2}{e^{4x} - e^{-4x}} = 1 \Longrightarrow e^{8x} - 8e^{4x} - 1 = 0$ Changes to the <u>correct</u> exponential form to reach $\frac{k}{e^{4x} - e^{-4x}}$, obtains a 3TQ in e^{4x} , solves and takes ln's to reach $4x = \dots$		M1	
	$x = \frac{1}{4}\ln\left(4 + \sqrt{17}\right)$	This value only. Allow e.g. $x = \ln(4 + \sqrt{17})^{\frac{1}{4}}$	A1	(2)
			Tote	(<i>2)</i> al 6
			100	

Question Number	Scheme	Notes	Marks
3(a)	$\mathbf{A} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$	$ \begin{array}{ccc} k & 2 \\ 2 & k \\ 2 & 2 \end{array} $	
	$ \mathbf{A} = 2(4-2k) - k(4)$ $\Rightarrow k^2 - 8k + 12$ Attempts det $\mathbf{A} = 0$ and solves Note that the usual rules for solving a 3T values for k a The attempt at the determinant should b column so allow errors on Note that the rule of Sarrus giv	(4-k)+2(4-2)=0 $k^2=0 \implies k=$ k^3 3TQ to obtain 2 values for k Q do not need to be applied as long as 2 are obtained. be a correct expression for their row or ally when collecting terms res $8 + k^2 + 8 - 4 - 4k - 4k = 0$	M1
	k = 2, 6	Correct values.	A1
	Marks for part (a) can only be scored in from p	their attempt at (a) and not recovered	
			(2)
(b) $\begin{pmatrix} 2 & k & 2 \\ 2 & 2 & k \\ 1 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 4-2k & 4-k & 2 \\ 2k-4 & 2 & 4-k \\ k^2-4 & 2k-4 & 4-2k \end{pmatrix} \rightarrow \begin{pmatrix} 4-2k & k-4 \\ 4-2k & 2 & k \\ k^2-4 & 4-2k & 4 \\ k^2-4 & 4-$		$2 \\ 4-k \\ -2k \end{pmatrix} \rightarrow \begin{pmatrix} 4-2k & k-4 & 2 \\ 4-2k & 2 & k-4 \\ k^2-4 & 4-2k & 4-2k \end{pmatrix}$ ach at least a matrix of cofactors ors followed by $\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$ for at least 6 correct cofactors	M1
	$\begin{pmatrix} 4-2k & k-4 & 2 \\ 4-2k & 2 & k-4 \\ k^2-4 & 4-2k & 4-2k \end{pmatrix} =$ dM1: Attempts adjoint matrix by trans A1: Corre	$\Rightarrow \begin{pmatrix} 4-2k & 4-2k & k^2-4 \\ k-4 & 2 & 4-2k \\ 2 & k-4 & 4-2k \end{pmatrix}$ sposing. Dependent on previous mark. ct adjoint	d M1 A1
	$\mathbf{A}^{-1} = \frac{1}{k^2 - 8k + 12} \begin{pmatrix} 4 - 2 \\ k - 2 \\ 2 \end{pmatrix}$ Fully correct inverse or follow through the follow the follow through the follow the follow the follow thr	$2k 4-2k k^{2}-4$ $4 2 4-2k$ $k-4 4-2k$ heir incorrect determinant from part (a)	Alft
	where their determine Ignore any labelling of the matrices and	ant is a function of <i>k</i> I allow any type of brackets around the	
	matr	ices	
		<u> </u>	(4) Total 6

Page 20 of 152

Question	Scheme	FP3_2021 Notes	_ ^{01_MS} Marks
Number 4		dx	
	$x = 4\cosh\theta =$ $\Rightarrow \int \frac{1}{\left(x^2 - 16\right)^{\frac{3}{2}}} dx =$ Full attempt to use to Award for $\int \frac{1}{\left(x^2 - 16\right)^{\frac{3}{2}}} dx$ Condone 4 cosh	$\Rightarrow \overline{d\theta} = 4 \sinh \theta$ $\int \frac{4 \sinh \theta}{\left(16 \cosh^2 \theta - 16\right)^{\frac{3}{2}}} d\theta$ the given substitution. $r = k \int \frac{\sinh \theta}{\left(\left(4 \cosh \theta\right)^2 - 16\right)^{\frac{3}{2}}} d\theta$ $^2 \theta \text{ for } \left(4 \cosh \theta\right)^2$	M1
	$= \int \frac{4 \sinh \theta}{\left(16 \sinh^2 \theta\right)^{\frac{3}{2}}} dx$ Simplifies $\left(16 \cosh^2 \theta - 16\right)^{\frac{3}{2}}$ to the f $\int \frac{1}{\left(x^2 - 16\right)^{\frac{3}{2}}} dx$	$d\theta = \int \frac{4\sinh\theta}{64\sinh^3\theta} d\theta$ Form $k\sinh^3\theta$ which may be implied by: $x = k \int \frac{1}{\sinh^2\theta} d\theta$	M1
	Note that this is not d	ependent on the first M	
	$= \int \frac{1}{16s}$ Fully correct si Allow equivalents e.g. $\frac{1}{16} \int \csc^2 \theta d$ May be implied b	$\frac{1}{\sinh^2 \theta} d\theta$ mplified integral. $\theta, \int \frac{1}{(4\sinh\theta)^2} d\theta, \int (4\sinh\theta)^{-2} d\theta$ etc. by subsequent work.	A1
	$= \int \frac{1}{16\sinh^2\theta} \mathrm{d}\theta = \frac{1}{16} \int \theta$ Integrates to obtain $k \coth\theta$ Dependence	$\operatorname{cosech}^2 \theta \mathrm{d}\theta = -\frac{1}{16} \operatorname{coth} \theta (+c)$	d M1
	$= -\frac{1}{16} \frac{\cosh \theta}{\sinh \theta} + c = -\frac{1}{16} \frac{\frac{x}{4}}{\sqrt{\frac{x^2}{16}}}$ Substitutes back <u>correctly</u> for x by rep	$= +c \text{ or e.g. } -\frac{1}{4} \frac{\frac{x}{4}}{\sqrt{x^2 - 16}} + c$ blacing $\cosh \theta$ with $\frac{x}{4}$ or equivalent e.g.	d M1
	4cosh θ with x and sinh θ with $\sqrt{\left(\frac{x}{4}\right)^2}$ – Depends on all previous method marks	1 or equivalent e.g. $4\sinh\theta$ with $\sqrt{x^2-16}$ and must be fully correct work for their $\frac{1}{16}$ "	
	$\frac{-x}{16\sqrt{x^2 - 16}} (+c) \text{ oe e.g. } \frac{-\frac{1}{16}x}{\sqrt{x^2 - 16}} (+c)$	Correct answer. Award once the correct answer is seen and apply isw if necessary. Condone the omission of " $+ c$ "	A1
	Note that you can condone the	omission of the "do" throughout	(6)
Page 21	of 152	•	Total 6

Question Number	Scheme	Notes	Marks
	Mark (a) and (b) together but do not	credit work for (a) that is seen in (c)	
5(a)	$\begin{pmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 8x \\ 8y \\ 8z \end{pmatrix} \text{ or } \begin{pmatrix} -2 \\ -2 \\ -1 \\ -1 \end{pmatrix}$ Correct method for obta	$ \begin{array}{cc} -2 & -1 \\ -2 & -1 \\ -1 & -3 \end{array} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots $ anining the eigenvector	M1
	i – j	Any multiple of this vector	A1
			(2)
(b)	$ \mathbf{M} - \lambda \mathbf{I} = \begin{vmatrix} 6 - \lambda \\ -2 \\ -1 \end{vmatrix}$ $\Rightarrow \underline{(6 - \lambda)((6 - \lambda)(5 - \lambda) - 1)} + \underline{(6 - \lambda)(5 - \lambda) - 1} + \underline{(6 - \lambda)(6 - \lambda)(5 - \lambda) - 2 - 2} + \underline{(6 - \lambda)(6 - \lambda)(6 - \lambda)(5 - \lambda) - 2 - 2} + \underline{(6 - \lambda)(6 - \lambda)(6 - \lambda)(5 - \lambda) - 2 - 2} + (6 - \lambda)(6 $	$\begin{vmatrix} -2 & -1 \\ 6-\lambda & -1 \\ -1 & 5-\lambda \end{vmatrix}$ $2(2(\lambda-5)-1) -1(2+6-\lambda)$ $-\lambda \mathbf{I}$. The terms with single underlining allow minor slips in the brackets with derlining. of Sarrus gives $-(6-\lambda) - (6-\lambda) - 4(5-\lambda)$	M1
	$\Rightarrow \lambda^3 - 17\lambda^2 + 90\lambda - 144 = 0 \Rightarrow \lambda = \dots$	Solves $\mathbf{M} - \lambda \mathbf{I} = 0$ to obtain 2 different listinct real eigenvalues excluding 8	M1
	$\Rightarrow \lambda = 3, 6, (8)$	For 3 and 6	A1
			(3)

Question Number	Scheme	Notes	Marks
(c)	$ (\mathbf{D} =) \begin{pmatrix} 8 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix} $	Correct D with distinct non-zero eigenvalues in any order. Follow through their non-zero 3 and 6. Ignore labelling and score for sight of the correct or correct ft matrix.	B1ft
	$\begin{pmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x \\ 3y \\ 3z \end{pmatrix}$	$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots \text{NB } \mathbf{v}_2 = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	
	$\begin{pmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6x \\ 6y \\ 6z \end{pmatrix} =$	$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots \qquad \text{NB } \mathbf{v}_3 = k \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$	M1
	Attempts eigenvectors for their other May use e.g.	r 2 distinct eigenvalues not including 8 $(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = 0$	
	$\left(\mathbf{P}=\right) \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$	$ \begin{array}{cccc} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \end{array} $	M1
	Forms a complete P from normalised e part (a) and their other 2 eigenvectors for eigenvalues in any order. Ignore labellin may be seen as p	eigenvectors using their eigenvector from formed from their other 2 different distinct ing and score for forming this matrix which art of a calculation.	111
	$\mathbf{D} = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix} \text{ and }$	$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \end{pmatrix}$	A1
	All fully correct and consistent and co implied by	rrectly labelled but the labelling may be their working.	
			(4) Total 9

Question Number	Scheme	Notes	Marks
6(a) Way 1	$\int \frac{x^n}{\sqrt{x^2 + 3}} \mathrm{d}x = \int x^{n-1} x \left(x^2 + 3\right)^{-\frac{1}{2}} \mathrm{d}x \ 0$	$\mathbf{r} \int \frac{x^n}{\sqrt{x^2 + 3}} \mathrm{d}x = \int x^{n-1} \mathrm{d} \left(x^2 + 3 \right)^{\frac{1}{2}}$	M1
	Applies $x^n = x^{n-1} \times x$ to $\int \frac{x^n}{\sqrt{x^2 + 3}} dx$ but	may be implied by subsequent work	
	$\int x^{n-1} x (x^2 + 3)^{-\frac{1}{2}} dx = x^{n-1} (x^2 + 3)^{\frac{1}{2}} - \int (n-1) x^{n-2} (x^2 + 3)^{\frac{1}{2}} dx$		
	dM1: Applies integration	on by parts to obtain	
	$\alpha x^{n-1} \left(x^2 + 3\right)^{\frac{1}{2}} - \beta \int$	$\int x^{n-2} (x^2 + 3)^{\frac{1}{2}} dx$	dM1A1
	(NB α , β may be f Note that if a correct formula for parts is correct direction then we can condone slips the above form. If you are u A1: Correct e	Sunctions of <i>n</i>) quoted first and parts is applied in the s in signs as long as the expression is of Insure – send to review. xpression	
	$= x^{n-1} (x^{2}+3)^{\frac{1}{2}} - \int (n-1) x^{n-2} (x^{2}+3) (x^{2}+3)^{-\frac{1}{2}} dx$		M1
	Applies $(x^2+3)^{\frac{1}{2}} = (x^2+3)(x^2+3)^{-\frac{1}{2}}$ havi	ng made an attempt at integration by	1011
	parts in the corr	ect direction	
	$= x^{n-1} (x^{2}+3)^{\frac{1}{2}} - (n-1) \int x^{n} (x^{2}+3)^{-1}$	$\int x^{n-2} (x^2 + 3)^{-\frac{1}{2}} dx$	D.C.
	$= x^{n-1} (x^2 + 3)^{\overline{2}} - (n - 1)^{\overline{2}} + (n - 1)^{$	$1)I_n - 3(n-1)I_{n-2}$	dM1
	Splits into 2 integrals i	nvolving I_n and I_{n-2}	
	Depends on all the prev	3(n-1)	
	$\Rightarrow I_n = \frac{x}{n} (x^2 + 3)^2$	$\frac{5}{2} - \frac{5(n-1)}{n} I_{n-2} *$	
	Obtains the printed answer. You can condo	ne the odd missing "dx" but if there are	A1*
	any clear errors e.g. invisible brackets that	are not recovered, sign errors etc. then be withheld	
		oe winnerd.	(6)

Question Number	Scheme	Notes	Marks
6(a) Way 2	$\int \frac{x^n}{\sqrt{x^2 + 3}} \mathrm{d}x = \int x^{n-2}$ Applies $x^n =$	$x^{2}x^{2}(x^{2}+3)^{-\frac{1}{2}}dx$ $x^{n-2} \times x^{2}$	M1
	$\int x^{n-2} x^{2} (x^{2}+3)^{-\frac{1}{2}} dx = \int x^{n-2}$ $= \int x^{n-2} (x^{2}+3)^{\frac{1}{2}} dx - \int$ $dM1: \text{ Writes } x^{2} \text{ as } (x^{2}+3-3) \text{ to obtain } \alpha \int$ $A1: \text{ Correct ex}$	$(x^{2}+3-3)(x^{2}+3)^{-\frac{1}{2}} dx$ $3x^{n-2}(x^{2}+3)^{-\frac{1}{2}} dx$ $x^{n-2}(x^{2}+3)^{\frac{1}{2}} dx - \beta \int x^{n-2}(x^{2}+3)^{-\frac{1}{2}} dx$ Appression	d M1A1
	$\int x^{n-2} (x^2 + 3)^{\frac{1}{2}} dx = \frac{x^{n-1}}{n-1} (x^2 + 3)^{\frac{1}{2}} dx$ Applies integration by parts on $\alpha x^{n-1} (x^2 + 3)^{\frac{1}{2}} - \beta \int$ Note that if a correct formula for parts is q correct direction then we can condone slips the above form. If you are up	$\int_{-\infty}^{1} \frac{1}{n-1} \int x^n (x^2 + 3)^{-\frac{1}{2}} dx$ $\int x^{n-2} (x^2 + 3)^{\frac{1}{2}} dx \text{ to obtain}$ $\int x^n (x^2 + 3)^{-\frac{1}{2}} dx$ muoted first and parts is applied in the in signs as long as the expression is of nsure – send to review.	M1
	$I_n = \frac{x^{n-1}}{n-1} (x^2 + 3)^{\frac{1}{2}} -$ Brings all together and in Depends on all the preve	$\frac{1}{n-1}I_n - 3I_{n-2}$ introduces I_n and I_{n-2} ious method marks	d M1
	$\Rightarrow I_n = \frac{x^{n-1}}{n} (x^2 + 3)^{\frac{1}{2}}$ Obtains the printed answer. You can condor any clear errors e.g. invisible brackets that this mark should	$-\frac{3(n-1)}{n}I_{n-2}*$ the the odd missing "dx" but if there are are not recovered, sign errors etc. then be withheld.	A1*

Question Number	Scheme	Notes	Marks
(b) Way 1	$I_5 = \frac{x^4}{5} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{12}{5} I_3$ Applies the reduction formula once to obtain I_5 in terms of I_3		M1
	Allow slips on coo	$\frac{2}{2}$ $\frac{1}{2}$	
	$I_5 = \frac{x}{5} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{1}{5}\right)^{\frac{1}{2}}$	$\frac{x^2}{3}(x^2+3)^{\frac{1}{2}}-\frac{6}{3}I_1$	
	Applies the reduction formula again to obtain an expression for I_5 in terms of I_1 and allow " I_1 "or what they think is I_1 Allow slips on coefficients only		
	$I_{5} = \frac{x^{4}}{5} \left(x^{2} + 3 \right)^{\frac{1}{2}} - \frac{12}{5} \left(\frac{x^{2}}{3} \left(x^{2} + 3 \right)^{\frac{1}{2}} - \frac{6}{3} \left(x^{2} + 3 \right)^{\frac{1}{2}} \right)$ Or e.g.		A1
	$I_5 = \frac{x^4}{5} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{4}{5} x^2 \left(x^2 + 3\right)^$	$(x^{2}+3)^{\frac{1}{2}} + \frac{24}{5}(x^{2}+3)^{\frac{1}{2}}$	
	Any correct expression	in terms of x only	
	$I_{5} = \frac{1}{5} (x^{2} + 3)^{\frac{1}{2}} (x^{4} - 4x^{2} + 24) + k$ Must include the "+ k" but allow other letter e.g. + c		A1
			(4) Total 10
(b) Way 2	NB $I_1 = (x^2)$	$(+3)^{\frac{1}{2}}$	
(b) Way 2	NB $I_1 = (x^2)$ $I_3 = \frac{x^2}{3}(x^2 + 3)$	$(+3)^{\frac{1}{2}}$ $S^{\frac{1}{2}} - \frac{6}{3}I_{1}$	M1
(b) Way 2	NB $I_1 = (x^2)$ $I_3 = \frac{x^2}{3}(x^2 + 3)$ Applies the reduction formula once to obtain they think Allow slips on coe	$(+3)^{\frac{1}{2}}$ $(J)^{\frac{1}{2}} - \frac{6}{3}I_1$ $I_3 \text{ in terms of } I_1 \text{ and allow "}I_1" \text{ or what is } I_1$ fficients only	M1
(b) Way 2	NB $I_1 = (x^2)$ $I_3 = \frac{x^2}{3}(x^2 + 3)$ Applies the reduction formula once to obtain they think Allow slips on coe $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{12}{5}(x^2 + 3)^{\frac{1}{2}}$	$(+3)^{\frac{1}{2}}$ $(+3)^{\frac{1}{2}} - \frac{6}{3}I_1$ $I_3 \text{ in terms of } I_1 \text{ and allow "}I_1" \text{ or what is } I_1$ $fficients \text{ only}$ $(x^2 + 3)^{\frac{1}{2}} - 2I_1$	M1
(b) Way 2	NB $I_1 = (x^2)$ $I_3 = \frac{x^2}{3}(x^2 + 3)$ Applies the reduction formula once to obtain they think Allow slips on coe $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{12}{5}(\frac{2}{3})$ Applies the reduction formula again to obtain allow "I1" or what the allow slips on coe	$(+3)^{\frac{1}{2}}$ $(+3)^{\frac{1}{2}} - \frac{6}{3}I_1$ $I_3 \text{ in terms of } I_1 \text{ and allow "}I_1" \text{ or what is } I_1$ $ficients \text{ only}$ $(x^2 + 3)^{\frac{1}{2}} - 2I_1$ $(x^2 + 3)^{\frac{1}{2}} - 2I_$	M1 M1
(b) Way 2	NB $I_1 = (x^2)^2$ $I_3 = \frac{x^2}{3}(x^2 + 3)^2$ Applies the reduction formula once to obtain they think Allow slips on coe $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{12}{5}(x^2 + 3)^{\frac{1}{2}}$ Applies the reduction formula again to obtain allow "I1" or what the Allow slips on coe E.g.	$(+3)^{\frac{1}{2}}$ $(+3)^{\frac{1}{2}} - \frac{6}{3}I_1$ $I_3 \text{ in terms of } I_1 \text{ and allow "}I_1" \text{ or what is } I_1$ fficients only $(\frac{x^2}{3}(x^2+3)^{\frac{1}{2}}-2I_1)$ If an expression for I_5 in terms of I_1 and hey think is I_1 fficients only	M1 M1
(b) Way 2	NB $I_1 = (x^2)^2$ $I_3 = \frac{x^2}{3}(x^2 + 3)^2$ Applies the reduction formula once to obtain they think Allow slips on coe $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{12}{5}(\frac{2}{3})^{\frac{1}{2}}$ Applies the reduction formula again to obtain allow "I1" or what the Allow slips on coe E.g. $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{12}{5}(\frac{x^2}{3})^{\frac{1}{2}}$	$(+3)^{\frac{1}{2}}$ $(+3)^{\frac{1}{2}} - \frac{6}{3}I_1$ $I_3 \text{ in terms of } I_1 \text{ and allow "}I_1" \text{ or what is } I_1$ fficients only $(x^2)^{\frac{1}{3}}(x^2+3)^{\frac{1}{2}}-2I_1$ In an expression for I_5 in terms of I_1 and hey think is I_1 fficients only $(x^2+3)^{\frac{1}{2}} - \frac{6}{3}(x^2+3)^{\frac{1}{2}}$	M1 M1
(b) Way 2	NB $I_1 = (x^2)$ $I_3 = \frac{x^2}{3}(x^2 + 3)$ Applies the reduction formula once to obtain they think Allow slips on coe $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{12}{5}(\frac{x^2}{5})^{\frac{1}{2}}$ Applies the reduction formula again to obtain allow " I_1 " or what the Allow slips on coe E.g. $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{12}{5}(\frac{x^2}{3})^{\frac{1}{2}}$ Or e.g. $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{4}{5}x^2(x^2 + 3)^{\frac{1}{2}}$	$(x^{2}+3)^{\frac{1}{2}} - \frac{6}{3}I_{1}$ <i>I</i> ₃ in terms of <i>I</i> ₁ and allow " <i>I</i> ₁ " or what is <i>I</i> ₁ <u>fficients only</u> $\frac{x^{2}}{3}(x^{2}+3)^{\frac{1}{2}}-2I_{1}$ n an expression for <i>I</i> ₅ in terms of <i>I</i> ₁ and hey think is <i>I</i> ₁ <u>fficients only</u> $x^{2}+3)^{\frac{1}{2}} - \frac{6}{3}(x^{2}+3)^{\frac{1}{2}}$	M1 M1 A1
(b) Way 2	NB $I_1 = (x^2)$ $I_3 = \frac{x^2}{3}(x^2 + 3)$ Applies the reduction formula once to obtain they think Allow slips on coe $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{12}{5}(\frac{x^2}{5})^{\frac{1}{2}}$ Applies the reduction formula again to obtain allow " I_1 " or what the Allow slips on coe $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{12}{5}(\frac{x^2}{3})^{\frac{1}{2}}$ Or e.g. $I_5 = \frac{x^4}{5}(x^2 + 3)^{\frac{1}{2}} - \frac{4}{5}x^2(x^2 + 3)^{\frac{1}{2}}$	$(x^{2}+3)^{\frac{1}{2}}$ $(x^{2}+3)^{\frac{1}{2}} - \frac{6}{3}I_{1}$ Is in terms of I_{1} and allow " I_{1} " or what is I_{1} fficients only $(x^{2})^{\frac{1}{2}}(x^{2}+3)^{\frac{1}{2}}-2I_{1}$ In an expression for I_{5} in terms of I_{1} and hey think is I_{1} fficients only $(x^{2}+3)^{\frac{1}{2}} - \frac{6}{3}(x^{2}+3)^{\frac{1}{2}}$ $(x^{2}+3)^{\frac{1}{2}} + \frac{24}{5}(x^{2}+3)^{\frac{1}{2}}$ in terms of x only	M1 M1 A1
(b) Way 2	NB $I_1 = \left(x^2 - I_3 - \frac{x^2}{3}\right)\left(x^2 + 3\right)^2$ Applies the reduction formula once to obtain they think Allow slips on coe $I_5 = \frac{x^4}{5}\left(x^2 + 3\right)^{\frac{1}{2}} - \frac{12}{5}\left(\frac{x^2}{5}\right)^{\frac{1}{2}}$ Applies the reduction formula again to obtain allow "I1" or what the Allow slips on coel $I_5 = \frac{x^4}{5}\left(x^2 + 3\right)^{\frac{1}{2}} - \frac{12}{5}\left(\frac{x^2}{3}\right)^{\frac{1}{2}}$ Or e.g. $I_5 = \frac{x^4}{5}\left(x^2 + 3\right)^{\frac{1}{2}} - \frac{4}{5}x^2\left(x^2 + 3\right)^{\frac{1}{2}}$ Any correct expression $I_5 = \frac{1}{5}\left(x^2 + 3\right)^{\frac{1}{2}}\left(x^4 - 4\right)^{\frac{1}{2}}$	$(+3)^{\frac{1}{2}}$ $(+3)^{\frac{1}{2}} - \frac{6}{3}I_1$ <i>Is</i> in terms of <i>I</i> ₁ and allow " <i>I</i> ₁ " or what is <i>I</i> ₁ fficients only $\frac{x^2}{3}(x^2+3)^{\frac{1}{2}}-2I_1$ and hey think is <i>I</i> ₁ fficients only $(x^2+3)^{\frac{1}{2}} - \frac{6}{3}(x^2+3)^{\frac{1}{2}}$ $(x^2+3)^{\frac{1}{2}} - \frac{6}{3}(x^2+3)^{\frac{1}{2}}$ in terms of <i>x</i> only $(-4x^2+24) + k$	M1 M1 A1

Page 26 of 152

Question Number	Scheme	Notes	Marks
(b) Way 3	$I_5 = \frac{x^4}{5} \left(x^2 + 3\right)^{\frac{1}{2}} - \frac{12}{5} I_3$ Applies the reduction formula once to obtain I_5 in terms of I_3 Allow slips on coefficients only		M1
	$I_{3} = \int \frac{x^{3}}{(x^{2}+3)^{\frac{1}{2}}} dx$		
	$u = x^{2} + 3 \Longrightarrow I_{3} = \int \frac{(u-3)^{\frac{3}{2}}}{u^{\frac{1}{2}}} \frac{du}{2(u-3)^{\frac{1}{2}}} = \frac{1}{2} \int \frac{(u-3)}{u^{\frac{1}{2}}} du = \frac{1}{3}u^{\frac{3}{2}} - 6u^{\frac{1}{2}}$		M1A1
	$= \frac{1}{3} (x^{2} + 3)^{\overline{2}} - 6(x^{2} + 3)^{\overline{2}}$ $I_{5} = \frac{x^{4}}{5} (x^{2} + 3)^{\overline{2}} - \frac{12}{5} \left(\frac{1}{3} (x^{2} + 3)^{\overline{2}} - 6(x^{2} + 3)^{\overline{2}} \right)$ M1: A credible attempt to find I_{3} and then expresses I_{5} in terms of x A1: Any correct expression in terms of x only		
	$I_{5} = \frac{1}{5} \left(x^{2} + 3 \right)^{\frac{1}{2}} \left(x^{4} \right)^{\frac{1}{2}}$	$(-4x^2+24)+k$	A1
	Must include the "+ k " but a	llow other letter e.g. $+ c$	

Question	Scheme	FP3_2021 Notes	⊢ ^{01_MS} Marks
Number 7(a)			D1
/(a)	$51 + 3j - 8k$ and $21 - 3j - 6k$ lie in 11_1	Identifies 2 correct vectors lying in II_1	BI
	$\mathbf{n} = \begin{pmatrix} 5\\3\\-8 \end{pmatrix} \times \begin{pmatrix} 2\\-3\\-6 \end{pmatrix} =$	$ = \begin{pmatrix} -18 - 24 \\ -(-30 + 16) \\ -15 - 6 \end{pmatrix} $	
	Attempts the vector product be	tween 2 correct vectors in Π_1	M1
	If no working is shown, look f	or at least 2 correct elements.	1011
	Let $\mathbf{n} = a\mathbf{i} + b$	$b_{\mathbf{j}}$ + $c_{\mathbf{k}}$ then	
	$(a\mathbf{i}+b\mathbf{j}+c\mathbf{k})\cdot(5\mathbf{i}+3\mathbf{j}-8\mathbf{k})=0, (a\mathbf{i}+b\mathbf{j}+c\mathbf{k})\cdot(2\mathbf{i}-3\mathbf{j}-6\mathbf{k})=0$		
	$\Rightarrow 5a + 3b - 8c = 0, 2a - 3b - 6c =$	$= 0 \Rightarrow a = 2c, 3b = -2c \Rightarrow \mathbf{n} = \dots$	
	$= \begin{pmatrix} -42\\14\\-21 \end{pmatrix} \text{ or e.g.} \begin{pmatrix} 6\\-2\\3 \end{pmatrix}$	Correct normal vector	A1
	$(6\mathbf{i}-2\mathbf{j}+3\mathbf{k})\cdot(\mathbf{j})$	$\mathbf{i}+2\mathbf{j}+\mathbf{k}$ =	
	Attempts scalar product between their nor	mal vector and position vector of a point	
	in Π_1 . Do not allow this mark if the "5" (o	or equivalent) just 'appears'. There must	d M1
	be some evidence for its origin e.g. a.n	$= \dots$ where a and n have been defined	
	Depends on the fir	st method mark.	
	6x - 2y + 3z = 5*	Correct proof	A1*
			(5)
	Alternative	e 1 for (a):	
	E.g. Let equation of <i>I</i>	T_1 be $ax + by + z = c$	D1
	3 points on Π_1 are (1, 2, 1), (3)	(5, -1, -5) and e.g. $(8, 2, -13)$	Ы
	$a+2b+1=c, \ 3a-b-5=c, \ 8a+2b$	$b-13 = c \implies a =, b =, c =$	M1
	Solves simultaneously for a , a	<i>b</i> and <i>c</i> using correct points	
	$\Rightarrow a = 2, b = -\frac{2}{3}, c = \frac{3}{3}$	Correct values	A1
	$2x - \frac{2}{3}y + z = \frac{5}{3}$	Forms Cartesian equation	d M1
	6x - 2y + 3z = 5*	Correct proof	A1*
	Alternative	e 2 for (a):	
	$(1,2,1) \rightarrow 6x - 2y + 3z = 6 - 4 + 3 = 5$ Shows $(1, 2, 1)$ lies on Π_1		
	$\frac{x-3}{5} = \frac{y+1}{3} = \frac{z+5}{-8} \rightarrow \mathbf{r} =$ M1: Converts <i>l</i> to correct parametric form <u>see</u> allow 1 slip with or	$\begin{pmatrix} 3 \\ -1 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ 3 \\ -8 \end{pmatrix}$ or equivalent en as part of an attempt at this alternative the of the elements	M1A1
	A1: Corre	ect form	
Dece 29	$6(3+5\lambda)-2(-1+3)$	$\lambda) + 3(-5 - 8\lambda) = 5$	d M1

-	FP3 2021		01 MS
	Shows <i>l</i> lies	in Π_1	
	<i>P</i> lies in Π_1 and <i>l</i> lies in Π_1 so	6x - 2y + 3z = 5*	A 1 4
	All correct with c	conclusion	AI*
(b)	6(2)-2k+3(-7)-5	Correct method for the shortest	<i>ک</i> ر1
Way 1	$a = \frac{1}{\sqrt{6^2 + 2^2 + 3^2}}$	distance	MI
	$\frac{1}{2}$ 24 14 $\frac{2}{4}$ 7 *		A 1 ¥
	$=\frac{1}{7} ^{-2\kappa-14} =\frac{1}{7} ^{\kappa+7} ^{+1}$	Correct completion	
			(2)
(b)	Distance O to Π_1 is -	5	
way 2		$\sqrt{6^2 + 2^2 + 3^2}$	
	Distance O to parallel plane containing Q is	$\frac{(6\mathbf{i}-2\mathbf{j}+3\mathbf{k})\cdot(2\mathbf{i}+k\mathbf{j}-7\mathbf{k})}{\sqrt{2\mathbf{i}-2\mathbf{k}}} = \frac{-9-2k}{\sqrt{2}}$	
		$\sqrt{6^2 + 2^2 + 3^2}$ 7	IVI I
	$d = \left \frac{5}{7} - \frac{-9}{7}\right $	$\frac{-2\kappa}{7}$	
	Correct method for the	shortest distance	
	$=\frac{1}{2k+14} = \frac{2}{k+7} k+7 *$	Correct completion	A1*
	7 7 7		411
(b) Way 3	$d = \left \frac{\overrightarrow{PQ} \cdot \mathbf{n}}{\overrightarrow{PQ}} \right = \left \frac{(\mathbf{i} + (k-2)\mathbf{j} - 8)}{(\mathbf{i} - 1)^2} \right $	$\frac{3k}{-42i+14j-21k}$	
,,ay S	$ \mathbf{n} = \mathbf{n} = \sqrt{42^2 + 14^2 + 21^2}$		
	$\frac{1}{14k} = 28 \pm 168 = 114k \pm 08 = 2$		
	$= \left \frac{-42 + 14k - 20 + 100}{49} \right = \left \frac{14k + 90}{49} \right = \frac{2}{7} k + 7 ^*$	Correct completion	A1*
(c)	$2 = \frac{8(2) - 4k - 7 + 3}{2}$		
	$\frac{2}{7} k+7 = \frac{1}{\sqrt{8^2 + 4^2 + 1^2}}$		
	Correctly attempts the distance between $(2, k,$	-7) and Π_2 and sets equal to the result	
	from (a). May see alternative methods here for	r the distance between $(2, k, -7)$ and	M1
	Π_2 e.g. finds the coordinates of a point on Π_2	e.g. $R(1, 1, -7)$ and then finds	
	$d = \left \frac{\overrightarrow{RQ}}{(8\mathbf{i} - 4\mathbf{j} + \mathbf{k})} \right = \left (\mathbf{i} + (k-1)\mathbf{j}) \cdot (8\mathbf{i} - 4\mathbf{j} + \mathbf{k}) \right $	$ -4\mathbf{j}+\mathbf{k}) = 8-4k+4 = 12-4k $	
	$ \mathbf{8i} - 4\mathbf{j} + \mathbf{k} = \sqrt{8^2 + 4^2} + \sqrt{8^2 + 4^2} + \frac{1}{\sqrt{8^2 + 4^2}} + \frac{1}{8^2 + 4^$	-1^2 9 9 9	
	$\frac{2}{7}(k+7) = "\frac{1}{9}(12-4k) \longrightarrow k = \dots \text{ or } \frac{2}{3}$	$\frac{2}{7}(k+7) = "\frac{1}{9}(4k-12)" \Longrightarrow k = \dots$	
	Attempts to solve one of these equations whe	re their distance from O to Π_2 is of the	
	form $ak + b$ where a and	b are non-zero.	
	or		dM1
	$\frac{2}{7}(k+7) = "\frac{1}{9}(12-4k)" \Longrightarrow \frac{4}{49}(k+7)^2 = "\frac{1}{81}(12-4k)^2"$		
	$\Rightarrow 23k^2 - 462k - 44$	$1 = 0 \Longrightarrow k = \dots$	
	Squares both sides and attempts to solve resulting quadratic.		
	follow the usual guidance for	solving the quadratic	
		One correct value. Must be 21 but	
	$k = -\frac{21}{22}$ or $k = 21$	allow equivalent exact fractions for 21	A1
	23 $-\frac{21}{23}$		

Page 29 of 152

$k = -\frac{21}{23}$ and $k = 21$	Both correct values. Must be 2Γ but allow equivalent exact fractions for $-\frac{21}{23}$ and no other values.	A1
		(4)
		Total 11

Question		FP3_2021	MS
Number	Scheme	Notes	Marks
8(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x}{1-x^2}$	Correct derivative	B1
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{4x^2}{\left(1 - x^2\right)^2} = \frac{\left(1 - x^2\right)^2 + 4x^2}{\left(1 - x^2\right)^2}$	or $\frac{x^4 - 2x^2 + 1 + 4x^2}{(1 - x^2)^2}$ or $\frac{x^4 + 2x^2 + 1}{(1 - x^2)^2}$	M1
	Attempts $1 + \left(\frac{dy}{dx}\right)^2$, finds common der	nominator and shows working in the	
	numerator condoning sign slips only. ()	Englise compared expanded)	
	$=\frac{(1+x^2)}{(1-x^2)^2}$ or $(\frac{1+x^2}{1-x^2})^2$	factorised numerator and denominator.	A1
	$\int_{\frac{1}{2}}^{\frac{3}{4}} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{\frac{1}{2}}^{\frac{3}{4}} \left(\frac{1 + x^2}{1 - x^2}\right) dx^*$	Fully correct proof with no errors and integral as printed on the question paper but allow $x^2 + 1$ for $1 + x^2$ and allow $\int_{\frac{1}{2}}^{\frac{3}{4}} \frac{(1+x^2)}{(1-x^2)} dx \text{ or } \int_{\frac{1}{2}}^{\frac{3}{4}} \frac{1+x^2}{1-x^2} dx$	A1*
			(4)

Question Number	Scheme	Notes	Marks
(b)	$\frac{\left(x^{2}+1\right)}{\left(1-x^{2}\right)} = -1 + \frac{2}{1-x^{2}} \text{ or }$ Writes the improper	e.g. $-1 + \frac{1}{1-x} + \frac{1}{1+x}$ fraction correctly	B1
	$\int \frac{k}{1-x^2} dx = x$ Or e.	$\pm \alpha \ln \frac{1+x}{1-x}$	
	$\int \frac{1}{1-x^2} dx = \pm \alpha \ln (1)$ Achieves an acceptable logarithmic form partial fraction approach). If they use artan become available when they change to log the limits	$f(1+x) \pm \alpha \ln(1-x)$ in for $\int \frac{k}{1-x^2} dx$ (k constant) (may see h here, this mark and the next mark will garithmic form e.g. when they substitute is later.	M1
	$\int -1 + \frac{2}{1 - x^2} \mathrm{d}x = -x + \ln \frac{1 + x}{1 - x} \tag{6}$	Correct integration	A1
	$\left[\left[-x + \ln \frac{1+x}{1-x} \right]_{\frac{1}{2}}^{\frac{3}{4}} = -\frac{3}{4} + \ln 7 - \left(-\frac{1}{2} + \ln 3 \right) \right]_{\frac{1}{2}}^{\frac{1}{4}}$	Evidence that the given limits have been applied. Condone slips as long as the ntention is clear. Depends on the previous M.	d M1
	$= -\frac{1}{4} + \ln\frac{7}{3}$	cao	A1
			(5)
	$\int \frac{(1+x^2)}{(1-x^2)} dx = \int \left(\frac{1}{1-x^2} + \frac{1}{1-x^2}\right) dx$	$\frac{x^2}{1-x^2} dx = \frac{1}{2} \ln \frac{1+x}{1-x} + \dots$	
	$= \left[\frac{1}{2}\ln\frac{1+x}{1-x}\right]$	$+ \dots \int_{\frac{1}{2}}^{\frac{3}{4}} = \dots$	
	If there is no attempt at $\int \left(\frac{x^2}{1-x^2}\right) dx$ this	is will generally score B0M1A0M0A0	
	If there is an attempt at $\left[\left(\frac{x^2}{1-x^2} \right) dx \right]$ (however poor) and evidence that the limits		
	have been applied this will generally score B0M1A0M1A0. Condone slips with the substitution of limits as long as the intention is clear.		
	BUT note that attempts that consider partia	al fractions such as $\frac{1+x^2}{1-x^2} \equiv \frac{A}{1-x} + \frac{B}{1+x}$	
	will generally score no marks – if you are unsure, send to review.		
	Note also that $\frac{1+x^2}{1-x^2} \equiv \frac{A}{1-x} + \frac{B}{1+x} + C$ is a correct form and could score full marks.		
	Also, use of $\frac{(1+x^2)}{(1-x^2)} = \frac{1-x^2+2x^2}{1-x^2} = 1+$	$\frac{2x^2}{1-x^2}$ with no attempt to deal with the	
	$\frac{2x^2}{1-x^2}$ as an improper fraction as in the matrix	ain scheme is likely to score no marks.	Te421.0
			i otal 9

Page 32 of 152

(b)

$$x = \tanh \theta \Rightarrow \int \frac{(1+x^2)}{(1-x^2)} dx = \int \frac{(1+\tanh^2 \theta)}{(1-\tanh^2 \theta)} \operatorname{sech}^2 \theta d\theta \qquad B1$$
Substitutes fully

$$\int \frac{(1+\tanh^2 \theta)}{(1-\tanh^2 \theta)} \operatorname{sech}^2 \theta d\theta = \int (1+\tanh^2 \theta) d\theta \qquad M1$$

$$= \int (2-\operatorname{sech}^2 \theta) d\theta \qquad Cancel and applies \tanh^2 \theta = 1-\operatorname{sech}^2 \theta$$

$$= \int (2-\operatorname{sech}^2 \theta) d\theta = 2\theta - \tanh \theta \qquad Correct integration \qquad A1$$

$$\begin{bmatrix} 2\operatorname{artanhx} - x]_{\frac{1}{2}}^2 = 2 \times \frac{1}{2} \ln \left(\frac{1+\frac{3}{4}}{1-\frac{3}{4}}\right) - \frac{3}{4} - \left(2 \times \frac{1}{2} \ln \left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right) - \frac{1}{2}\right) \qquad dM1$$
Evidence that the given limits have been applied. Condone slips as long as the intention is clear.

$$= -\frac{1}{4} + \ln \frac{7}{3} \qquad cao \qquad A1$$
(5)

Alternative approach to integration in part (b) by substitution:

Note that a similar approach can be applied to
$$\int \left(\frac{x^2}{1-x^2}\right) dx$$

Page 33 of 152

Question		FP3_2021	-01_MS
Number	Scheme	Notes	Marks
9	$\frac{x^2}{25} + \frac{y^2}{16} = 1, ($	$5\cos\theta, 4\sin\theta$)	
(a)	$\frac{dx}{d\theta} = -5\sin\theta, \ \frac{dy}{d\theta} = 4\cos\theta$ or $\frac{2x}{25} + \frac{2y}{16}\frac{dy}{dx} = 0 \text{ oe}$ or $\frac{dy}{dx} = -\frac{4x}{25}\left(1 - \frac{x^2}{25}\right)^{-\frac{1}{2}}\text{ oe}$	Correct derivatives or correct implicit differentiation or correct explicit differentiation.	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\cos\theta}{-5\sin\theta}$	Divides their derivatives correctly or substitutes and rearranges	M1
	$M_{N} = \frac{5\sin\theta}{4\cos\theta}$	Correct perpendicular gradient rule – may be implied when they form the normal equation.	M1
	$y - 4\sin\theta = \frac{5\sin\theta}{4\cos\theta} \left(x - 5\cos\theta\right)$	Correct straight line method (any complete method). Must use their gradient of the normal.	M1
	$5x\sin\theta - 4y\cos\theta = 9\sin\theta\cos\theta^*$ or $9\sin\theta\cos\theta = 5x\sin\theta - 4y\cos\theta^*$	Achieves the printed answer with no errors and allow this answer to be obtained from the previous line. Allow $5\sin\theta x$ for $5x\sin\theta$ and $4\cos\theta y$ for $4y\cos\theta$.	A1*
	Allow all marks if the gradient is seen as straight line equation) as long	a function of x and y initially (even in the as this is recovered correctly.	
	Solutions that do not use calculus e.g. j as $y - 4\sin\theta = \frac{5\sin\theta}{4\cos\theta} (x - 5\cos\theta)$ se	ust quoting the equation of the normal and to review however if they just quote	
	e.g. $ax\sin\theta - by\sin\theta = (a^2 - b^2)\sin\theta$	$\theta\cos\theta$ and then write down the given	
	But we would accept $\frac{dy}{dx} = \frac{4\cos x}{-5\sin x}$	res no marks. $rac{ heta}{ heta}$ to be quoted for a full solution.	
		2	(5)
(b)	$b^2 = a^2 \left(1 - e^2 \right) \Longrightarrow 16$	$=25(1-e^2) \Longrightarrow e = \frac{3}{5}$	
	F is $(ae, 0)$	$=\left(5\times\frac{3}{5},0\right)$	M1
	Or e.g. $"c"^2 = a^2e^2 = a^2 - b^2 =$ Fully correct strategy for <i>F</i> (mu	$25-16 \Rightarrow a^2 e^2 = 9 \Rightarrow ae = \dots$ st be numerical so (5e, 0) is M0	
	(3, 0)	Correct coordinates. (±3, 0) scores A0	A1
			(2)

Page 34 of 152

(c)	$x = \frac{9}{5}\cos\theta$	Correct x coordinate (of Q)	B1
	$PF^{2} = (5\cos\theta - "3")^{2} + (4\sin\theta)^{2}$ or $PF = \sqrt{(5\cos\theta - "3")^{2} + (4\sin\theta)^{2}}$	Correct application of Pythagoras to find PF or PF^2 . Their "3" should be positive but allow work in terms of <i>e</i> e.g. "5 <i>e</i> ".	M1
	$= 25\cos^2\theta - 30\cos\theta + 9 + 16\sin^2\theta$ $= 25\cos^2\theta - 30\cos\theta + 9 + 16(1-\cos^2\theta)$	Applies $\sin^2 \theta = 1 - \cos^2 \theta$ to obtain a quadratic expression in $\cos \theta$. If the correct identity is not seen explicitly then their working must imply that a correct identity has been used. Depends on the previous M.	d M1
	$PF = \pm (5 - 3\cos\theta)$ $PF^{2} = 9\cos^{2}\theta - 30\cos\theta + 25$	Correct expression for PF or PF^2 in terms of $\cos \theta$ with terms collected.	A1
	Note that an alternative to using Pythagoras to is the foot of the perpendicular from	o find <i>PF</i> is to use $PF = ePM$ where <i>M</i>	
	Score M1 for $x = \frac{a}{e} = \frac{5}{\frac{3}{5}}$	$\left(=\frac{25}{3}\right)(\operatorname{not}\pm\frac{25}{3})$	
	and d M1A1 for $PF = ePM$	$t = \frac{3}{5} \left(\frac{25}{3} - 5\cos\theta \right)$	
	$\frac{ QF }{ PF } = \frac{3 - \frac{9}{5}\cos\theta}{5 - 3\cos\theta} = \frac{3\left(1 - \frac{3}{5}\cos\theta\right)}{5\left(1 - \frac{3}{5}\cos\theta\right)}$ or e.g. $\frac{QF^2}{PF^2} = \frac{\left(3 - \frac{9}{5}\cos\theta\right)^2}{9\cos^2\theta - 30\cos\theta + 25} = \frac{9\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)}{25\left(1 - \frac{6}{5}\cos\theta + \frac{9}{25}\cos^2\theta\right)}$ or e.g. $= \frac{9}{25} \times \frac{1 - \frac{9}{25}}{1 - \frac{9}{25}}$ Fully correct working including factorisation $\frac{ QF }{ PF } = e$ with no errors and Note that the value of <i>e</i> must have been see independently somewher Note that this mark depends on a ratio where either both positive or both negative or mod This does not apply to the second case as bot positive as they at	or e.g. $\frac{3}{5} \times \frac{1 - \frac{3}{5}\cos\theta}{1 - \frac{3}{5}\cos\theta} = \frac{3}{5} = e^*$ $= \frac{9 - \frac{54}{5}\cos\theta + \frac{81}{25}\cos^2\theta}{9\cos^2\theta - 30\cos\theta + 25}$ $= \frac{9}{5}\frac{\cos\theta + \frac{9}{25}\cos^2\theta}{6\frac{5}{5}\cos\theta + \frac{9}{25}\cos^2\theta} = \frac{9}{25} \Rightarrow \frac{QF}{PF} = \frac{3}{5} = e^*$ If or equivalent leading to showing that if a conclusion " = e". In earlier e.g. in part (b) or calculated re in the question. The the numerator and denominator are bulus symbols are present throughout. In numerator and denominator must be re squared.	A1*
			(5) Total 12
			1014112

Question Number	Scheme	Notes	Marks
1 (a)	$1-\tanh^2 x \equiv$	$=$ sech ^{2}x	
	$1 - \tanh^2 x = 1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2$	Replaces the tanh <i>x</i> on the lhs with a <u>correct</u> expression in terms of exponentials.	B1
	$=\frac{(e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2}}{(e^{x} + e^{-x})^{2}} = \frac{(e^{2x} + 2 + e^{-2x})^{2}}{(e^{x} + e^{-x})^{2}}$	$\frac{(x^{2}) - (e^{2x} - 2 + e^{-2x})}{(e^{x} + e^{-x})^{2}}$ or e.g. $\frac{2e^{2x} \times 2e^{-2x}}{(e^{x} + e^{-x})^{2}}$	M1
	$= \left(\frac{4}{(e^x + e^{-x})^2}\right) = \operatorname{sech}^2 x^*$	Obtains the rhs with no errors.	Alcso
			(3)
ALT 1	$1 - \tanh^2 x = (1 - \tanh x)(1 + \tanh x)$ $= \left(1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)\right) \left(1 + \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)\right)$	Uses the difference of 2 squares on the lhs and replaces the tanh x with a <u>correct</u> expression in terms of exponentials.	B1
	$= \left(\frac{2\mathrm{e}^{-x}}{\mathrm{e}^{x} + \mathrm{e}^{-x}}\right) \left(\frac{2\mathrm{e}^{x}}{\mathrm{e}^{x} + \mathrm{e}^{-x}}\right)$	Attempt to find common denominators and simplify numerators.	M1
	$=\left(\frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}\right)=\mathrm{sech}^{2}x^{*}$	Obtains the rhs with no errors.	A1cso
ALT 2	$\operatorname{sech}^{2} x = \frac{4}{(e^{x} + e^{-x})^{2}}$	Replaces the sech <i>x</i> on the rhs with a <u>correct</u> expression in terms of exponentials.	B1
	$=\frac{(e^{2x}+2+e^{-2x})-(e^{2x}-2+e^{-2x})}{(e^{x}+e^{-x})^{2}}$ Attempts to express the "4" in	$\frac{e^{x}}{e^{x}} = \frac{(e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2}}{(e^{x} + e^{-x})^{2}}$ terms of the denominator.	M1
	$= 1 - \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right)^{2} = 1 - \tanh^{2} x^{*}$	Obtains the lhs with no errors.	A1cso
(b) $2\operatorname{sech}^2 x + 3\tanh x = 3 \Longrightarrow 2(1 - \tanh^2 x) + 3\tanh x = 3$			
--	------------		
$\Rightarrow 2 \tanh^2 x - 3 \tanh x + 1 = 0 $ M	M 1		
Uses sech ² $x = 1 - \tanh^2 x$ and forms a 3 term quadratic in tanh x			
$(2 \tanh x - 1)(\tanh x - 1) = 0 \Rightarrow \tanh x = \dots$ Solves 3TQ by any valid method including calculator. M	/ 1		
$\tanh x = \frac{1}{2} \rightarrow x = \ln \sqrt{3} \qquad \qquad \ln \sqrt{3} \cdot \text{Accept } \frac{1}{2} \ln 3, -\frac{1}{2} \ln \frac{1}{3} \qquad \text{A}$	A1		
And no other answers.			
	(3)		
ALT $2\operatorname{sech}^{2} x + 3 \tanh x = 3 \Longrightarrow 2\left(\frac{4}{(e^{x} + e^{-x})^{2}}\right) + 3\left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right) = 3$ $\Longrightarrow 8 + 3(e^{2x} - e^{-2x}) = 3(e^{2x} + 2 + e^{-2x}) \Longrightarrow \dots$	И1		
Substitutes the correct exponential forms, attempts to eliminate fractions and collect terms			
$6e^{-2x} = 2 \Longrightarrow e^{-2x} = \frac{1}{3}$ Rearranges to reach $e^{-2x} = \dots$ M	A 1		
$x = \ln \sqrt{3}$ $\ln \sqrt{3}$. Accept $\frac{1}{2}\ln 3, -\frac{1}{2}\ln \frac{1}{3}$ A	A1		
And no other answers.			
	Total 6		

Question Number	Scheme	Notes	MS Marks
2.	$y = \sqrt{9 - x^2}$	$\overline{x}, 0 \le x \le 3$	
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{\sqrt{9-x^2}}$	Correct derivative in any form.	B1
	Note that the derivative may be obting $y = \sqrt{9 - x^2} \implies y^2 = 9 - x^2 \implies 2$	tained implicitly after squaring e.g. $\frac{dy}{dy} = -2x \Longrightarrow \frac{dy}{dy} = -\frac{x}{x}$	
	j v $x \rightarrow j$ j $x \rightarrow -$	$\int dx \qquad dx \qquad \sqrt{9-x^2}$	
	Length of $C = \int \sqrt{1 + \frac{x^2}{9 - x^2}} \mathrm{d}x$	Uses $\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$ with their $\frac{dy}{dx}$	M1
	Note that the above may be obtain $\int \sqrt{(1-x)^2} dx$	ined via the implicit route as e.g. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}$	
	$\int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x = \int \sqrt{1 + 1}$	$\frac{x^2}{y^2} dx = \int \sqrt{1 + \frac{x^2}{9 - x^2}} dx$	
	In which case th	e B1 is implied.	
	$= \int \sqrt{\frac{9}{9-x^2}} \mathrm{d}x = 3 \arcsin \frac{x}{3} (+c) \left(\operatorname{or} - 3 \arccos \frac{x}{3} (+c) \right)$		
	$\int_{0}^{3} \sqrt{\frac{9}{9-x^{2}}} dx = 3 \arcsin(1) - 3 \arcsin(0) \left(\text{or} - 3 \arccos(1) + 3 \arccos(0) \right)$		M1
	Finds common denominator, integrates to obtain arcsin or arccos and applies the limits 0 and 3.		
	$=\frac{3\pi}{2}*$	Obtains the printed answer with no errors. This mark should be withheld if there is no evidence at all of the limits being applied.	A1
	<u>Specia</u>	l case:	
	If $+\frac{x}{\sqrt{9-x^2}}$ is obtained for $\frac{dy}{dx}$ score BON	/1M1A1 if otherwise correct but allow full	
	recover	y in (b)	(4)
(b)	Surface Area = $\int 2\pi \sqrt{9 - x^2} \left(\sqrt{\frac{9}{9 - x^2}} \right) dx$	Uses $\int 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$ with their $\frac{dy}{dx}$	M1
	$= \int_0^3 6\pi \mathrm{d}x = 6\pi \left[x \right]_0^3 = \dots$	Integrates to obtain <i>kx</i> and applies the limits 0 and 3. Condone omission of the lower limit.	M1
	$=18\pi$	18π cao	A1 (2)
			Total 7

Page 38 of 152

Question Number	Scheme	Notes	Marks
3.	$\mathbf{M} = \begin{pmatrix} 3 & 1 \\ 1 & 1 \\ -1 & p \end{pmatrix}$	$ \begin{pmatrix} p \\ 2 \\ p & 2 \end{pmatrix} $	
(a)	$\det \mathbf{M} = \begin{vmatrix} 3 & 1 & p \\ 1 & 1 & 2 \\ -1 & p & 2 \end{vmatrix}$ $= 3(2-2p) - 1(2+2) + p(p+1)$	Attempts determinant. Requires at least 2 correct "terms". May use other rows/columns or rule of Sarrus.	M1
	$= p^2 - 5p + 2$	Correct simplified determinant.	A1
	$p^2 - 5p + 2 = 0 \Longrightarrow p = \dots$	Solves 3TQ	M1
	$\frac{5\pm\sqrt{17}}{2}$	Correct values.	A1
			(4)
(b)	Minors $\begin{pmatrix} 2-2p & 4 & p+1 \\ (2-p^2) & 6+p & (3p+1) \\ 2-p & (6-p) & 2 \end{pmatrix}$	Attempts the matrix of minors. If there is any doubt look for at least 6 correct elements. May be implied by their matrix of cofactors.	M1 (B1 on EPEN)
	$\begin{pmatrix} 2-2p & -4 & p+1 \end{pmatrix}$	Attempts cofactors.	M1
	Cofactors $\begin{pmatrix} -(2-p^2) & 6+p & -(3p+1) \\ 2-p & -(6-p) & 2 \end{pmatrix}$	Correct matrix	A1
	$\begin{bmatrix} 2-2p & p^2-2 & 2-p \end{bmatrix}$	Transposes matrix of cofactors and divides by determinant.	M1
	$\mathbf{M}^{+} = \frac{1}{p^{2} - 5p + 2} \begin{bmatrix} -4 & 6+p & p-6\\ p+1 & -3p-1 & 2 \end{bmatrix}$	Follow though their det M from part (a) but the adjoint matrix must be correct.	A1ft
			(5)
			Total 9

4(i)	$f(x) = x \arccos x,$	$-1 \le x \le 1,$	M>
	$f'(x) = \arccos x$	<u>x</u>	
	$\sqrt{1-x^2}$		
	M1: Differentiates using the product rule to obtain an expression of the form:		
	$\arccos x \pm \frac{x}{\sqrt{1-x^2}}$		
	√ A1: Correct de	$1 - x^{-}$	
	$0.5 \pi - \sqrt{3}$	$\pi - \sqrt{3}$ π 1	
	$f'(0.5) = \arccos 0.5 - \frac{1}{\sqrt{1 - 0.5^2}} = \frac{1}{3}$	$\frac{3}{3}$ oe e.g. $\frac{1}{3} - \frac{1}{\sqrt{3}}$	Al
			(3)
(ii)	$g(x) = \arctan x$	$n(e^{2x})$	
	$\sigma'(x) = \frac{2}{x}$	e^{2x}	
	e ⁴	x + 1	
	M1: Differentiates using the chain rule to ke^{2x}	o obtain an expression of the form:	M1A1
	$\frac{\kappa c}{\left(-2x\right)^2}$		
	(e) +	·1	
	AI: Correct derivativ	Ve in any form $Introduces sech(2x)$ Depends on previous	
	$g'(x) = \frac{1}{e^{2x} + e^{-2x}} = \operatorname{sech}(2x)$	M.	dM1
		Differentiates $\operatorname{sech}(u) \to \pm \operatorname{sech} u \tanh u$	d M1
	$g''(x) = -2 \operatorname{sech}(2x) \tanh(2x)$	Depends on both previous M's.	
		Correct expression	A 1
		Correct expression.	A1 (5)
(ii)	2	Correct expression. e^{2x}	A1 (5)
(ii) ALT 1	$g'(x) = \frac{2}{e^4}$	$\frac{e^{2x}}{x+1}$	A1 (5)
(ii) ALT 1	g'(x) = $\frac{2}{e^4}$ M1: Differentiates using the chain rule to	Correct expression. e^{2x} x + 1 p obtain an expression of the form:	A1 (5)
(ii) ALT 1	g'(x) = $\frac{2}{e^4}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{e^2}$	Correct expression. e^{2x} x + 1 e^{2x} botain an expression of the form:	A1 (5) M1A1
(ii) ALT 1	g'(x) = $\frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{2x}}$	Correct expression. e^{2x} x + 1 o obtain an expression of the form: -1	A1 (5) M1A1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + A1: \text{ Correct derivative}}$	Correct expression. e^{2x} x + 1 p obtain an expression of the form: -1 ye in any form	A1 (5) M1A1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{4x}}$ A1: Correct derivative $a''(x) = \frac{4e^{2x}(1+e^{4x}) - 4e^{4x} \times 2e^{2x}}{e^{4x}}$	Correct expression. e^{2x} x + 1 o obtain an expression of the form: -1 we in any form Differentiates using quotient or product	A1 (5) M1A1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{4x}}$ A1: Correct derivative $g''(x) = \frac{4e^{2x}(1+e^{4x})-4e^{4x} \times 2e^{2x}}{(e^{4x}+1)^2}$	Correct expression. e^{2x} x + 1 o obtain an expression of the form: -1 we in any form Differentiates using quotient or product rule. Depends on first M.	A1 (5) M1A1 dM1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{4x}}$ A1: Correct derivative $g''(x) = \frac{4e^{2x}(1+e^{4x})-4e^{4x} \times 2e^{2x}}{(e^{4x}+1)^2}$ $= \frac{4e^{2x}-4e^{6x}}{e^{4x}} = \frac{-4(e^{2x}-e^{-2x})}{e^{4x}}$	Correct expression. e^{2x} x + 1 o obtain an expression of the form: -1 ve in any form Differentiates using quotient or product rule. Depends on first M. Multiply through by e^{-4x} . Depends on	A1 (5) M1A1 dM1 dM1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{4x}}$ A1: Correct derivative $g''(x) = \frac{4e^{2x}(1+e^{4x})-4e^{4x} \times 2e^{2x}}{(e^{4x}+1)^2}$ $= \frac{4e^{2x}-4e^{6x}}{(e^{4x}+1)^2} = \frac{-4(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})^2}$	Correct expression. e^{2x} x + 1 o obtain an expression of the form: -1 ve in any form Differentiates using quotient or product rule. Depends on first M. Multiply through by e^{-4x} . Depends on both previous M's.	A1 (5) M1A1 dM1 dM1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{4x}}$ A1: Correct derivative $g''(x) = \frac{4e^{2x}(1+e^{4x})-4e^{4x} \times 2e^{2x}}{(e^{4x}+1)^2}$ $= \frac{4e^{2x}-4e^{6x}}{(e^{4x}+1)^2} = \frac{-4(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})^2}$ $= -2\frac{2}{e^{2x}-e^{-2x}}$	Correct expression. e^{2x} x + 1 e^{2x} x + 1 e^{2x} e^{2x} x + 1 e^{2x}	A1 (5) M1A1 dM1 dM1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{2x}}$ A1: Correct derivative $g''(x) = \frac{4e^{2x}(1+e^{4x})-4e^{4x} \times 2e^{2x}}{(e^{4x}+1)^2}$ $= \frac{4e^{2x}-4e^{6x}}{(e^{4x}+1)^2} = \frac{-4(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})^2}$ $= -2\frac{2}{e^{2x}+e^{-2x}}\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$ $= -2\frac{2}{e^{2x}+e^{-2x}}\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$	Correct expression. e^{2x} x + 1 x + 1 x + 1 y obtain an expression of the form: - -1 x in any form Differentiates using quotient or product rule. Depends on first M. Multiply through by e^{-4x} . Depends on both previous M's. Correct expression.	A1 (5) M1A1 dM1 dM1 A1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{2x}}$ A1: Correct derivative $g''(x) = \frac{4e^{2x}(1+e^{4x})-4e^{4x} \times 2e^{2x}}{(e^{4x}+1)^2}$ $= \frac{4e^{2x}-4e^{6x}}{(e^{4x}+1)^2} = \frac{-4(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})^2}$ $= -2\frac{2}{e^{2x}+e^{-2x}}\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$ $= -2\operatorname{sech} 2x \tanh 2x$ Note that the first derivative may be obtain	Correct expression. e^{2x} x + 1 o obtain an expression of the form: -1 ve in any form Differentiates using quotient or product rule. Depends on first M. Multiply through by e^{-4x} . Depends on both previous M's. Correct expression.	A1 (5) M1A1 dM1 dM1 A1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{2x}}$ A1: Correct derivative $g''(x) = \frac{4e^{2x}(1+e^{4x})-4e^{4x}\times 2e^{2x}}{(e^{4x}+1)^2}$ $= \frac{4e^{2x}-4e^{6x}}{(e^{4x}+1)^2} = \frac{-4(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})^2}$ $= -2\frac{2}{e^{2x}+e^{-2x}}\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$ $= -2\operatorname{sech} 2x \tanh 2x$ Note that the first derivative may be obtain	Correct expression. e^{2x} x + 1 o obtain an expression of the form: -1 ve in any form Differentiates using quotient or product rule. Depends on first M. Multiply through by e^{-4x} . Depends on both previous M's. Correct expression. ned implicitly in either method e.g. $dy = 2x$, $dy = 2e^{2x}$	A1 (5) M1A1 dM1 dM1 A1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{2x}}$ A1: Correct derivative $g''(x) = \frac{4e^{2x}(1+e^{4x})-4e^{4x} \times 2e^{2x}}{(e^{4x}+1)^2}$ $= \frac{4e^{2x}-4e^{6x}}{(e^{4x}+1)^2} = \frac{-4(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})^2}$ $= -2\frac{2}{e^{2x}+e^{-2x}}\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$ $= -2\operatorname{sech} 2x \tanh 2x$ Note that the first derivative may be obtain $y = \arctan(e^{2x}) \Longrightarrow \tan y = e^{2x} \Longrightarrow \sec^{2x}$	Correct expression. $\frac{e^{2x}}{x+1}$ b obtain an expression of the form: $\frac{1}{x+1}$ Differentiates using quotient or product rule. Depends on first M. Multiply through by e^{-4x} . Depends on both previous M's. Correct expression. $\frac{1}{y} \frac{dy}{dx} = 2e^{2x} \Rightarrow \frac{dy}{dx} = \frac{2e^{2x}}{1+(e^{2x})^2}$	A1 (5) M1A1 dM1 dM1 A1
(ii) ALT 1	$g'(x) = \frac{2}{e^{4x}}$ M1: Differentiates using the chain rule to $\frac{ke^{2x}}{(e^{2x})^2 + e^{2x}}$ A1: Correct derivative $g''(x) = \frac{4e^{2x}(1+e^{4x})-4e^{4x} \times 2e^{2x}}{(e^{4x}+1)^2}$ $= \frac{4e^{2x}-4e^{6x}}{(e^{4x}+1)^2} = \frac{-4(e^{2x}-e^{-2x})}{(e^{2x}+e^{-2x})^2}$ $= -2\frac{2}{e^{2x}+e^{-2x}}\frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}$ $= -2\operatorname{sech} 2x \tanh 2x$ Note that the first derivative may be obtain $y = \arctan(e^{2x}) \Rightarrow \tan y = e^{2x} \Rightarrow \sec^{2x}$	Correct expression. $\frac{e^{2x}}{x+1}$ b obtain an expression of the form: $\frac{e^{2x}}{x+1}$ b obtain an expression of the form: $\frac{e^{2x}}{y+1}$ b obtain	A1 (5) M1A1 dM1 dM1 A1

Question Number	Scheme	Notes	Marks
5. Paae 4	0 of 152 $I_n = \int \sec^n x \mathrm{d}x,$	$n \ge 0$	

		FD3 2021	OG MS	
5(a)	$\int \sec^n x \mathrm{d}x = \int \sec^{n-2} x \sec^2 x \mathrm{d}x$	Splits $\sec^n x$ into $\sec^{n-2} x \sec^2 x$	M1	
	$\int \sec^n x \mathrm{d}x = \sec^{n-2} x \tan x - \frac{1}{2} \sin x \mathrm{d}x$	$\int (n-2)\sec^{n-2}x\tan^2 x\mathrm{d}x$		
	Depends on previous M mark			
	dM1: Uses integration by parts to obtain $\sec^{n-2} x \tan x - k \int \sec^{n-2} x \tan^2 x dx$			
	A1: Correct ir	ntegration		
	$\int \sec^n x \mathrm{d}x = \sec^{n-2} x \tan x - \int (x + \sin x) \mathrm{d}x$	$(n-2)\sec^{n-2}x(\sec^2 x-1)\mathrm{d}x$	B1 (M1 on	
	Uses $\tan^2 x =$	$= \sec^2 x - 1$	EPEN)	
	$\int \sec^n x \mathrm{d}x = \sec^{n-2} x \tan x - (n-2)$	$\int \sec^n x \mathrm{d}x + (n-2) \int \sec^{n-2} x \mathrm{d}x$		
	$= \sec^{n-2} x \tan x - (n-2)I_n + (n-2)I_n$	$(n-2)I_{n-2} \Longrightarrow (n-1)I_n = \dots$	dd M1	
	Depends on all previo	bus M and B marks		
	$\frac{1}{1} \frac{1}{1} \frac{1}$	progress to the given result.		
	$(n-1)I_n = \tan x \sec^{n-2} x + (n-2)I_{n-2} *$	Fully correct proof.	Alcso	
			(6)	
ALT	$\int \sec^n x \mathrm{d}x = \int \sec^{n-2} x \sec^2 x \mathrm{d}x$	Splits $\sec^n x$ into $\sec^{n-2} x \sec^2 x$	M1	
	$\int \sec^{n-2} x \sec^2 x dx = \int \sec^{n-2} x (1 + \tan^2 x) dx$ $= \int \sec^{n-2} x dx + \int \tan^2 x \sec^{n-2} x dx$	Uses $\sec^2 x = 1 + \tan^2 x$ and splits into 2 integrals.	B1 (4 th mark M1 on EPEN)	
	$\int \tan^2 x \sec^{n-2} x dx = \frac{1}{(n-2)} \tan x$	$x \sec^{n-2} x - \frac{1}{(n-2)} \int \sec^n x \mathrm{d}x$		
	Uses integration by parts on $\int \tan^2 x \sec^{n-2} x dx$	x to obtain $A \tan x \sec^{n-2} x - B \int \sec^n x dx$	d M1	
	Note this is the 2 nd M on EPEN.			
	$\int \sec^{n} x dx = \int \sec^{n-2} x dx + \frac{1}{(n-2)} \tan x \sec^{n-2} x - \frac{1}{(n-2)} \int \sec^{n} x dx$		A1	
	Fully correct i	ntegration		
	. 1	1		
	$\int \sec^n x \mathrm{d}x = I_{n-2} + \frac{1}{(n-2)} \tan x \sec^n$	$x^{n-2} x - \frac{1}{(n-2)} I_n \Longrightarrow (n-1) I_n = \dots$	ddM1	
	$\int \sec^{n} x dx = I_{n-2} + \frac{1}{(n-2)} \tan x \sec^{n}$ Depends on previou	$x^{n-2} x - \frac{1}{(n-2)} I_n \Longrightarrow (n-1) I_n = \dots$ is M and B marks	dd M1	
	$\int \sec^{n} x dx = I_{n-2} + \frac{1}{(n-2)} \tan x \sec^{n}$ Depends on previou Introduces <i>I_n</i> and <i>I_{n-2}</i> and makes	$I^{n-2} x - \frac{1}{(n-2)} I_n \Longrightarrow (n-1) I_n =$ is M and B marks progress to the given result.	dd M1	

5(b)	$I_2 = 1$	Correct value for I_2 seen or implied.	B1
Page 4	$I_6 = \frac{1}{5} \tan x \sec^4 x + \frac{4}{5} I_4$ 1 of 152 or e.g.	Applies the given reduction formula once.	M1

	<u>FP3 2021</u>	<u> 06 MS </u>
$I_{6} = \frac{1}{5} \tan \frac{\pi}{4} \sec^{4} \frac{\pi}{4} + \frac{4}{5} I_{4}$ or e.g. $I_{6} = \frac{1}{5} (1) (\sqrt{2})^{4} + \frac{4}{5} I_{4}$		— —
$= \frac{1}{5} \tan x \sec^4 x + \frac{4}{5} \left(\frac{1}{3} \tan x \sec^2 x + \frac{2}{3} I_2 \right)$	$\int = \frac{1}{5} (1) (\sqrt{2})^4 + \frac{4}{15} (1) (\sqrt{2})^2 + \frac{8}{15} (1)$	M1
Applies the given reduction form	nula again and uses the limits	
to reach a numerical	expression for I_6	
$=\frac{28}{15}$	Correct value	A1
		(4)
$I_2 = 1$	Correct value for I_2 seen or implied.	B1
$I_{4} = \frac{1}{3} \tan x \sec^{2} x + \frac{2}{3} I_{2}$ or e.g. $I_{4} = \frac{1}{3} \tan \frac{\pi}{4} \sec^{2} \frac{\pi}{4} + \frac{2}{3} I_{2}$ or e.g. $I_{4} = \frac{1}{3} (1) (\sqrt{2})^{2} + \frac{2}{3} I_{2}$	Applies the given reduction formula once.	M1
$I_{6} = \frac{1}{5} \tan x \sec^{4} x + \frac{4}{5} \left(\frac{1}{3} \tan x \sec^{2} x + \frac{2}{3} \right)$ Applies the given reduction form to reach a numerical	$I_2 = \frac{1}{5} (1) (\sqrt{2})^4 + \frac{4}{15} (1) (\sqrt{2})^2 + \frac{8}{15}$ nula again and uses the limits expression for I_6	M1
$=\frac{28}{15}$	Correct value	A1
	$I_{6} = \frac{1}{5} \tan \frac{\pi}{4} \sec^{4} \frac{\pi}{4} + \frac{4}{5} I_{4}$ or e.g. $I_{6} = \frac{1}{5} (1) (\sqrt{2})^{4} + \frac{4}{5} I_{4}$ $= \frac{1}{5} \tan x \sec^{4} x + \frac{4}{5} (\frac{1}{3} \tan x \sec^{2} x + \frac{2}{3} I_{2})$ Applies the given reduction form to reach a numerical $= \frac{28}{15}$ $I_{4} = \frac{1}{3} \tan x \sec^{2} x + \frac{2}{3} I_{2}$ or e.g. $I_{4} = \frac{1}{3} \tan \frac{\pi}{4} \sec^{2} \frac{\pi}{4} + \frac{2}{3} I_{2}$ or e.g. $I_{4} = \frac{1}{3} (1) (\sqrt{2})^{2} + \frac{2}{3} I_{2}$ $I_{6} = \frac{1}{5} \tan x \sec^{4} x + \frac{4}{5} (\frac{1}{3} \tan x \sec^{2} x + \frac{2}{3} I_{2})$ Applies the given reduction form to reach a numerical $= \frac{28}{15}$	$I_{6} = \frac{1}{5} \tan \frac{\pi}{4} \sec^{4} \frac{\pi}{4} + \frac{4}{5} I_{4}$ or e.g. $I_{6} = \frac{1}{5} (1) (\sqrt{2})^{4} + \frac{4}{5} I_{4}$ $= \frac{1}{5} \tan x \sec^{4} x + \frac{4}{5} (\frac{1}{3} \tan x \sec^{2} x + \frac{2}{3} I_{2}) = \frac{1}{5} (1) (\sqrt{2})^{4} + \frac{4}{15} (1) (\sqrt{2})^{2} + \frac{8}{15} (1)$ Applies the given reduction formula again and uses the limits to reach a numerical expression for I_{6} $= \frac{28}{15}$ Correct value $I_{2} = 1$ Correct value $I_{4} = \frac{1}{3} \tan \frac{\pi}{4} \sec^{2} \frac{\pi}{4} + \frac{2}{3} I_{2}$ or e.g. $I_{4} = \frac{1}{3} (1) (\sqrt{2})^{2} + \frac{2}{3} I_{2}$ Applies the given reduction formula once. $I_{6} = \frac{1}{5} \tan x \sec^{4} x + \frac{4}{5} (\frac{1}{3} \tan x \sec^{2} x + \frac{2}{3} I_{2}) = \frac{1}{5} (1) (\sqrt{2})^{4} + \frac{4}{15} (1) (\sqrt{2})^{2} + \frac{8}{15}$ Applies the given reduction formula again and uses the limits to reach a numerical expression for I_{6} $= \frac{28}{15}$ Correct value $I_{6} = \frac{1}{5} \tan x \sec^{4} x + \frac{4}{5} (\frac{1}{3} \tan x \sec^{2} x + \frac{2}{3} I_{2}) = \frac{1}{5} (1) (\sqrt{2})^{4} + \frac{4}{15} (1) (\sqrt{2})^{2} + \frac{8}{15}$ Applies the given reduction formula again and uses the limits to reach a numerical expression for I_{6} $= \frac{28}{15}$ Correct value

In part (b), condone confusion with the coefficients provided the intention is clear.

For either method in part (b), all working must be shown and the given reduction formula must be used at least once. So do not allow e.g. I_4 to be evaluated with a calculator but I_4 can be evaluated directly without using the given reduction formula using an alternative method e.g. by parts or by substitution – see below:

$$\frac{Parts:}{I_4 = \int \sec^4 x \, dx = \int \sec^2 x \sec^2 x \, dx = \sec^2 x \tan x - 2 \int \sec^2 x \tan^2 x \, dx}$$
$$= \sec^2 x \tan x - 2 \int \sec^2 x \left(\sec^2 x - 1\right) dx = \sec^2 x \tan x - 2 \int \sec^4 x \, dx + 2 \int \sec^2 x \, dx$$
$$= \sec^2 x \tan x - 2I_4 + 2 \int \sec^2 x \, dx \Longrightarrow 3I_4 = \sec^2 x \tan x + 2 \tan x \Longrightarrow I_4 = \frac{1}{3} \sec^2 x \tan x + \frac{2}{3} \tan x$$
$$\frac{Substitution:}{Substitution:}$$

$$I_4 = \int \sec^4 x \, dx = \int \sec^2 x \sec^2 x \, dx = \int \sec^2 x \left(1 + \tan^2 x\right) dx$$
$$u = \tan x \Longrightarrow \int \sec^2 x \left(1 + \tan^2 x\right) dx = \int \sec^2 x \left(1 + u^2\right) \frac{du}{\sec^2 x} = \frac{u^3}{3} + u = \frac{\tan^3 x}{3} + \tan x$$

Page 42 of 152

1		FP3 2021	<u>, 06 MS</u>
6(a)	Normal to plane given by $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 3 \\ 1 & -2 & 1 \end{vmatrix} = \dots$	Attempt cross product of direction vectors. If the method is unclear, look for at least 2 correct components.	M1
	$= 6\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$	Or any multiple of this vector.	A1
	Substitute appropriate point into 6x + 2y - 2z = d e.g. (1, 1, 1) or (2, 1, 4) to find "d"	Use a valid point and use scalar product with normal or substitute into Cartesian equation.	M1
	6x + 2y - 2z = 6 $3x + y - z = 3 *$	Given answer. No errors seen	A1* cso
			(4)
6(a) ALT	$\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} + \mathbf{k})$ $\Rightarrow x = 1 + \lambda + \mu, \ y = 1$ M1: Forms equation of plane using (1, 1, 1) ar for <i>x</i> , <i>y</i> and <i>z</i> in the A1: Correct	$(3\mathbf{k}) + \mu(\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ $-2\mu, z = 1 + 3\lambda + \mu$ and direction vectors and extracts 3 equations terms of λ and μ equations	M1A1
	$x = 1 + \frac{1}{2} - \frac{1}{2}y + \frac{1}{3}z - \frac{1}{2} + \frac{1}{6}y$	Eliminates λ and μ and achieves an equation in <i>x</i> , <i>y</i> and <i>z</i> only.	M1
	3x + y - z = 3 *	Given answer. No errors seen.	A1
6(b)	s = -3	cao	B1
			(1)
6(c)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -2 \\ 3 & 1 & -1 \end{vmatrix} = \mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$	Attempts cross product of normal vectors. If the method is unclear, look for at least 2 correct components.	M1
	e.g. $x = 0, 2y - 2z = 6, y - 2z = 3$ $\Rightarrow y = 3, z = 0$	Any valid attempt to find a point on the line.	M1
	e.g. (0,3,0)	Any valid point on the line	A1
	$\mathbf{r} = 3\mathbf{j} + \lambda(\mathbf{i} - 5\mathbf{j} - 2\mathbf{k})$	Correct equation including " r =" or equivalent e.g. $x = \frac{y-3}{-5} = \frac{z}{-2}$	A1
			(4)
6(c)	$\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} + 3\mathbf{k}) + \mu(\mathbf{i}$	$-2\mathbf{j}+\mathbf{k}), \mathbf{r}.(\mathbf{i}+\mathbf{j}-2\mathbf{k})=3$	
ALT 1	$\Rightarrow 1 + \lambda + \mu + 1 - 2\mu$	$\mu - 2 - 6\lambda - 2\mu = 3$	M1
	Forms equation of first plane using (1, 1, 1) a	nd direction vectors and substitutes into the	
	second plane to form a	n equation in λ and μ	
	$\Rightarrow \mu = \frac{1}{2}(-5\lambda - 3)$	Solves to obtain μ in terms of λ or λ in terms of μ	M1
	3	Correct equation	A1
	$E \sigma \mathbf{r} - \mathbf{i} \pm \mathbf{i} \pm \mathbf{k} \pm 2/\mathbf{i} \pm 2\mathbf{k}$	$\frac{1}{1-1}(-5\lambda-3)(i-2i+k)$	
	$\sim 6.5 \cdot 1 - 1 + J + K + \lambda(1 + 3K)$		A1
	Correct equation	including " r ="	
6(c) ALT 2	$3x + y - z = 3, \ x + y - 2z = 3 \Longrightarrow 2x + z = 0$	Uses the Cartesian equations of both planes and eliminates one variable	M1
	$z = \lambda \Longrightarrow x = -\frac{1}{2}\lambda, y = 3 + 2z - x = 3 + \frac{5}{2}\lambda$	Introduces parameter and expresses other 2 variables in terms of the parameter	M1
		Correct equations	A1
	$\mathbf{r} = 3\mathbf{j} + \lambda(\mathbf{i} - 5\mathbf{j} - 2\mathbf{k})$	Correct equation including " r =" or equivalent e.g. $x = \frac{y-3}{-5} = \frac{z}{-2}$	A1

6(c) ALT 3	$3x + y - z = 3, \ x + y - 2z = 3 \Longrightarrow 2x + z = 0$	Uses the Cartesian equations of both planes and eliminates one variable	M1
Page 4	3 of 152		

			<u>-06 MS</u>
	$3x + y - z = 3, \ x + y - 2z = 3 \Longrightarrow 5x + y = 3$	Uses the Cartesian equations of both planes and eliminates another variable	M1
	$\Rightarrow x = -\frac{z}{2}, x = \frac{3-y}{5}$	Correct equations for one variable in terms of the other 2	A1
	$x = \frac{y-3}{-5} = \frac{z}{-2}$	Correct equation or equivalent e.g. $x = \frac{3-y}{5} = \frac{z}{-2}$	A1
6(d)	$(3\mathbf{i}+\mathbf{j}-\mathbf{k})\cdot(\mathbf{i}+\mathbf{j}-2\mathbf{k})=6$	Correct value for scalar product	B1
	$\cos \theta = (3\mathbf{i} + \mathbf{j} - \mathbf{k}).(\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = \sqrt{6}$	Full scalar product attempt to reach a value for $\cos \theta$	M1
	$\cos \theta = \frac{1}{\sqrt{9+1+1}\sqrt{1+1+4}} = \sqrt{\frac{1}{11}}$	For $\cos\theta = \sqrt{\frac{6}{11}}$	A1
	$\theta = 42.4^{\circ}$	Correct value. Mark their final answer.	A1
			(4)
6(d) ALT	$ (3\mathbf{i}+\mathbf{j}-\mathbf{k})\times(\mathbf{i}+\mathbf{j}-2\mathbf{k}) =\sqrt{30}$	Correct value for magnitude of cross product	B1
	$(3\mathbf{i} + \mathbf{i} + \mathbf{k}) (\mathbf{i} + \mathbf{i} - 2\mathbf{k}) = \sqrt{55}$	Full attempt to reach a value for $\sin \theta$	M1
	$\sin\theta = \frac{ (3\mathbf{r} + \mathbf{j} - \mathbf{k}).(\mathbf{r} + \mathbf{j} - 2\mathbf{k}) }{\sqrt{9 + 1 + 1}\sqrt{1 + 1 + 4}} = \frac{\sqrt{33}}{11}$	For $\sin \theta = \frac{\sqrt{55}}{11}$	A1
	$\theta = 42.4^{\circ}$	Correct value. Mark their final answer.	A1
			Total 13

		<u>FP3 2021</u>	L OG MS	
Question Number	Scheme	Notes	Marks	
7(i)	$x^2 - 4x + 5 = (x - 2)^2 + 1$	Attempts to complete the square. Allow for $(x - 2)^2 + c$, $c > 0$	M1	
	$\int \frac{1}{\left(x-2\right)^2+1} \mathrm{d}x = \arctan(x-2)$	Allow for karctan f (x).	M1	
	$\left[\arctan(x-2)\right]_{1}^{2} = 0 - \left(-\frac{\pi}{4}\right) = \frac{\pi}{4}$	$\frac{\pi}{4}$ cao	A1	
			(3)	
7(ii)	$\int \frac{\sqrt{x^2 - 3}}{x^2} dx = -\frac{\sqrt{x^2 - 3}}{x^2}$ Uses integration by parts and ob	$\frac{\sqrt{x^2-3}}{x} + \int \frac{1}{\sqrt{x^2-3}} dx$ begins $A \frac{\sqrt{x^2-3}}{x} + B \int \frac{1}{\sqrt{x^2-3}} dx$	M1	
	$=-\frac{\sqrt{x^2-3}}{\sqrt{x^2-3}}+\operatorname{arcosh}\frac{x}{\sqrt{x^2-3}}$	$B\int \frac{1}{\sqrt{x^2 - 3}} \mathrm{d}x = k \mathrm{arcosh} \mathrm{f}\left(x\right)$	M1	
	$x \sqrt{3}$	All correct	A1	
	$\int_{\sqrt{3}}^{3} \frac{\sqrt{x^2 - 3}}{x^2} dx = \left[-\frac{\sqrt{x^2 - 3}}{x} + \operatorname{arcosh} \frac{x}{\sqrt{3}} \right]_{\sqrt{3}}^{3} = \left(-\frac{\sqrt{6}}{3} + \operatorname{arcosh} \sqrt{3} \right) - (0 + \operatorname{arcosh} 1)$			
	Applies the	limits 3 and $\sqrt{3}$		
	Depends on both previous M marks			
	$\operatorname{arcosh} \sqrt{3} - \frac{1}{3}\sqrt{6} = \ln(\sqrt{2} + \sqrt{3}) - \frac{1}{3}\sqrt{6}$	Accept either of these forms.	A1	
			(5)	
7(ii) ALT 1	$\int \frac{\sqrt{x^2 - 3}}{x^2} dx = \int \frac{\sqrt{3\cosh^2 u - 3}}{3\cosh^2 u} \sqrt{3} \sinh u du$	A complete substitution using $x = \sqrt{3} \cosh u$	M1	
	$=\int \tanh^2 u \mathrm{d} u$	Obtains $k \int \tanh^2 u du$	M1	
	$= \int (1 - \operatorname{sech}^2 u) \mathrm{d}u = u - \tanh u$	Correct integration	A1	
	$\int_{\sqrt{3}}^{3} \frac{\sqrt{x^2 - 3}}{x^2} dx = \left[u - \tanh u\right]_{0}^{\operatorname{arcosh}}$	$\sqrt{3} = \operatorname{arcosh}\sqrt{3} - \operatorname{tanh}\left(\operatorname{arcosh}\sqrt{3}\right) - 0$	d M1	
	Applies the limits 0 and arcosity 5			
	$\operatorname{arcosh}\sqrt{3} - \frac{1}{3}\sqrt{6} = \ln(\sqrt{2} + \sqrt{3}) - \frac{1}{3}\sqrt{6}$	Accept either of these forms.	A1	

	0001	00	T A C
$H' D \prec$	2021	116	

7(ii) ALT 2	$\int \frac{\sqrt{x^2 - 3}}{x^2} dx = \int \frac{\sqrt{3\sec^2 u - 3}}{3\sec^2 u} \sqrt{3}\sec u \tan u du$	A complete substitution using $x = \sqrt{3} \sec u$	M1
	$=\int \frac{\tan^2 u}{\sec u} \mathrm{d}u$	Obtains $k \int \frac{\tan^2 u}{\sec u} du$	M1
	$=\ln(\sec u + \tan u) - \sin u$	Correct integration	A1
	$\int_{\sqrt{3}}^{3} \frac{\sqrt{x^2 - 3}}{x^2} dx = \left[\ln(\sec u + \tan u) - \sin u\right]_{0}^{\arccos\sqrt{3}}$ $= \ln\left(\sec\left(\arccos\sqrt{3}\right) + \tan\left(\arccos\sqrt{3}\right)\right) - \ln\left(\sec\left(0\right) + \tan\left(0\right)\right) - \sin\left(\arccos\sqrt{3}\right)$		d M1
	Applies the limits	s 0 and $\operatorname{arcsec}\sqrt{3}$	
	Depends on both	previous M marks	
	$\int_{\sqrt{3}}^{3} \frac{\sqrt{x^2 - 3}}{x^2} dx = \ln(\sqrt{2} + \sqrt{3}) - \frac{1}{3}\sqrt{6}$	Correct answer.	A1
			Total 8

Note that there may be other ways to perform the integration in part (ii) e.g. subsequent substitutions. Marks can be awarded if the method leads to something that is integrable and should be awarded as in the main scheme e.g. M1 for a complete method, M2 for simplifying and reaching an expression that itself can be integrated or can be integrated after rearrangement, A1 for correct integration, dM3 for using appropriate limits and A2 as above.

$$\frac{\text{Alternative approach:}}{\int \frac{\sqrt{x^2 - 3}}{x^2} dx} = \int \frac{x^2 - 3}{x^2 \sqrt{x^2 - 3}} dx = \int \frac{1}{\sqrt{x^2 - 3}} dx - \int \frac{3}{x^2 \sqrt{x^2 - 3}} dx = \operatorname{arcosh} \frac{x}{\sqrt{3}} - \dots$$
Can score **M0M1A0dM0A0** if there is no creditable attempt at the second integral.
If the second integral is attempted, it must be using a suitable method
e.g. with either $x = \sqrt{3} \cosh u$ or $x = \sqrt{3} \sec u$:

$$\int \frac{3}{x^2 \sqrt{x^2 - 3}} dx = \int \frac{3}{3 \cosh^2 u \sqrt{3} \cosh^2 u - 3} \sqrt{3} \sinh u \, du = \int \operatorname{sech}^2 u \, du = \tanh u + c$$

$$\int \frac{3}{x^2 \sqrt{x^2 - 3}} dx = \int \frac{3}{3 \sec^2 u \sqrt{3} \sec^2 u - 3} \sqrt{3} \sec u \tan u \, du = \int \cos u \, du = \sin u + c$$
In these cases the first M can then be awarded and the other marks as defined with the appropriate limits used.

Page 46 of 152

Question	Scheme	Notes	Marks	
Number				
o(a)	Asymptotes are $y = \pm 2x$	$y = \pm 2x$ oe e.g. $x = \pm \frac{y}{2}$	B1	
		_	(1)	
8(b)	$4 = e^2 - 1 \Longrightarrow e = \sqrt{5}$	Uses the correct eccentricity formula with $a = 1$ and $b = 2$ to find a value for e .	M1	
	Foci are $(\pm\sqrt{5},0)$	Both required.	A1	
8(c)	c) $8x - 2y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{4x}{y} = \frac{4 \sec \theta}{2 \tan \theta} \text{ or } \frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{2 \sec^2 \theta}{\sec \theta \tan \theta}$ M1: $Ax + By \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = f(\theta) \text{ or } \frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} = f(\theta)$ A1: Correct gradient in terms of θ			
	Explicit differentiati $y^2 = 4x^2 - 4 \Rightarrow y = (4x^2 - 4)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} =$	on may be seen: = $\frac{1}{2} (4x^2 - 4)^{-\frac{1}{2}} \times 8x = \frac{4 \sec \theta}{\sqrt{4 \sec^2 \theta - 4}}$		
	Score M1 for $\frac{dy}{dx} = kx(4x^2 - 4)^{-\frac{1}{2}} = f(\theta)$	and A1 for correct gradient in terms of $ heta$		
	E.g. $y - 2\tan\theta = \frac{4\sec\theta}{2\tan\theta}(x - \sec\theta)$	Correct straight line method using their gradient in terms of θ and $x = \sec \theta$, $y = 2\tan \theta$	M1	
	$y\tan\theta - 2\tan^2\theta = 2$	$2x \sec \theta - 2 \sec^2 \theta$		
	$\Rightarrow y \tan \theta - 2 \tan^2 \theta = 2.$	$x \sec \theta - 2(1 + \tan^2 \theta)$		
	$y\tan\theta = 2x\sec\theta - 2^*$	Obtains the given answer with sufficient working shown as above.	Alcso	
8(4)		2 ton 0	(4)	
o(u)	$VP: V(-1,0); P(\sec\theta, 2\tan\theta)$	$(\theta) \Rightarrow y = \frac{2 \tan \theta}{\sec \theta + 1} (x+1)$		
	or $WQ: W(1,0); Q(\sec\theta2\tan\theta)$	$(\theta) \Longrightarrow y = \frac{-2\tan\theta}{\sec\theta - 1}(x - 1)$	M1A1	
	M1: Correct straight line me	thod for either VP or WQ		
	A1: One correct equ $y = \frac{-2\tan\theta}{\sec\theta - 1}(x - 1), \ y = \frac{2\tan\theta}{\sec\theta + 1}(x + 1)$	Both equations correct in any form.	A1	
	$\frac{2\tan\theta}{\sec\theta+1}(x+1) = \frac{-2\tan\theta}{\sec\theta-1}(x-1) \Longrightarrow x/y = \dots$	Attempt to solve and makes progress to achieve either $x =$ or $y =$ in terms of θ only.	M1	
	$x = \cos \theta$ or $y = 2\sin \theta$	One correct coordinate	A1	
	$x = \cos \theta$ and $y = 2\sin \theta$	Both correct	A1	
	$x^{2} + \frac{y^{2}}{4} = 1$ or $a = 1, b = 2$	Correct equation or correct values for <i>a</i> and <i>b</i>	A1	
			(7)	
			Total 14	

Page 47 of 152

Question	Scheme	Marks	
1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \times \frac{2}{\sqrt{\left(2x\right)^2 - 1}}$	M1	
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{1}{4x^2 - 1} = \frac{4x^2}{4x^2 - 1}$	M1	
	$\int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \mathrm{d}x = \int \sqrt{\frac{4x^2}{4x^2 - 1}} \mathrm{d}x = 2\int \frac{x}{\sqrt{4x^2 - 1}} \mathrm{d}x$	A1	
	$=\frac{2(4x^2-1)^{\frac{1}{2}}}{8\times\frac{1}{2}}$	M1	
	$s = \left[\frac{\left(4x^2 - 1\right)^{\frac{1}{2}}}{2}\right]_{\frac{7}{2}}^{13} = \frac{1}{2}\left(\sqrt{4 \times 169 - 1} - \sqrt{4 \times \frac{49}{4} - 1}\right) = \dots$	dM1	
	$=\frac{1}{2}\left(15\sqrt{3}-4\sqrt{3}\right)=\frac{11}{2}\sqrt{3}$	A1	
		(6)	
		6 marks)	
Notes:			
M1: Attempts $\frac{dy}{dx}$, accept the form $\frac{A}{\sqrt{(2x)^2-1}}$. Allow $\frac{A}{\sqrt{2x^2-1}}$ (condone missing brackets)			
Altern	ative 1:		
Writes	$\frac{1}{2}$ ar cosh 2x as $\frac{1}{2}$ ln $\left(2x + \sqrt{4x^2 - 1}\right)$ leading to		
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$	$ \times \frac{1}{2x + \sqrt{4x^2 - 1}} \times \left(2 + \frac{4x}{\sqrt{4x^2 - 1}}\right) = \frac{2x + \sqrt{4x^2 - 1}}{\sqrt{4x^2 - 1}\left(2x + \sqrt{4x^2 - 1}\right)} = \frac{1}{\sqrt{4x^2 - 1}} $		
Alterna	ntive 2:		
$y = \frac{1}{2} \operatorname{ar} \cos \theta$	$y = \frac{1}{2}\operatorname{ar}\cosh 2x \Longrightarrow 2y = \operatorname{ar}\cosh 2x \Longrightarrow \cosh 2y = 2x \longrightarrow 4\sinh 2y \frac{dy}{dx} = 2x \Longrightarrow \frac{dy}{dx} = \frac{1}{\sinh 2y} = \frac{1}{\sqrt{4x^2 - 1}}$		
If either	approach is taken then the same condition for the form of the derivative applies.		
Note that this differentiation may be seen in an attempt by parts of $\int y dx$			
M1: Attemp	ots to find $1 + \left(\frac{dy}{dx}\right)^2$ using their $\frac{dy}{dx}$ and attempts common denominator.		
A1: Reaches a correct simplified integral with $\sqrt{x^2}$ replaced with x as shown in the scheme.			
Allow e	equivalent forms e.g. $2\int x\sqrt{\frac{1}{4x^2-1}}dx$, $\frac{1}{2}\int \frac{4x}{\sqrt{(2x)^2-1}}dx$		
This ma	y be implied by subsequent work.		

Page 48 of 152

M1: Attempts the integration and reaches the form $\alpha (\beta x^2 - 1)^{\frac{1}{2}}$. α and/or β may be 1 This may be implied by e.g.

$$u = 4x^2 - 1 \rightarrow k \int \frac{1}{\sqrt{u}} du = \alpha \sqrt{u} \text{ or } u = x^2 \rightarrow k \int \frac{1}{\sqrt{4u - 1}} du = \alpha \sqrt{4u - 1}$$

dM1: Applies the limits to their integral. **Depends on the previous 2 method marks.** Any attempts at substitution requires use of changed limits e.g.

$$u = 4x^2 - 1 \rightarrow \frac{1}{4} \int \frac{1}{\sqrt{u}} du \rightarrow \frac{1}{2} \left[\sqrt{u} \right]_{48}^{675} = \dots$$

A1: cao Accept equivalents in the correct form, such as $\frac{1}{2}\sqrt{363}$

Examples of alternative for the final 3 marks:

$$x = \frac{1}{2}\cosh u \Rightarrow 2\int \frac{x}{\sqrt{4x^2 - 1}} dx = \int \frac{\cosh u}{\sqrt{\cosh^2 u - 1}} \frac{1}{2}\sinh u du$$
$$\int \frac{1}{2}\cosh u du = \frac{1}{2} \left[\sinh u\right]_{\text{arcosh}7}^{\text{arcosh}26} = \frac{1}{2} \left(\frac{e^{\ln(26 + 15\sqrt{3})} - e^{-\ln(26 + 15\sqrt{3})}}{2} - \frac{e^{\ln(7 + 4\sqrt{3})} - e^{-\ln(7 + 4\sqrt{3})}}{2}\right)$$
$$= \frac{1}{2} \left(15\sqrt{3} - 4\sqrt{3}\right) = \frac{11}{2}\sqrt{3}$$

Score M1 for a complete method for the substitution leading to *k*sinh*u* and then dM1 for applying changed limits (or reverts back to *x*) and A1 as above

$$x = \frac{1}{2}\sec u \Longrightarrow 2\int \frac{x}{\sqrt{4x^2 - 1}} \, \mathrm{d}x = \int \frac{\sec u}{\sqrt{\sec^2 u - 1}} \frac{1}{2}\sec u \tan u \, \mathrm{d}u$$
$$\int \frac{1}{2}\sec^2 u \, \mathrm{d}u = \frac{1}{2} [\tan u]_{\operatorname{arcosh}}^{\operatorname{arcosh}} \frac{1}{7}$$
$$= \frac{1}{2} (15\sqrt{3} - 4\sqrt{3}) = \frac{11}{2}\sqrt{3}$$

Score M1 for a complete method for the substitution leading to *k*tan*u* and then dM1 for applying changed limits (or reverts back to *x*) and A1 as above

Special Case if no integration is attempted:

Note that if candidates do not attempt the integration but obtain the correct exact answer then a special case of M1M1A1M0A0A1 (4/6) should be awarded.

Question	Scheme	Marks
2.	$\cosh y = x, y < 0 \Rightarrow y = \ln \left[x - \sqrt{x^2 - 1} \right]$	
	$\cosh y = x \Longrightarrow x = \frac{e^y + e^{-y}}{2}$	B1
	$\Rightarrow 2xe^y = e^{2y} + 1$	M1
	$\Rightarrow e^{2y} - 2xe^{y} + 1 = 0 \Rightarrow e^{y} = \frac{2x \pm \sqrt{(2x)^{2} - 4 \times 1 \times 1}}{2}$	M1
	$\Rightarrow e^{2y} - 2xe^{y} + 1 = 0 \Rightarrow (e^{y} - x)^{2} + 1 - x^{2} = 0 \Rightarrow e^{y} = \dots$	
	$=x\pm\sqrt{x^2-1}$	A1
	So $y = \ln \left[x - \sqrt{x^2 - 1} \right] *$	A1*
	since $y < 0 \Rightarrow e^y < 1$ so need $x - \sqrt{x^2 - 1}$ (as $x > 1$ so must subtract)	B1
		(6)
		(6 marks)
Notes:		

B1: Correct statement for x in terms of exponentials. $\cosh y = \frac{e^x + e^{-x}}{2}$ scores B0.

M1: Multiplies through by e^y to achieve a quadratic in e^y. (Terms need not be gathered.)M1: Uses the quadratic formula or other valid method (e.g. completing the square) to solve for e^y.

A1: Correct solution(s) for e^y. Accept if only the negative one is given. Accept $\frac{2x \pm \sqrt{4x^2 - 4}}{2}$

A1*: Completely correct work leading to the given answer regardless of the justification why the negative root is taken (correct or incorrect). Must be no errors seen.

B1: Suitable justification for taking the negative root given.

E.g.
$$y < 0$$
 so $y = \ln \left[x - \sqrt{x^2 - 1} \right]$. Condone $x \pm \sqrt{x^2 - 1} < 1$ so $y = \ln \left[x - \sqrt{x^2 - 1} \right]$.

Note that the B1 can only be awarded if all previous marks have been awarded. But the reason may be given before or after ln has been taken.

E.g. $(e^{y} - x)^{2} + 1 - x^{2} = 0 \implies e^{y} - x = \pm \sqrt{x^{2} - 1}$ but y < 0 so $e^{y} - x = -\sqrt{x^{2} - 1}$

Working backwards:

$$y = \ln\left[x - \sqrt{x^2 - 1}\right] \Rightarrow e^y = x - \sqrt{x^2 - 1} (B1) \Rightarrow e^y + e^{-y} = x - \sqrt{x^2 - 1} + \frac{1}{x - \sqrt{x^2 - 1}} (M1)$$
$$x - \sqrt{x^2 - 1} + \frac{1}{x - \sqrt{x^2 - 1}} = \frac{2x(x - \sqrt{x^2 - 1})}{x - \sqrt{x^2 - 1}} (M1) = 2x(A1) \Rightarrow x = \frac{e^y + e^{-y}}{2} = \cosh y (A1)$$
Final B1 unlikely to be available.

Page 50 of 152

Question	Scheme	Marks
3(a)	$\frac{dy}{dx} = \frac{6\cos\theta}{-8\sin\theta} \text{ or } \frac{2x}{64} + \frac{2y}{36}\frac{dy}{dx} = 0 \text{ or } \frac{dy}{dx} = \frac{1}{4} \times \frac{1}{2} \left(576 - 9x^2\right)^{-\frac{1}{2}} \times -18x$	B1
	$m_T = -\frac{3\cos\theta}{4\sin\theta} \Rightarrow m_N = -\frac{1}{m_T} = \frac{4\sin\theta}{3\cos\theta}$	M1
	So normal is $y - 6\sin\theta = \frac{4\sin\theta}{3\cos\theta} (x - 8\cos\theta)$	
	or $y = \frac{4\sin\theta}{3\cos\theta}x + c, \ c = 6\sin\theta - \frac{4\sin\theta}{3\cos\theta} \times 8\cos\theta$	dM1
	$\Rightarrow 3y\cos\theta - 18\sin\theta\cos\theta = 4x\sin\theta - 32\sin\theta\cos\theta$ $\Rightarrow 4x\sin\theta - 32\sin\theta\cos\theta$	A1*
	$\Rightarrow 4x \sin \theta = 5y \cos \theta = 14 \sin \theta \cos \theta$	(4)
(b)	A is $\left(\frac{7}{2}\cos\theta, 0\right)$ and B is $\left(0, -\frac{14}{3}\sin\theta\right)$	B1
	$M \operatorname{is}\left(\frac{\frac{7}{2}\cos\theta}{2}, -\frac{\frac{14}{3}\sin\theta}{2}\right) = \left(\frac{7}{4}\cos\theta, -\frac{7}{3}\sin\theta\right)$	M1
	$\sin^2\theta + \cos^2\theta = 1 \Longrightarrow \left(-\frac{3}{7}y\right)^2 + \left(\frac{4}{7}x\right)^2 = 1$	dM1 A1
	$\Rightarrow 16x^2 + 9y^2 = 49$	A1
		(5)
	((9 marks)
Notes:		

(a)

B1: A correct statement for, or involving, $\frac{dy}{dx}$. See examples in scheme for parametric, implicit and direct forms

direct forms.

M1: Finds $\frac{dy}{dx}$ in terms of θ and applies the perpendicular condition to find gradient of the normal.

dM1: Uses their normal gradient and P to find the equation of the normal

A1*: Correct answer from correct work with at least one intermediate step and no errors seen. (b)

B1: Correct coordinates for *A* and *B* or correct intercepts of *l* seen or implied by working. Allow in any form simplified or unsimplified.

M1: Uses their A and B to attempt the midpoint, M. May be implied by at least one correct coordinate.

dM1: Uses $\sin^2 \theta + \cos^2 \theta = 1$ with their *M* to form an equation in *x* and *y* only.

Depends on the previous mark.

A1: A correct unsimplified equation.

A1: Correct equation in the required form. Allow any integer multiple.

Page 51 of 152

Special Case : If <i>M</i> is found as e.g.	$\left(\frac{7}{4}\cos\theta, \frac{7}{3}\sin\theta\right)$	withhold the final mark only if otherwise
correct.		

Question	Scheme	Marks	
4(a)	$\begin{vmatrix} 2 & 0 & -1 \\ k & 3 & 2 \\ -2 & 1 & k \end{vmatrix} = 2\begin{vmatrix} 3 & 2 \\ 1 & k \end{vmatrix} = 0\begin{vmatrix} k & 2 \\ -2 & k \end{vmatrix} + (-1)\begin{vmatrix} k & 3 \\ -2 & 1 \end{vmatrix} = 2(3k-2) - (k+6) = \dots$	M1	
	= 6k - 4 - k - 6 = 5k - 10*	A1*	
		(2)	
(b)	$\mathbf{M}^{T} = \begin{bmatrix} 0 & 3 & 1 \\ -1 & 2 & k \end{bmatrix} \text{ or minors} \begin{bmatrix} 2k & 2 & k & 1 & k & 1 & 0 \\ 1 & 2k - 2 & 2 \\ 3 & 4 + k & 6 \end{bmatrix} \text{ or}$ cofactors $\begin{pmatrix} 3k - 2 & -k^{2} - 4 & k + 6 \\ -1 & 2k - 2 & -2 \\ 3 & -4 - k & 6 \end{pmatrix}$		
	Adjugate matrix is $\begin{pmatrix} 3k-2 & -1 & 3\\ -k^2-4 & 2k-2 & -4-k\\ k+6 & -2 & 6 \end{pmatrix} (\ge 6 \text{ entries correct})$	M1	
	Hence $\mathbf{M}^{-1} = \frac{1}{5k - 10} \begin{pmatrix} 3k - 2 & -1 & 3\\ -k^2 - 4 & 2k - 2 & -4 - k\\ k + 6 & -2 & 6 \end{pmatrix}$	dM1A1	
		(4)	
(c)	Images of A, B and C are $(5, 4k - 18, 3k - 16)$, $(0, 7 - 2k, 9 - 4k)$ and $(0, 4k - 2, 8k - 14)$	M1 A1	
	$(\pm)50 = \frac{1}{6} \begin{vmatrix} 5 & 4k - 18 & 3k - 16 \\ 0 & 7 - 2k & 9 - 4k \\ 0 & 4k - 2 & 8k - 14 \end{vmatrix} \Rightarrow (\pm)300 = 5()(=200k - 400) \Rightarrow k =$	M1	
	$(300 = 200k - 400 \Rightarrow)k = \frac{7}{2}$ or $(-300 = 200k - 400 \Rightarrow)k = \frac{1}{2}$	A1	
	$k = \frac{1}{2}$ and $k = \frac{7}{2}$		
		(5)	
Alt method	Using volume scale factor. Attempts $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 4 & -8 & 3 \\ -2 & 5 & -4 \\ 4 & -6 & 8 \end{vmatrix} = 4(40 - 24) + 8(-16 + 16) + 3(12 - 20) = \dots$	M1	
	Volume of <i>T</i> is $\frac{1}{6} \mathbf{a}.(\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 1 \\ -2 & 5 & -3 \\ 4 & 6 & -8 \end{vmatrix} = \dots \frac{20}{3}$	A1	
	Volume image of $T = \det \mathbf{M} \times \frac{20}{3} \Rightarrow \frac{20}{3} 5k - 10 = 50 \Rightarrow k =$	M1	

Page 53 of 152

(11 marks)

$$\left(\frac{20}{3}(5k-10) = 50 \Longrightarrow\right) k = \frac{7}{2} \quad \text{or} \left(\frac{20}{3}(10-5k) = 50 \Longrightarrow\right) k = \frac{1}{2} \qquad \text{A1}$$

$$k = \frac{1}{2} \text{ and } k = \frac{7}{2} \qquad \text{A1}$$
(5)

Notes:

(a)

M1: Correct method for expanding the determinant to reach a linear expression in k. Expect expansion along the top row, but may expand along any row or column. Sarrus gives 6 + k - (6 + 4).

A1*: Correct expression from correct work.

(b)

M1: Begins the process of finding the inverse by attempting either the transpose, or the matrix of minors or cofactors. Look for at least 6 correct entries.

M1: Proceeds to find the adjugate matrix (may include the reciprocal determinant). Again look for 6 correct entries.

dM1: Full method to find the inverse matrix, so divides their adjugate by the determinant.

Depends on both previous marks.

A1: Fully correct inverse.

(c)

M1: Attempts to find the image vectors of A, B and C under the transformation. (O mapping to O may be assumed). May be implied by at least two correct entries in one of the three vectors – but must be finding all three.

A1: Correct image vectors. Allow unsimplified and isw if necessary.

M1: Use their image vectors in a suitable scalar triple product to find the volume, and set volume equal to 50 and attempts to solve for k. Must include the 1/6 but may appear later.

Usually
$$\frac{1}{6}(200k - 400) = 50$$
 leading to $k = \frac{7}{2}$

A1: One correct value for k obtained, either $k = \frac{7}{2}$ or $k = \frac{1}{2}$

A1: Both values of k correctly found. $k = \frac{7}{2}$ and $k = \frac{1}{2}$

Alt method using determinant as volume scale factor.

M1: Attempts an appropriate scalar triple product. May have rows in different order.

A1: Correct volume for tetrahedron T. Need not be simplified, so $\frac{40}{6}$ is fine here.

M1: Uses the determinant as the volume scale factor to set up at least one equation in k using their volume and the given volume and attempts to solve for k. The 1/6 may have been missing.

Usually
$$\frac{20}{3}(5k-10) = 50$$
 leading to $k = \frac{7}{2}$

A1: One correct value for k obtained, either $k = \frac{7}{2}$ or $k = \frac{1}{2}$

A1: Both values of *k* correctly found.
$$k = \frac{7}{2}$$
 and $k = \frac{1}{2}$

Page 54 of 152

Question	Scheme	Marks
5(a)	$(5\mathbf{i}+\mathbf{j}) \times (8\mathbf{i}-2\mathbf{j}+3\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 1 & 0 \\ 8 & -2 & 3 \end{vmatrix} = \dots$ Or $\frac{(u\mathbf{i}+v\mathbf{j}+w\mathbf{k}).(5\mathbf{i}+\mathbf{j})=0}{(u\mathbf{i}+v\mathbf{j}+w\mathbf{k}).(8\mathbf{i}-2\mathbf{j}+3\mathbf{k})=0} \Rightarrow \frac{5u+v=0}{8u-2v+3w=0} \Rightarrow u, v, w = \dots$	M1
	$\mathbf{n} = 3\mathbf{i} - 15\mathbf{j} - 18\mathbf{k}$ or $\alpha(\mathbf{i} - 5\mathbf{j} - 6\mathbf{k})$ for any $\alpha \neq 0$	A1
		(2)
(b)	(i) $\mathbf{r} = (2\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}) + s(8\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + t(5\mathbf{i} + \mathbf{j})$	B1
		(1)
	(ii) $(2\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}) \cdot (3\mathbf{i} - 15\mathbf{j} - 18\mathbf{k}) = \dots = -6)$	M1
	So $\mathbf{r}.(3\mathbf{i}-15\mathbf{j}-18\mathbf{k}) = -6$ oe such as $\mathbf{r}.(-\mathbf{i}+5\mathbf{j}+6\mathbf{k}) = 2$	A1
		(2)
(c) Way 1	Distance from plane in (b) to origin is $\frac{\pm 6}{\sqrt{3^2 + 15^2 + 18^2}}$ or e.g. $\frac{2}{\sqrt{1^2 + 5^2 + 6^2}}$ Or attempts similar for parallel plane containing l_1 , e.g. $\frac{(\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}) \cdot (3\mathbf{i} - 15\mathbf{j} - 18\mathbf{k})}{\sqrt{3^2 + 15^2 + 18^2}} = \dots$	M1
	$=\pm\frac{2}{\sqrt{62}}$ (oe evaluated) or $\pm\frac{21}{\sqrt{62}}$ if considering other plane.	A1
	Both $\frac{\pm 6}{\sqrt{3^2 + 15^2 + 18^2}}$ oe and $\frac{(\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}) \cdot (3\mathbf{i} - 15\mathbf{j} - 18\mathbf{k})}{\sqrt{3^2 + 15^2 + 18^2}} = \dots$ attempted	M1
	Hence shortest distance between lines is $\frac{2}{\sqrt{62}} + \frac{21}{\sqrt{62}} = \dots$	M1
	$=\frac{23}{\sqrt{62}}$ or $\frac{23\sqrt{62}}{62}$	A1
		(5)
Way 2	$\overrightarrow{AB} = \pm \left(\left(\mathbf{i} + 2\mathbf{j} - 5\mathbf{k} \right) - \left(2\mathbf{i} - 4\mathbf{j} + 4\mathbf{k} \right) \right) = \pm \left(-\mathbf{i} + 6\mathbf{j} - 9\mathbf{k} \right)$	M1 A1
	$d = AB\cos\theta = \frac{\overrightarrow{AB}.\mathbf{n}}{ \mathbf{n} } = \frac{\pm(-\mathbf{i}+6\mathbf{j}-9\mathbf{k}).(3\mathbf{i}-15\mathbf{j}-18\mathbf{k})}{\sqrt{3^2+15^2+18^2}} \text{ oe}$	M1
	$=\frac{\pm(-3-90+162)}{\sqrt{558}}=\frac{\pm 69}{\sqrt{558}}=\dots$	M1
	$=\frac{23}{\sqrt{62}}$ or $\frac{23\sqrt{62}}{62}$	A1
		(5)

Page 55 of 152

Way 3	$(2\mathbf{i}-4\mathbf{j}+4\mathbf{k})+\mu(8\mathbf{i}-2\mathbf{j}+3\mathbf{k})-((\mathbf{i}+2\mathbf{j}-5\mathbf{k})+\lambda(5\mathbf{i}+\mathbf{j}))$	
	$= (1+8\mu-5\lambda)\mathbf{i} + (-6-2\mu-\lambda)\mathbf{j} + (9+3\mu)\mathbf{k}$	
	$((1+8\mu-5\lambda)\mathbf{i}+(-6-2\mu-\lambda)\mathbf{j}+(9+3\mu)\mathbf{k}).(5\mathbf{i}+\mathbf{j})=0$	
	$\Rightarrow 38\mu - 26\lambda = 1$	
	$\left(\left(1+8\mu-5\lambda\right)\mathbf{i}+\left(-6-2\mu-\lambda\right)\mathbf{j}+\left(9+3\mu\right)\mathbf{k}\right)\cdot\left(8\mathbf{i}-2\mathbf{j}+3\mathbf{k}\right)=0$	M1
	\Rightarrow 77 μ - 38 λ = -47	
	$\Rightarrow \lambda = -\frac{207}{62}, \ \mu = -\frac{70}{31}$	
	$(2\mathbf{i}-4\mathbf{j}+4\mathbf{k})+\mu(8\mathbf{i}-2\mathbf{j}+3\mathbf{k})-((\mathbf{i}+2\mathbf{j}-5\mathbf{k})+\lambda(5\mathbf{i}+\mathbf{j}))$	
	$= -\frac{23}{62}\mathbf{i} + \frac{115}{62}\mathbf{j} + \frac{69}{31}\mathbf{k}$	M1
	$d = \sqrt{\left(\frac{23}{62}\right)^2 + \left(\frac{115}{62}\right)^2 + \left(\frac{69}{31}\right)^2}$	
	$=\frac{23}{\sqrt{62}}$ or $\frac{23\sqrt{62}}{62}$	A1
		(5)
	(1	l0 marks)
Notes:		

Accept equivalent vector notation, e.g. column vectors, throughout.

(a)

M1: Any correct method to find a vector perpendicular to the two direction vectors of the lines. Look for the cross product between the two direction vectors, but may use dot products and solving equations. In the latter case the method should lead to values for u, v and w.

For the vector product, if no method is shown look for at least 2 correct components.

A1: Any correct vector, a scalar multiple of -i + 5j + 6k

(b)

B1: Any correct equation. Must have $\mathbf{r} = \dots$ or e.g. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots$

M1: Uses their normal vector from (a) with any point on the plane (probably (2i-4j+4k) to find p Condone slips with the calculation so (2i-4j+4k).(3i-15j-18k) evaluated as a scalar is sufficient

for M1. May also be implied by p = -6

A1: Any correct equation of the correct form.

(c)

Way 1

M1: Uses the plane equation from (b) (or otherwise) OR the parallel plane containing l_1 to find the distance of one of these planes to the origin.

A1: Correct distance between one of the planes and the origin, accept \pm here.

M1: Attempts distance of both the parallel planes containing l_1 and l_2 from the origin.

Page 56 of 152

M1: Correct method for finding the distance between lines – i.e. subtracts their distances either way round.

A1: Correct answer. Accept
$$\frac{23}{\sqrt{62}}$$
 or $\frac{23\sqrt{62}}{62}$

Way 2

M1: Subtracts position vectors of points on the lines (either way around). Implied by two correct coordinates if method not shown. (Forms suitable hypotenuse.)

A1: Correct vector or as coordinates, either direction.

M1: Correct formula for the distance using their vectors, $d = AB \cos \theta = \frac{\overrightarrow{AB} \cdot \mathbf{n}}{|\mathbf{n}|}$ with their \overrightarrow{AB} and \mathbf{n} .

M1: Complete evaluation of the formula.

A1: Correct answer. Accept $\frac{23}{\sqrt{62}}$ or $\frac{23\sqrt{62}}{62}$ but must be positive.

Way 3

M1: Subtracts position vectors of general points on each line (either way around). Implied by two correct coordinates if method not shown.

A1: Correct vector or as coordinates, either direction.

M1: Forms scalar product of the general vector with both direction vectors, sets = 0 and solves simultaneously

M1: Substitutes the values of their parameters back into the general vector and attempts its magnitude

A1: Correct answer. Accept $\frac{23}{\sqrt{62}}$ or $\frac{23\sqrt{62}}{62}$ but must be positive.

Question	Scheme	Marks
6(a) Way 1	$I_{n} = \int_{0}^{\sqrt{\frac{\pi}{2}}} x^{n-1} \cdot x \cos\left(x^{2}\right) dx = \left[x^{n-1} \cdot \frac{1}{2}\sin\left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}} - \int_{0}^{\sqrt{\frac{\pi}{2}}} (n-1)x^{n-2} \cdot \frac{1}{2}\sin\left(x^{2}\right) dx$	M1A1
	$= \left[x^{n-1} \cdot \frac{1}{2} \sin(x^2) \right]^{\sqrt{\frac{\pi}{2}}} - \frac{1}{2} (n-1) \int^{\sqrt{\frac{\pi}{2}}} x^{n-3} \cdot x \sin(x^2) dx$	
	$= \left[x^{n-1} \cdot \frac{1}{2} \sin\left(x^{2}\right) \right]_{0}^{\sqrt{\frac{\pi}{2}}} - \frac{1}{2} (n-1) \left(\frac{\left[x^{n-3} \cdot -\frac{1}{2} \cos\left(x^{2}\right) \right]_{0}^{\sqrt{\frac{\pi}{2}}} - \int_{0}^{\sqrt{\frac{\pi}{2}}} (n-3) x^{n-4} \cdot -\frac{1}{2} \cos\left(x^{2}\right) dx}{\left[x^{n-3} \cdot -\frac{1}{2} \cos\left(x^{2}\right) \right]_{0}^{\sqrt{\frac{\pi}{2}}} - \int_{0}^{\sqrt{\frac{\pi}{2}}} (n-3) x^{n-4} \cdot \frac{1}{2} \cos\left(x^{2}\right) dx} dx$	<u>dM1A1</u>
	$= \left(\frac{1}{2}\left(\sqrt{\frac{\pi}{2}}\right)^{n-1}\sin\frac{\pi}{2} - 0\right) - \frac{1}{2}(n-1)\left[(0-0) + \frac{1}{2}(n-3)I_{n-4}\right]$	dM1
	$=\frac{1}{2}\left(\frac{\pi}{2}\right)^{\frac{n-1}{2}}-\frac{1}{4}(n-1)(n-3)I_{n-4}*$	A1*
		(6)
Way 2	$I_n = \left[\frac{x^{n+1}}{n+1} \cdot \cos(x^2)\right]_0^{\sqrt{\frac{\pi}{2}}} - \int_0^{\sqrt{\frac{\pi}{2}}} \frac{x^{n+1}}{n+1} \cdot -2x\sin(x^2) \mathrm{d}x$	M1A1
	$= \left[\frac{x^{n+1}}{n+1} \cdot \cos\left(x^2\right)\right]_0^{\sqrt{\frac{\pi}{2}}} + \frac{2}{n+1} \int_0^{\sqrt{\frac{\pi}{2}}} x^{n+2} \sin\left(x^2\right) dx$	
	$= \left[\frac{x^{n+1}}{n+1} \cdot \cos\left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}} + \frac{2}{n+1} \left(\left[\frac{x^{n+3}}{n+3} \cdot \sin\left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}} - \int_{0}^{\sqrt{\frac{\pi}{2}}} \frac{x^{n+3}}{n+3} \cdot 2x \cos\left(x^{2}\right) dx\right)$	<u>dMIAI</u>
	$= (0-0) + \frac{2}{n+1} \left(\frac{1}{n+3} \left(\sqrt{\frac{\pi}{2}} \right)^{n+3} \sin \frac{\pi}{2} - 0 - \frac{2}{n+3} I_{n+4} \right)$	dM1
	$\Rightarrow I_{n+4} = \frac{1}{2} \left(\frac{\pi}{2}\right)^{\frac{n+3}{2}} - \frac{1}{4} (n+1)(n+3)I_n \text{ so replacing } n \text{ by } n-4 \text{ gives}$	A1*
	$I_n = \frac{1}{2} \left(\frac{\pi}{2}\right)^{\frac{n-1}{2}} - \frac{1}{4} (n-1)(n-3)I_{n-4} *$	
		(6)
(b)	$I_{1} = \int_{0}^{\sqrt{\frac{\pi}{2}}} x \cos\left(x^{2}\right) dx = \left[\frac{1}{2}\sin\left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}} = \frac{1}{2}$	B1
	$I_5 = \frac{1}{2} \left(\frac{\pi}{2}\right)^{\frac{5-1}{2}} - \frac{1}{4} (5-1)(5-3) \times \frac{1}{2}$	M1
	$=\frac{\pi^2}{8} - 1 \text{ oe e.g. } \frac{\pi^2 - 8}{8}, \ \frac{1}{2} \left(\frac{\pi}{2}\right)^2 - 1$	A1
		(3)

Page 58 of 152

Notes:

(a) Way 1

M1: Applies integration by parts in the correct direction having made the 'split' and obtains:

$$\left[\pm \alpha x^{n-1}\sin\left(x^2\right)\right] \pm \beta \int x^{n-2}.\sin\left(x^2\right) dx$$

A1: Fully correct expression

dM1: Applies integration by parts in the correct direction to $\beta \int x^{n-2} \sin(x^2) dx$ and obtains:

$$\left[\pm\alpha x^{n-3}\cos\left(x^2\right)\right]\pm\beta\int x^{n-4}\cos\left(x^2\right)\,\mathrm{d}x$$

Depends on the previous M mark.

A1: Correct second application of parts e.g.

$$\int x^{n-2} \sin(x^2) \, \mathrm{d}x = \left[x^{n-3} \cdot -\frac{1}{2} \cos(x^2) \right] - \int (n-3) x^{n-4} \cdot -\frac{1}{2} \cos(x^2) \, \mathrm{d}x$$

dM1: Applies the limits completely to their result and replaces final integral by I_{n-4} . The substitution of limits may have been carried out in stages throughout the work, or may be applied after integration by parts twice has been carried out. **Depends on both previous M marks. There must some explicit evidence that the limits have been applied but this may be taken**

from either the
$$\left[x^{n-1} \cdot \frac{1}{2}\sin(x^2)\right]_0^{\frac{\pi}{2}} = e.g. \sqrt{\frac{\pi}{2}} \cdot \frac{1}{2}\sin\left(\sqrt{\frac{\pi}{2}}\right), \sqrt{\frac{\pi}{2}} \cdot \frac{1}{2}, \frac{1}{2}\left(\frac{\pi}{2}\right)^{\frac{n-1}{2}} - 0$$

or
$$\left[x^{n-3} - \frac{1}{2}\cos(x^2)\right]_0^{\sqrt{\frac{\pi}{2}}} = \text{e.g. } 0 - 0, 0$$

A1*: Achieves the printed answer from completely correct work with no errors seen and evidence of the given limits being applied.

Way 2

M1: Applies integration by parts in the correct direction and obtains:

$$\left[\pm \alpha x^{n+1}\cos(x^2)\right] \pm \beta \int x^{n+1} x \sin(x^2) dx$$

A1: Fully correct expression

dM1: Applies integration by parts in the correct direction to $\beta \int x^{n+1} x \sin(x^2) dx$ and obtains:

$$\left[\pm \alpha x^{n+3}\sin(x^2)\right] \pm \beta \int x^{n+3} x \cos(x^2) dx$$

Depends on the previous M mark.

A1: Correct second application of parts e.g.

$$\int x^{n+2} .\sin(x^2) \, dx = \left[\frac{x^{n+3}}{n+3} .\sin(x^2)\right] - \int \frac{x^{n+3}}{n+3} .2x \cos(x^2) \, dx$$

Page 59 of 152

dM1: Applies the limits completely to their result and replaces final integral by I_{n+4} . The substitution of limits may have been carried out in stages throughout the work, or may be applied after integration by parts twice has been carried out. **Depends on both previous M marks. There must some explicit evidence that the limits have been applied but this may be taken**

from either the
$$\left[\frac{x^{n+1}}{n+1} \cdot \cos(x^2)\right]_0^{\sqrt{\frac{\pi}{2}}} = e.g. \ 0 - 0,0 \text{ or}$$

 $\left[\frac{x^{n+3}}{n+3} \cdot \sin(x^2)\right]_0^{\sqrt{\frac{\pi}{2}}} = e.g.\frac{\sqrt{\frac{\pi}{2}}}{n+3} \cdot \sin\left(\sqrt{\frac{\pi}{2}}\right), \ \frac{\sqrt{\frac{\pi}{2}}}{n+3} \cdot \sin\left(\frac{\pi}{2}\right), \ \frac{\sqrt{\frac{\pi}{2}}}{n+3} \cdot \left(1\right), \ \frac{\left(\frac{\pi}{2}\right)^{\frac{n+3}{2}}}{n+3} - 0$
A1*: Achieves the printed answer from completely correct work with no errors and evidence

A1*: Achieves the printed answer from completely correct work with no errors and evidence of the given limits being applied with a clear statement that n is replaced by n - 4 (b)

B1: Correct I_1 . May be seen after attempting the reduction.

M1: Applies the reduction formula with their I_1 and n = 5 to reach a value. Condone slips with

evaluating $\frac{1}{4}(n-1)(n-3)$ as long as the intention is clear.

A1: Correct answer.

Note: Beware incorrect work in (a) leading to what appears to be a correct form e.g. $I_n = \int_0^{\sqrt{\frac{\pi}{2}}} x^n \cos\left(x^2\right) dx = \left[x^n \cdot \frac{\sin\left(x^2\right)}{2x}\right]_0^{\sqrt{\frac{\pi}{2}}} - \int_0^{\sqrt{\frac{\pi}{2}}} nx^{n-1} \cdot \frac{\sin\left(x^2\right)}{2x} dx$ This scores M0 at the start and hence will usually score no marks in part (a)

Question	Scheme	Marks
7(a)	$b^{2} = a^{2} (e^{2} - 1) \Longrightarrow e^{2} = \frac{25}{a^{2}} + 1 = \frac{25 + a^{2}}{a^{2}}$ oe	B1
		(1)
(b)	$x = (\pm)\frac{a}{e} \qquad \qquad \frac{x}{a} = (\pm)\frac{y}{5}$	B1
	$\frac{a}{e} \times \frac{1}{a} = \pm \frac{y}{5} \Rightarrow y = \pm \frac{5}{e} \Rightarrow AA \stackrel{\text{s}}{=} \times \frac{5}{e} \text{ or } \frac{5}{e} - \left(-\frac{5}{e}\right)$	M1
	$=\frac{10}{e}$	A1
		(3)
(c)	$\frac{1}{2} \times \frac{10}{e} \times \left(ae + \frac{a}{e}\right) \text{ or e.g. } \frac{1}{2} \times \frac{10a}{\sqrt{25 + a^2}} \times \left(\sqrt{25 + a^2} + \frac{a^2}{\sqrt{25 + a^2}}\right)$	M1
	$\frac{1}{2}\frac{10}{e}\left(ae + \frac{a}{e}\right) = \frac{164}{3} \Longrightarrow 15\left(a + \frac{a}{e^2}\right) = 164$	
	or	M1
	$\frac{1}{2} \times \frac{10a}{\sqrt{25+a^2}} \times \left(\sqrt{25+a^2} + \frac{a^2}{\sqrt{25+a^2}}\right) = \frac{164}{3}$	
	$\Rightarrow 15a \left(1 + \frac{a^2}{25 + a^2}\right) = 164$	A1 (M1 on EPEN)
	$\Rightarrow 15a\left(\frac{25+2a^2}{25+a^2}\right) = 164 \Rightarrow 375a+30a^3 = 164\left(25+a^2\right)$	A1*
	$\Rightarrow 30a^3 - 164a^2 + 375a - 4100 = 0*$	
		(4)
(d)	$30a^3 - 164a^2 + 375a - 4100 = (3a - 20)(10a^2 + 12a + 205)$	B1 (M1 on EPEN)
	$12^2 - 4(10)(205) = \dots$	
	$10a^{2} + 12a + 205 = 10\left(\left(a + \frac{12}{20}\right)^{2} - \frac{144}{400}\right) + 205$	M1
	E.g. $12^2 - 4(10)(205) < 0$ so there are no other roots of the equation.	
	Hence $a = \frac{20}{3}$ is only possible value.	A1
		(3)
		(11 marks)
Notes:		
(a) P1 : Cart		
BI: Correct	expression.	

Page 61 of 152

(b)

B1: Identifies at least one correct equation for a directrix and at least one asymptote, stated or used – including the b = 5.

M1: Solves to find y coordinates of A and A' or just one of these and doubles to get length. Allow if b is used rather than 5.

A1: Correct length (from subtracting or doubling). Must be positive.

(c)

M1: Uses focus (-ae, 0) and directrix $x = \frac{a}{e}$ (allow if the alternative pair is used) with their length from (b), to form a **correct or correct ft** expression for the area of triangle *AFA*'.

M1: Sets their area equation equal to $\frac{164}{3}$ to obtain an equation in e^2 and a.

Their attempt at the area must be of the form $\frac{1}{2} \times \frac{10}{e} \times \pm \left(ae \pm \frac{a}{e}\right)$

Alternatively, allow an equation in just a^2 if $e = \sqrt{\frac{25 + a^2}{a^2}}$ is substituted first.

A1(M1 on EPEN): Correct equation in terms of *a* only. Allow any correct form.A1*: Correct result achieved with no errors seen and sufficient working shown.(d)

B1(M1 on EPEN): A correct method for showing that $a = \frac{20}{3}$ is a solution of the equation.

Examples:

$$30a^{3} - 164a^{2} + 375a - 4100 = (3a - 20)(10a^{2} + 12a + 205)$$

$$30a^{3} - 164a^{2} + 375a - 4100 = \left(a - \frac{20}{3}\right)(30a^{2} + 36a + 615)$$

$$f\left(\frac{20}{3}\right) = \frac{80000}{9} - \frac{65600}{9} + 2500 - 4100 = 0$$

Or e.g. long division and obtains correct quotient and no remainder

M1: A correct method for showing there are no other roots. May use completing the square (as in scheme) or attempt discriminant or differentiation,

e.g. $\frac{d}{da}(eqn) = 90a^2 - 328a + 375 = 90\left(a - \frac{82}{45}\right)^2 + \frac{3427}{45} > 0$ so strictly increasing hence only one solution

solution.

If using discriminant then values must be used i.e. not just $b^2 - 4ac < 0$ An attempt at the discriminant may be seen as part of the quadratic formula e.g.

$$a = \frac{-12 \pm \sqrt{12^2 - 4(10)(205)}}{2(10)}$$

A1: All work correct with **reason** and **conclusion** made that $a = \frac{20}{3}$ is the only possible value. If the discriminant is evaluated then it must be correct. For reference $12^2 - 4(10)(205) = -8056$ and $36^2 - 4(30)(615) = -72504$ but note that e.g. $12^2 - 4(10)(205) < 0$ with a conclusion is acceptable. Note that just using a calculator to solve the cubic generally scores no marks.

Page 62 of 152

Question	Scheme	Marks
8(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \frac{1}{\sqrt{1 - k\sqrt{x^2}}} \times \dots x^{-\frac{1}{2}} \qquad \text{or} \cos y = 2x^{\frac{1}{2}} \Longrightarrow \pm \sin y \frac{\mathrm{d}y}{\mathrm{d}x} = \dots x^{-\frac{1}{2}}$	M1
	$\frac{dy}{dx} = \pm \frac{1}{\sqrt{1 - 4x}} \times \left(Kx^{-\frac{1}{2}} \right) \text{or} \frac{dy}{dx} = \pm \frac{Kx^{-\frac{1}{2}}}{\sqrt{1 - (2\sqrt{x})^2}}$	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{\sqrt{x}\sqrt{1-4x}} \text{ oe e.g. } \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{\sqrt{x-4x^2}}$	A1
		(3)
(b) Way 1	$\int y dx = \int 1 \times \arccos\left(2\sqrt{x}\right) dx = x \arccos\left(2\sqrt{x}\right) - \int x \frac{-1}{\sqrt{x}\sqrt{1-4x}} dx$	M1
	$= x \arccos\left(2\sqrt{x}\right) + \int \frac{\sqrt{x}}{\sqrt{1-4x}} \mathrm{d}x ^*$	A1*
		(2)
Way 2	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x \arccos\left(2\sqrt{x}\right)\right) = 1 \cdot \arccos\left(2\sqrt{x}\right) + x \cdot \frac{-1}{\sqrt{x}\sqrt{1-4x}}$	
	$\Rightarrow \int \arccos\left(2\sqrt{x}\right) dx = x \arccos\left(2\sqrt{x}\right) + \int \frac{\sqrt{x}}{\sqrt{1-4x}} dx^*$	A1*
		(2)
(c)	$\frac{1}{2\sqrt{x}}\frac{dx}{d\theta} = -\frac{1}{2}\sin\theta, \ dx = -\sqrt{x}\sin\thetad\theta, \ \frac{dx}{d\theta} = -\frac{1}{2}\sin\theta\cos\theta$ $\frac{dx}{d\theta} = -\frac{1}{4}\sin2\theta$	
	$\int \frac{\sqrt{x}}{\sqrt{1-4x}} \mathrm{d}x = \int \frac{-\left(\frac{1}{2}\cos\theta\right)^2 \sin\theta}{\sqrt{1-4\left(\frac{1}{2}\cos\theta\right)^2}} \mathrm{d}\theta$	M1
	$= -\frac{1}{4} \int \frac{\cos^2 \theta \sin \theta}{\sqrt{1 - \cos^2 \theta}} \mathrm{d}\theta = -\frac{1}{4} \int \cos^2 \theta \mathrm{d}\theta$	A1
	$x = 0 \Longrightarrow \theta = \frac{\pi}{2}$ $x = \frac{1}{8} \Longrightarrow \theta = \frac{\pi}{4}$ So $\int_{0}^{\frac{1}{8}} \frac{\sqrt{x}}{\sqrt{1 - 4x}} dx = \frac{1}{4} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^{2} \theta d\theta$	A1
		(4)

(d)

$$\frac{1}{4}\int \frac{1}{2}(1+\cos 2\theta) d\theta = K\left(\theta \pm \frac{1}{2}\sin 2\theta\right)$$
M1

$$\int_{0}^{\frac{1}{8}} \frac{\sqrt{x}}{\sqrt{1-4x}} dx = \frac{1}{8}\left[\theta + \frac{1}{2}\sin 2\theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = ...\left(=\frac{\pi}{32} - \frac{1}{16}\right)$$
or e.g.

$$\int_{0}^{\frac{1}{8}} \frac{\sqrt{x}}{\sqrt{1-4x}} dx = \frac{1}{8}\left[\theta + \frac{1}{2}\sin 2\theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = -\frac{1}{8}\left[\arccos 2\sqrt{x} + \frac{1}{2}\sin 2 \arccos 2\sqrt{x}\right]_{0}^{\frac{1}{8}}$$
dM1

$$= ...\left(= -\frac{1}{8}\left(\frac{\pi}{4} + \frac{1}{2} - \frac{\pi}{2}\right)\right)$$

$$\Rightarrow \int_{0}^{\frac{1}{8}} \arccos\left(2\sqrt{x}\right) dx = \left[x \arccos 2\sqrt{x}\right]_{0}^{\frac{1}{8}} + \frac{\pi}{32} - \frac{1}{16} = \frac{1}{8} \arccos\left(\frac{1}{\sqrt{2}} - 0 + \frac{\pi}{32} - \frac{1}{16}\right)$$
dM1

$$= \frac{\pi}{16} - \frac{1}{16} \text{ oe}$$
A1
(4)
(13 marks)

Notes:

(a)

M1: Attempts to apply the arccos derivative formula together with chain rule. Look for $\frac{dy}{dx} = \pm \frac{1}{\sqrt{1 - k\sqrt{x^2}}} \times f(x)$ where f(x) is an attempt at differentiating $2\sqrt{x}$ where $f(x) \neq \alpha\sqrt{x}$

Note that k may be 1 for this mark.

Alternatively, takes cosine of both sides and differentiates to the form shown in the scheme.

dM1: Correct form for the overall derivative achieved, may be errors in sign or constants with $k \neq 1$ Alternatively, divides through by sin y and applies Pythagorean identity to achieve derivative in terms of x.

A1: Correct derivative, but need not be simplified. Award when first seen and isw.

(b) Way 1

M1: Attempts to apply integration by parts to $1 \times \arccos(2\sqrt{x})$.

Look for
$$x \arccos\left(2\sqrt{x}\right) - \int x''$$
 their (a)" dx or $u = \arccos\left(2\sqrt{x}\right) \Rightarrow \frac{du}{dx} = \operatorname{part}(a), \ \frac{dv}{dx} = 1 \Rightarrow v = x$

A1*: Correct work leading to the printed answer. There must be a clear statement for the integration by parts before the given answer is stated.

So e.g.
$$u = \arccos\left(2\sqrt{x}\right) \Rightarrow \frac{du}{dx} = \operatorname{part}(a), \ \frac{dv}{dx} = 1 \Rightarrow v = x$$

$$\Rightarrow \int \arccos\left(2\sqrt{x}\right) dx = x \arccos\left(2\sqrt{x}\right) + \int \frac{\sqrt{x}}{\sqrt{1-4x}} dx^* \text{ scores M1A0}$$
You can condone $\int \arccos\left(2\sqrt{x}\right) dx = x \arccos\left(2\sqrt{x}\right) + \int \frac{x^{\frac{1}{2}}}{\sqrt{1-4x}} dx^*$

Page 64 of 152

Way 2

M1: Applies the product rule to $x \arccos\left(2\sqrt{x}\right)$, look for $1 \cdot \arccos\left(2\sqrt{x}\right) + x$."their (a)".

A1*: Rearranges and integrates to achieve the given result, with no errors seen.

(c)

B1: Any correct expression involving dx and $d\theta$, see examples in scheme.

M1: Makes a complete substitution in the integral $\int \frac{\sqrt{x}}{\sqrt{1-4x}} dx$ to achieve an integral in θ only. Ignore attempts at substitution into the $x \arccos(2\sqrt{x})$.

A1: A correct simplified integral aside from limits. May be implied by e.g. $\frac{1}{4} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta$

Note that this mark depends on the B mark.

A1: Finds correct limits for θ and applies to the integral by reversing the sign – i.e. correct answer with limits and sign all correct. Accept equivalent limits e.g. $-\frac{\pi}{4}$ to $-\frac{\pi}{4}$ or $\frac{\pi}{2}$ to $\frac{3\pi}{4}$

Note that this mark depends on the B mark. (d)

M1: Applies double angle identity to get the integral in a suitable form and attempts to integrate.

Accept $\cos^2 \theta = \frac{1}{2} (\pm 1 \pm \cos 2\theta)$ used as identity and look for $1 \rightarrow \theta$ and $\cos 2\theta \rightarrow \pm \frac{1}{2} \sin 2\theta$

dM1: Applies their limits (either way round) to their integral in θ or reverse substitution and applies limits 0 and $\frac{1}{8}$.

Depends on the previous method mark.

dM1: Applies limits of 0 and $\frac{1}{8}$ to the $x \arccos(2\sqrt{x})$ to obtain a value (or their limits either way round if they applied the substitution to this to obtain a value) and combines with the result of the

Depends on both previous method marks.

A1: Correct final answer.

other integral.

FP3_2022_01_MS

Question Number	Scheme	Notes	Marks
1(a)	$8\cosh^4 x = 8\left(\frac{e^x + e^{-x}}{2}\right)^4 = \frac{8}{16}\left(e^{4x} + 4e^{2x} + 6 + 4e^{-2x} + e^{-4x}\right)$		
	Applies $\cosh x = \frac{e^x + e^{-x}}{2}$ and attempts to expand the bracket to at least 4 different and no		
	more than 5 different terms of the correct form	n but they may be "uncollected" depending on	M1
	how they do the expansion. Allow unsimplified terms e.g. $(e^x)^3 e^{-x}$.		
	May see $8\left(\frac{e^x + e^{-x}}{2}\right)^2 \left(\frac{e^x + e^{-x}}{2}\right)^2$	but must attempt to expand as above	
	$= \frac{1}{2} \left(e^{4x} + e^{-4x} \right) + 4 \left(\frac{e^{2x} + e^{-2x}}{2} \right) + 3 = \dots$	Collects appropriate terms and reaches the form $\cosh 4x + p \cosh 2x + q$ or obtains values of p and q.	M1
	$= \cosh 4x + 4 \cosh 2x + 3$	Correct expression or values e.g. $p = 4$ and $q = 3$	A1
	No marks are available in (a) if exponentials are not used but note that they may appear		
	in combination with the use of hyperbolic identities e.g.:		
	$8\cosh^{4} x = 8\left(\cosh^{2} x\right)^{2} = 8\left(\frac{\cosh 2x + 1}{2}\right)^{2} = 2\left(\frac{e^{2x} + e^{-2x}}{2} + 1\right)^{2}$		
	$= 2\left(\frac{e^{4x} + 2 + e^{-4x}}{4} + e^{2x} + e^{-2x} + \frac{1}{4}\right)$	$1 = \frac{e^{4x} + e^{-4x}}{2} + 4\left(\frac{e^{2x} + e^{-2x}}{2}\right) + 2$	
	$=\cosh 4x +$	$4\cosh 2x + 3$	
	Allow to "meet in the middle" e.g. e	xpands as above and compares with	
	$\frac{1}{2} \left(e^{4x} + e^{-4x} \right) + p \left(\frac{e^{2x} + e^{-4x}}{2} \right)$	$\frac{e^{-2x}}{2} + q \Longrightarrow p =, q =$	
	but to score any marks the e	xpansion must be attempted.	(3)

(b) Way 1	$\cosh 4x - 17 \cosh 2x + 9 = 0 \Longrightarrow 8 \cosh^4 x - 4 \cosh^4 x - 4 \cosh^4 x - 21 \cosh 2x + 6 = 0 \Longrightarrow 8 \cosh^4 x - 4 \cosh^4 x - 6 = 0 \Rightarrow 8 \cosh^4 x - 6 \Rightarrow 8 \cosh^4 x - 8 \cosh^4 x$	$h 2x - 3 - 17 \cosh 2x + 9 = 0$ -21(2 \cosh^2 x - 1) + 6 = 0	
	Uses their result from part (a) and $\cosh 2x = \pm 2 \cosh^2 x \pm 1$ to obtain a quadratic equation in $\cosh^2 x$ or		M1
	$\cosh 4x - 17 \cosh 2x + 9 = 0 \Rightarrow 2(2 \cosh^2 x - 1) = 0$ Uses $\cosh 4x = \pm 2 \cosh^2 2x \pm 1$ and $\cosh x$ to obtain a quadratic equation π	$-1 - 17(2\cosh^2 x - 1) + 9 = 0$ $a 2x = \pm 2\cosh^2 x \pm 1$ in $\cosh^2 x$	
	$\Rightarrow 8\cosh^4 x - 42\cosh^2 x + 27 = 0$ Correct 3'	TQ in $\cosh^2 x$	A1
	$\Rightarrow 8 \cosh^4 x - 42 \cosh^2 x + 27 = 0$ $\Rightarrow \cosh^2 x = \frac{9}{2} \left(, \frac{3}{4}\right)$ Solves 37 necessary $\cosh^2 x = \frac{9}{2} \left(, \frac{3}{4}\right)$	CQ in $\cosh^2 x$ (apply usual rules if) to obtain $= k \ (k \in \mathbb{R} \text{ and } > 1)$. May be y their values – check if necessary.	M1
	$\cosh^{2} x = \frac{9}{2} \Rightarrow \cosh x = \frac{3}{\sqrt{2}} \Rightarrow x = \pm \ln\left(\frac{3}{\sqrt{2}} + \sqrt{\frac{9}{2}} - 1\right)$ or $\cosh x = \frac{3}{\sqrt{2}} \Rightarrow \frac{e^{x} + e^{-x}}{2} = \frac{3}{\sqrt{2}} \Rightarrow \sqrt{2}e^{2x} - 6e^{x} + \sqrt{2} = 0 \Rightarrow e^{x} = \Rightarrow x =$ or $\cosh^{2} x = \frac{9}{2} \Rightarrow \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} = \frac{9}{2} \Rightarrow e^{4x} - 16e^{2x} + 1 = 0 \Rightarrow e^{2x} = \Rightarrow x =$ Takes square root to obtain $\cosh x = k$ ($k > 1$) and applies the correct logarithmic form for arcosh or uses the correct exponential form for $\cosh x$ to obtain at least one value for x . The root(s) must be real to score this mark.		M1
	$x = \pm \ln\left(\frac{3\sqrt{2}}{2} + \frac{\sqrt{14}}{2}\right)$ Both correct and exact including brackets. Accept simplified equivalents e.g. $x = \ln\left(\frac{3}{\sqrt{2}} \pm \frac{\sqrt{7}}{\sqrt{2}}\right)$ but withhold this mark if additional answers are given unless they are the same e.g. allow $x = \pm \ln\left(\frac{3\sqrt{2}}{2} \pm \frac{\sqrt{14}}{2}\right)$		A1
			(5)

(b)	$\cosh 4x - 17\cosh 2x + 9 = 0 \Longrightarrow 2\cosh^2 2x - 1 - 17\cosh 2x + 9 = 0$		
Way 2	Applies $\cosh 4x = \pm 2 \cosh^2 2x \pm 1$ to obtain a quadratic equation in $\cosh 2x$		
	$2\cosh^2 2x - 17\cosh 2x + 8 = 0$	Correct 3TQ in $\cosh 2x$	A1
	$2\cosh^2 2x - 17\cosh 2x + 8 = 0$	Solves $3TQ$ in cosh $2x$ (apply usual rules if	
	$\rightarrow \operatorname{anch} 2u = \operatorname{e} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	necessary) to obtain	M1
	$\Rightarrow \cos(2x) = 8\left(,\frac{1}{2}\right)$	$\cosh 2x = k \ (k \in \mathbb{R} \ \text{and} > 1)$	
	$\cosh 2x = 8 \Longrightarrow 2x$	$=\pm\ln\left(8+\sqrt{8^2-1}\right)$	
	C	Dr	
	$\cosh 2x = 8 \Rightarrow \frac{e^{2x} + e^{-2x}}{2} = 8 \Rightarrow e^{4x}$	$-16e^{2x} + 1 = 0 \Rightarrow e^{2x} = \Rightarrow 2x =$	M1
	Applies the correct logarithmic form for arcosh	from $\cosh 2x = k \ (k > 1)$ or uses the correct	
	exponential form for $\cosh 2x$ to	obtain at least one value for $2x$	
	The root(s) must be r	eal to score this mark.	
	$x = \pm \frac{1}{2} \ln \left(8 + 3\sqrt{7} \right)$	simplified equivalents e.g.	
	or e.g.	$x = \frac{1}{2} \ln \left(8 \pm \sqrt{63} \right)$ but withhold this mark	A1
	$x = \pm \ln\left(8 + 3\sqrt{7}\right)^{\frac{1}{2}}$	if additional answers are given unless they are the same as above.	
(b) Way 3	$\cosh 4x - 17 \cosh 2x + 9 = 0 \Rightarrow \frac{e^{4x} + e^{-4x}}{2} - \frac{17}{2} (e^{2x} + e^{-2x}) + 9 = 0$		
	$\Rightarrow e^{8x} - 17e^{6x} + 18$	$8e^{4x} - 17e^{2x} + 1 = 0$	M1A1
	M1: Applies the correct exponential for	ms and attempts a quartic equation in e^{2x}	
	A1: Correct equation		
	$e^{6x} - 17e^{6x} + 18e^{4x} - 17e^{2x} + 1 = 0$	Solves and proceeds to a value for e^{2x} where	M1
	$\Rightarrow e^{2x} = 8 \pm 3\sqrt{7}, \dots$	$e^{2x} > 1$ and real.	
	$\Rightarrow e^{2x} = 8 \pm 3\sqrt{7} \Rightarrow 2x = \ln\left(8 \pm 3\sqrt{7}\right)$	Takes ln's to obtain at least one value for $2x$ The root(s) must be real to score this mark.	M1
	$x = \frac{1}{2}\ln\left(8 \pm 3\sqrt{7}\right)$	Both correct and exact with brackets. Accept simplified equivalents e.g.	
	or e.g.	$x = \pm \frac{1}{2} \ln \left(8 + 3\sqrt{7} \right)$ but withhold this mark	A1
	$x = \ln\left(8 \pm 3\sqrt{7}\right)^{\overline{2}}$	if additional answers are given unless they are the same as above.	
			Total 8

FP3_2022_01_MS

Question Number	Scheme	Notes	Marks
2	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{\sec\theta\tan\theta + \sec^2\theta}{\sec\theta + \tan\theta} - \cos\theta$ Correct derivative.		
	Do not condone missing brackets e.g. $\frac{dx}{d\theta}$	$=\frac{1}{\sec\theta+\tan\theta}\times\sec\theta\tan\theta+\sec^2\theta-\cos\theta$	B1
	unless a correct expression is implied by subsequent work. Award when a correct expression is seen but note that other forms are possible e.g. $\sec \theta - \cos \theta$, $\tan \theta \sin \theta$ $\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 = \left(\frac{\sec \theta \tan \theta + \sec^2 \theta}{\sec \theta + \tan \theta} - \cos \theta\right)^2 + \left(-\sin \theta\right)^2$		
			M1
	Attempts $\frac{dy}{d\theta}$ and the second	hen $\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2$	
	$S = (2\pi) \int \cos\theta \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta$		
	$= (2\pi) \int \cos\theta \sqrt{\left(\frac{\sec\theta\tan\theta}{\sec\theta+t}\right)^2}$	$\frac{+\sec^2\theta}{\tan\theta} - \cos\theta \Big]^2 + (-\sin\theta)^2 d\theta$	
	Applies a correct surface area for	rmula using their $\frac{dx}{d\theta}$ and their $\frac{dy}{d\theta}$	M1
	with or w	$\frac{1}{2}$	
	For reference: $\sqrt{\left(\frac{\sec\theta\tan\theta+\sec^2\theta}{\sec\theta+\tan\theta}-\cos\theta\right)^2+\left(-\sin\theta\right)^2}=\tan\theta$		
	Allow π in front of the integral but must be an integral (2-) $\int_{\pi} \sin \theta d\theta$ Fully correct simplified integral with or		
	$\frac{(2\pi)\int\sin\theta d\theta}{(2\pi)\int\sin\theta d\theta}$	without the 2π	Al
	$= (2\pi)[-\cos\theta](+c)$	Correct integration with or without the 2π	Al
	$(2\pi)\left[-\cos\theta\right]_{0}^{\frac{\pi}{4}} = (2\pi)\left(-\frac{1}{\sqrt{2}}+1\right)$ Applies the limits 0 and $\frac{\pi}{4}$. Must see evidence of both limits if necessary but condone e.g. $(2\pi)\left(-\frac{1}{\sqrt{2}}-1\right)$		
			dM1
	Depends on both pr TSA =	evious method marks.	
	$2\pi\left(-\frac{1}{\sqrt{2}}+1\right)+\pi\times 1^2+\pi\times\left(\frac{1}{\sqrt{2}}\right)^2$	Correct expressions for the 2 "ends" and adds these to their curved surface area. Depends on the previous method mark.	dM1
	$=\frac{\pi}{2}\left(7-2\sqrt{2}\right)$	Correct answer in the required form or correct values for p and q .	A1
	Note:The final answer should follow correct work. The final mark should be withheldfollowing e.g. $\frac{dy}{d\theta}$ clearly seen as +sin θ or $\int \sin \theta \ d\theta = +\cos \theta$ Note:Without the "ends" the answer is $\frac{\pi}{2}(4-2\sqrt{2})$ (usually scores 6/8)		
			(8) Total 9
1	1		I ULAL O

Page 69 of 152

Alternative for first 4 marks:

$$\frac{\frac{dx}{d\theta} = \frac{\sec\theta \tan\theta + \sec^2\theta}{\sec\theta + \tan\theta} - \cos\theta}{\sec\theta + \tan\theta} - \cos\theta}$$
Correct derivative.
Do not condone missing brackets e.g. $\frac{dx}{d\theta} = \frac{1}{\sec\theta + \tan\theta} \times \sec\theta \tan\theta + \sec^2\theta - \cos\theta$
unless a correct expression is implied by subsequent work. Award when a correct expression is seen but note that other forms are possible
e.g. $\sec\theta - \cos\theta$, $\tan\theta\sin\theta$

$$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \left(\frac{-\sin\theta}{\sec\theta - \cos\theta}\right)^2$$
M1
$$\frac{S = (2\pi)\int\cos\theta\sqrt{1 + \left(\frac{dy}{dx}\right)^2} \sin\theta} \left(\frac{d\theta}{d\theta} + \frac{d\theta}{d\theta}\right)^2$$

$$\frac{S = (2\pi)\int\cos\theta\sqrt{1 + \left(\frac{-\sin\theta}{\sec\theta - \cos\theta}\right)^2} (\sec\theta - \cos\theta)d\theta$$
Applies a correct surface area formula using their $\frac{dx}{d\theta}$ and their $\frac{dy}{dx}$

$$\frac{d\theta}{d\theta}$$

$$\frac{d\theta}{d\theta} = (2\pi)\int\sin\theta d\theta$$

$$\frac{d\theta}{d\theta} = \left(\frac{2\pi}{3}\right)\int\sin\theta d\theta$$

$$\frac{d\theta}{d\theta} = \left(\frac{2\pi}{3}\right)\int\sin\theta d\theta$$

$$\frac{d\theta}{d\theta} = \int\sin\theta$$

Question Number	Scheme	Notes	Marks
3(a)	$y = \operatorname{arsech}\left(\frac{x}{2}\right) \Longrightarrow \operatorname{sech} y = \frac{x}{2}$ $\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = -2 \operatorname{sech} y \tanh y$	Takes "sech" of both sides and differentiates to obtain $\frac{dx}{dy} = k$ sech y tanh y or equivalent.	M1
	$\Rightarrow \frac{dx}{dy} = -2\left(-\frac{dx}{dy}\right)$	$\left(\frac{x}{2}\right)\sqrt{1-\left(\frac{x}{2}\right)^2}$ and $\tanh x$ with $\sqrt{1-\left(\frac{x}{2}\right)^2}$	M1A1
	A1: Correct equation involving $\frac{dx}{dy}$	or $\frac{dy}{dx}$ in any form in terms of x only.	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{x\sqrt{4-x^2}}$	Correct derivative in the required form or correct values for p and q .	A1
			(4)
(a) Way 2	$y = \operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow \operatorname{sech} y = \frac{x}{2}$ $\Rightarrow \cosh y = \frac{2}{x} \Rightarrow \sinh y \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{x^2}$	Takes "sech" of both sides, changes to "cosh" and differentiates to obtain $\sinh y \frac{dy}{dx} = \frac{k}{x^2}$ or equivalent.	M1
	$\Rightarrow \frac{dy}{dx} = -\frac{2}{x^2 \sinh y} = -\frac{2}{x^2 \sqrt{\left(\frac{2}{x}\right)^2 - 1}}$ M1: Replaces sinh y with $\sqrt{\left(\frac{2}{x}\right)^2 - 1}$ A1: Correct equation involving $\frac{dx}{dy}$ or $\frac{dy}{dx}$ in any form in terms of x only.		M1A1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{x\sqrt{4-x^2}}$	Correct derivative in the required form or correct values for p and q .	A1
(a) Way 3	$y = \operatorname{arsech}\left(\frac{x}{2}\right) =$ Changes to "arcosh" correctly. Score t	$\Rightarrow y = \operatorname{arcosh}\left(\frac{2}{x}\right)$ this as the second M mark on EPEN.	M1
	dy = 1 z		
	$\Rightarrow \frac{1}{dx} = \frac{1}{\sqrt{\left(\frac{2}{x}\right)^2 - 1}} \times \frac{1}{x^2}$		
	M1: Differentiates to the form $\frac{k}{x^2 \sqrt{\left(\frac{2}{x}\right)^2 - 1}}$ oe		M1A1
	A1: Correct equation involving $\frac{dx}{dy}$ or $\frac{dy}{dx}$ in any form in terms of x only.		
	Score this as the first M mark and first A mark on EPEN.		<u> </u>
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{x\sqrt{4-x^2}}$	Correct derivative in the required form or correct values for p and q .	A1

Page 71 of 152

$$\begin{array}{|c|c|c|c|c|c|} \hline (a) \\ Way 4 \\ \hline Way 4 \\ \hline y = \operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow \operatorname{sech} y = \frac{x}{2} \Rightarrow \left(\frac{x}{2}\right)^2 = \operatorname{sech}^2 y \Rightarrow \tanh y = \sqrt{1 - \left(\frac{x}{2}\right)^2} \\ \Rightarrow \operatorname{sech}^2 y \frac{dy}{dx} = -x\left(1 - \frac{x^2}{4}\right)^{-\frac{1}{2}} \\ \hline \text{Differentiates to } \operatorname{sech}^2 y \frac{dy}{dx} = kx\left(1 - \frac{x^2}{4}\right)^{-\frac{1}{2}} \text{ or equivalent} \\ \hline \Rightarrow \operatorname{sech}^2 y \frac{dy}{dx} = -x\left(1 - \frac{x^2}{4}\right)^{-\frac{1}{2}} \Rightarrow \frac{x^2}{4} \frac{dy}{dx} = -x\left(1 - \frac{x^2}{4}\right)^{-\frac{1}{2}} \Rightarrow \frac{dy}{dx} = -\frac{4}{x}\left(1 - \frac{x^2}{4}\right)^{-\frac{1}{2}} \\ \text{M1A1} \\ \hline \text{A1: Correct equation involving } \frac{dy}{dy} \text{ or } \frac{dy}{dx} \text{ in any form in terms of x only.} \\ \hline \Rightarrow \frac{dy}{dx} = \frac{-2}{x\sqrt{4 - x^2}} \\ \hline \text{Changes to "artanh" correctly. Score this as the second M mark on EPEN.} \\ \hline \begin{array}{c} \text{M1A1} \\ \text{M2} \\ \text{M1A1} \\ \hline \text{M1A1} \\ \hline \text{M1A1} \\ \hline \text{M1A1} \\ \hline \text{M2} \\ \hline \text{M2} \\ \hline \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M3} \\ \hline \begin{array}{c} \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M4} \\ \hline \begin{array}{c} \text{M3} \\ \hline \begin{array}{c} \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M4} \\ \text{M3} \\ \text{M4} \\ \text{M3} \\ \text{M3} \\ \text{M4} \\ \text{M4} \\ \text{M4} \\ \text{M4} \\ \frac{dy}{dy} = \frac{-2}{2} \Rightarrow y = \operatorname{artanh}\left(\sqrt{\sqrt{1 - \left(\frac{x}{2}\right)^2}}\right) \\ \text{M1} \\ \text{M1}$$

There may be other methods used. If you are in any doubt if the method deserves any marks use Review.

Page 72 of 152
(b)	$f(x) = \tanh^{-1}(x) + \operatorname{sech}^{-1}\left(\frac{x}{2}\right)$	$) \Rightarrow f'(x) = \frac{1}{1 - x^2} - \frac{2}{x\sqrt{4 - x^2}} $		
	Correct f'(x) following through their (a) of the form $\frac{p}{x\sqrt{q-x^2}}$			
	Also allow with "made up" p and q or the letters p and q .			
	$\frac{1}{1-x^2} - \frac{2}{x\sqrt{4-x^2}} = 0 \Longrightarrow 2(1-x^2) = x\sqrt{4-x^2} \Longrightarrow 4(1-x^2)^2 = x^2(4-x^2)$			
	Sets $\frac{dy}{dx} = 0$ with their (a)	a) of the form $\frac{p}{x\sqrt{q-x^2}}$	M1	
	and squares both sides to reach a quartic equation			
	$5x^4 - 12x^2 + 4 = 0$	Correct quartic	A1	
	$5x^{4} - 12x^{2} + 4 = 0 \Longrightarrow x^{2} = 2, \ 0.4$ $\Longrightarrow x = \dots$	Solves their quartic equation to obtain a value for x^2 and proceeds to a value for x. Apply usual rules for solving and check if necessary. Allow complex roots.	M1	
	$x = \sqrt{\frac{2}{5}}$	Correct exact answer (allow equivalents e.g. $\frac{\sqrt{10}}{5}$). If any extra answers given score A0 e.g. $x = \pm \sqrt{\frac{2}{5}}$	A1	
			(5)	
			Total 9	

Special case: It is possible for a correct solution in (b) following a sign error in (a) e.g. $\frac{dy}{dx} = \frac{2}{x\sqrt{4-x^2}}$ $f(x) = \tanh^{-1}(x) + \operatorname{sech}^{-1}\left(\frac{x}{2}\right) \Rightarrow f'(x) = \frac{1}{1-x^2} + \frac{2}{x\sqrt{4-x^2}}$ $\frac{1}{1-x^2} + \frac{2}{x\sqrt{4-x^2}} = 0 \Rightarrow 2(1-x^2) = -x\sqrt{4-x^2} \Rightarrow 4(1-x^2)^2 = x^2(4-x^2) \text{ etc.}$ This is likely to score M1M1A0A0 in (a) but allow full recovery in (b) if it leads to the correct answer.

Page 73 of 152

Question Number	Scheme	Notes	Marks
4(a)	$\lambda = 3 \Rightarrow \mathbf{M} - 3\mathbf{I} = \begin{vmatrix} 3 & k & 2 \\ k & 2 & 0 \\ 2 & 0 & 4 \end{vmatrix} = $ or e. $ \mathbf{M} - \lambda \mathbf{I} = \begin{vmatrix} 6 - \lambda \\ k & 3 \\ 2 \end{vmatrix}$ $\Rightarrow (6 - \lambda)(5 - \lambda)(7 - \lambda) - k(k(7 - \lambda)) + 2$ Correct interpretation of 3 being an eigenvalue equation in If the method for forming the determinant i "compor NB rule of Sarrus given and the second s	$0 \Rightarrow 3(8) - k(4k) + 2(-4) = 0$ g. $\begin{vmatrix} k & 2 \\ 5 - \lambda & 0 \\ 0 & 7 - \lambda \end{vmatrix} = 0$ $(0 - 2(5 - \lambda)) = 0 \Rightarrow 24 - k(4k) - 8 = 0$ the leading to the formation of a quadratic in <i>k</i> only. Is not clear then look for at least 2 correct inerts''. Therefore $24 - 8 - 4k^2 = 0$	M1
	$\Rightarrow 4k^2 = 16 \Rightarrow k = \dots$	Solves quadratic. Depends on the first M.	d M1
	$k = \pm 2$	Correct values	A1
			(3)
(a) Way 2	$\begin{pmatrix} 6 & k & 2 \\ k & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $z = -\frac{1}{2}x, y = -\frac{1}{2}kx \Longrightarrow 6x$ Eliminates z and y and reaches a	$6x + ky + 2z = 3x$ $\Rightarrow kx + 5y = 3y$ $2x + 7z = 3z$ $-\frac{k^2x}{2} - x = 3x \Rightarrow \frac{k^2}{2} = 2$ a quadratic equation in k only	M1
	$\frac{k^2}{2} = 2 \Longrightarrow k = \dots$	Solves quadratic. Depends on the first M.	d M1
	$k = \pm 2$	Correct values	A1
(b)	$k = -2 \Rightarrow \mathbf{M} - \lambda \mathbf{I} = \begin{vmatrix} 6 \\ -\lambda \\ $	$\begin{vmatrix} -\lambda & -2 & 2 \\ -2 & 5-\lambda & 0 \\ 2 & 0 & 7-\lambda \end{vmatrix}$ $(2\lambda - 14) + 2(2\lambda - 10) = 0$ e attempt at the characteristic equation (the "= ded here). or at least 2 correct "components".	M1
	$\Rightarrow \lambda^3 - 18\lambda^2 + 99\lambda - 162 = 0 \Rightarrow \lambda = \dots$	Solves cubic. May use $\lambda = 3$ as a factor or calculator to solve. Depends on the first mark. Allow complex roots.	dM1
	$\lambda = 6, 9 (,3)$	Correct values. Allow to come from $k = 2$	A1
		· · · · · · · · · · · · · · · · · · ·	(3)

	$\begin{pmatrix} 2\\ 2 \end{pmatrix}$	Any correct eigenvector	A1
	$p \begin{vmatrix} 2 \\ -1 \end{vmatrix}$	Any correct eigenvector	A1
	$\left \begin{array}{c} p \\ -1 \end{array} \right $	Any correct eigenvector	A1
	$p \mid 2$	Any correct eigenvector	A1
	$\begin{pmatrix} 2 \end{pmatrix}$		
	Note that the cross product of any 2 rows o	r columns of $M - 3I$ gives an eigenvector	
	Correct strategy for finding the eiger	nvector using a value of k from (a)	
	$ \begin{vmatrix} -2 & 2 & 0 \\ 2 & 0 & 4 \end{vmatrix} \begin{vmatrix} y \\ z \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix} \Rightarrow $	$2x + 5y = 0 \qquad \Rightarrow \begin{vmatrix} y \\ z \end{vmatrix} = \dots$	
	$\begin{pmatrix} 3 & -2 & 2 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ x \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$6x - 2y + 2z = 0 \qquad (x)$	1011
	or		M1
	$\begin{pmatrix} 2 & 0 & 7 \end{pmatrix} \begin{pmatrix} z \end{pmatrix} \begin{pmatrix} z \end{pmatrix}$	$2x + 7z = 3z \qquad \qquad \left(z\right)$	
	$\begin{vmatrix} -2 & 5 & 0 \end{vmatrix} \begin{vmatrix} y \end{vmatrix} = 3 \begin{vmatrix} y \end{vmatrix} \Rightarrow$	$-2x+5y=3y \implies y = \dots$	
(c)	$\begin{pmatrix} 6 & -2 & 2 \end{pmatrix} \begin{pmatrix} x \end{pmatrix} \begin{pmatrix} x \end{pmatrix}$	$6x - 2y + 2z = 3x \qquad (x)$	

Question Number	Scheme	Notes	Marks
5(i)	$x^{2} - 3x + 5 = \left(x - \frac{3}{2}\right)^{2} + \frac{11}{4}$	Correct completion of the square	B1
	$\int \frac{1}{\sqrt{x^2 - 3x + 5}} \mathrm{d}x = \int \frac{1}{\sqrt{\left(x - \frac{3}{2}\right)^2}}$	$\frac{1}{x^{2} + \frac{11}{4}} dx = \sinh^{-1} \frac{2x - 3}{\sqrt{11}} (+c)$	
	M1: Use of A1: Fully correct expression (condone omission of + c	MIAI
	Allow equivalent correct expressions e.g.	$\sinh^{-1}\frac{x-\frac{3}{2}}{\sqrt{\frac{11}{4}}}(+c), \ \sinh^{-1}\frac{x-\frac{3}{2}}{\frac{\sqrt{11}}{2}}(+c)$	
	Allow equivalents for sinh ⁻¹ e.g. arsir	th, arcsinh but not arsin or arcsin	
	You may see logarithmic frequencies of the e.g. $\ln\left(\frac{2x-3}{\sqrt{11}} + \sqrt{\left(\frac{2x-3}{\sqrt{11}}\right)^2 + 1}\right),$	forms for the answer: $\ln\left(x - \frac{3}{2} + \sqrt{\left(x - \frac{3}{2}\right)^2 + \frac{11}{4}}\right)$	
	but apply isw once a cor	rect answer is seen.	
(::)			(3)
(11)	$63 + 4x - 4x^{2} = -4\left(x^{2} - x - \frac{63}{4}\right)$ $= -4\left(\left(x - \frac{1}{2}\right)^{2} - \frac{64}{4}\right)$	Obtains $-4\left(\left(x - \frac{1}{2}\right)^2 \pm\right)$ or $-4\left(x - \frac{1}{2}\right)^2 \pm$ or $ (2x - 1)^2$	M1
	$-4\left(\left(x-\frac{1}{2}\right)^{2}-16\right) \text{ or } 64-4\left(x-\frac{1}{2}\right)^{2}$ or $64-(2x-1)^{2}$	Correct completion of the square	A1
	$\int \frac{1}{\sqrt{63+4x-4x^2}} \mathrm{d}x = \frac{1}{2}$	$\frac{1}{2}\sin^{-1}\left(\frac{2x-1}{8}\right)(+c)$	
	M1: Use of A1: Fully correct expression (f sin ⁻¹ condone omission of $+ c$)	M1A1
	Allow equivalent correct expressions e.g. $\frac{1}{2}$	$\sin^{-1}\frac{x-\frac{1}{2}}{4}(+c), -\frac{1}{2}\sin^{-1}\frac{\frac{1}{2}-x}{4}(+c)$	
	Allow equivalents for \sin^{-1} e.g. arsin	, arcsin but not arsinh or arcsinh	
			(4)
	In (ii) there are no marks for using $\int \frac{1}{63+1000000000000000000000000000000000000$	$\frac{1}{4x - 4x^2} dx = -\int \frac{1}{\sqrt{4x^2 - 63 - 4x}} dx$	
	$\int \frac{1}{\sqrt{63 + 4x - 4x^2}} dx = \int \frac{1}{\sqrt{64 - (2x - 1)^2}} dx$	but then M0 for $=\int \frac{-1}{\sqrt{(2x-1)^2-64}} dx$	
		¥ N /	Total 7

Page 76 of 152

Question Number	Scheme	Notes	Marks
6(a) $\int e^{x} \sin^{n} x dx = e^{x} \sin^{n} x - n \int e^{x} \sin^{n-1} x \cos x dx$ Applies integration by parts to obtain $\pm e^{x} \sin^{n} x \pm \alpha \int e^{x} \sin^{n} x$		$n \int e^{x} \sin^{n-1} x \cos x dx$ $e^{x} \sin^{n} x \pm \alpha \int e^{x} \sin^{n-1} x \cos x dx$	M1
	$= e^{x} \sin^{n} x - n \left\{ e^{x} \sin^{n-1} x \cos x - \int e^{x} (\alpha \sin^{n-1} x \cos x) \right\}$ M1: Applies integration by parts to $\pm \alpha$ $\pm e^{x} \sin^{n-1} x \cos x \pm \int e^{x} (\alpha \sin^{n} x \cos x) \right\}$ Or equivalent e.g. $\pm e^{x} \sin^{n-1} x \cos x \pm \alpha$ (if Pythagoras ap A1: Fully correct expression for	$(n-1)\sin^{n-2} x\cos^{2} x - \sin^{n} x)dx $ $\alpha \int e^{x} \sin^{n-1} x\cos x dx \text{ to obtain}$ $a^{n-2} x\cos^{2} x - \beta \sin^{n} x)dx$ $= \int e^{x} (\alpha \sin^{n-2} x - \beta \sin^{n} x)dx$ oplied first) $I_{n} \text{ from parts applied twice.}$	dM1A1
	$= e^{x} \sin^{n} x - n \begin{cases} e^{x} \sin^{n-1} x \cos x - \int e^{x} ((n + x) \cos x) dx \\ \text{Applies } \cos^{2} x = 0 \end{cases}$	$-1)\sin^{n-2}x(1-\sin^2 x)-\sin^n x)dx\bigg\}$ $=1-\sin^2 x$	d M1
	$= e^{x} \sin^{n} x - n \left\{ e^{x} \sin^{n-1} x \cos x - \int e^{x} \left(\left(n - e^{x} \sin^{n} x - n \left\{ e^{x} \sin^{n-1} x \cos x - \int e^{x} e^{x} \sin^{n} x - n e^{x} \sin^{n-1} x \cos x - \int e^{x} e^{x} \sin^{n} x - n e^{x} \sin^{n-1} x \cos x + n \right\}$ Completes by introducing I_{n-2} and	1) $\sin^{n-2} x - (n-1)\sin^n x - \sin^n x) dx$ $\left\{ x \left((n-1)\sin^{n-2} x - n\sin^n x \right) dx \right\}$ $\left\{ (n-1)I_{n-2} - n^2 I_n \Longrightarrow I_n =$ I_n and makes I_n the subject	dM1
	$I_n = \frac{e^x \sin^{n-1} x}{n^2 + 1} (\sin x - n \cos^{n-1} x)$ Fully correct proof with no errors but allow e.g. errors must be recovered before fina	$p(x) + \frac{n(n-1)}{n^2 + 1} I_{n-2} *$ the occasional missing "dx" but any clear l answer e.g. missing brackets.	A1*

(b)
$$I_{4} = \frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12}{17} I_{2}$$
or
$$I_{5} = \frac{e^{x} \sin^{3} x}{5} (\sin x - 2 \cos x) + \frac{2}{5} I_{0}$$
MI
$$= \frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12}{17} \left(\frac{e^{x} \sin x}{5} (\sin x - 2 \cos x) + \frac{2}{5} I_{0}\right)$$

$$= \frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12e^{x} \sin x}{85} (\sin x - 2 \cos x) + \frac{24}{85} e^{x}$$
MI
Applies the reduction formula again and uses $I_{0} = \int e^{x} dx = e^{x}$ to obtain an expression in
terms of x
$$\int_{0}^{\frac{x}{2}} e^{x} \sin^{4} x dx = \left[\frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12e^{x} \sin x}{85} (\sin x - 2 \cos x) + \frac{24}{85} e^{x}\right]_{0}^{\frac{x}{2}}$$
dMI
$$\int_{0}^{\frac{x}{2}} e^{x} \sin^{4} x dx = \left[\frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12e^{x} \sin x}{85} (\sin x - 2 \cos x) + \frac{24}{85} e^{x}\right]_{0}^{\frac{x}{2}}$$
Uses the reduction formula again and uses $I_{0} = \int e^{x} dx = e^{x}$ to obtain an expression in
terms of x
$$\int_{0}^{\frac{x}{2}} e^{x} \sin^{4} x dx = \left[\frac{e^{x} \sin^{3} x}{17} (\sin x - 4 \cos x) + \frac{12e^{x} \sin x}{85} (\sin x - 2 \cos x) + \frac{24}{85} e^{x}\right]_{0}^{\frac{x}{2}}$$
Uses the limits 0 and $\frac{\pi}{2}$ and subtracts. **Depends on both previous marks**.
$$= \frac{41e^{\frac{x}{2}}}{17} + \frac{28}{85} + \frac{24e^{\frac{x}{5}}}{85} - \frac{24}{85}$$
MI: $I_{0} = \frac{e^{\frac{x}{2}}}{17} (1-0) + \frac{12}{17}I_{2}$

$$I_{2} = \frac{e^{\frac{x}{2}}}{5} (1-0) + \frac{2}{5}I_{0}$$

$$I_{0} = e^{\frac{x}{2}} - 1$$
MIMI: $I_{4} = \frac{e^{\frac{x}{2}}}{17} + \frac{12e^{\frac{x}{5}}}{17} + \frac{2}{17}\left(\frac{e^{\frac{x}{5}}}{5} + \frac{2}{2}\left(e^{\frac{x}{2}} - 1\right)\right)$

$$A_{1}: = \frac{41e^{\frac{x}{2}}}{18} - \frac{24}{85}$$
Total 10

Page 78 of 152

Question Number	Scheme	Notes	Marks
7(a)	$\frac{x-3}{4} = \frac{y-5}{-2} = \frac{z-4}{7} \Longrightarrow \mathbf{r} = \begin{pmatrix} 3\\5\\4 \end{pmatrix} \pm \lambda \begin{pmatrix} 4\\-2\\7 \end{pmatrix}$	Converts to parametric form. " r =" is not required	M1
	2x + 4y - z = 1 $\Rightarrow 2(3 + 4\lambda) + 4(5 - 2\lambda) - 4 - 7\lambda = 1$ $\Rightarrow \lambda = \dots(3) \Rightarrow P \text{ is } \dots$	Correct strategy for finding <i>P</i> . Condone the use of $2x + 4y - z = 0$ for the plane equation.	M1
	(15, -1, 25)	Correct coordinates. Condone if given as a vector.	A1 (3)
(a) Way 2	$\frac{x-3}{4} = \frac{y-5}{-2} \Longrightarrow x = 13 - 2y$	Uses the Cartesian equation to find x in terms of y	M1
	$2x + 4y - z = 1 \Longrightarrow 26 - 4y + 4y - z = 1$ $\implies z = \dots, \ x = \dots, \ y = \dots$	Correct strategy for finding <i>P</i> . Condone the use of $2x + 4y - z = 0$ for the plane equation.	M1
	(15, -1, 25)	Correct coordinates. Condone if given as a vector.	A1
(b)	$\begin{pmatrix} 4 \\ -2 \\ 7 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = 8 - 8 - 7 = -7$	Applies the scalar product between the direction of l_1 and the normal to the plane	M1
	Examples $\phi = \cos^{-1} \frac{\pm 7}{\sqrt{69}\sqrt{21}} = \dots \phi =$ Attempts to find a relevant angle Depends on the first n	$\sin^{-1} \frac{\pm 7}{\sqrt{69}\sqrt{21}} = \dots$ e in degrees or radians.	d M1
	$\theta = 10.6^{\circ}$	Allow awrt 10.6 but do not isw and mark the final answer. For reference $\theta = 10.5965654^{\circ}$	A1 (3)
(b) Way 2	$\begin{pmatrix} 4\\-2\\7 \end{pmatrix} \times \begin{pmatrix} 2\\4\\-1 \end{pmatrix} = \begin{pmatrix} 26\\-18\\-20 \end{pmatrix}$	Attempts vector product of normal to Π and direction of l_1	M1
	$\sqrt{26^2 + 18^2 + 20^2} = \sqrt{21}\sqrt{69}\sin\alpha$ $\sin\alpha = \frac{10\sqrt{46}}{69} \Rightarrow \alpha = \dots$	Attempts to find a relevant angle. Depends on the first method mark.	d M1
	$\theta = 10.6^{\circ}$	Allow awrt 10.6 but do not isw and mark the final answer. For reference $\theta = 10.5965654^{\circ}$	A1

(c)	$\mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 4 & -1 \\ 4 & -2 & 7 \end{vmatrix} = \begin{pmatrix} 26 \\ -18 \\ -20 \end{pmatrix}$	Attempts vector product of normal to Π and direction of l_1 . If no method is seen expect at least 2 correct components.	M1
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 13 & -9 & -10 \end{vmatrix} = \begin{pmatrix} 49 \\ -7 \end{vmatrix}$	Attempts vector product of " a " with normal to Π to find direction of l_2	M1
	$\begin{vmatrix} 2 & 4 & -1 \end{vmatrix} \begin{pmatrix} 70 \end{pmatrix}$	Correct direction for l_2	A1
	$\mathbf{r} = \begin{pmatrix} 15\\-1 \end{pmatrix} + \mu \begin{pmatrix} 7\\-1 \end{pmatrix}$	Depends on both previous M marks Attempts vector equation using their direction vector and their P	ddM1
	$\begin{pmatrix} 25 \end{pmatrix}$ $\begin{pmatrix} 10 \end{pmatrix}$	Correct equation or any equivalent correct vector equation	A1
			(5)
(c) Way 2	$\lambda = 1 \Rightarrow (7, 3, 11)$ lies on l_1		
way 2	$\begin{pmatrix} 7 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$		
	$\mathbf{r} = \begin{vmatrix} 3 \end{vmatrix} + t \begin{vmatrix} 4 \end{vmatrix}$		
	(11) (-1)	Complete method to find a point on l_2	M1
	$\Rightarrow 2(7+2t)+4(3+4t)-11+t=1$		
	$t = -\frac{2}{3} \Longrightarrow \left(\frac{17}{3}, \frac{1}{3}, \frac{35}{3}\right) \text{ is on } l_2$		
	Direction of l_2 is $\begin{pmatrix} 15\\-1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 17\\1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 28\\-4 \end{pmatrix}$	Uses their point and their <i>P</i> to find direction of l_2	M1
	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 0 \\ \end{array} $	Correct direction for l_2	A1
		Attempts vector equation using their direction vector and their point on l_2	ddM1
	$\mathbf{r} = \begin{pmatrix} -1\\25 \end{pmatrix} + \mu \begin{pmatrix} -1\\10 \end{pmatrix}$	Correct equation or any equivalent correct vector equation. Must have $\mathbf{r} =$ and not e.g. $l_2 =$	A1
(c)	Normal to plane from l_1		
Way 3	$\mathbf{r} = \begin{pmatrix} 3\\5\\4 \end{pmatrix} + t \begin{pmatrix} 2\\4\\-1 \end{pmatrix}$	Complete method to find a point on l_2	M1
	$\Rightarrow 2(3+2t)+4(5+4t)-(4-t)=1$		
	$t = -1 \Longrightarrow (1, 1, 5)$ is on l_2		
	Direction of l_2 is $\begin{pmatrix} 15\\ -1\\ - \end{pmatrix} = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 14\\ -2\\ \end{pmatrix}$	Uses their point and their P to find direction of l_2	M1
	$ \begin{array}{c c} \hline \\ \hline $	Correct direction for <i>l</i> ₂	A1
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 7 \end{pmatrix}$	Attempts vector equation using their direction vector and their point on l_2	ddM1
	$\mathbf{r} = \begin{bmatrix} 1\\5 \end{bmatrix} + \mu \begin{bmatrix} -1\\10 \end{bmatrix}$	Correct equation or any equivalent correct vector equation. Must have $\mathbf{r} =$ and not e.g. $l_2 =$	A1
			Total 11

Question Number	Scheme	Notes	Marks
8(a)	$b^{2} = a^{2} (1 - e^{2}) \Longrightarrow 4 = 9 (1 - e^{2}) \Longrightarrow e = \dots$ or e.g. $e = \sqrt{1 - \frac{b^{2}}{a^{2}}} \Longrightarrow e = \dots$	Uses a correct formula with a and b correctly placed to find a value for e	M1
	$e = \frac{\sqrt{5}}{3}$	Correct value (or equivalent) $e = \pm \frac{\sqrt{5}}{3}$ scores A0	A1
			(2)
(b)(i)	$(\pm ae, 0) = (\pm \sqrt{5}, 0)$ Correct foci. Must be coordinates but allow Follow through their <i>e</i> so allo	or $\left(\pm 3\frac{\sqrt{5}}{3}, 0\right)$ y unsimplified and isw if necessary. ow for $(\pm 3 \times \text{their } e, 0)$	B1ft
(ii)	$x = \pm \frac{a}{e} = \pm \frac{9}{\sqrt{5}}$ or Correct directrices. Must be equations but all Follow through their <i>e</i> so all	or $x = \pm \frac{3}{\frac{\sqrt{5}}{3}}$ ow unsimplified and isw if necessary. ow for $x = \pm 3$ /their <i>e</i>	B1ft
			(2)
	Use of a^2 for a and b^2 for b <u>consistently</u> sco This gives $e = \frac{\sqrt{65}}{9}$, $(\pm \sqrt{65})$	se: res M0A0 in (a) and B1ft B1ft in (b) $\sqrt{65}, 0$, $x = \pm \frac{81}{\sqrt{65}}$	
(c)	$\frac{dx}{d\theta} = -3\sin\theta, \ \frac{dy}{d\theta} = 2\cos\theta$ or $\frac{2x}{9} + \frac{2y}{4}\frac{dy}{dx} = 0$ or $y = \left(4 - \frac{4x^2}{9}\right)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = -\frac{4x}{9}\left(4 - \frac{4x^2}{9}\right)^{-\frac{1}{2}}$ $\Rightarrow \frac{dy}{dx} = \dots \left(=\frac{2\cos\theta}{-3\sin\theta}\right)$	Correct strategy for the gradient of <i>l</i> in terms of θ . Allow $\frac{dy}{dx} = \frac{2\cos\theta}{-3\sin\theta}$ to be stated. Correct straight line method (any	M1
	$y - 2\sin\theta = \frac{2\cos\theta}{-3\sin\theta} (x - 3\cos\theta)$	complete method). Finding the equation of the normal is M0.	M1
	$-3y\sin\theta + 6\sin^2\theta = 2x\cos\theta - 6\cos^2\theta$ $2x\cos\theta + 3y\sin\theta = 6^*$	Cso with at least one intermediate line of working	A1*
			(3)

Page 81 of 152

(d)	$l_2: y = \frac{3\sin\theta}{2\cos\theta}x$	Correct equation for l_2	B1	
	$2x\cos\theta + 3y\sin\theta = 6, y = \frac{3\sin\theta}{2\cos\theta}x$	Complete method for Q	M1	
	$\Rightarrow x = \dots, y = \dots$			
	$Q:\left(\frac{12\cos\theta}{4\cos^2\theta+9\sin^2\theta},\frac{1}{4\cos^2\theta+9\sin^2\theta}\right)$	$\frac{18\sin\theta}{4\cos^2\theta + 9\sin^2\theta}\bigg)$		
	Correct coordinates. Allow as $x =, y =$ and	allow equivalent correct expressions as	. 1	
	long as they are sing	gle fractions	AI	
	$12\cos\theta$ $18\sin\theta$	$12\cos\theta$ $18\sin\theta$		
	e.g. $x = \frac{1}{4+5\sin^2\theta}$ $y = \frac{1}{4+5\sin^2\theta}$	$x = \frac{1}{9 - 5\cos^2\theta} y = \frac{1}{9 - 5\cos^2\theta}$		
				(3)

(e)	At $Q^{y} = \frac{3}{2} \tan \theta$	Uses their coordinates of Q to attempt an	M1
	At Q , $\frac{-}{x} = \frac{-}{2} \tan \theta$	or uses the equation found in (d)	111
	$x = \frac{12\cos\theta}{4\cos^2\theta + 9\sin^2\theta} = \frac{12\sec\theta}{4 + 9\tan^2\theta} \Longrightarrow x^2$	$=\frac{144\sec^{2}\theta}{\left(4+9\tan^{2}\theta\right)^{2}}=\frac{144\left(1+\frac{4y^{2}}{9x^{2}}\right)}{\left(4+9\times\frac{4y^{2}}{9x^{2}}\right)^{2}}$	
	$y = \frac{18\sin\theta}{4\cos^2\theta + 9\sin^2\theta}$	$= \frac{12 \sec \theta \tan \theta}{4 + 9 \tan^2 \theta}$ $324 \left(1 + \frac{4y^2}{1 + y^2}\right) \frac{4y^2}{1 + y^2}$	d M1
	$\Rightarrow y^{2} = \frac{324 \sec^{2} \theta \tan^{2} \theta}{\left(4 + 9 \tan^{2} \theta\right)^{2}} =$	$= \frac{\left(9x^2\right)9x^2}{\left(4+9\times\frac{4y^2}{9x^2}\right)^2}$	
	Eliminates Depends on the f	$s \theta$ irst mark	
	$\Rightarrow x^{2} = \frac{x^{2} \left(9x^{2} + 4y^{2}\right)}{\left(x^{2} + y^{2}\right)^{2}} \Rightarrow \left(x^{2} + y^{2}\right)^{2}$ or $\Rightarrow 9 \times 16x^{2}y^{2} \left(1 + \frac{y^{2}}{x^{2}}\right)^{2} = 4 \times 18^{2} \left(1 + \frac{y^{2}}{y^{2}}\right)^{2}$ Correct equation or correct	$ x^{2} + y^{2} \Big)^{2} = 9x^{2} + 4y^{2} $ $ \frac{4y^{2}}{9x^{2}} \Big) \Longrightarrow \Big(x^{2} + y^{2}\Big)^{2} = 9x^{2} + 4y^{2} $ $ x \text{ values for } \alpha \text{ and } \beta. $	A1
			(3)
(e) Way 2	$x = \frac{12\cos\theta}{4+5\sin^2\theta} y = \frac{18\sin\theta}{4+5\sin^2\theta} \Longrightarrow \left(x^2 + Uses \text{ their } Q \text{ to obtain an expression}\right)$	$(-y^2)^2 = \left(\frac{144\cos^2\theta + 324\sin^2\theta}{\left(4+5\sin^2\theta\right)^2}\right)^2$ for $\left(x^2 + y^2\right)^2$ in terms of θ	M1
	$\left(\frac{144\cos^2\theta + 324\sin^2\theta}{\left(4+5\sin^2\theta\right)^2}\right)^2 = \left(\frac{144+180\sin^2\theta}{\left(4+5\sin^2\theta\right)^2}\right)$ $\frac{1296}{\left(4+5\sin^2\theta\right)^2} = \alpha x^2 + \beta y^2 = \alpha \frac{144\cos^2\theta}{\left(4+5\sin^2\theta\right)^2}$ Substitutes into the given answer Depends on the f	$\int_{-\infty}^{2} = \left(\frac{36(4+5\sin^{2}\theta)}{(4+5\sin^{2}\theta)^{2}}\right)^{2} = \frac{1296}{(4+5\sin^{2}\theta)^{2}}$ $= \frac{1296}{(4+5\sin^{2}\theta)^{2}}$ $\Rightarrow \alpha = \dots, \beta = \dots$ er and solves for α and β irst mark.	d M1
	$\left(x^2 + y^2\right)^2 = 9x^2 + 4y^2$	Correct expression or correct values for α and β	A1
		wantep.	Total 13
·			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

Page 83 of 152

Question Number	Scheme	Notes	Marks
1(a)	$\left(\cosh A \cosh B + \sinh A \sinh B =\right) \left(\frac{e^{A} + e^{-A}}{2}\right) \left(\frac{e^{B} + e^{-B}}{2}\right) + \left(\frac{e^{A} - e^{-A}}{2}\right) \left(\frac{e^{B} - e^{-B}}{2}\right)$ $= \frac{e^{A+B} + e^{A-B} + e^{B-A} + e^{-A-B} + e^{A+B} - e^{A-B} - e^{B-A} + e^{-A-B}}{4}$ Expresses the lhs in terms of exponentials correctly, combines terms and combines fractions with common denominator (Brackets not needed due to fraction lines)		M1
	$=\frac{2e^{A+B}+2e^{-(A+B)}}{4}=\frac{e^{A+B}}{Fully \text{ correct pro}}$	$\frac{+e^{-(A+B)}}{2} = \cosh(A+B)^*$ of with no errors	A1*
			(2)
	$\cos(x + \ln 2) = \cosh x \cos x$ $= \left(\frac{2 + \frac{1}{2}}{2}\right) \cosh x$ Applies the result from part (a) and e Use of (a) m	sn(ln 2) + sinn x sinn(ln 2) $x + \left(\frac{2 - \frac{1}{2}}{2}\right) sinh x$ valuates both cosh(ln2) and sinh(ln2) nust be seen	M1
	$\frac{5}{4}\cosh x + \frac{5}{4}\sinh x = 5\sinh x$ $\implies \frac{5}{4}\cosh x = \frac{17}{4}\sinh x$	Collects terms and reaches $a \cosh x = b \sinh x$ oe Depends on the first M mark	dM1
	$5\cosh x = 17\sinh x$ oe	Correct equation	A1
	$x = \frac{1}{2} \ln \left(\frac{1 + \frac{5}{17}}{1 - \frac{5}{17}} \right)$ Or $\frac{e^{2x} - 1}{e^{2x} + 1} = \frac{5}{17} \Longrightarrow x = \dots$	Moves to tanh <i>x</i> and uses the correct logarithmic form for artanh <i>x</i> or reverts to exponential forms and solves for <i>x</i> Depends on both M marks	ddM1
	$x = \frac{1}{2}\ln\left(\frac{11}{6}\right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1
			(5) Tetal 7
			i otal /

Way 2			
(b)	$\cosh(x+\ln 2) = \cosh x \cos x$	sh(ln 2) + sinh x sinh(ln 2)	
	$= \left(\frac{2+\frac{1}{2}}{2}\right)\cosh x + \left(\frac{2-\frac{1}{2}}{2}\right)\sinh x$		M1
	Applies the result from part (a) and e	evaluates both cosh(ln2) and sinh(ln2)	
	Use of (a) r	nust be seen	
	$\Rightarrow 5 \cosh x$	$x = 17 \sinh x$	
	dM1: Collects terms and reaches an equation	on of form $A \cosh x = B \sinh x$	dM1A1
	A1: Correct equation		
	$5\left(\frac{\mathrm{e}^{x} + \mathrm{e}^{-x}}{2}\right) = 17\left(\frac{\mathrm{e}^{x} - \mathrm{e}^{-x}}{2}\right)$		
	$12e^{x} = 22e^{-x} \Longrightarrow e^{2x} = \frac{22}{6} \Longrightarrow x = \dots$	Changes to exponentials (correct forms) And solves for <i>x</i>	ddM1
	$x = \frac{1}{2} \ln\left(\frac{11}{6}\right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1
Way 3			
	$\cosh(x+\ln 2) = \cosh x \cos \theta$	$sh(\ln 2) + sinh x sinh(\ln 2)$	
	$\left(\frac{\mathrm{e}^{x} + \mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{\ln 2} + \mathrm{e}^{-\ln 2}}{2}\right) + \left(\frac{\mathrm{e}^{x} - \mathrm{e}^{-\ln 2}}{2}\right)$	$\left(\frac{e^{-x}}{2}\right)\left(\frac{e^{\ln 2} - e^{-\ln 2}}{2}\right) = 5\left(\frac{e^{x} - e^{-x}}{2}\right)$	M1
	Applies the result from part (a) and uses	the exponential forms of the hyperbolic	
	func	tions.	
	Use of (a) n	nust be seen	
	eg $5e^x + 5e^{-x} = 17e^x - 17e^{-x}$ oe	Evaluates e ^{m2} and e ^{-m2} and starts to collect terms	dM1
	$12e^{2x} = 22 \Longrightarrow e^{2x} = \frac{11}{6}$	Correct value for e^{2x}	A1
	x =	Solves for <i>x</i>	ddM1
	$x = \frac{1}{2} \ln\left(\frac{11}{6}\right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1

NB: Squaring and obtaining a value for sinh*x* **or cosh***x* introduces extra answers. If these extra answers are then eliminated M1A1 is available but if no attempt at elimination is made award M0A0

Question Number	Scheme	Notes	Marks
	Throughout both parts of this question do not	penalise omission of dx or d θ	
2(i)	$5+4x-x^2=9-(x-2)^2$ oe	Correct completion of the square Any correct result	B1
	$\int \frac{1}{\sqrt{5+4x-x^2}} \mathrm{d}x = \int \frac{1}{\sqrt{9-(x-x^2)^2}} \mathrm{d}x = \int$	$\overline{\left(-2\right)^{2}} dx = \sin^{-1}\left(\frac{x-2}{3}\right)(+c)$	M1A1
	M1: Obtains k s	$\sin^{-1}f(x)$	
	A1: Correct integration	(+ c not needed)	(3)
(ii)	$x = 6 \Longrightarrow \theta = \frac{\pi}{3}$ $x = 2\sqrt{3} \Longrightarrow \theta = \frac{\pi}{6}$	Correct θ limits in radians	B1
	$\int \frac{18}{\left(x^2 - 9\right)^{\frac{3}{2}}} dx = \int \frac{18 \times 3 \sec \theta \tan \theta}{\left(9 \sec^2 \theta - 9\right)^{\frac{3}{2}}} d\theta$ $M1: \operatorname{For} \int \frac{18}{\left(\left(3 \sec \theta\right)^2 - 9\right)^{\frac{3}{2}}} \times \left(\operatorname{their} \frac{dx}{d\theta}\right) d\theta$		
	$\int \frac{54 \sec \theta \tan \theta}{(9 \sec^2 \theta - 9)^{\frac{3}{2}}} \mathrm{d}\theta = 54 \int \frac{\sec \theta \tan^2 \theta}{27 \tan^2 \theta} \mathrm{d}\theta$ $2 \int \frac{\cos \theta}{\sin^2 \theta} \mathrm{d}\theta \mathrm{oe} \mathrm{e}$ Correct simplified	$\frac{\operatorname{an} \theta}{\operatorname{a^{3}} \theta} d\theta = 2 \int \frac{\sin \theta \cos^{3} \theta}{\cos^{2} \theta \sin^{3} \theta} d\theta$ $\operatorname{eg} 2 \int \frac{\sec \theta}{\tan^{2} \theta} d\theta$ ed integral	A1
	$2\int \frac{\cos\theta}{\sin^2\theta} d\theta = 2\int \csc\theta \cot\theta d\theta = -2\csc\theta(+c)$ Obtains $k\csc\theta(+c)$		M1
	$\left[-2\operatorname{cosec}\theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = -2\operatorname{cosec}\frac{\pi}{3} + 2\operatorname{cosec}\frac{\pi}{6}$	Uses changed limits correctly. Depends on all previous method marks.	d M1
	$=4-\frac{4}{3}\sqrt{3}$	Cao Allow these 2 marks if limits have been given in degrees	A1
			(6) Total 0
			1 OLAI 9

Page 86 of 152

ALT	For B1 and final dM1A1 of (ii)	
	dM1: Reverse the substitution A1: Correct reversed result	
	A1: enter as B1 on e-PEN Correct final answer	

Question Number	Scheme	Notes	Marks
3(a)	3	Correct value seen in (a)	B1
			(1)
(b)	$\begin{pmatrix} -2 & 5 & 0 \\ 5 & 1 & -3 \\ 0 & -3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 8x \\ 8y \\ 8z \end{pmatrix} \Rightarrow 5x$ Correct method for the (making a variable equal to 0 is	2x + 5y = 8x $x + y - 3z = 8y \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots$ 3y + 6z = 8z e eigenvector s not a correct method)	M1
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$	Any correct eigenvector	A1
			(2)
(c)	$ \mathbf{M} - \lambda \mathbf{I} = \begin{vmatrix} -2 - \lambda & 5 \\ 5 & 1 - \\ 0 & -3 \end{vmatrix}$ $\Rightarrow (-2 - \lambda) [(1 - \lambda)(6 - \lambda) - 9] - 3$ NB CE is $\lambda^3 - 5\lambda^2 - 42\lambda + 144 = 0$ but r	$\begin{vmatrix} 0 \\ \lambda & -3 \\ 3 & 6-\lambda \end{vmatrix} = 0$ 5[5(6- λ)] = 0 $\Rightarrow \lambda =$ may only find the constant term	M1
	$\lambda = -6$	Correct third eigenvalue The work for these 2 marks may be seen in (a) – award them Correct third eigenvalue by a different method – send to review	A1
	$\mathbf{D} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -6 \end{pmatrix}$	Correct D following through their third eigenvalue	Alft
	$\begin{pmatrix} -2 & 5 & 0 \\ 5 & 1 & -3 \\ 0 & -3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -6x \\ -6y \\ -6z \end{pmatrix} \Rightarrow 5x + y$	$+5y = -6x$ $y - 3z = -6y \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -5 \\ 4 \\ 1 \end{pmatrix}$ $d \text{ aigenvector}$	M1
	$\mathbf{P} = \begin{vmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} & -\frac{3}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} & \frac{4}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & -\frac{3}{\sqrt{14}} & \frac{1}{\sqrt{42}} \end{vmatrix}$	Fully correct matrix consistent with their D May have $\frac{\sqrt{3}}{3}$ etc	A1
			(5)
			Total 8

Question Number	Scheme	Notes	Ma	rks
4.	$y = \operatorname{artanh}\left(\frac{\cos x + a}{\cos x - a}\right)$			
	$\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \frac{(\cos x - a) \times -\sin x - (\cos x + a) \times -\sin x}{(\cos x - a)^2}$ or $\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \left(-\sin x \times (\cos x - a)^{-1} + (\cos x + a) \times \sin x (\cos x - a)^{-2}\right)$ M1: Correct method for the derivative. This requires $\frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times An$ attempt at the quotient (or product) rule. A1: Correct derivative in any form		M1A1	
	$= \frac{\left(\cos x - a\right)^2}{\left(\cos x - a\right)^2 - \left(\cos x + a\right)^2} \times \frac{2a\sin x}{\left(\cos x - a\right)^2} = \frac{2a\sin x}{-4a\cos x} = \dots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.		dM1	
	$=-\frac{1}{2}\tan x$	cso	A1	(4)
Way 2	$y = \operatorname{artanh}\left(\frac{\cos x + a}{\cos x - a}\right) \Longrightarrow \tanh y = \frac{\cos x}{\cos x}$ Takes tanh of both sides, obtains $\operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\sin x + a}{\sin x - a} \Rightarrow \operatorname{sech}^{2} y \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2a \sin x}{\left(\cos x - a\right)^{2}}$ = an attempt at the quotient or product rule	M1	
	$\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \frac{2a \sin x}{\left(\cos x - a\right)^2}$ Correct derivative in any form		A1	
	$= \frac{\left(\cos x - a\right)^2}{\left(\cos x - a\right)^2 - \left(\cos x + a\right)^2} \times \frac{2a\sin x}{\left(\cos x - a\right)^2} = \frac{2a\sin x}{-4a\cos x} = \dots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark			
	$= -\frac{1}{2}\tan x$	CSO	A1	(4)

Way 3	Uses substitution $u = \frac{\cos x + a}{\cos x - a}$, obtains $\frac{du}{dx} \left(= \frac{2a \sin x}{(\cos x - a)^2} \right)$ by quotient rule and $\frac{dy}{du} \left(= \frac{1}{1 - u^2} \right)$ followed by chain rule to obtain $\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \frac{2a \sin x}{(\cos x - a)^2}$		M1
	Correct derivat	ive in any form	A1
	Uses correct processing to	b reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$	dM1
	Depends on the fi	rst method mark.	
	$=-\frac{1}{2}\tan x$	cso	A1 (4)
			Total 4
Way 4	$y = \frac{1}{2} \ln \left(\frac{1 + \frac{\cos x + a}{\cos x - a}}{1 - \frac{\cos x + a}{\cos x - a}} \right) = \frac{1}{2} \ln \left(-\frac{\cos x}{a} \right)$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times \left(\frac{\sin x}{a} \right)$	M1: Converts to correct ln form and uses chain rule to differentiate A1: Correct derivative in any form	M1A1
Way 4	$y = \frac{1}{2} \ln \left(\frac{1 + \frac{\cos x + a}{\cos x - a}}{1 - \frac{\cos x + a}{\cos x - a}} \right) = \frac{1}{2} \ln \left(-\frac{\cos x}{a} \right)$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times \left(\frac{\sin x}{a} \right)$ Uses correct processing to	M1: Converts to correct ln form and uses chain rule to differentiate A1: Correct derivative in any form o reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$	M1A1 dM1
Way 4	$y = \frac{1}{2} \ln \left(\frac{1 + \frac{\cos x + a}{\cos x - a}}{1 - \frac{\cos x + a}{\cos x - a}} \right) = \frac{1}{2} \ln \left(-\frac{\cos x}{a} \right)$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times \left(\frac{\sin x}{a} \right)$ Uses correct processing to Depends on the fi	M1: Converts to correct ln form and uses chain rule to differentiate A1: Correct derivative in any form o reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ rst method mark.	M1A1 dM1
Way 4	$y = \frac{1}{2} \ln \left(\frac{1 + \frac{\cos x + a}{\cos x - a}}{1 - \frac{\cos x + a}{\cos x - a}} \right) = \frac{1}{2} \ln \left(-\frac{\cos x}{a} \right)$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times \left(\frac{\sin x}{a} \right)$ Uses correct processing to Depends on the fi $= -\frac{1}{2} \tan x$	M1: Converts to correct ln form and uses chain rule to differentiate A1: Correct derivative in any form o reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ rst method mark.	M1A1 dM1 A1

Question Number	Scheme	Notes	Marks
5	$x = 4e^{\frac{1}{2}t}, y = e^t$	$-t$ $0 \leqslant t \leqslant 4$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\mathrm{e}^{\frac{1}{2}t}, \frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^t - 1$	Correct derivatives	B1
	NB: Allow missing dt in the following in	tegration work	
	$S = (2\pi) \int y \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \left(\mathrm{d}t\right) = (2\pi) \int \left(\mathrm{e}^t - t\right) \sqrt{\left(4\mathrm{e}^{\frac{1}{2}t}\right)^2 + \left(\mathrm{e}^t - t\right)^2} \left(\mathrm{d}t\right)$		
	$\left(=(2\pi)\int (e^t-t)\sqrt{4e^t+e^{2t}-2e^t+1}\right)$	dt)	M1
	Applies the surface area f	formula with or w/o the 2π	
	$= (2\pi) \int (e^t - t) (e^t + 1) (dt)$	Correct simplified integral Brackets must be present unless implied by subsequent work but award by implication if	A1
	$(2\pi)\int (e^{-t} + e^{t} - te^{t} - t)(dt)$ is seen		
	$= (2\pi) \int (e^{t} - t) (e^{t} + 1) (dt) = (2\pi) \int (e^{2t} + e^{t} - te^{t} - t) (dt)$		
	$= (2\pi) \left[\frac{1}{2} e^{2t} + e^{t} - t e^{t} + e^{t} - \frac{1}{2} t^{2} \right]$		D141
	B1: For $\int te^t dt$	$\mathbf{d}t = t\mathbf{e}^t - \mathbf{e}^t \left(+c\right)$	BIAI
	A1: Fully correct integration (the integration may be shown as 2 separate parts and score B1A1 if both parts correct)		
	$= 2\pi \left[\frac{1}{2} e^{2t} + 2e^{t} - te^{t} - \frac{1}{2}t^{2} \right]_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \left(\frac{1}{2} + 2 \right) \right\}$ Applies the limits 0 and 4 Must include 2π now. If 2 integrals have been used limits must be applied to both and the results added Depends on the first M mark (and some valid integration)		JM1
	$\pi(e^8-4e^4-21)$	Cao	A1
			(7)
			Total 7

Question Number	Scheme	Notes	Marks
6(a)	$\mathbf{A} = \begin{pmatrix} x \\ 2 \\ -4 \end{pmatrix}$	$ \begin{array}{ccc} 1 & 3 \\ 4 & x \\ -2 & -1 \end{array} $	
	NB: Work for (a) can o	only be awarded in (a)	
	$ \mathbf{A} = x(-4+2x) - (-2+4x) + 3(-4+16)$	Correct determinant attempt (expand by any row or column) or use the Rule of Sarrus (send to review if unsure) Sign errors allowed only within the brackets	M1
	$=2x^2-8x+38$	Correct simplified determinant	A1
	$2x^{2} - 8x + 38 = 2(x - 2)^{2} + 30$ or $\frac{d}{dx}(2x^{2} - 8x + 38) = 4x - 8 = 0 \Longrightarrow x = 2$ $\implies 2x^{2} - 8x + 38 = \dots$ or $b^{2} - 4ac = 64 - 4 \times 2 \times 38 = \dots$	Starts the process of showing det $\mathbf{A} \neq 0$ E.g. Completes the square, finds the minimum point or finds discriminant May find discriminant of $x^2 - 4x + 19 =$	M1
	$2x^{2} - 8x + 38 \ge 30$ or $b^{2} - 4ac < 0$ Therefore det $\mathbf{A} \ne 0$ which means \mathbf{A} is non- singular	Appropriate reasoning for their chosen method and a conclusion stating that A is non-singular. All 3 previous marks needed (No need to evaluate a discriminant, so ISW slips in calculation provided $64-4\times2\times38=$ or $16-4\times19=$ seen	Alcso
			(4)
(b)	$\begin{pmatrix} x & 1 & 3 \\ 2 & 4 & x \\ -4 & -2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -4+2x & -2+4x &$	$ \begin{array}{c} -4+16\\ 2x+4\\ 4x-2 \end{array} \rightarrow \begin{pmatrix} -4+2x & 2-4x & 12\\ -5 & -x+12 & 2x-4\\ x-12 & -x^2+6 & 4x-2 \end{pmatrix} $ reach at least a matrix of cofactors rect columns needed factor matrix	M1A1
	$\begin{pmatrix} -4+2x & 2-4x & 12 \\ -5 & -x+12 & 2x-4 \\ x-12 & -x^2+6 & 4x-2 \end{pmatrix} \rightarrow \begin{pmatrix} -4+2x & -4x^2 \\ 2x^2 & -4x^2 \\ 12 & -4$	$ \begin{pmatrix} -4+2x & -5 & x-12 \\ 2-4x & -x+12 & -x^2+6 \\ 12 & 2x-4 & 4x-2 \end{pmatrix} $ $ x -5 & x-12 \\ x -x+12 & -x^2+6 \\ 2x-4 & 4x-2 \end{pmatrix} $ des by their determinant.	dM1A1

Page 92 of 152

here it is not their determinant and so scores dM0		
2 correct rows or 2 correct columns needed from their previous matrix		
Depends on previous method mark.		
A1: Correct matrix		
	(4)	
	Total 8	

Question Number	Scheme	Notes	Marks
7.	$I_n = \int \frac{x^n}{\sqrt{10 - x^2}} \mathrm{d}x$	$n \in \mathbb{N}, x < \sqrt{10}$	
(a)	$I_{n} = \int \frac{x^{n}}{\sqrt{10 - x^{2}}} dx = \int \frac{x^{n-1} \times x}{\sqrt{10 - x^{2}}} dx$	Writes x^n as $x \times x^{n-1}$	M1
	$\int \frac{x^{n-1} \times x}{\sqrt{10 - x^2}} \mathrm{d}x = -x^{n-1} \left(10 - x^2\right)^2$	$\int x^{n-2} \left(10 - x^2\right)^{\frac{1}{2}} dx$	
	dM1: Uses integration $\int \frac{x^{n-1} \times x}{\sqrt{10 - x^2}} dx = \alpha x^{n-1} (10 - x)$ A1: Correct	n by parts to obtain $x^{2} \int_{-\infty}^{1/2} + \beta \int x^{n-2} (10 - x^{2})^{1/2} dx$	d M1A1
	$= + (n-1) \int x^{n-2} (10)^{n-2} (10)^{n$	$(10-x^2)(10-x^2)^{-\frac{1}{2}} dx$	
	$= \dots + 10(n-1)\int x^{n-2} (10-x^2)^{-\frac{1}{2}}$	$dx - (n-1) \int x^n (10 - x^2)^{-\frac{1}{2}} dx$	d M1
	Applies $(10-x^2)^{\frac{1}{2}} = (10-x^2)(10-x^2$	$-x^2$) ^{$-\frac{1}{2}$} and splits into 2 integrals	
	$= \dots + 10(n-1)I_{n-2} - (n-1)I_n \Longrightarrow nI_n$	Introduces I_{n-2} and I_n and makes progress to the given result	d M1
	$nI_n = 10(n-1)I_{n-2}$ Fully correct proof with no errors (recovery	$-x^{n-1}(10-x^2)^{\frac{1}{2}}*$ of missing brackets counts as an error) as	A1*
	does mis	sing dx	(6)
(b)	$I_{1} = \int_{0}^{1} \frac{x}{\sqrt{10 - x^{2}}} \mathrm{d}x = \left[-\left(1 - \frac{1}{x}\right)^{2} \right]_{0} \mathrm{d}x$	$(0-x^2)^{\frac{1}{2}} \bigg]_0^1 \left(=-3+\sqrt{10}\right)$	M1
	Correct method for I_1 Limi	ts can be substituted later	
	$5I_5 = 10 \times 4I_3 + \dots$	once Allow with 3 or $\left[-x^4 \left(10 - x^2\right)^{\frac{1}{2}}\right]_0^1$	M1
	$I_5 = 8I_3 - \frac{3}{5} = 8\left(\frac{20}{3}I_1 - \frac{1}{3}\right)$	$-1\bigg) -\frac{3}{5} = \frac{160}{3}I_1 - \frac{43}{5}$	
	$I_5 = \frac{160}{3} (\sqrt{10})$	$(\overline{0}-3)-\frac{43}{5}$	M1
	Completes the process using their <i>I</i> ₁ Limits must now	to obtain a numerical value for I_5 be substituted	
	$=\frac{1}{15} (800\sqrt{10} - 2529)$	Cao	A1
			(4) Total 10

Page 94 of 152

Question Number	Scheme	Notes	Marks
8(a)	$(\mathbf{r} =) \begin{pmatrix} -4\\-5\\3 \end{pmatrix} + t \begin{pmatrix} 3\\4\\-1 \end{pmatrix}$	Forms the parametric form of the line	M1
	3(3t-4)+4(4t-5)-(3-t)=17 ⇒ $t = (2)$	Substitutes the parametric form for the line into the plane equation and solves for "t". Depends on the first mark.	dM1
	$\begin{pmatrix} -4 \\ -5 \\ 3 \end{pmatrix} + "2" \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$	Uses their value of <i>t</i> correctly to find <i>Q</i> . Depends on the previous mark.	dM1
	(2, 3, 1)	Correct coordinates Accept if written as a column vector but not with i , j , k	A1 (4)
Way 2	$\frac{x+4}{3} = \frac{y+5}{4} = \frac{z-3}{-1}$ eg $x = f(y) \ z = g(y)$	Forms the Cartesian equation of the line, rearranges twice to get 2 of x , y , z as functions of the third	M1
		Substitutes these into the plane equation and solves for one coordinate	dM1
		Obtains the other 2 coordinates	dM1
	(2, 3, 1)	Correct coordinates Accept if written as a column vector but not with i , j , k	A1
			(4)
(b)	$\mathbf{PQ} = \begin{pmatrix} 2+4\\ 3+5\\ 1-3 \end{pmatrix}, \ \mathbf{PR} = \begin{pmatrix} -1+4\\ 6+5\\ 4-3 \end{pmatrix}, \ \mathbf{RQ} = \begin{pmatrix} 2+1\\ 3-6\\ 1-4 \end{pmatrix}$	Attempts 2 vectors in plane PQR (Must use the given coordinates of P , R and their coordinates of Q	M1
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 8 & -2 \\ 3 & 11 & 1 \end{vmatrix} = \begin{pmatrix} 30 \\ -12 \\ 42 \end{pmatrix}$	Attempt vector product between 2 vectors in <i>PQR</i> . Depends on the first mark.	dM1
	$\begin{pmatrix} 5\\-2\\7 \end{pmatrix} \begin{pmatrix} 2\\3\\1 \end{pmatrix} = 11$	Uses any of P , Q or R to find constant. Depends on the previous mark.	dM1
	5x - 2y + 7z = 11	Any correct Cartesian equation	A1
			(4)
Way 2	-4a - 5b - 3c = 1	Uses the Cartesian form of the	

Way 2	-4a-5b-3c = 1 $2a+3b+c = 1$ $-a+6b+4c = 1$	Uses the Cartesian form of the equation of a plane, $ax + by + cz = 1$, and substitutes the coordinates of each of the 3 points	M1	
	Solves to get a value for any of <i>a</i> , <i>b</i> or <i>c</i>		dM1	
	Obtains values for the other 2		dM1	
	$\frac{5}{11}x - \frac{2}{11}y + \frac{7}{11}z = 1$	Any correct Cartesian equation	A1	
			(4)	

Page 95 of 152

(c)	Reflection of P in Π is		
	$\begin{pmatrix} -4\\ -5\\ 3 \end{pmatrix} + 2 \times "2" \begin{pmatrix} 3\\ 4\\ -1 \end{pmatrix} \begin{pmatrix} 8\\ 11\\ -1 \end{pmatrix}$	Correct strategy for another point on l_3	M1
	$\begin{pmatrix} 8\\11\\-1 \end{pmatrix} - \begin{pmatrix} -1\\6\\4 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} 9\\5\\-5 \end{pmatrix} \end{pmatrix}$	Attempts direction of <i>l</i> ₃ . Depends on the first mark.	dM1
	$\mathbf{r} = \begin{pmatrix} -1 \\ 6 \\ +\lambda \end{pmatrix} \begin{pmatrix} 9 \\ 5 \\ \end{pmatrix}$	Forms the equation of l_3 using R (or their reflected P) and their direction. Depends on the previous mark.	ddM1
	$\begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} -5 \end{pmatrix}$	Any correct equation in vector form	A1 (4)
			Total 12

Question Number	Scheme	Notes	Marks
9	$\frac{x^2}{9} + \frac{y^2}{4} = 1$	$\frac{x^2}{9} + \frac{y^2}{4} = 1, y = kx - 3$	
(a)	$\frac{x^2}{9} + \frac{(kx-3)^2}{4} = 1 \left(\text{or } \frac{x^2}{9} + \frac{k^2x^2 - 6kx}{4} \right)$	$\frac{x+9}{x} = 1 \qquad \Rightarrow 4x^2 + 9(k^2x^2 - 6kx + 9) = 36$	M1
	Substitutes to obtain a quadra	tic in <i>x</i> and eliminates fractions	
	$(9k^2+4)x^2-54kx+45=0*$	Correct proof with no errors	A1*
(b)	$x = \frac{1}{2} \left(\frac{54k}{9k^2 + 4} \right) = \frac{27k}{9k^2 + 4}$ OR $x = \frac{54k \pm \sqrt{\text{discriminant}}}{2(9k^2 + 4)}$	Uses $\frac{1}{2}$ sum of roots for the <i>x</i> coordinate OR Solve the equation (by formula), add the 2 roots and halve the result. Must reach x_m . Allow errors in the discriminant	(2) M1
	$y = k \left(\frac{27k}{9k^2 + 4}\right) - 3$ $y = \frac{27k^2 - 27k^2 - 12}{9k^2 + 4} = -\frac{12}{9k^2 + 4}$	Uses the straight line equation to find y as a single fraction, can be unsimplified Depends on first M mark of (b)	dM1
	$x = \frac{27k}{9k^2 + 4}, y = -\frac{12}{9k^2 + 4}$	Fully correct work	A1
(a)	72012	500 / ² 144	(3)
	$x^{2} = \frac{729k^{2}}{\left(9k^{2} + 4\right)^{2}} \Longrightarrow x^{2}$	$f^{2} + py^{2} = \frac{729k^{2} + 144p}{(9k^{2} + 4)^{2}}$	M1
	x + py us obtains a complexity obtains a complex	non denominator	
	$\frac{729k^2 + 144p}{(9k^2 + 4)^2} = -\frac{12q}{(9k^2 + 4)} =$	$>729k^2 + 144p = -12q(9k^2 + 4)$	
	$729k^2 + 144p =$	$=81\left(9k^2+\frac{16}{9}p\right)$	dM1
	$\Rightarrow \frac{16}{9}p =$	$=4 \Longrightarrow p = \dots$	
	Correct strategy to obt Depends on the	tain a value for p or for q first M mark of (c)	
	$p = \frac{9}{4}$ or $q = -\frac{27}{4}$ oe	Correct value (or for q if found first)	A1
	$-12q = 81 \Longrightarrow q = \dots$	Correct strategy to obtain a value for the second variable Depends on both previous M marks	ddM1
	$\Rightarrow x^{2} + \frac{9}{4}y^{2} = -\frac{27}{4}y$ $p = \frac{9}{4} \text{ and } q = -\frac{27}{4} \text{ oe}$	Both values correct – can be embedded in the equation	A1
			(5)

Page 97 of 152

(c) Way 2	$x = \frac{27k}{9k^2 + 4}, y = -\frac{12}{9k^2 + 4}$ Obtains k in terms of x and y usin	$\Rightarrow \frac{x}{y} = -\frac{27k}{12} \Rightarrow k = -\frac{4x}{9y}$ ig their coordinates found in (b)	M1
	$k = -\frac{4x}{9y} \Rightarrow y = -\frac{12}{9\left(\frac{16x^2}{81y^2}\right)}$ dM1:Substitutes k into y or x to A1: Any correct C Depends on the fir	or $x = \frac{27\left(-\frac{4x}{9y}\right)}{9\left(\frac{16x^2}{81y^2}\right) + 4}$ o obtain a Cartesian equation artesian equation est M mark of (c)	dM1A1
	$\Rightarrow x^2 + \frac{9}{4}y^2 = -\frac{27}{4}y$	Rearranges to the form required Depends on both previous M marks of (c) Correct equation or correct values stated	ddM1 A1
			Total 10

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

Page 98 of 152

Question Number	Scheme	Notes	Marks
1(a)	$\frac{dy}{dx} = 3 \arcsin 2x + 3x \frac{1}{\sqrt{1 - (2x)^2}} \times 2$ $\left(= 3 \arcsin 2x + \frac{6x}{\sqrt{1 - 4x^2}} \right)$	M1: Obtains $p \arcsin qx + \frac{rx}{\sqrt{1-(sx)^2}}$ or $p \arcsin qx + \frac{rx}{\sqrt{1-tx^2}}$ p, q, r, s, t > 0 A1: Correct derivative. Allow unsimplified and isw. Allow sin ⁻¹ and condone "arsin" but "arsinh" or "arcsinh" is M0	M1 A1
(b)	$x = \frac{1}{4} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pi}{2} + \sqrt{3}$	$\frac{\pi}{2} + \sqrt{3}$ only but allow $\frac{1}{2}\pi$ or 0.5π . Terms as a sum in either order. Allow $a = \frac{1}{2}, b = \sqrt{3}$ Isw following a correct answer.	B1 dep
	This is a "Hence" question so this mark can	only be awarded following full marks in part (a)	
			Total 3

Question Number	Scheme	Notes	Marks
2(a)	$x = -\frac{4}{3}$	$x = -\frac{4}{3}$ or any equivalent equation. Allow $x = \pm \frac{4}{3}$	B1
			(1)
(b)(i)	$\frac{a}{a} = \frac{4}{3}$	Uses $\frac{a}{2} = \pm \frac{4}{2}$ oe and a correct eccentricity	
Way 1	$b^{2} = a^{2} \left(e^{2} - 1\right) \Longrightarrow 5 = a^{2} \left(\frac{9a^{2}}{16} - 1\right)$	formula and obtains an equation in a . Condone replacing b^2 with 25 if equation is otherwise correct	M1
	$9a^{4} - 16a^{2} - 80 = 0$ $\Rightarrow (9a^{2} + 20)(a^{2} - 4) = 0 \Rightarrow a^{2} = \dots$	Solves a 3TQ in a^2 (or equation that would lead to a 3TQ) to find a positive real root (usual rules – but if no working seen they must obtain one positive real value of a^2 or <i>a</i> correct to 3 sf which is consistent with their equation). Do not award if confusion with variable e.g., " $(9a^2 + 20)(a^2 - 4) = 0 \Rightarrow a = 4$ " Requires previous M mark.	d M1
	<i>a</i> = 2	Not $a = \pm 2$ unless negative rejected	Al
		<u> </u>	(3)
Way 2	$\frac{a}{e} = \frac{4}{3}$ $b^2 = a^2 \left(e^2 - 1\right) \Longrightarrow 5 = \left(\frac{4e}{3}\right)^2 \left(e^2 - 1\right)$	Uses $\frac{a}{e} = \pm \frac{4}{3}$ oe and a correct eccentricity formula and obtains an equation in <i>e</i> . Condone replacing b^2 with 25 if equation is otherwise correct	M1
	$16e^4 - 16e^2 - 45 = 0$ $\Rightarrow (4e^2 - 9)(4e^2 + 5) = 0 \Rightarrow e^2 = \dots$	Solves a 3TQ in e^2 (or equation that would lead to a 3TQ) to find a positive real root (usual rules – but if no working seen they must obtain one positive real value of e^2 or e correct to 3 sf which is consistent with their equation). Do not award if confusion with variable e.g., " $(4e^2 - 9)(4e^2 + 5) = 0 \Rightarrow e = \frac{9}{4}$ " Requires previous M mark.	d M1
	$\left(e = \frac{3}{2} \Longrightarrow\right) a = 2$	Not $a = \pm 2$ unless negative rejected but condone sight of " $e = \pm \frac{3}{2}$ " or " $e = -\frac{3}{2}$ "	A1
			(3)

ethod to obtain a numerical <i>e</i> oe with their values of <i>a</i> , wever obtained. Condone a negative <i>e</i> or <i>a</i>	M1
ct foci as coordinates	A1
only in (b) for $(\pm 12, 0)$ n beforehand	(2)
	Total 6
i) – e.g.,	
quation in c – condone b^2	
) $\Rightarrow c = 3$	
root)	
ates)	
or a)	
	unique e or a t foci as coordinates nly in (b) for $(\pm 12, 0)$ beforehand) - e.g., uation in c - condone b^2 $\Rightarrow c = 3$ root) ates) r a)

Question Number	Scheme	Notes	Marks
3 Way 1 Converts to sinh and cosh	$4 \tanh x - \operatorname{sech} x = 1$ $4 \frac{\sinh x}{\cosh x} - \frac{1}{\cosh x} = 1$ $4 \sinh x - 1 - \cosh x = 0$ $4 \frac{e^x - e^{-x}}{2} - 1 - \frac{e^x + e^{-x}}{2} = 0$	Replaces one hyperbolic function with its correct exponential equivalent. Allow for correct replacement of just e.g., $\sinh x$ after using $\tanh x = \frac{\sinh x}{\cosh x}$ May follow errors but do not allow any further marks if the original equation was reduced to one in a single hyperbolic function.	M1
	$3e^{2x}-2e^{x}-5=0$	M1: Obtains an equation which if terms are collected is a 3TQ (or 2TQ with no constant) in e^x A1: Correct 3TQ	M1 A1
	$e^{x} = \frac{2 \pm \sqrt{4 + 60}}{6} \left(\Longrightarrow \frac{2 + 8}{6} = \frac{5}{3} \right)$	 M1: Solves 3TQ (or 2TQ with no constant) in e^x. Apply usual rules. If no working seen they must achieve one correct root of their equation to 3sf which may be complex. If 2TQ must get a correct non-zero root of their equation. A1: Any correct unsimplified expression for e^x that includes the positive root. Must be exact 	M1 A1
	$x = \ln \frac{5}{3}$	$\ln \frac{5}{3}$, $\ln 1\frac{2}{3}$, $\ln 1.\dot{6}$ only but allow $k = \dots$ No unrejected extra solutions	A1
			Total 6
Way 2	$4\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}-\frac{2}{e^{x}+e^{-x}}=1$	Replaces one hyperbolic function with its correct exponential equivalent	M1
Straight to e ^x	$3e^{2x}-2e^{x}-5=0$	M1: Obtains an equation which if terms are collected is a 3TQ (or 2TQ with no constant) in e ^x A1: Correct 3TQ	M1 A1
	$e^{x} = \frac{2 \pm \sqrt{4 + 60}}{6} \left(\Longrightarrow \frac{2 + 8}{6} = \frac{5}{3} \right)$	M1: Solves 3TQ (or 2TQ with no constant) in e^x . Apply usual rules. If no working seen they must achieve one correct root of their equation to 3sf which may be complex. If 2TQ must get a correct non-zero root of their equation. A1: Any correct unsimplified expression for e^x that includes the positive root. Must be exact	M1 A1
	$x = \ln \frac{5}{3}$	$\ln \frac{5}{3}$, $\ln 1\frac{2}{3}$, $\ln 1.\dot{6}$ only but allow $k = \dots$ No unrejected extra solutions	A1
			Total 6
	In Ways 1 & 2, if they form an equation wh	ich is not a quadratic in e ^x they must achieve	
	the correct exact root of $\frac{5}{3}$ to	access the middle four marks	

Question Number	Scheme	Notes	Marks
3 Way 3a	$4 \sinh x - 1 = \cosh x$ $16 \sinh^2 x - 8 \sinh x + 1 = \cosh^2 x$ $16 \sinh^2 x - 8 \sinh x + 1 = 1 + \sinh^2 x$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in sinh <i>x</i>	M1
Squaring (sinh)	$15\sinh^2 x - 8\sinh x = 0$	M1: Obtains a 2TQ with no constant or 3TQ in sinh x A1: Correct 2TQ	M1 A1
	$\sinh x = \frac{8}{15}$	Solves 2TQ (with no constant) or 3TQ in sinh x. Apply usual rules. If 2TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3sf which may be complex.	M1
	$x = \operatorname{arsinh} \frac{8}{15} = \ln\left(\frac{8}{15} + \sqrt{\left(\frac{8}{15}\right)^2 + 1}\right)$ or $15e^{2x} - 16e^x - 15 = 0 \Longrightarrow$ $e^x = \frac{16 \pm \sqrt{256 + 900}}{30}$	A correct unsimplified expression for x as a ln (or any correct unsimplified expression for e^x if they revert to exponentials). Must be exact	A1
	$x = \ln \frac{5}{3}$	$\ln \frac{5}{3}$, $\ln 1\frac{2}{3}$, $\ln 1.6$ only but allow $k = \dots$ No unrejected extra solutions	A1
			Total 6
Way 3b Squaring	$4 \tanh x = 1 + \operatorname{sech} x$ $16 \tanh^2 x = 1 + 2 \operatorname{sech} x + \operatorname{sech}^2 x$ $16 (1 - \operatorname{sech}^2 x) = 1 + 2 \operatorname{sech} x + \operatorname{sech}^2 x$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in sech x	Total 6 M1
Way 3b Squaring (sech)	$4 \tanh x = 1 + \operatorname{sech} x$ $16 \tanh^2 x = 1 + 2 \operatorname{sech} x + \operatorname{sech}^2 x$ $16 (1 - \operatorname{sech}^2 x) = 1 + 2 \operatorname{sech} x + \operatorname{sech}^2 x$ $17 \operatorname{sech}^2 x + 2 \operatorname{sech} x - 15 = 0$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in sech x M1: Obtains a 2TQ (with no constant) or 3TQ in sech x A1: Correct 3TQ	Total 6 M1 M1 A1
Way 3b Squaring (sech)	$4 \tanh x = 1 + \operatorname{sech} x$ $16 \tanh^{2} x = 1 + 2 \operatorname{sech} x + \operatorname{sech}^{2} x$ $16 (1 - \operatorname{sech}^{2} x) = 1 + 2 \operatorname{sech} x + \operatorname{sech}^{2} x$ $17 \operatorname{sech}^{2} x + 2 \operatorname{sech} x - 15 = 0$ $(17 \operatorname{sech} x - 15) (\operatorname{sech} x + 1) = 0$ $\operatorname{sech} x = \frac{15}{17}$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in sech x M1: Obtains a 2TQ (with no constant) or 3TQ in sech x A1: Correct 3TQ Solves 2TQ with no constant or 3TQ in sech x. Apply usual rules. If 2TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3sf which may be complex.	Total 6 M1 M1 A1 M1
Way 3b Squaring (sech)	$4 \tanh x = 1 + \operatorname{sech} x$ $16 \tanh^{2} x = 1 + 2 \operatorname{sech} x + \operatorname{sech}^{2} x$ $16 (1 - \operatorname{sech}^{2} x) = 1 + 2 \operatorname{sech} x + \operatorname{sech}^{2} x$ $17 \operatorname{sech}^{2} x + 2 \operatorname{sech} x - 15 = 0$ $(17 \operatorname{sech} x - 15) (\operatorname{sech} x + 1) = 0$ $\operatorname{sech} x = \frac{15}{17}$ $x = \operatorname{arcosh} \frac{17}{15} = \ln \left(\frac{17}{15} + \sqrt{\left(\frac{17}{15}\right)^{2} - 1} \right)$ $\operatorname{or} 15e^{2x} - 34e^{x} + 15 = 0 \Longrightarrow$ $e^{x} = \frac{34 \pm \sqrt{1156 - 900}}{30}$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in sech x M1: Obtains a 2TQ (with no constant) or 3TQ in sech x A1: Correct 3TQ Solves 2TQ with no constant or 3TQ in sech x. Apply usual rules. If 2TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3sf which may be complex. A correct unsimplified expression for x as a ln (or any correct unsimplified expression for e ^x if they revert to exponentials). Must be exact	Total 6 M1 M1 A1 M1 A1
Way 3b Squaring (sech)	$4 \tanh x = 1 + \operatorname{sech} x$ $16 \tanh^{2} x = 1 + 2 \operatorname{sech} x + \operatorname{sech}^{2} x$ $16 (1 - \operatorname{sech}^{2} x) = 1 + 2 \operatorname{sech} x + \operatorname{sech}^{2} x$ $17 \operatorname{sech}^{2} x + 2 \operatorname{sech} x - 15 = 0$ $(17 \operatorname{sech} x - 15) (\operatorname{sech} x + 1) = 0$ $\operatorname{sech} x = \frac{15}{17}$ $x = \operatorname{arcosh} \frac{17}{15} = \ln \left(\frac{17}{15} + \sqrt{\left(\frac{17}{15}\right)^{2} - 1} \right)$ $\operatorname{or} 15e^{2x} - 34e^{x} + 15 = 0 \Longrightarrow$ $e^{x} = \frac{34 \pm \sqrt{1156 - 900}}{30}$ $x = \ln \frac{5}{3}$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in sech xM1: Obtains a 2TQ (with no constant) or 3TQ in sech x A1: Correct 3TQSolves 2TQ with no constant or 3TQ in sech x. Apply usual rules. If 2TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3sf which may be complex.A correct unsimplified expression for x as a ln (or any correct unsimplified expression for ex if they revert to exponentials). Must be exact $\ln \frac{5}{3}$, $\ln 1\frac{2}{3}$, $\ln 1.6$ only but allow $k = \dots$ No unrejected extra solutions	Total 6 M1 M1 A1 M1 A1

Page 103 of 152

Question Number	Scheme	Notes	Marks
3 Way 3c	$4 \tanh x - 1 = \operatorname{sech} x$ $16 \tanh^2 x - 8 \tanh x + 1 = \operatorname{sech}^2 x$ $16 \tanh^2 x - 8 \tanh x + 1 = 1 - \tanh^2 x$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in tanh <i>x</i>	M1
Squaring (tanh)	$17 \tanh^2 x - 8 \tanh x = 0$	M1: Obtains a 2TQ with no constant or 3TQ in tanh x A1: Correct 2TQ	M1 A1
	$\tanh x = \frac{8}{17}$	Solves 2TQ with no constant or 3TQ in tanh x . Apply usual rules. If 2TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3sf which may be complex.	M1
	$x = \operatorname{artanh} \frac{8}{17} = \frac{1}{2} \ln \left(\frac{1 + \frac{8}{17}}{1 - \frac{8}{17}} \right)$ or $9e^{2x} - 25 = 0 \Longrightarrow$ $e^{x} = \frac{5}{3}$	A correct unsimplified expression for x as a ln (or any correct unsimplified expression for e^x if they revert to exponentials). Must be exact	A1
	$x = \ln \frac{5}{3}$	$\ln \frac{5}{3}$, $\ln 1\frac{2}{3}$, $\ln 1.6$ only but allow $k = \dots$ No unrejected extra solutions	A1
			Total 6
Way 3d	$4 \sinh x = 1 + \cosh x$ $16 \sinh^2 x = 1 + 2 \cosh x + \cosh^2 x$ $16 \cosh^2 x - 16 = 1 + 2 \cosh x + \cosh^2 x$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in cosh x	M1
(cosh)	$15\cosh^2 x - 2\cosh x - 17 = 0$	M1: Obtains a 2TQ with no constant or 3TQ in cosh x A1: Correct 3TQ	M1 A1
	$(15\cosh x - 17)(\cosh x + 1) = 0$ $\cosh x = \frac{17}{15}$	Solves 2TQ (with no constant) or 3TQ in cosh <i>x</i> . Apply usual rules. If 2TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3sf which may be complex.	M1
	$x = \operatorname{arcosh} \frac{17}{15} = \ln\left(\frac{17}{15} + \sqrt{\left(\frac{17}{15}\right)^2 - 1}\right)$ or $15e^{2x} - 34e^x + 15 = 0 \Longrightarrow$ $e^x = \frac{34 \pm \sqrt{1156 - 900}}{30}$	A correct unsimplified expression for x as a ln (or any correct unsimplified expression for e^x if they revert to exponentials). Must be exact	A1
	$x = \ln \frac{5}{3}$	$\ln \frac{5}{3}$, $\ln 1\frac{2}{3}$, $\ln 1.6$ only but allow $k = \dots$ No unrejected extra solutions	A1
			Total 6

Question Number	Scheme	Notes	Marks
4(a)	$\int \frac{1}{\sqrt{9x^2 + 16}} dx = \frac{1}{3} \int \frac{1}{\sqrt{x^2 + \frac{16}{9}}} dx$ $= \frac{1}{3} \operatorname{arsinh} \left(\frac{3x}{4}\right) \operatorname{or} \frac{1}{3} \operatorname{arsinh} \left(\frac{x}{\frac{4}{3}}\right) (+c)$ $\operatorname{or} \frac{1}{3} \ln \left(x + \sqrt{x^2 + \left(\frac{4}{3}\right)^2}\right) (+c)$	M1: Obtains $p \operatorname{arsinh}(qx)$ or $r \ln \left\{ x + \sqrt{x^2 + s} \right\}$ or $t \ln \left(ux + \sqrt{vx^2 + w} \right)$ p, q, r, s, t, u, v, w > 0 A1: Any correct expression. Could be unsimplified and isw. The "+c" is not required. Allow sinh ⁻¹ and condone "arcsinh". "arcsin" or "arsin" is M0	M1 A1
			(2)
(b)	$\int_{-2}^{2} \frac{1}{\sqrt{9x^{2} + 16}} dx$ $= \left[\frac{1}{3} \operatorname{arsinh}\left(\frac{3x}{4}\right)\right]_{-2}^{2} \operatorname{or} \left[\frac{2}{3} \operatorname{arsinh}\left(\frac{3x}{4}\right)\right]_{0}^{2}$ $= \frac{1}{3} \operatorname{arsinh}\left(\frac{3 \times 2}{4}\right) - \frac{1}{3} \operatorname{arsinh}\left(\frac{3 \times -2}{4}\right) \operatorname{or} \frac{2}{3} \operatorname{arsinh}\left(\frac{3}{2}\right)$ OR $\left[\frac{1}{3} \ln\left(x + \sqrt{x^{2} + \frac{16}{9}}\right)\right]_{-2}^{2}$ $= \frac{1}{3} \ln\left(2 + \sqrt{2^{2} + \frac{16}{9}}\right) - \frac{1}{3} \ln\left(-2 + \sqrt{(-2)^{2} + \frac{16}{9}}\right)$ $\operatorname{or} \frac{2}{3} \left(\ln\left(2 + \sqrt{2^{2} + \frac{16}{9}}\right) - \ln\left(0 + \sqrt{0^{2} + \frac{16}{9}}\right)\right)$	Substitutes the limits 2 and -2 into an expression of the form $p \operatorname{arsinh}(qx)$ or $r \ln \{x + \sqrt{x^2 + s}\}$ or $t \ln (ux + \sqrt{vx^2 + w})$ p, q, r, s, t, u, v, w > 0 and subtracts either way round or obtains an expression for $2 []_0^{\pm 2}$ The expression does not have to be consistent with their answer to (a). No rounded decimals unless exact values recovered. Any f(0) = 0 can be implied by omission. Condone poor bracketing.	M1
	$\frac{1}{3}\ln\left(\frac{11}{2} + \frac{3\sqrt{13}}{2}\right) \text{ or } \frac{1}{3}\ln\frac{11 + 3\sqrt{13}}{2}$ or $\frac{2}{3}\ln\left(\frac{3}{2} + \frac{\sqrt{13}}{2}\right)$ or $\frac{2}{3}\ln\frac{3 + \sqrt{13}}{2}$	dM1: Obtains an expression of the form $a \ln(b+c\sqrt{13})$ or $a \ln\left(\frac{d+e\sqrt{13}}{f}\right)$ where a,b,c,d,e,f are exact and > 0. Condone poor bracketing. Requires previous M mark. A1: Any correct equivalent in an appropriate form (fractions may not be in simplest form) with correct bracketing if necessary and isw. Must come from correct work. Allow e.g., $a = \frac{2}{3}, b = \frac{3}{2}, c = \frac{1}{2}$	d M1 A1
	For information the decim	al answer is 0.7965038115	(3)
			Total 5

Page 105 of 152

Question Number	Scheme	Notes	Marks
5(a)	$\begin{vmatrix} a & a & 1 \\ -a & 4 & 0 \\ 4 & a & 5 \end{vmatrix}$ = $a(4 \times 5 - 0) - a(-5a - 0) + 1(-a^2 - (4 \times 4))$	Uses a correct method for det A (implied by two correct parts) to obtain an expression in a	M1
	$\Rightarrow 20a + 5a^{2} - a^{2} - 16 = 0$ $\Rightarrow a^{2} + 5a - 4 = 0$ $\Rightarrow a = \frac{-5 + \sqrt{41}}{2}$	Correct exact value oe Condone $\frac{-5 \pm \sqrt{41}}{2}$	A1
			(2)
(b)(i) Way 1 Α - λΙ	$\begin{vmatrix} \mathbf{A} - \lambda \mathbf{I} \end{vmatrix} = \begin{vmatrix} a - \lambda & a & 1 \\ -a & 4 - \lambda & 0 \\ 4 & a & 5 - \lambda \end{vmatrix}$ $= (a - \lambda)(4 - \lambda)(5 - \lambda) - a \times -a(5 - \lambda) + (-a^2 - 4(4 - \lambda))$ or $ \mathbf{A} - 2\mathbf{I} = \begin{vmatrix} a - 2 & a & 1 \\ -a & 2 & 0 \\ 4 & a & 3 \end{vmatrix}$ $= 6(a - 2) - a \times -3a + (-a^2 - 8)$	Obtains an expression for $ \mathbf{A} - \lambda \mathbf{I} $ in terms of <i>a</i> and λ or just <i>a</i> if λ is replaced by 2. If method unclear insist on 2 out of 3 correct parts. May multiply along any row/column. Sarrus leads to the same expressions shown (or the expressions all multiplied by -1 if "=0").	M1
	$\lambda = 2 \Longrightarrow (a-2) \times 2 \times 3 + 3a^2 - a^2 - 8 = 0$ $2a^2 + 6a - 20 = 0 \implies a^2 + 3a - 10 = 0$ $\implies (a-2)(a+5) = 0 \implies a = \dots$	Following use of $\lambda = 2$, forms and solves a 3TQ in <i>a</i> . Apply usual rules. If no working they must obtain one correct solution for their 3TQ which could be complex. Could be implied. Requires previous M mark.	d M1
	$(a > 0 \implies)a = 2$	Correct value of <i>a</i> from correct work. If -5 is offered imply its rejection if 2 alone is used in (ii)	A1
	If $a = 2$ is arrived at fortuitously, all marks a	re available for the remainder of the question	(3)
(b)(i) Way 2 Ax = 2x	$\mathbf{Ax} = 2\mathbf{x} \Longrightarrow$ $ax + ay + z = 2x$ $-ax + 4y = 2y$ $4x + ay + 5z = 2z$	Uses $\mathbf{A}\mathbf{x} = 2\mathbf{x} \left[or(\mathbf{A} - 2\mathbf{I})\mathbf{x} = 0 \right]$ to obtain three simultaneous equations. Allow if given as two equal vectors.	M1
	$\Rightarrow a^{2} + 3a - 10 = 0$ $\Rightarrow (a-2)(a+5) = 0 \Rightarrow a = \dots$	Forms and solves a 3TQ in <i>a</i> . Apply usual rules. If calculator used must obtain one correct solution for their 3TQ which could be complex. Could be implied. Requires previous M mark.	d M1
	$(a > 0 \Rightarrow)a = 2$	Correct value of a from correct work. If -5 is offered imply its rejection if 2 alone is used in (ii)	A1
	a = 2 is arrived at fortuitously, all marks a	re available for the remainder of the question	(3)

Question Number	Scheme	Notes	Marks
5(b)(ii)	$(2-\lambda)(4-\lambda)(5-\lambda)+4(5-\lambda)+(-4-16+4\lambda)=0$ $\Rightarrow (5-\lambda)[(2-\lambda)(4-\lambda)+4-4]=0$ $\Rightarrow (5-\lambda)(2-\lambda)(4-\lambda)=0 \Rightarrow \lambda = \dots$	Uses their value of a in a recognisable attempt at a characteristic equation and achieves a real non-zero eigenvalue $\neq 2$. There must be some algebra but it may be poor.	M1
	4 and 5	Both correct (no extra) and from correct work	A1
	For information the cubic is	$\pm \left(\lambda^3 - 11\lambda^2 + 38\lambda - 40\right) = 0$	(2)
(c)	$\mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = "4" \begin{pmatrix} x \\ y \\ z \end{pmatrix} or (\mathbf{A} - "4"\mathbf{I}) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Rightarrow$ $\mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = "5" \begin{pmatrix} x \\ y \\ z \end{pmatrix} or (\mathbf{A} - "5"\mathbf{I}) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \Rightarrow$ Uses $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$ or $(\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = 0$ with the latent of the simultaneous equated the constraints of the simultaneous equations of the simultaneous equations. The simultaneous equation is the simultaneous equation of the simultaneous equations. The simultaneous equation is the simultaneous equation of the simultaneous equation. The simultaneous equation is the simultaneous equation is the simultaneous equation. The simultaneous equation is the simultaneous equation is the simultaneous equation. The simulation is the simultaneous equation is the simultaneous equation. The simultaneous equation is the simultaneous equation is the simultaneous equation. The simulation is the simultaneous equation is the simultaneous equation. The simulation is the simulation i	2x + 2y + z = 4x - 2x + 2y + z = 0 $2x + 2y + z = 4y or -2x = 0$ $4x + 2y + 5z = 4z 4x + 2y + z = 0$ $2x + 2y + z = 5x - 3x + 2y + z = 0$ $2x + 2y + z = 5x -3x + 2y + z = 0$ $-2x + 4y = 5y or -2x - y = 0$ $4x + 2y + 5z = 5z 4x + 2y + z = 0$ heir value of a and a real non-zero value of their value of the rows of A - "4" I	M1
	$\pm \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \text{or} \pm \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix}$	One correct eigenvector. As shown or multiple or with components multiplied by e.g. " k " Accept e.g., $x = 0$, $y = -1$, $z = 2$	A1
	$\pm \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \text{ and } \pm \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix}$	Both correct eigenvectors. As shown or multiple or with components multiplied by e.g. k Accept $x =, y =, z =$ Both these 2 A marks could be implied by their normalised eigenvectors	A1
	$\pm \frac{1}{\sqrt{5}} \begin{pmatrix} 0\\-1\\2 \end{pmatrix}, \ \pm \frac{1}{\sqrt{54}} \begin{pmatrix} 1\\-2\\7 \end{pmatrix} \text{ oe}$	M1: A correct method to normalise at least one of their eigenvectors A1: Both correct. Allow any exact equivalents. Isw	M1 A1
	All marks available regardless of how a =	= 2, $\lambda_2 = 4$ & $\lambda_3 = 5$ have been obtained	(5)
			Total 12

Question Number	Scheme	Notes	Marks	
6(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \begin{cases} a(1 - \cos\theta) \\ & \text{or} \\ a - a\cos\theta \end{cases} \text{or} \frac{\mathrm{d}y}{\mathrm{d}\theta} = a\sin\theta \end{cases}$	At least one correct derivative	B1	
	$a^{2} (1 - \cos \theta)^{2} + (a \sin \theta)^{2}$ $= a^{2} (1 - 2 \cos \theta + \cos^{2} \theta + \sin^{2} \theta)$ $= 2a^{2} (1 - \cos \theta)$	Squares and adds their derivatives and uses $\cos^2 \theta + \sin^2 \theta = 1$ to obtain an expression in $\cos \theta$ only (not $\cos^2 \theta$) Could be implied	M1	
	$=2a^{2}\left(1-\left(1-2\sin^{2}\left(\frac{\theta}{2}\right)\right)\right)=4a^{2}\sin^{2}\frac{\theta}{2}$	d M1: Replaces $\cos \theta$ with $\pm 1 \pm 2\sin^2 \frac{\theta}{2}$ or equivalent trig work (sign errors only on identities) to obtain an expression in $\sin^2 \frac{\theta}{2}$ only Requires previous M mark. Can be implied. A1: Achieves $4a^2 \sin^2 \frac{\theta}{2}$ or $k = 4$ from correct work	d M1 A1	
			(4)	
(b)	S.A. = $(2\pi)\int y\sqrt{\left\{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2\right\}} \mathrm{d}\theta$ = $(2\pi)\int_{(0)}^{(2\pi)} a(1-\cos\theta)\left(2a\sin\frac{\theta}{2}\right)\mathrm{d}\theta$	Applies $y\sqrt{\left\{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2\right\}}$ with their $ka^2 \sin^2 \frac{\theta}{2}$ and square roots. The result of the square root may be incorrect but must be of the form $p \sin \frac{\theta}{2}$ Allow a slip replacing y but they must not have used x, $\frac{dx}{d\theta}$ or $\frac{dy}{d\theta}$ for y Allow the letter k or an invented value. 2π may be absent or wrong. Integral not required.	M1	
	$= (2\pi)2a^2 \int_{(0)}^{(2\pi)} \left(\sin\frac{\theta}{2} - \sin\frac{\theta}{2}\cos\theta\right) d\theta$ $\Rightarrow (2\pi)2a^2 \int_{(0)}^{(2\pi)} \left(\sin\frac{\theta}{2} - \sin\frac{\theta}{2}\left(2\cos^2\frac{\theta}{2} - 1\right)\right) d\theta$ or e.g., $\Rightarrow (2\pi)2a^2 \int_{(0)}^{(2\pi)} 2\sin^3\frac{\theta}{2} d\theta$ Scheme c	Uses trig identity/identities (condoning sign errors) to obtain an expression with arguments of $\frac{\theta}{2}$ only. Allow the letter k or an invented value. 2π may be absent or wrong. Integral not required. Dependent on previous M mark. ontinues	dM1	
Question Number	Scheme	Notes	Marks	
--------------------	---	---	--------------	--
6(b) cont.	$\left(= (2\pi)4a^2 \int_{(0)}^{(2\pi)} \left(\sin\frac{\theta}{2} - \sin\frac{\theta}{2}\cos^2\frac{\theta}{2} \right) \mathrm{d}\theta \right)$ $S = 8\pi a^2 \left[-2\cos\frac{\theta}{2} + \frac{2}{3}\cos^3\frac{\theta}{2} \right]_{(0)}^{(2\pi)}$ or e.g., $\pi a^2 \left[-16\cos\frac{\theta}{2} + \frac{16}{3}\cos^3\frac{\theta}{2} \right]_{(0)}^{(2\pi)}$	A correct expression for the surface area ignoring limits ft their numerical k, i.e., $S = 2k\pi a^2 \left[-2\cos\frac{\theta}{2} + \frac{2}{3}\cos^3\frac{\theta}{2} \right]_{(0)}^{(2\pi)}$ oe If they integrate in a piecemeal fashion, award this mark if they have a correct expression for their k when integration is completed – any partial evaluations must be correct for their k	A1ft	
	$=8\pi a^{2} \left[\left(-2\cos\frac{2\pi}{2} + \frac{2}{3}\cos^{3}\frac{2\pi}{2} \right) - \left(-2\cos0 + \frac{2}{3}\cos^{3}0 \right) \right]$	Substitutes correct limits and attempts to subtract either way round following a completed attempt at integration with a numerical k. Requires previous M marks and must have used 2π . Look for evidence of correct limit substitution and subtraction. There may be slips but insist on limits being applied on all integrations if they have been carried out separately. Algebraic results of integration must be seen	dd M1	
	$=\frac{64}{3}\pi a^2$	Correct exact answer. Accept equivalent fractions.	Al	
	All marks available regardle	ss of how $k = 4$ was obtained	(5)	
			Total 9	
	Allow the second M mark to be available before any attempt at integration is made. Otherwise the second M is only awarded if they complete integration without any loss of the required forms (i.e., sign and coefficient errors only and just sign errors only with any trig identities). The first A (ft) mark is for a fully correct expression ignoring limits for their k. The last two marks are the same as the main scheme. For information: Applying parts to $\int \sin \frac{\theta}{2} \cos \theta d\theta$ gives $\frac{2}{3} \left(\cos \frac{\theta}{2} + 2 \sin \frac{\theta}{2} \right)$ Using addition formulae: $\int t + \frac{\theta}{2} + 2 \sin \frac{1}{2} f\left(t + \frac{3\theta}{2} + t + \frac{\theta}{2} \right) t = \frac{1}{2} \left(t + \frac{\theta}{2} + \frac{2}{3\theta} \right)$			
	$\int \sin\frac{\theta}{2}\cos\theta d\theta = \frac{1}{2} \int \left(\sin\frac{3\theta}{2} - \sin\frac{\theta}{2}\right) d\theta = \frac{1}{2} \left(2\cos\frac{\theta}{2} - \frac{2}{3}\cos\frac{3\theta}{2}\right)$			

Question Number	Scheme	Notes	Marks
7(a)	$\begin{pmatrix} 0\\3\\-2 \end{pmatrix} \times \begin{pmatrix} 1\\1\\2 \end{pmatrix} = 8\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$	M1: Attempts vector product of two vectors in the plane. Unless there is a full clear method they must achieve two correct components A1: $\pm (8i - 2j - 3k)$ or multiple	M1 A1
	Allow any vector notation	1 throughout this question	(2)
(b)	<i>l</i> has direction vector $\pm (2\mathbf{j} + 2\mathbf{k})$	Correct direction for <i>l</i>	B1
	$(\cos \alpha \ or)$	$\sin \theta = $	
	$\left \frac{"(8\mathbf{i} - 2\mathbf{j} - 3\mathbf{k})"."(2\mathbf{j} + 2\mathbf{k})"}{"\sqrt{8^2 + 2^2 + 3^2}" \times "\sqrt{2^2 + 2^2"}}\right = \left \frac{"(8)(0) + (-1)^2}{"\sqrt{8^2 + 2^2 + 3^2}}\right ^{\frac{1}{2}}$ M1: For the scalar product of their normal at the magnitudes of their vectors. The first explanation have been a valid attempt at both vectors. All Modulus meta the correct ft numerical expression with expression or better. Allow a decimal conclusion labelling. Actual dec Implied by awrt 24 or 66 or 114 provide Allow awrt 0.41, 1.16 or 1000 Actual and P = 90 - \alpha = 90 - 66.23968409 or $\theta = 23.76031591 \Rightarrow 24^{\circ}$ to the nearest degree	$\frac{2)(2) + (-3)(2)"}{"\times"\sqrt{0^2 + 2^2 + 2^2}"} \left \left(= \left \frac{-10}{\sqrt{77} \times \sqrt{8}} \right or \left \frac{-5\sqrt{154}}{154} \right \right) \right $ and direction vector divided by the product of apression above oe is sufficient. There must how copying errors/slips if intention is clear. There must clow copying errors/slips if intention is clear. There must show copying errors/slips if intention is clear. There must have calculated as shown by second rect to 2sf. Modulus not required. Ignore imal is 0.40291148 d some work and nothing incorrect seen. 1.99 if working in radians. awrt 24 from correct work which could be minimal. Degrees symbol not required. Mark final answer.	M1 A1ft A1
			(4)
	Note that a vector pr M1: $\left \frac{\left \left \left(8\mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \right) \right \times \left \left(2\mathbf{j} + 2\mathbf{k} \right) \right \right }{\left \sqrt{8^2 + 2^2 + 3^2} \right \times \left \sqrt{2^2 + 2^2} \right \right } \right $ A1: $\left \frac{\left \sqrt{3^2 + 2^2} \right }{\left \sqrt{8^2 + 2^2} \right \left \sqrt{8^2 + 2^2} \right } \right $ The modulus of the numeration	oduct could be used: $\frac{2^2 + 16^2 + 16^2}{2^2 + 3^2} = 0.9152389511$ tor is required for any marks	
(c) Way 1 Parallel planes	$(\mathbf{i}+2\mathbf{j}+3\mathbf{k}).("8\mathbf{i}-2\mathbf{j}-3\mathbf{k}") = -5$ or $(6\mathbf{i}-3\mathbf{j}-6\mathbf{k}).("8\mathbf{i}-2\mathbf{j}-3\mathbf{k}") = 72$	M1: Finds a value for the scalar product of a position vector of a point in the plane or the given point and their normal. A1: -5 or 72 (or 5 or -72 if normal is in the opposite direction). May be seen as a distance e.g., $\frac{-5}{\sqrt{"77"}}$	M1 A1
	Shortest distance is $\left \frac{-5-72}{\sqrt{77}}\right = \frac{77}{\sqrt{77}} \text{ or } \sqrt{77}$	dM1: Having attempted both scalar products, obtains a numerical expression for the distance. Award for $\frac{\pm "5" \pm "72"}{\sqrt{"8"^2 + "2"^2 + "3"^2}}$ Dependent on previous M mark. A1: Correct exact distance. Isw	d M1 A1

Question Number	Scheme	Notes	Marks
7(c) Way 2 Perp. distance formula	(i+2j+3k).("8i-2j-3k") = -5	M1: Finds a value for the scalar product of a position vector to a point the plane and their normal. A1: -5 (or 5 if normal is in the opposite direction)	M1 A1
	$\frac{ ("8")(6) + ("-2")(-3) + ("-3")(-6) + "5" }{\sqrt{"8"^2 + "2"^2 + "3"^2}}$ $= \frac{77}{\sqrt{77}} \text{ or } \sqrt{77}$	 dM1: Uses distance formula with their normal and plane equation to reach a numerical expression for the distance. Condone sign slip on their -5 and their <i>d</i> must not be zero. Dependent on previous M mark. A1: Correct exact distance. Isw 	d M1 A1
			(4)
Way 3 Projection	Let Q be the point on the plane (1, 2, 3) then $\overrightarrow{PQ} = (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) - (6\mathbf{i} - 3\mathbf{j} - 6\mathbf{k})$ $= -5\mathbf{i} + 5\mathbf{j} + 9\mathbf{k}$	M1: Attempts vector from given point to a point on the plane A1: Correct vector (\pm)	M1 A1
/resolving formula	Shortest distance is $ \vec{PQ}.\mathbf{n} = \frac{ ("-5\mathbf{i}+5\mathbf{j}+9\mathbf{k}").("8\mathbf{i}+-2\mathbf{j}+-3\mathbf{k}") }{\sqrt{"8"^2+"2"^2+"3"^2}} =$ $= \frac{77}{\sqrt{77}} or \sqrt{77}$	 dM1: Uses formula with their vectors to reach a numerical expression for the distance Dependent on previous M mark. A1: Correct exact distance. Isw 	d M1 A1
			(4)
Way 4 Example of method involving	Line through given point in direction of normal is $r = (6\mathbf{i} - 3\mathbf{j} - 6\mathbf{k}) + \lambda(8\mathbf{i} - 2\mathbf{j} - 3\mathbf{k})$ & meets plane " $8x - 2y - 3z + 5 = 0$ " when $8(6 + 8\lambda) - 2(-3 - 2\lambda) - 3(-6 - 3\lambda) + 5 = 0$ $\Rightarrow \lambda = -1$	M1: Uses line through given point in the direction of their normal and substitutes into their plane to find a value for λ . The <i>d</i> in their plane equation must not be zero A1: Correct value	M1 A1
the point where the line meets plane	$\begin{vmatrix} -1("8\mathbf{i} + -2\mathbf{j} + -3\mathbf{k}") \end{vmatrix} = \sqrt{"8"^2 + "2"^2 + "3"^2}$ Or point of intersection is (6 - "8", -32", -63") = (-2, -1, -3) and distance is $\sqrt{(62")^2 + (-31")^2 + (-63")^2}$ $\Rightarrow \sqrt{77}$	 dM1: Attempts λn or finds point on the plane and obtains numerical expression for distance between this point and the given point Dependent on previous M mark. A1: Correct exact distance. Isw 	d M1 A1
			(4)
	Marks are scored through the av which	is the best overall match for the attempt.	
	Credit for work done in (b) is only avai	lable for part (c) if it is used in part (c).	
			Total 10

Question Number	Scheme	Notes	Marks
8(a)	$I_n = \int \cos^n x \mathrm{d}x = \int \cos x \cos^{n-1} x (\mathrm{d}x)$	Correct split. Could be implied by their work	M1
Way 1	$= \sin x \cos^{n-1} x + \int (n-1) \cos^{n-2} x \sin^2 x (dx)$	Obtains $p \sin x \cos^{n-1} x + \int q \cos^{n-2} x \sin^2 x (dx)$ oe Requires previous M mark.	d M1
	$= \sin x \cos^{n-1} x + \int (n-1) \cos^{n-2} x (1-\cos^2 x) (dx)$	Replaces $\sin^2 x$ with $1 - \cos^2 x$ to achieve a correct expression for I_n	A1
	$= \sin x \cos^{n-1} x + (n-1)I_{n-2} - (n-1)I_n$ $\Rightarrow I_n = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n}I_{n-2} *$	Proceeds to the given answer with at least one intermediate step and no errors. Condone missing "dx"s but there must be no missing arguments. Any clear bracketing error must be recovered before given answer.	A1*
			(4)
Way 2	$I_n = \int \cos^n x dx = \int \cos^2 x \cos^{n-2} x (dx)$ $= \int (1 - \sin^2 x) \cos^{n-2} x (dx)$	Correct split and replaces $\cos^2 x$ with $1 - \sin^2 x$	M1
	$= \int \left(\cos^{n-2} x - c\right)^{n-1} dx = \int \left(\cos^{n-2} x - c\right)^{n-1} dx$	$\cos^{n-2}x\sin^2x\big)(\mathrm{d}x)$	
	$= \int \cos^{n-2} x (dx) - \int (\sin^{n-2} x) dx$	$\ln x \sin x \cos^{n-2} x (dx) = \dots$	
	M1: Expands splits and obtains $n \int \cos^{n-1} dx$	r^{2} r(dr) + $a\cos^{n-1}$ rsin r + $\int r\cos^{n}$ r(dr) or	dM1
	Requires previous M mark		AI
	A1: Correct expression for I_n : $\int \cos^{n-2} x (c)$	$dx) - \left(-\frac{1}{n-1}\cos^{n-1}x\sin x + \int \frac{1}{n-1}\cos^n x(dx)\right) \text{ oe}$	
	$= I_{n-2} + \frac{1}{n-1} \cos^{n-1} x \sin x - \frac{1}{n-1} I_n$ $\implies I_n = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} I_{n-2} *$	Proceeds to the given answer with at least one intermediate step and no errors. Condone missing "dx"s but there must be no missing arguments. Any bracketing error must be recovered before given answer.	A1*
			(4)
(b)	$I_n = \frac{1}{n} \Big[\cos^{n-1} x \sin x \Big]_0^{\frac{\pi}{2}} + \frac{n-1}{n} I_{n-2} \text{ or } = \frac{1}{n} (n-1) I_{n-2}$ $I_2 = \frac{1}{2} \Big[\cos^{2-1} x \sin x \Big]_0^{\frac{\pi}{2}} + \frac{2-1}{2} I_0 \text{ or } = \frac{1}{2} I_0$	Uses the RF to obtain an expression for I_n in terms of I_{n-2} or I_2 in terms of I_0 Condone if necessary if limits are absent.	M1
		Correct expression for I_n in terms of I_0 oe	
	$I_n = \frac{(n-1)(n-3)5 \times 3 \times 1}{n(n-2)(n-4)6 \times 4 \times 2} I_0$	following correct work including 2 applications of the reduction formula (which could be embedded)	A1
	last, or first & last 2)	prior to this answer. T_0 may have been calculated previously but do not allow just the final printed answer to imply this mark.	
	e.g., $I_0 = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2}$ or $I_0 = [x]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$ or $I_0 = \frac{\pi}{2} - 0$	Correct value for I_0 - requires written evidence of integration (minimal)	B1
	$\therefore I_n = \frac{(n-1)(n-3)5 \times 3 \times 1}{n(n-2)(n-4)6 \times 4 \times 2} \times \frac{\pi}{2} *$ Allow extra terms in both products.	Proceeds to given answer. Requires all previous marks. Withhold this mark if no $\frac{1}{k} \Big[\cos^{k-1} x \sin x \Big]_0^{\frac{\pi}{2}}$ is seen or expression just disappears – one such expression must be replaced by "0" or have substitution seen	A1*
	Attempts via proof by i	nduction will be reviewed.	(4)
	Attempts may be seen via $I_n = \frac{(n-1)(n-3)3}{n(n-2)4} I_2$ and $I_2 = \frac{1}{2} \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{\frac{\pi}{2}} = \frac{1}{2} \times \frac{\pi}{2}$		

Page 112 of 152

Question Number	Scheme	Notes	Marks
8(c)	$\int_0^{\frac{\pi}{2}} \cos^6 x \sin^2 x dx = \int_0^{\frac{\pi}{2}} \cos^6 x \left(1 - \cos^2 x\right) dx$	Replaces $\sin^2 x$ with $1 - \cos^2 x$ Can be implied by an attempt at $I_6 - I_8$	M1
	$= I_6 - I_8 = \left(\frac{5 \times 3 \times 1}{6 \times 4 \times 2} - \frac{7 \times 5 \times 3 \times 1}{8 \times 6 \times 4 \times 2}\right) \frac{\pi}{2}$	Any correct numerical expression for the integral	A1
	$\left(=\frac{5}{32}\pi - \frac{35}{256}\pi =\right)\frac{5}{256}\pi \text{ oe}$	Correct exact value. Accept equivalent fractions and allow e.g., $\left(\frac{5}{128}\right)\frac{\pi}{2}$	A1
	This is a "Hence" and re	quires clear use of $I_6 - I_8$	
	For the A marks there must be no evidence using part (b). There is no e	that the answer has been arrived at without credit in (b) for work in (c).	
	Just " $I = \frac{5}{256}\pi$ " is 0/3 but	$I_{5} \text{ just } "I_{6} - I_{8} = \frac{5}{256} \pi " \text{ is } 3/3$	
			(3)
			Total 11

Question Number	Scheme	Notes	Marks
9(a)(i)	$b^2 = a^2 \left(1 - e^2 \right) \Longrightarrow 1 = 9 \left(1 - e^2 \right)$	M1: Uses a correct eccentricity formula with correct values for <i>a</i> and <i>b</i> and obtains	
	$\Rightarrow e^2 = \dots \left(\frac{8}{9}\right), \ e = \frac{2\sqrt{2}}{3} \text{ or } \frac{\sqrt{8}}{3}$	a value for e^2 or e A1: Correct value for e (not \pm) Could be implied	M1 A1
	Foci are $(\pm 2\sqrt{2}, 0)$ or $(\pm \sqrt{8}, 0)$	B1: Both correct foci as coordinates Condone any use of a negative <i>e</i> Note that this is not an ft mark.	B1
			(3)
(a)(11)	$x = \pm \frac{9\sqrt{2}}{2}$ or \pm	$\frac{9\sqrt{8}}{1}$ or $\pm \frac{9}{10}$ or	
	4		
	Both correct equations.	Requires single fraction.	
	Allow ft: $x = \pm \frac{3}{\text{their } e}$ computed in	to a single fraction, condoning $e < 0$	
	Allow " x_1 =	$=, x_2 =''$	B1ft
	" $r - + \frac{a}{a}$		
	Condone. e.g., e	but just " $\frac{a}{2} = \pm \frac{9\sqrt{2}}{10}$ " is B0	
	$=\frac{9\sqrt{2}}{9\sqrt{2}}$ or $-\frac{9\sqrt{2}}{9\sqrt{2}}$	<u>e</u> 4	
	4 4	Ι	
(b)	PE = a PM or $ PE = a PM $ or	States this definition of an allings	(2) M1
	PE + PE + c(PM + PM) = c(MM)	States this definition of an empse.	111
Way 1 $PE = aPM$	$ PF_1 + PF_2 = e(PM_1 + PM_2)$ or $e(M_1M_2)$ $= \frac{2\sqrt{2}}{\sqrt{2}} \times 2 \times \frac{9\sqrt{2}}{\sqrt{2}}$ or	Correct method for a numerical expression (or with cancelling "x"s) for $ PF_1 + PF_2 $	
I I' - eI M	3 4 4 6 4 6 4 6 7 4 6 7 6 7 7 6 7 7 7 7	with their <i>e</i> and directrix. One of the underlined expressions must	d M1
	$= "\frac{2\sqrt{2}}{3}" \left("\frac{9\sqrt{2}}{4}" - x \right) + "\frac{2\sqrt{2}}{3}" \left("\frac{9\sqrt{2}}{4}" + x \right)$	be seen for the first approach. Requires previous M mark.	
	= 6 *	Fully correct proof. Modulus signs are not required.	A1*
Way 1	If they work in <i>a</i> and <i>e</i> , $e \times 2 \times \frac{a}{e}$ is only accepted.	able if $\underline{e(PM_1 + PM_2)}$ or $\underline{e(M_1M_2)}$ is seen	
Guidance	(as with using the values) and $e\left(\frac{a}{e} - x\right) + e\left(\frac{a}{e}\right)$	$\left(\frac{a}{e}+x\right)$ (\Rightarrow 2 <i>a</i>) is acceptable but note in both	
	these general cases the second M mark be	comes available when $a = 3$ is substituted.	
	The second M is not available for any	w work which relies on $ PF_1 = PF_2 $	
	<u>Their proof needs to be shown</u>	to be valid for any position of P	
	So $ PF_1 + PF_2 = \frac{2\sqrt{2}}{3} \times \frac{9\sqrt{2}}{4} + \frac{2\sqrt{2}}{3} \times \frac{9\sqrt{2}}{4}$ or using $e \times \frac{a}{e} + e \times \frac{a}{e}$ cannot score the		
	second M without $e(PM_1 + PM_2)$ or $e(M_1M_2)$ being seen.		
	If <i>e</i> appears as a value it must be correct for the final mark.		
	Just $ PF_1 + PF_2 = 2a = 2 \times 3 = 6$ is 0/3		
	Having earned the first mark in Way 1, som point on the ellipse as in Way 2. Further crea	e candidates proceed to work with a specific dit is only available if they clearly state e.g, "	(3)
	$ PF_1 + PF_2 $ is constant for any P"		

Page 114 of 152

Question Number	Scheme	Notes	Marks
9(b) Way 2 $PE + PE = k$	$ PF_1 + PF_2 = QF_1 + QF_2 $ where <i>P</i> and <i>Q</i> are any points on the ellipse oe	States this oe definition of an ellipse, justified by explanation. Accept e.g., " $ PF_1 + PF_2 $ is constant for any <i>P</i> "	M1
	e.g. Q is where E crosses positive x -axis $\Rightarrow PF_1 + PF_2 = 3 - "2\sqrt{2}" + 3 + "2\sqrt{2}"$ Q is where E crosses positive y -axis $\Rightarrow PF_1 + PF_2 = 2\sqrt{1^2 + "2\sqrt{2}"^2}$ Q is on E directly above F_1 $\Rightarrow PF_1 + PF_2 =$ $\sqrt{1 - \frac{("2\sqrt{2}"^2)}{9}} + \sqrt{(2 \times "2\sqrt{2}")^2 + 1 - \frac{("2\sqrt{2}"^2)}{9}}$	Correct method for a numerical value for $ PF_1 + PF_2 $ using another point on the ellipse and their foci. Requires previous M mark.	dM1
	= 6 *	Fully correct proof. Modulus signs are not required.	A1*
			(3)
Way 3 Point in terms	$P(3\cos\theta,\sin\theta)$ $ PF_1 ^2 = (3\cos\theta - "2\sqrt{2}")^2 + \sin^2\theta$ or $ PF_2 ^2 = (3\cos\theta + "2\sqrt{2}")^2 + \sin^2\theta$	Correct general point in parametric form and applies Pythagoras for the distance (or its square) to either of their foci. Allow in terms of a, b and θ	M1
01 0	$ PF_1 + PF_2 = \sqrt{8\cos^2\theta - 12\sqrt{2}\cos\theta + 9} + \sqrt{8\cos^2\theta + 12\sqrt{2}\cos\theta + 9}$	Correct method for $ PF_1 + PF_2 $ with their foci. Two three term quadratic expressions required but allow the second to be implied if its correct square root is seen. Score when <i>a</i> and <i>b</i> are substituted. Requires previous M mark.	d M1
	$ PF_1 + PF_2 =$ 3-2\sqrt{2}\cos\theta + 3 + 2\sqrt{2}\cos\theta = 6*	Fully correct proof. Modulus signs are not required. The intermediate step shown oe is required for this Way.	A1*
		^Y	(3)
Way 4 Point in terms of x	$P\left(x, \sqrt{1 - \frac{x^2}{9}}\right) \text{ or } P\left(x, \sqrt{\frac{9 - x^2}{9}}\right)$ $ PF_1 ^2 = \left("2\sqrt{2}" - x\right)^2 + 1 - \frac{x^2}{9}$ $\text{ or } PF_2 ^2 = \left(x + "2\sqrt{2}"\right)^2 + 1 - \frac{x^2}{9}$	Correct general point in terms of x and applies Pythagoras for the distance (or its square) to either of their foci. Allow in terms of a , b and x .	M1
	$ PF_1 + PF_2 = \sqrt{\frac{8}{9}x^2 - 4\sqrt{2}x + 9} + \sqrt{\frac{8}{9}x^2 + 4\sqrt{2}x + 9}$	Correct method for $ PF_1 + PF_2 $ with their foci. Two three term quadratic expressions required but allow the second to be implied if its correct square root is seen. Score when <i>a</i> and <i>b</i> are substituted. Requires previous M mark. Fully correct proof. Modulus signs are not	dM1
	$\frac{ PF_1 + PF_2 = 3 - \frac{2\sqrt{2}}{3}x + 3 + \frac{2\sqrt{2}}{3}x = 6*}{Creditworthy alternative at$	required. The intermediate step shown oe is required for this Way. pproaches will be reviewed	A1* (3)
	$ PF_1 + PF_2 = 3 - \frac{2\sqrt{2}}{3}x + 3 + \frac{2\sqrt{2}}{3}x = 6*$ Creditworthy alternative approximation of the second	Requires previous M mark. Fully correct proof. Modulus signs are not required. The intermediate step shown oe is required for this Way. pproaches will be reviewed	A1* (3)

Page 115 of 152

Question Number	Scheme		Notes	Marks
9(c)	$x^{2} + 9(2x+c)^{2} = 9$ or $\frac{x^{2}}{9} + (2x+c)^{2} = 1$	Substitutes Condone s	line into the ellipse equation. lips provided intention clear.	M1
	$37x^{2} + 36cx + 9c^{2} - 9 = 0$ or e.g., $\frac{37}{9}x^{2} + 4cx + c^{2} - 1 = 0$	Correct qua	idratic with x^2 terms collected (could be implied)	A1
	¹ / ₂ (sum of roots)	$\Rightarrow (x=)\frac{-18}{37}$	$\frac{3c}{7}$	
	(or		
	$(x=)\frac{1}{2}\left(-36c+\sqrt{(36c)^2-4(37)(9c^2-4(37)(9c^2-4(37))(9c^2-$	$\frac{9}{-36c-\sqrt{36c-\sqrt{366}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\frac{\left (36c)^2 - 4(37)(9c^2 - 9)\right }{2(37)}$	
	M1: Correct attempt at ½ (sum of r	oots), i.e., $-\frac{b}{2}$	$\frac{1}{a}$ for their quadratic.	dMI AI
	Ignore how the exp Requires prev A1: Any correct e Allow this mark if	pression is labe vious M mark. quation in x an e.g., x is seen a	elled. Ind c as M_x	
	$\Rightarrow c = "-\frac{37}{18}" x \Rightarrow y = 2x + \left("-\frac{37}{18}" x\right)^{-1} = 2x + \left((-\frac{37}{18})^{-1}\right)^{-1} = 2x + \left((-\frac{37}$	") <i>x</i>	Substitutes their $c = px$ into the line to obtain an equation in x and y only. Allow e.g., x_M and y_M and condone e.g., suffixes of $P \& Q$ This may also be achieved by e.g., finding y in terms of c and then eliminating c with	
	or $x = "-\frac{18}{37}"c \Rightarrow y = 2 \times "-\frac{18}{37}"c + c \Rightarrow \dots \left(y = \frac{c}{37}\right)$	$\frac{y}{x} \Rightarrow \frac{y}{x} = -\frac{1}{18}$	their equation in x and c Must not be using " M_x " or " M_y " etc. but imply this mark from a locus equation in x and y or x and y with appropriate suffixes Requires both previous M	ddM1
		Obtains corr	rect equation for locus (accept	
	$\Rightarrow y_{m} = -\frac{1}{18} x_{m} \text{ oe}$ $\therefore l \text{ passes through the origin oe *}$	equivalents "passes/goe allow "show	s) and makes conclusion e.g., es through origin/ <i>O</i> /(0,0)" but wn"/"as required"/"QED" etc.	A1*
		Kequi	res an previous marks.	(6)
		<u> </u>		Total 13
	1	l	PAPER T	TOTAL: 75

Question Number	Scheme	Notes	Marks
1	$7\cosh x + 3\sinh x = 2e^{x} + 7 \Longrightarrow$ $7\left(\frac{e^{x} + e^{-x}}{2}\right) + 3\left(\frac{e^{x} - e^{-x}}{2}\right) = 2e^{x} + 7$ $\left\{\frac{7}{2}e^{x} + \frac{7}{2}e^{-x} + \frac{3}{2}e^{x} - \frac{3}{2}e^{-x} = 2e^{x} + 7\right\}$	Substitutes at least one correct exponential form for either of the hyperbolic terms and achieves an equation in exponentials and constants alone	M1
	$\Rightarrow 7(e^{2x}+1)+3(e^{2x}-1)=4e^{2x}+14e^{x}$ $\{\Rightarrow 5e^{2x}+2=2e^{2x}+7e^{x}\}$	Multiplies through by e^x to obtain any equation that would form a 3TQ in e^x if like terms were collected	M1
	$\Rightarrow 6e^{2x} - 14e^{x} + 4 = 0 \{3e^{2x} - 7e^{x} + 2 = 0\}$	A correct three term quadratic in e ^x . Could be implied by a correct root even if terms have not been collected.	A1
	$\Rightarrow (3e^{x}-1)(e^{x}-2) = 0 \Rightarrow e^{x} = \dots$	Solves their $3TQ$ - usual rules. One correct root for their quadratic if no working. Ignore labelling of the roots even if e.g., "x" is used.	M1
		Both correct and simplified but do not isw if there are other answers .	
	$x = \ln 2, \ \ln \frac{1}{3}$	Allow $-\ln\frac{1}{2}$ for $\ln 2$	A1
		and $-\ln 3$ or $\ln 3^{-1}$ for $\ln \frac{1}{3}$	
	Answer only is 0/	/5	Total 5
	Note that it is possible to multiply through by e^{-x}	to form an equation in e^{-2x} , e^{-x} and	
	constants. Score as main sc	cheme, e.g.,	
	$\frac{7}{2}e^{x} + \frac{7}{2}e^{-x} + \frac{3}{2}e^{x} - \frac{3}{2}e^{-x}$	$=2e^{x}+7$	
	$\Rightarrow \frac{7}{2} + \frac{7}{2}e^{-2x} + \frac{3}{2} - \frac{3}{2}e^{-2x} = 2$	$+7e^{-x}$ (M1)	
	$\Longrightarrow 2e^{-2x} - 7e^{-x} + 3 = 0$	(A1)	
	$(2e^{-x}-1)(e^{-x}-3)=0 \Longrightarrow e^{-x}$	$=\frac{1}{2}, 3$ (M1)	
	$\Rightarrow e^x = 2, \frac{1}{3} \Rightarrow x = \ln 2,$	$\ln \frac{1}{3}$ (A1)	

Question Number	Scheme	Notes	Marks
2	Condone poor notation e.g., determinant lines	used for matrix bracketing	
(a)	$\det \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 4 \\ 3 & -2 & -3 \end{pmatrix} \left\{ = 2 \times \left(-3 + 8 \right) \right\} = 10$	Correct value for determinant, seen or stated and not just in a final answer	B1
	$\left\{ \text{Minors} : \begin{pmatrix} 5 & -12 & -3 \\ 0 & -6 & -4 \\ 0 & 8 & 2 \end{pmatrix} \Rightarrow \right\} \text{Cofactors} : \begin{pmatrix} 5 & 12 & -3 \\ 0 & -6 & 4 \\ 0 & -8 & 2 \end{pmatrix}$	Attempts the cofactor matrix with at least 6 correct elements	M1
	Inverse is $\frac{1}{"10"} \begin{pmatrix} 5 & 0 & 0 \\ 12 & -6 & -8 \\ -3 & 4 & 2 \end{pmatrix} \text{ or e.g., } \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ \frac{6}{5} & -\frac{3}{5} & -\frac{4}{5} \\ -\frac{3}{10} & \frac{2}{5} & \frac{1}{5} \end{pmatrix}$	Correct inverse but allow ft on their "10". Allow equivalent fractions/decimals. A0 if clearly obtained incorrectly	Alft
	Work to obtain Adj(M) must be seen but it may be mi minors followed by the correct answ Note that B0 M1 A1 is pos	nimal, e.g., sight of the matrix of er is acceptable. ssible.	(3)
(b)	$\frac{1}{10} \begin{pmatrix} 5 & 0 & 0 \\ 12 & -6 & -8 \\ -3 & 4 & 2 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \dots$	Multiplies their \mathbf{M}^{-1} by $\begin{pmatrix} u \\ v \\ w \end{pmatrix}$ Must use a matrix other than \mathbf{M} – not just changed by application of determinant. Condone sight of $\mathbf{v}\mathbf{M}^{-1} = \dots$ but must not be a clearly incorrect multiplication method	M1
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 5u \\ 12u - 6v - 8w \\ -3u + 4v + 2w \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{2}u \\ \frac{6}{5}u - \frac{3}{5}v - \frac{4}{5}w \\ -\frac{3}{10}u + \frac{2}{5}v + \frac{1}{5}w \end{pmatrix} \text{ or } \frac{1}{d} \begin{pmatrix} -\frac{1}{2}u \\ \frac{6}{5}u - \frac{3}{5}v - \frac{4}{5}w \\ -\frac{3}{10}u + \frac{2}{5}v + \frac{1}{5}w \end{pmatrix}$ A1ft: Two correct vector components, coordinates A1ft: All three correct ft their non Must be exact (and not rounded de These ft marks are not available for an	$5u$ $12u-6v-8w$ $-3u+4v+2w$ or $\begin{pmatrix}\frac{5}{d}u\\\frac{12}{d}u-\frac{6}{d}v-\frac{8}{d}w\\-\frac{3}{d}u+\frac{4}{d}v+\frac{2}{d}w\end{pmatrix}$ s or equations, ft their $d \neq 0$ n-zero $d \neq 0$ excimals for ft) n incorrect Adj(M)	A1ft A1ft
		1	(3)
Alt Using M	$2x = u \qquad x = \dots$ $y + 4z = v \qquad \Rightarrow \qquad y = \dots$ $3x - 2y - 3z = w \qquad z = \dots$	Uses $\mathbf{M}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} u\\ v\\ w \end{pmatrix}$ and finds x, y and z as functions of u, v and w Condone sight of $\mathbf{vM} = \dots$ but must not be a clearly incorrect multiplication method	M1
	$x = \frac{1}{2}u$ $y = \frac{6}{5}u - \frac{3}{5}v - \frac{4}{5}w$ $z = -\frac{3}{10}u + \frac{2}{5}v + \frac{1}{5}w$	A1: Two correct equations A1: All three correct Any form with terms collected	A1 A1
			(3)

Question Number	Scheme	Notes	Marks
2(c)	$3x - 7y + 2z = -3 \Longrightarrow 3\left(\frac{1}{2}u\right) - 7\left(\frac{6}{5}u - \frac{3}{5}v - \frac{4}{5}w\right) + 2\left(-\frac{3}{10}u + \frac{2}{5}v + \frac{1}{5}w\right) = -3$	Substitutes their expressions into the equation for Π_1	M1
	-15u + 10v + 12w = -6	Correct equation. Terms in any order but constant isolated. Accept any integer multiples.	A1
			(2)
			Total 8
Alts	To gain any marks by an alternative approach, a complete attempt at a Cartesian equation		
	for Π_2 must be made by a viable strategy e.g.,		
	general point on $3x - 7y + 2z = -3$ is $(s, t, -\frac{3}{2}s + \frac{7}{2}t - \frac{3}{2})$		
	$\begin{pmatrix} 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} s & \\ s & \end{pmatrix} \qquad u = 2s$	v = -3u + 15t - 6	
	$\begin{vmatrix} 0 & 1 & 4 \\ 3 & -2 & -3 \end{vmatrix} \begin{pmatrix} t \\ -\frac{3}{2}s + \frac{7}{2}t - \frac{3}{2} \end{pmatrix} \Rightarrow v = -6s + 15t - w = \frac{15}{2}s - \frac{25}{2}t + \frac{15}{2}s - \frac{25}{2}t + \frac{15}{2}s - \frac{25}{2}t + \frac{15}{2}s - \frac{25}{2}t + \frac{15}{2}s - \frac{15}{2}s -$		M1
	$\Rightarrow v = -3u - \frac{6}{5}w + \frac{9}{2}u + \frac{2}{5}w$	$\frac{27}{5} - 6$	
	Obtains a plane equation in any C	artesian form	
	$\{v = \frac{3}{2}u - \frac{6}{4}w - \frac{3}{4} \Longrightarrow\}$	Correct equation. Terms in any	
		order but constant isolated.	A1
	-15u + 10v + 12w = -6	Accept any integer multiples.	
			(2)
			Total 8

Question Number	Scheme	Notes	Marks
3(a) Way 1	$y = \frac{1}{2} \left(\tan x + \cot x \right) \Longrightarrow \frac{dy}{dx} = \frac{1}{2} \left(\sec^2 x - \csc^2 x \right) \text{ oe}$	Correct derivative. Any equivalent.	B1
Identities first then squares	$= \frac{1}{2} \left(1 + \tan^2 x - \left(1 + \cot^2 x \right) \right) \qquad \left\{ = \frac{1}{2} \left(\tan^2 x - \cot^2 x \right) \right\}$	Applies $\sec^2 x = \pm \tan^2 x \pm 1$ and $\csc^2 x = \pm \cot^2 x \pm 1$ to their derivative	M1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \frac{1}{4} \left(\tan^4 x + \cot^4 x - 2\tan^2 x \cot^2 x\right)$	Squares to a 3 term expression (or 4 if middle terms uncollected) $2 \tan^2 x \cot^2 x$ can be seen as 2 Requires previous M mark.	d M1
	$\left\{ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{1}{4} \left(\tan^4 x + \cot^4 x - 2\right) \right\}$ $\Rightarrow \frac{1}{4} \left(\tan^4 x + \cot^4 x + 2\right) \text{ or } \frac{1}{4} \tan^4 x + \frac{1}{4} \cot^4 x + \frac{1}{2}$	Adds the 1 and achieves either expression shown but allow the constant to be multiplied by $\tan^2 x \cot^2 x$ May be seen as e.g.,	A1
	Not implied. Must be seen $s = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\tan^2 x + \cot^2 x) dx^*$ Allow $\int \frac{1}{2} (\tan^2 x + \cot^2 x)$ or $\frac{1}{2} \int \tan^2 x + \cot^2 x$	$\frac{1}{2}\sqrt{\tan x + \cot x + 2 \tan x \cot x}$ M1: Applies the arc length formula with their $\frac{dy}{dx}$ A1: Correct result achieved with no clear mathematical errors seen. Condone omission of "dx" and/or limits and occasional missing	M1 A1*
	Converting to sin & cos: likely to score may of 100010 unl	ess tan & cot are convincingly recovered	(6)
Way 2	$y = \frac{1}{2} \left(\tan x + \cot x \right) \Longrightarrow \frac{dy}{dx} = \frac{1}{2} \left(\sec^2 x - \csc^2 x \right) \text{ oe}$	Correct derivative. Any equivalent.	B1
Squares first then identities	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \frac{1}{4} \left(\sec^4 x + \csc^4 x - 2\sec^2 x \csc^2 x\right)$	Squares a derivative of the correct form to obtain a 3 (or 4 if middle terms uncollected) term expression.	M1
	$= \frac{1}{4} \left(\left(1 + \tan^2 x \right)^2 + \left(1 + \cot^2 x \right)^2 - 2 \left(1 + \tan^2 x \right) \left(1 + \cot^2 x \right) \right)$ $\left\{ = \frac{1}{4} \left(1 + 2\tan^2 x + \tan^4 x + 1 + 2\cot^2 x + \cot^4 x - 2 - 2\tan^2 x - 2\cot^2 x - 2\tan^2 x \cot^2 x \right) \right\}$	Applies $\sec^2 x = \pm \tan^2 x \pm 1$ twice and $\csc^2 x = \pm \cot^2 x \pm 1$ twice. Requires previous M mark.	d M1
	$\left\{ 1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 1 + \frac{1}{4} \left(\tan^4 x + \cot^4 x - 2\right) \right\}$ $\Rightarrow \frac{1}{4} \left(\tan^4 x + \cot^4 x + 2\right) \text{ or } \frac{1}{4} \tan^4 x + \frac{1}{4} \cot^4 x + \frac{1}{2}$ Not implied. Must be seen	Adds the 1 and achieves either expression shown but allow the constant to be multiplied by $\tan^2 x \cot^2 x$ May be seen as e.g., $\frac{1}{2}\sqrt{\tan^4 x + \cot^4 x + 2\tan^2 x \cot^2 x}$	A1
	$s = \int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^2 x + \cot^2 x dx *$ Allow $\int_{-\frac{1}{2}}^{\frac{\pi}{6}} \left(\tan^2 x + \cot^2 x\right)$ or $\frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^2 x + \cot^2 x$	M1: Applies the arc length formula with their $\frac{dy}{dx}$ A1: Correct result achieved with no clear mathematical errors seen. Condone omission of "dx" and/or limits and occasional missing arguments.	M1 A1*
	L Converting to sin & cost likely to score may of 100010 unl	less tan & cot are convincingly recovered	(6)

Page 120 of 152

Question Number	Scheme	Notes	Marks
3(b)	$\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\tan^2 x + \cot^2 x) dx = \frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\sec^2 x - 1 + \csc^2 x - 1) dx$	Applies $\tan^2 x = \pm \sec^2 x \pm 1$ and $\cot^2 x = \pm \csc^2 x \pm 1$ to the integral	M1
	Work in sin and cos must use identities (sign errors onl below after integration condoning the absence of a ter available following a completed attem	y) and lead to a result of the form m in x but allow the last M to be upt at integration.	
	$= \frac{1}{2} \left[\tan x - \cot x - 2x \right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$	M1: For $\pm \sec^2 x \rightarrow \pm \tan x$ and $\pm \csc^2 x \rightarrow \pm \cot x$ Requires previous M mark. A1: Correct integration. Limits not required.	d M1 A1
	$\frac{1}{2} \left(\tan \frac{\pi}{3} - \cot \frac{\pi}{3} - \frac{2\pi}{3} - \left(\tan \frac{\pi}{6} - \cot \frac{\pi}{6} - \frac{2\pi}{6} \right) \right)$ $\left\{ \frac{1}{2} \left(\sqrt{3} - \frac{2\pi}{3} - \frac{\sqrt{3}}{3} - \left(\frac{\sqrt{3}}{3} - \frac{\pi}{3} - \sqrt{3} \right) \right) \right\}$	Applies the limits (see note below) following any completed attempt at integration. Allow slips provided it is a clear attempt at $f\left(\frac{\pi}{3}\right) - f\left(\frac{\pi}{6}\right)$	M1
	Correct answer in any exact simplified fo $\frac{1}{2}\left(\frac{4\sqrt{3}}{3}-\frac{\pi}{3}\right), \frac{2\sqrt{3}}{3}-\frac{\pi}{6}, \frac{2}{\sqrt{3}}-\frac{\pi}{6}, \frac{1}{3}\left(\frac{2}{\sqrt{3}}-\frac{\pi}{6}, \frac{1}{3}\right)$	rm with 2 terms e.g. $2\sqrt{3} - \frac{\pi}{2}$, $\frac{4\sqrt{3} - \pi}{6}$	A1
	Note they may apply the limits $\frac{\pi}{4} & \frac{\pi}{6}$ or $\frac{\pi}{3} & \frac{\pi}{4}$	- and then double the result.	(5)
	Just the answer or decimal answer (0.6)	311017628) is 0/5	Total 11

Question Number	Scheme	Notes	Marks
4	Allow any suitable vector notation through	ghout this question.	
(a)	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix} \Rightarrow \dots \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ -2 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix} \Rightarrow \dots$ $-x + 3y + 3z = -5 \text{ and } 2x - 5z = 16$	M1: Uses $\mathbf{r}.\mathbf{n} = \mathbf{a}.\mathbf{n}$ at least once to obtain a plane equation A1: Both correct equations. Accept in $\mathbf{r}.\mathbf{n} = p$ form	M1 A1
	e.g., $x = \frac{16 + 5z}{2}$	Obtains one variable (may be written as parameter for all marks) in terms of one of the other variables	M1
	$z = \frac{2x - 16}{5} \Rightarrow x = 5 + 3y + 3\left(\frac{2x - 16}{5}\right)$ $\Rightarrow 5x = 25 + 15y + 6x - 48 \Rightarrow x = -15y + 23$ $\left\{x = -15y + 23 = \frac{16 + 5z}{2}\right\}$ Alternatively, $y = \frac{-x + 23}{15} = \frac{6-z}{6}$ or	M1: Obtains the variable/parameter in terms of the third variable (or the two other variables in terms of the parameter) A1: Both correct equations $z = \frac{2x - 16}{5} = 6 - 6y$	M1 A1 (M1 on epen)
	$\begin{cases} \frac{x-0}{1} = \frac{y - \frac{23}{15}}{-\frac{1}{15}} = \frac{z + \frac{16}{5}}{\frac{2}{5}} \Rightarrow \end{cases} \mathbf{r} = \begin{pmatrix} \frac{y}{15} \\ \frac{x-1}{15} \\ \frac$	$ \begin{array}{c} 0\\ \frac{23}{15}\\ -\frac{16}{5} \end{array} + \lambda \begin{pmatrix} 1\\ -\frac{1}{15}\\ \frac{2}{5} \end{pmatrix} \\ \mathbf{r} = \text{"may be missing.} \\ \mathbf{marks.} \\ \text{method i.e., an attempt at} \\ \begin{pmatrix} x_1\\ y_1\\ z_1 \end{pmatrix} + \lambda \begin{pmatrix} l\\ m\\ n \end{pmatrix} \\ \frac{1}{2} \\ \frac$	d M1 A1
	Note that the line may be given in $(\mathbf{r} - \mathbf{a}) \times \mathbf{b}$ =	= 0 or $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$ form	(7)

Question Number	Scheme	Notes	Marks
4(a) Alt Finds	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix} \Rightarrow \dots \text{ or } \begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ -2 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix} \Rightarrow \dots$ $-x + 3y + 3z = -5 \text{ and } 2x - 5z = 16$	M1: Uses $\mathbf{r}.\mathbf{n} = \mathbf{a}.\mathbf{n}$ at least once to obtain a plane equation A1: Both correct equations Accept in $\mathbf{r}.\mathbf{n} = p$ form	M1 A1
point and vector product of	e.g., $x = 0 \Longrightarrow z = -\frac{16}{5}$	Sets one variable equal to a value and finds a value for another variable. Correct for their equations if no working.	M1
normals	$3y = -5 - 3\left(-\frac{16}{5}\right) \Rightarrow y = \frac{23}{15} \left\{ \Rightarrow \left(0, \frac{23}{15}, -\frac{16}{5}\right) \right\}$ Or e.g., (23, 0, 6), (8, 1, 0) Points will have the form (23-15\alpha, \alpha, 6-6\alpha)	M1: Proceeds to find a value for the remaining variable. Correct for their equations if no working. A1: Correct values	M1 A1 (M1 on epen)
	$\begin{pmatrix} -1\\3\\3 \end{pmatrix} \times \begin{pmatrix} 2\\0\\-5 \end{pmatrix} = \dots \implies \mathbf{r} = \begin{pmatrix} 0\\\frac{23}{15}\\-\frac{16}{5} \end{pmatrix} + \lambda \begin{pmatrix} -15\\1\\-6 \end{pmatrix}$ $\begin{cases} \mathbf{r} = \begin{pmatrix} 23\\0\\6 \end{pmatrix} + \lambda \begin{pmatrix} -15\\1\\-6 \end{pmatrix} \qquad \mathbf{r} = \begin{pmatrix} 8\\1\\0 \end{pmatrix} + \lambda \begin{pmatrix} -15\\1\\-6 \end{pmatrix} \end{cases}$	 dM1: Attempts vector product of normals (two correct components if method unclear) and forms vector equation with point and direction in correct places but allow for a copying error or mix up with components. Note that they could obtain the direction from 2 points on the line. Requires all previous M marks. "r =" may be missing. A1: Any correct equation including "r =" 	d M1 A1
			(7)

Question Number	Scheme	Notes	Marks
4(b)	Note: If 0/5 allow SC 00010 for a correct volume formu $\frac{1}{6} \left \overrightarrow{CD} \cdot \left(\overrightarrow{CA} \times \overrightarrow{CB} \right) \right $ Allow with missing modulus but not vector	ila seen <u>for tetrahedron <i>ABCD</i></u> e.g., arrows unless implied by further work.	
Way 1 STP inc. \overrightarrow{CD}	$\begin{vmatrix} -15\\1\\-6 \end{vmatrix} = \sqrt{262} \Rightarrow \overrightarrow{CD} = \frac{5}{\sqrt{262}} \begin{pmatrix} -15\\1\\-6 \end{pmatrix}$	Attempts magnitude (allow numerical slip) of their direction vector and scales correctly to length 5	M1
	Let C be the point $(8, 1, 0)$ $\overrightarrow{CA} = \begin{pmatrix} 2\\4\\-5 \end{pmatrix} - \begin{pmatrix} 8\\1\\0 \end{pmatrix} = \dots \begin{cases} -6\\3\\-5 \end{pmatrix} $ and $\overrightarrow{CB} = \begin{pmatrix} 3\\6\\-2 \end{pmatrix} - \begin{pmatrix} 8\\1\\0 \end{pmatrix} = \dots \begin{cases} -5\\5\\-2 \end{pmatrix} \end{cases}$	Finds vectors for any two edges other than <i>CD</i> . Could be implied by a distance calculation if <i>C</i> and/or <i>D</i> defined . This mark is not scored if either vector is in terms of a parameter unless it is assigned a value (or is eliminated appropriately) later.	M1
	$\overrightarrow{CD}.\left(\overrightarrow{CA}\times\overrightarrow{CB}\right) = \frac{5}{\sqrt{262}} \begin{pmatrix} -15\\1\\-6 \end{pmatrix} \begin{pmatrix} -6\\3\\-5 \end{pmatrix} \times \begin{pmatrix} -5\\5\\-2 \end{pmatrix} = \dots \left\{ = -\frac{910}{\sqrt{262}} \right\}$	Uses an appropriate scalar triple product with their vectors and finds a value. Must not include position vectors . Could be inexact. M0 if clear evidence of an inappropriate method	M1
	$V = \frac{1}{6} \left \overrightarrow{CD} \cdot \left(\overrightarrow{CA} \times \overrightarrow{CB} \right) \right = \dots = \frac{455}{3\sqrt{262}} \text{ or } \frac{455\sqrt{262}}{786}$	 dM1: Divides their STP result by 6 and obtains a positive value. Could be inexact. Modulus might not be seen. Requires previous M mark. A1: A correct exact value 	d M1 A1
			(5)
Way 2 STP not	(-15) 5 (-15)	Attempts magnitude (allow numerical slip) of their direction	
\overrightarrow{CD} inc.	$ \begin{vmatrix} 1 \\ -6 \end{vmatrix} = \sqrt{262} \Rightarrow \overrightarrow{CD} = \frac{3}{\sqrt{262}} \begin{vmatrix} 1 \\ -6 \end{vmatrix} $	vector and scales correctly to length 5	M1
\overrightarrow{CD}	$\begin{vmatrix} 1 \\ -6 \end{vmatrix} = \sqrt{262} \Rightarrow \overrightarrow{CD} = \frac{3}{\sqrt{262}} \begin{vmatrix} 1 \\ -6 \end{vmatrix}$ Let C be the point (8, 1, 0) $\overrightarrow{AC} = \begin{pmatrix} 8 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix} = \dots \left\{ \begin{pmatrix} 6 \\ -3 \\ 5 \end{pmatrix} \right\} \text{ and } \overrightarrow{AB} = \begin{pmatrix} 3 \\ 6 \\ -2 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix} = \dots \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$	vector and scales correctly to length 5 Finds vectors for any two edges other than <i>CD</i> . Could be implied by a distance calculation if <i>C</i> and/or <i>D</i> defined . (See also comment for second M1 in Way 1 re use of a parameter)	M1 M1
inc. <i>CD</i>	$\begin{vmatrix} 1 \\ -6 \end{vmatrix} = \sqrt{262} \Rightarrow \overrightarrow{CD} = \frac{3}{\sqrt{262}} \begin{vmatrix} 1 \\ -6 \end{vmatrix}$ Let C be the point (8, 1, 0) $\overrightarrow{AC} = \begin{pmatrix} 8 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix} = \dots \left\{ \begin{pmatrix} 6 \\ -3 \\ 5 \end{pmatrix} \right\} \text{ and } \overrightarrow{AB} = \begin{pmatrix} 3 \\ 6 \\ -2 \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix} = \dots \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\}$ $\overrightarrow{OD} = \begin{pmatrix} 8 \\ 1 \\ 0 \end{pmatrix} + \frac{5}{\sqrt{262}} \begin{pmatrix} -15 \\ 1 \\ -6 \end{pmatrix} \Rightarrow \overrightarrow{AD} = \begin{pmatrix} \frac{-75}{\sqrt{262}} + 8 \\ \frac{5}{\sqrt{262}} + 1 \\ \frac{-30}{\sqrt{262}} \end{pmatrix} - \begin{pmatrix} 2 \\ 4 \\ -5 \end{pmatrix} = \begin{pmatrix} \frac{-75}{\sqrt{262}} + 6 \\ \frac{5}{\sqrt{262}} - 3 \\ \frac{-30}{\sqrt{262}} + 5 \end{pmatrix}$ $\Rightarrow \overrightarrow{AD} \cdot \left(\overrightarrow{AB} \times \overrightarrow{AC}\right) = \begin{pmatrix} \frac{-75}{\sqrt{262}} + 6 \\ \frac{5}{\sqrt{262}} - 3 \\ \frac{-30}{\sqrt{262}} + 5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 6 \\ -3 \\ 5 \end{pmatrix} = \dots \left\{ = -\frac{910}{\sqrt{262}} \right\}$	vector and scales correctly to length 5 Finds vectors for any two edges other than <i>CD</i> . Could be implied by a distance calculation if <i>C</i> and/or <i>D</i> defined . (See also comment for second M1 in Way 1 re use of a parameter) Uses an appropriate scalar triple product with their vectors and finds a value. Must not include position vectors . Could be inexact. M0 if clear evidence of an inappropriate method	M1 M1
inc. <i>CD</i>	$\begin{vmatrix} 1\\ -6 \end{vmatrix} = \sqrt{262} \Rightarrow \overrightarrow{CD} = \frac{-5}{\sqrt{262}} \begin{vmatrix} 1\\ -6 \end{vmatrix}$ Let C be the point (8, 1, 0) $\overrightarrow{AC} = \begin{pmatrix} 8\\ 1\\ 0 \end{pmatrix} - \begin{pmatrix} 2\\ 4\\ -5 \end{pmatrix} = \dots \left\{ \begin{pmatrix} 6\\ -3\\ 5 \end{pmatrix} \right\} \text{ and } \overrightarrow{AB} = \begin{pmatrix} 3\\ 6\\ -2 \end{pmatrix} - \begin{pmatrix} 2\\ 4\\ -5 \end{pmatrix} = \dots \left\{ \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} \right\}$ $\overrightarrow{OD} = \begin{pmatrix} 8\\ 1\\ 0 \end{pmatrix} + \frac{5}{\sqrt{262}} \begin{pmatrix} -15\\ 1\\ -6 \end{pmatrix} \Rightarrow \overrightarrow{AD} = \begin{pmatrix} \frac{-75}{\sqrt{262}} + 8\\ \frac{5}{\sqrt{262}} + 1\\ -5 \end{pmatrix} - \begin{pmatrix} 2\\ 4\\ -5 \end{pmatrix} = \begin{pmatrix} \frac{-75}{\sqrt{262}} + 6\\ \frac{5}{\sqrt{262}} - 3\\ \frac{-30}{\sqrt{262}} + 5 \end{pmatrix}$ $\Rightarrow \overrightarrow{AD} \cdot \left(\overrightarrow{AB} \times \overrightarrow{AC}\right) = \begin{pmatrix} \frac{-75}{\sqrt{262}} + 6\\ \frac{5}{\sqrt{262}} - 3\\ \frac{-30}{\sqrt{262}} + 5 \end{pmatrix} \cdot \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} \times \begin{pmatrix} 6\\ -3\\ 5 \end{pmatrix} = \dots \left\{ = -\frac{910}{\sqrt{262}} \right\}$ $V = \frac{1}{6} \left \overrightarrow{AD} \cdot \left(\overrightarrow{AB} \times \overrightarrow{AC} \right) \right = \dots = \frac{455}{3\sqrt{262}} \text{ or } \frac{455\sqrt{262}}{786}$	 vector and scales correctly to length 5 Finds vectors for any two edges other than <i>CD</i>. Could be implied by a distance calculation if <i>C</i> and/or <i>D</i> defined. (See also comment for second M1 in Way 1 re use of a parameter) Uses an appropriate scalar triple product with their vectors and finds a value. Must not include position vectors. Could be inexact. M0 if clear evidence of an inappropriate method dM1: Divides their STP result by 6 and obtains a positive value. Could be inexact. Modulus might not be seen. Requires previous M mark. A1: A correct exact value 	M1 M1 M1 dM1 A1

Page 124 of 152

Question Number	Scheme	Notes	Marks
4(b) Way 3 Triangle area + perp.	$ \begin{vmatrix} -15\\1\\-6 \end{vmatrix} = \sqrt{262} \Rightarrow \overrightarrow{CD} = \frac{5}{\sqrt{262}} \begin{pmatrix} -15\\1\\-6 \end{pmatrix} $	Attempts magnitude of their direction vector and scales to length 5. See note after next M below.	M1
distance	Let C be the point $(8, 1)$, 0)	
& vol. of pyramid	$Area \Delta ACD = \frac{1}{2} \left \overrightarrow{CD} \times \overrightarrow{CA} \right = \frac{1}{2} \left \frac{5}{\sqrt{262}} \begin{pmatrix} -15\\1\\-6 \end{pmatrix} \right $ Uses formula to find a value for the area of one of the fa product and modulus). Condone	$\begin{pmatrix} -6\\ 3\\ -5 \end{pmatrix} = \dots \left\{ = \frac{65\sqrt{19}}{2\sqrt{262}} \right\}$ ces. Must be a full method (vector missing $\frac{1}{2}$	M1
	Any attempts by trig/Pythagoras must be c	omplete and credible	
	Note: It is possible to obtain the area of a relevant trian the length of the perpendicular distance of point A to the	agle such as <i>ACD</i> by e.g., finding the line and multiplying this by $\frac{1}{2} \times 5$	
	 in such cases allow the first M for completing a via triangle and the second for the area (Co 	able attempt at the height of the ndone missing $\frac{1}{2}$)	
	ΔACD is in Π_1 so perp. height of tetrahedron is		
	shortest dist. of $B(3, 6, -2)$ to $-x + 3y + 3z = -5$: $\left \frac{-1 \times 3 + 3 \times 6 + 3 \times (-2) + 5}{\sqrt{(-1)^2 + 3^2 + 3^2}} \right = \dots \left\{ \frac{14}{\sqrt{19}} \right\}$	Obtains a value for the perpendicular height via formula or any credible method (examples below)	M1
	Parallel planes: $\begin{pmatrix} 3\\6\\-2 \end{pmatrix}, \begin{pmatrix} -1\\3\\3 \end{pmatrix} = 9, \begin{pmatrix} 2\\4\\-5 \end{pmatrix}, \begin{pmatrix} -1\\3\\3 \end{pmatrix} = -5$	$\Rightarrow \left \frac{-5 - 9}{\sqrt{\left(-1\right)^2 + 3^2 + 3^2}} \right = \frac{14}{\sqrt{19}}$	
	Projection/Resolving: $\overrightarrow{BA} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \Rightarrow \frac{1}{\sqrt{(-1)^2}}$	$ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix} \\ \hline -1 \end{pmatrix}^2 + 3^2 + 3^2 = \frac{14}{\sqrt{19}} $	
	$V = \frac{1}{3} \times \frac{65\sqrt{19}}{2\sqrt{262}} \times \frac{14}{\sqrt{19}} = \dots = \frac{455}{3\sqrt{262}} \text{ or } \frac{455\sqrt{262}}{786}$	M1: Uses $\frac{1}{3} \times \text{area } \Delta \times \text{perp. height and}$ obtains a positive value. $\frac{1}{2}$ must have been used for triangle area earlier unless they now use $\frac{1}{6} \times \dots$ Requires previous M mark . A1: Either correct exact value	d M1 A1
			(5)
			1 otal 12

Question Number	Scheme	Notes	Marks
5	$\begin{pmatrix} 1 & 2 & k \end{pmatrix}$		
	$\mathbf{M} = \begin{bmatrix} -1 & -3 & 4 \\ 2 & 6 & 9 \end{bmatrix}$		
(i) & (ii)	(1-2) $(1-2)$ $(1-2)$	Recognisable complete attempt at	
Mark the	$\det \begin{bmatrix} 1-\lambda & 2 & \lambda \\ -1 & -3-\lambda & 4 \end{bmatrix}$	det $(\mathbf{M} - \lambda \mathbf{I})$. May use other	M1
together	$ \left[\begin{array}{c} 2 & 6 & -8 - \lambda \end{array} \right] $ = $\pm \left[(1 - \lambda) ((-3 - \lambda) (-8 - \lambda) - 24) - 2 ((-1) (-8 - \lambda) - 8) + k ((-1) (6) - 2 (-3 - \lambda)) \right] $	rows/columns. Allow \pm and slips including +2 for first -2	1011
	$Sarrus \Rightarrow \pm [(1 - \lambda)(-3 - \lambda)(-8 - \lambda) + (2)(4)(2) + (k)(-1)(6) - (k)(-$	$-3 - \lambda)(2) - (1 - \lambda)(4)(6) - (2)(-1)(-8 - \lambda)$	
		M1: Obtains	
		$\{\lambda\}(a\lambda^2 + b\lambda + c + dk \text{ oe}) a, b, c, d \neq 0$	
	$=(1-\lambda)(\lambda^2+11\lambda)-2\lambda+2k\lambda$	A1: Correct expression – allow: + $(2)(-2^2 - 102 + 0 + 2k \cos)$	
	$(-\lambda^{3}-10\lambda^{2}+9\lambda+2k\lambda)$	$\pm \{\chi\} \left(-\chi - 10\chi + 9 + 2\chi 00 \right)$	M1 A1
	$= \lambda \left(-\lambda^2 - 10\lambda + 9 + 2k \right)$ $= \lambda \left(-\lambda^2 - 10\lambda + 9 + 2k \right)$	or $\pm \{\lambda\} (\lambda^2 + 10\lambda - 9 - 2k \text{ oe})$	
		Allow quadratic to be unsimplified and the marks can be implied if the initial λ has been removed	
	{One eigenvalue is zero, if repeated then} $9+2k=0 \Rightarrow k=$ or	Attempts to set their $c + dk = 0$ and solves for k	
	$\left\{\pm\left(-\lambda^2-10\lambda+9+2k\right)\right\}$ has repeated roots so	or Considers the case of their	M1
	$b^{2} - 4ac = 0 \Longrightarrow \begin{cases} 100 - 4(-1)(9 + 2k) = 0\\ 100 - 4(1)(-9 - 2k) = 0 \end{cases} \Longrightarrow k = \dots$	quadratic $a\lambda^2 + b\lambda + c + dk = 0$ having a repeated root and uses a valid strategy to find k	
	Alternative approaches with $\lambda^2 + 10$	$0\lambda - 9 - 2k = 0:$	
	$\left(\lambda+a\right)^2 = \lambda^2 + 2a\lambda + a^2 \Longrightarrow 2a = 10 \Longrightarrow -9$	$-2k = 5^2 \Longrightarrow k = \dots$	
	sum of roots = $-10 \Rightarrow$ root = $-5 \Rightarrow$ product of root	ts $=(-5)^2 = -9 - 2k \Longrightarrow k = \dots$	
	$k = -\frac{9}{2}$ or $k = -17$	One correct value for k	A1
	{One eigenvalue is zero, if repeated then} $9+2k=0 \Rightarrow k=$ and	Attempts to set their $c + dk = 0$ and solves for k and	
	$\left\{\pm\left(-\lambda^2-10\lambda+9+2k\right)\right\}$ has repeated roots so	Considers the case of their	M1
	$b^{2} - 4ac = 0 \Longrightarrow \begin{cases} 100 - 4(-1)(9 + 2k) = 0\\ 100 - 4(1)(-9 - 2k) = 0 \end{cases} \Longrightarrow k = \dots$	quadratic $a\lambda^2 + b\lambda + c + dk = 0$ having a repeated root and uses a valid strategy to find k	
	$k = -\frac{9}{2}$ with eigenvalue -10 {and 0 repeated} $k = -17$ with eigenvalue -5 {repeated and 0}	Both correct values of k and the associated non-zero eigenvalues clearly assigned. No additional eigenvalues or values for k	A1
			Total 7

Question Number	Scheme	Notes	Marks
	$\frac{x^2}{16} + \frac{y^2}{9} = 1 \qquad P(4\cos\theta,$	$3\sin\theta$)	
6(a)	$\frac{dy}{dx} = -\frac{3\cos\theta}{4\sin\theta} \text{ or } \frac{2x}{16} + \frac{2y}{9}\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{18x}{32y}$ or $\frac{x^2}{16} + \frac{y^2}{9} = 1 \Rightarrow y = 3\left(1 - \frac{x^2}{16}\right)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{3}{2}\left(1 - \frac{x^2}{16}\right)^{-\frac{1}{2}} \times -\frac{2x}{16}$	Uses a correct method and finds an expression for $\frac{dy}{dx}$ of the correct form (sign and coefficient slips only)	M1
	$\frac{dy}{dx} = -\frac{3\cos\theta}{4\sin\theta} \text{ oe e.g. } -\frac{3}{4}\cot\theta \text{ oe}$	Any correct derivative in terms of θ only.	A1
	$y - 3\sin\theta = -\frac{3\cos\theta}{4\sin\theta} \left(x - 4\cos\theta \right) \text{or}$ or $y = -\frac{3\cos\theta}{4\sin\theta} x + c \Rightarrow 3\sin\theta = -\frac{3\cos\theta}{4\sin\theta} 4\cos\theta + c$ $\Rightarrow c = \dots \left\{ \frac{12\sin^2\theta + 12\cos^2\theta}{4\sin\theta} \right\}$	Applies correct straight line method using any gradient in terms of θ . If they use y = mx + c they must substitute coordinates correctly and reach c = M0 if use normal gradient	M1
	$\Rightarrow 4y\sin\theta - 12\sin^2\theta = -3x\cos\theta$	$+12\cos^2\theta$ or	
	using $y = mx + c$: $y = -\frac{3\cos\theta}{4\sin\theta}x + 12 \Rightarrow 4$ $\Rightarrow 3x\cos\theta + 4y\sin\theta \Big\{ = 12(\cos^2\theta) \Big\}$	$y\sin\theta = -3x\cos\theta + 12$ $+\sin^2\theta \} = 12$	
	M1: Multiplies through to remove fraction to obtain an and cos only. Allow this mark if they go straight to equation. Can score from use of a normal gradient and/but there must have been an atter A1*: Correct equation from correct work. $\sin^2 \theta$ and co working. Accept e.g., $\sin^2 \theta + \cos^2 \theta = 1$	equation with trig expressions in sin the given answer from a correct or with coordinates wrongly placed mpt at a line. $\cos^2 \theta$ must be seen somewhere in the seen in side-working	M1 A1*
			(5)
(b)	$y - 3\sin\theta = \frac{4\sin\theta}{3\cos\theta} \left(x - 4\cos\theta \right) \text{ oe}$ e.g., $4x\sin\theta - 3y\cos\theta = 7\sin\theta\cos\theta$ or $y = \frac{4\sin\theta}{3\cos\theta}x + c$ $\Rightarrow 3\sin\theta = \frac{4\sin\theta}{3\cos\theta} 4\cos\theta + c \Rightarrow c = \dots \left\{ \frac{-7\sin\theta\cos\theta}{3\cos\theta} \right\}$	M1: Applies correct straight line method with the negative reciprocal of their tangent gradient. If $y = mx + c$ is used coordinates must be substituted correctly and $c =$ reached A1: Any correct equation	M1 A1
			(2)

Question Number	Scheme	Notes	Marks
6(c)	$A \text{ is } \left(\frac{4}{\cos\theta}, 0\right)$	Any correct x-axis intercept of the tangent. Allow e.g., $\{x=\}\frac{12}{3\cos\theta}, 4\sec\theta$ Could be on a diagram or implied by midpoint	B1
	$x = 0 \Rightarrow y - 3\sin\theta = -\frac{16}{3}\sin\theta \Rightarrow B \operatorname{is}\left(0, -\frac{7}{3}\sin\theta\right)$	Sets $x = 0$ in their normal equation (changed gradient) and finds y. Could be implied. Allow just $-\frac{7}{3}\sin\theta$ oe	M1
	So midpoint <i>M</i> of <i>AB</i> is $\left(\frac{2}{\cos\theta}, -\frac{7}{6}\sin\theta\right)$	Any correct midpoint. Accept any equivalents and as x =, y =	A1
	$\sin^2\theta + \cos^2\theta = 1 \Longrightarrow \left(-\frac{6}{7}y\right)^2 + \left(\frac{2}{x}\right)^2 = 1$	Uses $\sin^2 \theta + \cos^2 \theta = 1$ to obtain an equation in x and y only. May follow incorrect or no attempt at midpoint	M1
	$\Rightarrow \frac{36}{49}y^2 + \frac{4}{x^2} = 1 \Rightarrow 36x^2y^2 + 49 \times 4 = 49x^2$ $\Rightarrow x^2 (49 - 36y^2) = 196$	dM1: Rearranges to the form $x^2(p \pm qy^2) = r, p, q, r \in \mathbb{Z}$ Requires all previous M marks. A1: Correct equation	d M1 A1
			(6)
	Note that is possible to use e.g., $1 + \tan^2 \theta =$	$= \sec^2 \theta$, for example:	Total 13
	$M\left(2\sec\theta, \frac{-7\tan\theta}{6\sec\theta}\right) \Rightarrow \sec\theta = \frac{x}{2}, y = \frac{-7\tan\theta}{3x} \Rightarrow \tan\theta = \frac{-3xy}{7} \Rightarrow 1 + \frac{9x^2y^2}{49} = \frac{x^2}{4} (2nd M1)$		
	$\Rightarrow 1 + \frac{9x^2y^2}{49} = \frac{x^2}{4} \Rightarrow 196 + 36x^2y^2 = 49x^2 \Rightarrow x^2 (4)$	$(9-36y^2) = 196 \text{ (3rd M1, A1)}$	

Question Number	Scheme	Notes	Marks
7(a) Way 1	$I_{n} = \int \cosh^{n} 2x dx = \int \cosh 2x \cosh^{n-1} 2x dx$ $= \frac{1}{2} \sinh 2x \cosh^{n-1} 2x - \int \frac{1}{2} \sinh 2x \times (n-1) \cosh^{n-2} 2x \times 2 \sinh 2x dx$	M1: Correct split and attempts to apply parts to obtain an expression of the correct form (sign and coefficient errors only).	M1 A1
	$\begin{cases} = \frac{1}{2} \sinh 2x \cosh^{n-1} 2x - (n-1) \int \sinh^2 2x \cosh^{n-2} 2x dx \\ = \frac{1}{2} \sinh 2x \cosh^{n-1} 2x - (n-1) \int (\cosh^2 2x - 1) \cosh^{n-2} 2x dx \end{cases}$	Applies $\sinh^2 2x = \pm \cosh^2 2x \pm 1$ Requires previous M mark.	d M1
	$\Rightarrow I_n = \frac{1}{2} \sinh 2x \cosh^{n-1} 2x - (n-1) \left(I_n - I_{n-2} \right)$	Introduces I_n and I_{n-2} - not implied by given answer. Requires previous M mark.	dd M1
	$\left\{ \Rightarrow nI_n = \frac{1}{2} \sinh 2x \cosh^{n-1} 2x + (n-1)I_{n-2} \right\}$ $I_n = \frac{\sinh 2x \cosh^{n-1} 2x}{2n} + \frac{n-1}{n}I_{n-2} *$	Fully correct proof. Condone missing 'dx's. Poor bracketing must be recovered before given answer but no other errors e.g., sin for sinh, or wrong or missing arguments	A1*
	Accept e.g., $I_n = \frac{(n-1)I_{n-2}}{n} + \frac{1}{2n} \sin \frac{1}{2n}$	$h 2x \cosh^{n-1} 2x$	(5)
Way 2	$I_{n} = \int \cosh^{n} 2x dx = \int \cosh^{2} 2x \cosh^{n-2} 2x dx$ $= \int (\sinh^{2} 2x + 1) \cosh^{n-2} 2x dx$	M1: Correct split and applies $\sinh^2 2x = \pm \cosh^2 2x \pm 1$ to obtain an expression of the correct form (sign and coefficient errors only). A1: Correct expression	M1 A1
	$\begin{cases} = \int \cosh^{n-2} 2x dx + \int \sinh^2 2x \cosh^{n-2} 2x dx \\ \int \sinh^2 2x \cosh^{n-2} 2x dx \left\{ = \int \sinh 2x \cosh^{n-2} 2x \sinh 2x dx \right\} \\ = \frac{1}{2(n-1)} \sinh 2x \cosh^{n-1} 2x - \frac{1}{n-1} \int \cosh^n 2x dx \end{cases}$	Attempts to apply parts to obtain an expression of the correct form for $\int \sinh^2 2x \cosh^{n-2} 2x dx$ Requires previous M mark.	d M1
	$\Rightarrow I_n = I_{n-2} + \frac{1}{2(n-1)} \operatorname{sinh} 2x \operatorname{cosh}^{n-1} 2x - \frac{1}{n-1} I_n$	Introduces I_n and I_{n-2} - not implied by given answer. Requires previous M mark.	dd M1
	$\left\{ \Rightarrow (n-1)I_{n} = \frac{1}{2}\sinh 2x \cosh^{n-1} 2x + (n-1)I_{n-2} - I_{n} \right\}$ $I_{n} = \frac{\sinh 2x \cosh^{n-1} 2x}{2n} + \frac{n-1}{n}I_{n-2} *$	Fully correct proof. Condone missing 'dx's. Poor bracketing must be recovered before given answer but no other errors e.g., sin for sinh, or wrong or missing arguments	A1*
	Accept e.g., $I_n = \frac{(n-1)I_{n-2}}{n} + \frac{1}{2n} \sin \frac{1}{2n}$	$hh 2x \cosh^{n-1} 2x$	(5)

Question Number	Scheme	Notes	Marks
7(b)	$(1 + \cosh 2x)^3 = 1 + 3\cosh 2x + 3\cosh^2 2x + \cosh^3 2x$		
	Correct expansion. Could be implied e.g. by $x + 3I_1 +$	$3I_2 + I_3$ and allow if correct but	B1
	terms are not collected		
	Condone if partially or completely in "x" prov	ided terms <u>are</u> collected	
		the reduction formula for	
	$\int \operatorname{cosh}^2 2x dx \operatorname{or} L = \frac{1}{2} \sinh 2x \cosh 2x + \frac{1}{2} L \operatorname{or}$	I_2 or I_3 . May be slips but must	
	$\int \cos 12x dx \sin 1_2 = -\sin 12x \cos 12x + -1_0 \sin 2x + \frac{1}{2} \sin 2x$	get two terms. May be seen with	N/T1
	$\int \cosh^3 2r dr \mathrm{or} I = \frac{1}{2} \sinh 2r \cosh^2 2r + \frac{2}{2} I$	I_0 / I_1 attempted and/or	IVI I
	$\int \cos x dx \sin x_3 - \frac{-\sin x}{6} \sin 2x \cosh 2x + \frac{-1}{3} \sin 2x \cosh 2x + \frac{-1}{3} \sin $	embedded in expression for	
		$\int \left(1 + \cosh 2x\right)^3 \mathrm{d}x$	
		$I_0 = x$ and $I_1 = \pm k \sinh 2x$	
		(condone I_1 from formula) and	
	$I_0 = x$ $I_1 = -\frac{\sin 2x}{2}$	$\int (1+3\cosh 2x) dx \to x \pm q \sinh 2x$	
	$\int (1 + \cosh 2x)^3 dx = \int (1 + 3\cosh 2x) dx + 3I_2 + I_3 =$	and uses the above to obtain an expression for	d M1
	$x + \frac{3}{2}\sinh 2x + \frac{3}{4}\sinh 2x\cosh 2x + \frac{3}{2}x + \frac{1}{6}\sinh 2x\cosh^2 2x + \frac{1}{3}\sinh 2x\left(+c\right)$	$\int \left(1 + \cosh 2x\right)^3 dx$	
		Requires previous M mark.	
	Note: One of I_2 and I_3 may be attempted directly – if s	so correct identities must be used	
	and an expression of a correct form obt	ained. Examples:	
	$I_{2} = \int \cosh^{2} 2x dx = \int \left(\frac{1}{2} \cosh 4x + \frac{1}{2}\right)$	$dx = \frac{1}{8}\sinh 4x + \frac{x}{2}$	
	$\Rightarrow x + \frac{3}{2}\sinh 2x + \frac{3}{8}\sinh 4x + \frac{3}{2}x + \frac{1}{6}\sinh 2x\cos^{3} x + \frac{1}{6}\sinh 2x \cos^{3} x + \frac{1}{6}\sinh^{3} x + \frac{1}{6}h^{3} x + \frac{1}{6}h^{3}$	$\operatorname{sh}^2 2x + \frac{1}{3} \sinh 2x \left(+c\right)$	
	$I_{3} = \int \cosh^{3} 2x \mathrm{d}x = \int \cosh 2x \left(\sinh^{2} 2x + 1 \right) \mathrm{d}x$	$x = \frac{1}{6}\sinh^{3} 2x + \frac{1}{2}\sinh 2x$	
	$\Rightarrow x + \frac{3}{2}\sinh 2x + \frac{3}{4}\sinh 2x\cosh 2x + \frac{3}{2}x + \frac{1}{6}\sin x$	$h^3 2x + \frac{1}{2}\sinh 2x \left(+c\right)$	
	If exponential definitions are used they	must be correct.	
	$=\frac{5}{2}x + \frac{11}{6}\sinh 2x + \frac{3}{4}\sinh 2x\cosh 2x + \frac{1}{6}\sinh 2x\cosh^2 2x(+c)$	correct answer. Award when a correct expression with collected like terms is seen	A1
	I_2 attempted directly $\Rightarrow \frac{5}{2}x + \frac{11}{6}\sinh 2x + \frac{3}{8}\sinh 4x$	$x + \frac{1}{6}\sinh 2x \cosh^2 2x (+c)$	(4)
	I_3 attempted directly $\Rightarrow \frac{5}{2}x + 2\sinh 2x + \frac{3}{4}\sinh 2x$	$\cosh 2x + \frac{1}{6}\sinh^3 2x(+c)$	
	If identities are used before a correct answer is seen w work must be correct	ith like terms collected then the	Total 9

Question Number	Scheme	Notes	Marks
8(a)	$\begin{cases} \frac{dy}{dx} = \\ 3 \operatorname{arcosh} 5x + \frac{ax}{\sqrt{bx^2 - 1}} \text{ or } \operatorname{arcosh} 5x + \frac{cx}{\sqrt{x^2 - d}} (M) \\ M1: Differentiates to obtain expression of the control of the contr$	$ f(1) \Rightarrow \operatorname{arcosh}(5x) + \frac{5x}{\sqrt{25x^2 - 1}} $ (A1) prrect form <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> ≠ 0 uivalent form.	M1 A1
(b)	$d(-\tau(z)) = \tau(z) = 5x = 5x$	(z) (z) (z) (z)	(2)
	$\frac{1}{dx} \left(x \operatorname{arcosh}(5x) \right)^{=} \operatorname{arcosh}(5x)^{+} \frac{1}{\sqrt{25x^2 - 1}} \xrightarrow{arcosh}(5x) dx = x \operatorname{arcosh}(5x)^{-} \int_{-}^{a} \frac{1}{\sqrt{25x^2 - 1}} dx$ M1: Rearranges their answer to (a) correctly and integrates or uses the correct formula to apply parts to 1× arcosh 5x to obtain the above.		
	$\int \operatorname{arcosh}(5x) dx = x \operatorname{arcosh}(5x) - \int \frac{5x}{x} dx$		
	$\mathbf{J} (\mathbf{y} \mathbf{y})$	$25x^2 - 1$	(limited ft)
	A1: Correct expression – but <u>see note r</u>	$\frac{1}{1}$	
	$= x \operatorname{arcosh}(5x) - \frac{1}{5}(25x^2 - 1)^{\frac{1}{2}} (+c)$	II: $\int \frac{Ax}{\sqrt{Bx^2 - 1}} dx \to C(Bx^2 - 1)^2$ A1: Fully correct expression with	M1 A1 (limited ft)
	xarco	$\frac{1}{7^3}$ - see note below for limited ft	
	Note: Substitutions : $u = 5x \Rightarrow (u^2 - 1)^{\frac{1}{2}} \Rightarrow \left\lfloor \frac{1}{5}\sqrt{u^2 - 1} \right\rfloor$	$\begin{bmatrix} 1 \\ 5 \\ 4 \end{bmatrix}_{\frac{5}{4}}^{5} u = 25x^2 - 1 \Longrightarrow \begin{bmatrix} \frac{1}{5}\sqrt{u} \end{bmatrix}_{\frac{9}{16}}^{5}$	
	M1: Correct form A1: Fully correct express	ion with $x \operatorname{arcosh}(5x)$	
	A limited ft for <u>one</u> of the errors in (a) shown below applies for the first two A marks. However also allow the following if this error occurs in part (b) which is most likely to come from not rearranging and effectively restarting by using parts. Note that substitutions could be used. $a = 1 \Rightarrow x \operatorname{arcosh}(5x) - \int \frac{x}{\sqrt{25x^2 - 1}} dx \Rightarrow x \operatorname{arcosh}(5x) - \frac{1}{25} (25x^2 - 1)^{\frac{1}{2}} (+c)$		
	$b = 5 \Rightarrow x \operatorname{arcosh}(5x) - \int \frac{5x}{\sqrt{5x^2 - 1}} \mathrm{d}x \Rightarrow x \operatorname{arcosh}(5x)$	$sh(5x) - (5x^2 - 1)^{\frac{1}{2}} (+c)$	
	$a = -5 \Rightarrow x \operatorname{arcosh}(5x) + \int \frac{5x}{\sqrt{25x^2 - 1}} dx \Rightarrow x \operatorname{arcosh}(5x)$	$ sh(5x) + \frac{1}{5}(25x^2 - 1)^{\frac{1}{2}} (+c) $	
	$\int_{\frac{1}{4}}^{\frac{3}{5}} \operatorname{arcosh} 5x dx = \frac{3}{5} \operatorname{arcosh} \left(3\right) - \frac{1}{5} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{25} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(\frac{1}{4} \operatorname{arcosh} \right)^{\frac{1}{5}} \sqrt{25 \times \frac{9}{5} - 1} - \left(1$	$\operatorname{arcosh}\left(\frac{5}{4}\right) - \frac{1}{5}\sqrt{25 \times \frac{1}{16} - 1}$	
	Applies appropriate limits (note substitutions above) with su	btraction the right way round seen to	MI
	obtain an expression of the form $x \operatorname{arcosh}(5x) \pm f(x)$ wh	ere f(x) has come from integration	
	$=\frac{3}{5}\operatorname{arcosh}(3) - \frac{2\sqrt{2}}{5} - \frac{1}{4}\operatorname{arcosh}\left(\frac{5}{4}\right) + \frac{3}{20}$	Correct answer seen in any form. Must not follow clearly incorrect work.	A1
		Converts $\operatorname{arcosh}(3)$ or $\operatorname{arcosh}(\frac{5}{4})$	
	$\operatorname{arcosh3} = \ln\left(3 + \sqrt{3^2 - 1^2}\right) \text{ or } \operatorname{arcosh}\left(\frac{5}{4}\right) = \ln\left(\frac{5}{4} + \sqrt{\left(\frac{5}{4}\right)^2 - 1^2}\right)$	to any correct log form. Independent mark but must have	M1
	$\left\{ \Rightarrow \frac{3}{\ln(3+\sqrt{8})} - \frac{2\sqrt{2}}{\sqrt{2}} - \frac{1}{\ln(2+\sqrt{3})} \right\}$	obtained $x \operatorname{arcosh}(5x) \pm f(x)$	1411
	$\begin{bmatrix} 5 & (5 + \sqrt{5}) & 5 & 4 & 12 \\ \hline & & & & \\ \end{bmatrix}$	where f(x) has come from integration	
	$=\frac{3}{20}-\frac{2\sqrt{2}}{5}+\ln\left(3+2\sqrt{2}\right)^{\frac{3}{5}}-\frac{1}{4}\ln 2$	Correct answer. Terms in any order but otherwise written as shown.	A1
	Must not follow clearly incorrect work.	Allow values for p , q , $r \& k$	
			(8) Tatal 10
		DADED 7	1 otal 10 10TAI • 75
L		rarek i	UIAL: /5

Page 131 of 152

Question Number	Scheme	Notes	Marks
1(i)	$(8)\int \frac{1}{16+x^2} \mathrm{d}x = (8)\left(\frac{1}{4}\arctan\left(\frac{x}{4}\right)\right)$	Obtainsarctan (kx) Allow $k = 1$	M1
	$2\left[\arctan\left(\frac{x}{4}\right)\right]_{4}^{4\sqrt{3}} = 2(\arctan\sqrt{3} - \arctan 1) = \dots$	Substitutes the given limits, subtracts either way round and obtains a value (could be a decimal). The substitution does not need to be seen explicitly and may be implied by their value.	d M1
	$\frac{\pi}{6}$ or $p = \frac{1}{6}$ Correct exa	act value (or value for p)	A 1
	Accept equivalent exact expressions e	.g. $\frac{2\pi}{12}$ or $p = \frac{2}{12}$ and isw if necessary.	
			(3)
(ii)	$2\int \frac{1}{\sqrt{9-4x^2}} dx = 2\left(\frac{1}{2} \arcsin kx\right).$ M1: Obtains arcsin (kx). Allo A1: Fully correct integration b	$\sin \frac{2x}{3} \left(\text{ or e.g. } \arcsin \frac{x}{\frac{3}{2}} \right)$ ow $k = 1$ so allow just $\arcsin x$. but allow unsimplified as above	M1 A1
	$\begin{bmatrix} & . & (2x) \end{bmatrix}^k .$	$(2k)$. (1) π	
	$\left[\arctan\left(\frac{3}{3}\right) \right]_{\underline{3}} = \arcsin\left(\frac{3}{3}\right)$	$\left(\frac{1}{3}\right)^{-\arcsin}\left(\frac{1}{2}\right)^{=}\frac{1}{12}$	
	$\Rightarrow \arcsin\left(\frac{2k}{3}\right) = \frac{\pi}{12} + \frac{\pi}{6} \Rightarrow \frac{2k}{3} = \sin\left(\frac{\pi}{4}\right) \Rightarrow \frac{2k}{3} = \frac{\sqrt{2}}{2} \Rightarrow k = \dots$		
	Substitutes the given limits, subtracts either way round, sets = $\frac{\pi}{12}$, uses		
	$\operatorname{arcsin}\left(\frac{1}{2}\right) = \frac{\pi}{6}$ and the correct order of reach a value	operations condoning sign errors only to ue for k e.g.	d M1
	$\pm \alpha \left(\arcsin\left(\frac{2k}{3}\right) - \frac{\pi}{6} \right) = \frac{\pi}{12} \Rightarrow \arcsin\left(\frac{2k}{3}\right)$	$\frac{2k}{3} = \frac{\pi}{12\alpha} \pm \frac{\pi}{6} \Rightarrow k = \frac{3\sin\left(\frac{\pi}{12\alpha} \pm \frac{\pi}{6}\right)}{2}$	
	Note that k may be inexact (decimal) or	may be in terms of "sin" but must have a $(-)$	
	simplified argumen	tt e.g. $k = \frac{3\sin\left(\frac{\pi}{4}\right)}{2}$	
	$k = \frac{3\sqrt{2}}{4}$ or exact equation	quivalent e.g., $\frac{3}{2\sqrt{2}}$	
	Note that a common incorrect answer is	$k = \frac{3}{2}\sin\left(\frac{5\pi}{24}\right) (= 0.913)$ which comes	
	from an incorrect integral of 2 arcs	$\sin\left(\frac{2x}{3}\right)$ (generally scoring 1010)	AI
	Condone	$x = \frac{3\sqrt{2}}{4}$	
			(4)
			Total 7

Page 132 of 152

Question Number	Scheme	Notes	Marks	
2(a) Way 1 TU = I	$\mathbf{TU} = \mathbf{I} \Rightarrow \begin{pmatrix} 2 & 3 & 7 \\ 3 & 2 & 6 \\ a & 4 & b \end{pmatrix} \begin{pmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \frac{6}{6} - 1 - 4 \\ 15 c - 9 \\ -8 a 5 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \\ = 0 -2 + 3c + 7a = 0 \\ = 1 -3 + 2c + 6a = 1 \\ 1 \text{ is with at least one correct.} \\ ading to the way 2 equations - see below). \\ elements or equations. $	M1	
	$\begin{array}{c} 6a - 8b = -60 \\ \text{e.g.}, & -4a + 5b = 37 \\ \end{array} \Rightarrow a = \dots, b = \dots \text{or} \begin{array}{c} 7a + 3c = 2 \\ 6a + 2c = 4 \\ \end{array} \Rightarrow a = \dots, c = \dots \\ 6a + 2c = 4 \\ \end{array}$ Obtains values for two of <i>a</i> , <i>b</i> and <i>c</i> . You do not need to check their values. As long as the previous M mark was scored, it is sufficient to just write down values.			
	$a = 2, \ b = 9, \ c = -4$	A1: Two correct values A1: All three correct values and no extra values unless they are rejected.	A1 A1	
			(4)	
Way 2	$\mathbf{UT} = \mathbf{I} \Rightarrow \begin{pmatrix} 6 & -1 & -4 \\ 15 & c & -9 \\ -8 & a & 5 \end{pmatrix}$	$ \begin{pmatrix} 2 & 3 & 7 \\ 3 & 2 & 6 \\ 3 & 4 & b \\ \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} $		
UT = 1	(-8 a 5)(a 4 b) (0 0 1) 12-3-4a=1			
For first 2 marks	$\Rightarrow e.g., 42 - 6 - 4b = 0$		M1	
	[43+2c-30=1] Obtains at least 2 equations with at least one correct. (condone column × row multiplication leading to the way 1 equations – see above). Ignore errors in unused elements or equations. e.g., $-4a = -8$, $-4b = -36$ [$2c = -8$] $\Rightarrow a =, b =$		d M1	
	Obtains values for two of <i>a</i> , <i>b</i> and <i>c</i> . You do not need to check their values. As lon as the previous M mark was scored, it is sufficient to just write down values.			

Way 3
Inverses
For first
mark

$$T^{-1} = U \Rightarrow \frac{1}{4a - 5b + 36} \begin{pmatrix} 2b - 24 & -3b + 28 & 4 \\ 6a - 3b & -7a + 2b & 9 \\ -2a + 12 & 3a - 8 & -5 \end{pmatrix} = \begin{pmatrix} 6 & -1 & -4 \\ 15 & c & -9 \\ -8 & a & 5 \end{pmatrix}$$

 $\Rightarrow e.g., \frac{4}{4a - 5b + 36} = -4, \frac{2b - 24}{4a - 5b + 36} = 6 \begin{bmatrix} -7a + 2b \\ 4a - 5b + 36 \end{bmatrix} = c$
For $T^{-1} = \frac{1}{f(a,b)}$ M where M has at least 1 correct element and obtains 2 equations.
Note that there is no requirement to find all the elements of M.
 OR
 $U^{-1} = T \Rightarrow \frac{1}{-6a - 2c + 3} \begin{pmatrix} 9a + 5c & -4a + 5 & 4c + 9 \\ -3 & -2 & -6 \\ 15a + 8c & -6a + 8 & 6c + 15 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 7 \\ 3 & 2 & 6 \\ a & 4 & b \end{pmatrix}$
 $\Rightarrow e.g., \frac{-3}{-6a - 2c + 3} = 3, \frac{4c + 9}{-6a - 2c + 3} = 7 \begin{bmatrix} \frac{6c + 15}{-6a - 2c + 3} = b \end{bmatrix}$
For $U^{-1} = \frac{1}{f(a,c)}$ M where M has at least 1 correct element and obtains 2 equations
Note that there is no requirement to find all the elements of M.

$$\frac{2(b)}{\frac{x-1}{3} = \frac{y}{-4} = z + 2 \Rightarrow [l_{2}: \mathbf{r} =] \begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix} \neq \lambda \begin{pmatrix} -4\\ 1 \end{pmatrix} \left(\text{or} \left(\mathbf{r} - \begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix} \right) \times \begin{pmatrix} -4\\ 1 \end{pmatrix} \right) = 0 \\ \text{MI}$$

$$\frac{x-1}{3} = \frac{y}{-4} = z + 2 \Rightarrow [l_{2}: \mathbf{r} =] \begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix} \neq \lambda \begin{pmatrix} -4\\ 1 \end{pmatrix} \left(\text{or} \left(\mathbf{r} - \begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix} \right) \times \begin{pmatrix} -4\\ 1 \end{pmatrix} \right) = 0 \\ \text{MI}$$

$$\frac{(b-1)^{-1}}{1} = \frac{(b-1)^{-1}}{1} = \frac{(b-1)^{-1}}{2} = \frac{(b-1)^{-1}}{1} = \frac{(b-1)^{-1}}{2} = \frac{(b-1)^{-1}}{1} = \frac{(b-1)^{-1}}{2} = \frac{(b-1)^{-$$

Page 135 of 152

2(b) Alternative

$$x = t \Longrightarrow y = \frac{4}{3} - \frac{4}{3}t, \ z = \frac{1}{3}t - \frac{7}{3}$$

M1: Obtains parametric form (allow one slip only)

$$\begin{pmatrix} 6 & -1 & -4 \\ 15 & '-4' & -9 \\ -8 & '2' & 5 \end{pmatrix} \begin{pmatrix} t \\ \frac{4}{3} - \frac{4}{3}t \\ \frac{1}{3}t - \frac{7}{3} \end{pmatrix} = \begin{pmatrix} 6t - \frac{4}{3} + \frac{4}{3}t - \frac{4}{3}t + \frac{28}{3} \\ 15t - \frac{16}{3} + \frac{16}{3}t - 3t + 21 \\ -8t + \frac{8}{3} - \frac{8}{3}t + \frac{5}{3}t - \frac{35}{5} \end{pmatrix}$$

M1: As above
$$[l_1 : \mathbf{r} =] \begin{pmatrix} 8 + 6t \\ \frac{47}{3} + \frac{52}{3}t \\ -9 - 9t \end{pmatrix}$$
$$\Rightarrow \frac{x - 8}{6} = \frac{y - \frac{47}{3}}{\frac{52}{3}} = \frac{z + 9}{-9}$$

dM1A1: As above

Page 136 of 152

Question Number	Scheme	Notes	Maı	rks
3(a)(i)	(±7 <i>e</i> , 0)	Correct coordinates or $x = \pm 7e$, $y = 0$	B1	
(ii)	$x = \pm \frac{7}{e}$	Correct equations	B1	
	SC: If "49" used for "7" consis	tently in (i) and (ii) score B0 B1		
			<u> </u>	(2)
(b)(i)	$(PS^{2} =)(x - '7e')^{2} + y^{2}$ oe e.g. $(PS^{2} =)('7e' - x)^{2} + y^{2}$	Correct expression or equivalent with their 7 <i>e</i> . Must be in terms of <i>e</i> , <i>x</i> and <i>y</i> only. Apply isw once a correct expression is seen.	B1ft	
(ii)		Correct expression or equivalent with		
	$\left(PM^2=\right)\left(\frac{7}{e}-x\right)^2$ oe e.g. $\left(x-\frac{7}{e}\right)^2$	their $\frac{7}{e}$. Must be in terms of <i>e</i> and <i>x</i> only. Apply isw once a correct expression is seen.	B1ft	
		·		(2)
(c)	$\left(\frac{PS}{PM} = e \Rightarrow\right) PS^2 = e^2 PM^2 \Rightarrow (x - 7e')^2 + y^2 = e^2 \left(\frac{7}{e} - x\right)^2$ $\Rightarrow x^2 - 14ex + 49e^2 + y^2 = 49 - 14ex + e^2 x^2$ Applies $PS^2 = e^2 PM^2$ with their PS and PM and expands (condone poor squaring)		M1	
	$x^{2}(1-e^{2}) + y^{2} = 49(1-e^{2})$ $\Rightarrow \frac{x^{2}}{49} + \frac{y^{2}}{49(1-e^{2})} = 1 \Rightarrow b^{2} = 49(1-e^{2})*$	Reaches given answer with fully correct proof. All shown steps required. Note that it is possible to obtain this result even if the B marks are not scored in (b) e.g. correct expressions but not in the forms required.	A1*	
			<u> </u>	(2)
(d)	$(4\sqrt{3})^2 = 49(1-e^2) \Longrightarrow e^2 \dots \text{ or } e = \dots$	Replaces b^2 with $(4\sqrt{3})^2$ and solves for e^2 or e .	M1	
	$e = \frac{1}{7}$	Correct exact value for e (Not \pm)	A1	
				(2)

Scheme	Notes	Marks	
$\mathbf{M}\mathbf{x} = \lambda \mathbf{x} \Longrightarrow \begin{pmatrix} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ $(\mathbf{M} - \lambda \mathbf{I}) \mathbf{x} = 0 \Longrightarrow \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ 3 & -1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -1 \\ -\lambda & -1 \\ -1 & -\lambda & -1 \end{pmatrix} \begin{pmatrix} -\lambda & -1 \\ -\lambda & -1 \\ -\lambda & -\lambda & -1 \end{pmatrix} \begin{pmatrix} -\lambda & -\lambda & -1 \\ -\lambda & -\lambda & -1 \\ -\lambda & -\lambda & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -\lambda & -\lambda \\ -\lambda & -\lambda & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -\lambda & -\lambda \\ -\lambda & -\lambda & -\lambda \\ -\lambda & -\lambda &$	$= \begin{pmatrix} \lambda \\ -2\lambda \\ \lambda \end{pmatrix} \Rightarrow e.g., 2+3 = \lambda \Rightarrow \lambda = 5$ or $= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow e.g., -\lambda + 2 + 3 = 0 \Rightarrow \lambda = 5$	M1 A1	
M1: Correct method leading to a value for λ A1: Correct value Note that the working may be minimal so e.g. $2+3 = \lambda \implies \lambda = 5$ is sufficient.			
$\begin{bmatrix} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mathbf{or} \begin{pmatrix} 3 & -1 & 3 \\ -1 & 7 & -1 \\ 3 & -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \mathbf{or} \text{ e.g.}, \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} \times \begin{pmatrix} -1 \\ 7 \\ -1 \end{pmatrix}$ $\implies x =, y =, z =$ Uses $\mathbf{M}\mathbf{x} = -3\mathbf{x}$ or $(\mathbf{M} - (-3)\mathbf{I})\mathbf{x} = 0$ to produce simultaneous equations and obtains values for x, y and z (not all 0) or uses a suitable vector product (with two correct components if method unclear)		M1	
$k \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$	Any correct eigenvector (allow $x =, y$ =, $z =$ and apply isw if a vector is subsequently formed incorrectly)	A1	
	1	(2)	
$\mathbf{M}\mathbf{x} = \lambda \mathbf{x} \Longrightarrow \text{e.g.}, -1(1) + 3(1) = \lambda$ $(\mathbf{M} - \lambda \mathbf{I}) \mathbf{x} = 0 \Longrightarrow \text{e.g.}, -\lambda - 1 + 3 = 0$ λ Correct value. May be seen in their D will	or $\lambda^{3} - 4\lambda^{2} - 11\lambda + 30 = 0$ $\det \mathbf{M} = -30 = \lambda_{1}\lambda_{2}\lambda_{3} = -15\lambda$ $= 2$ hich may come from an attempt at $\mathbf{P}^{T}\mathbf{M}\mathbf{P}$.	B1	
$(\mathbf{D} =) \begin{pmatrix} -3 & 0 & 0 \\ 0 & 2' & 0 \\ 0 & 0 & 5' \end{pmatrix}$	Diagonal matrix with –3 and their eigenvalues anywhere on the leading diagonal and 0's elsewhere. Ignore labelling.	B1ft	
$\begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\sqrt{6}}{6}\\ -\frac{\sqrt{6}}{3}\\ \frac{\sqrt{6}}{6} \end{pmatrix} \text{ or } \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix}$ Correct method seen to normalise at eigenvectors or their eigenvector fr	$ \begin{array}{c} \rightarrow \begin{pmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{pmatrix} \\ \begin{array}{c} \text{least one eigenvector of the two given rom part (b). May be seen in their } \mathbf{P}. \end{array} $	M1	
$\mathbf{D} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ and Both fully correct, consistent and labell denominators rationalised. (Any column	$\mathbf{P} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \end{pmatrix}$ ed matrices. Elements may not have had not provide the inopposite direction in the end of the end	A1	
	Scheme $\mathbf{Mx} = \lambda \mathbf{x} \Rightarrow \begin{pmatrix} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ $(\mathbf{M} - \lambda \mathbf{I}) \mathbf{x} = 0 \Rightarrow \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 -\lambda & -1 \\ 3 & -1 & -\lambda \end{pmatrix} \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mathbf{or} \begin{pmatrix} 3 & -1 \\ -1 & 7 \\ 3 & -1 \end{pmatrix}$ $(\mathbf{D} = \mathbf{J}) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mathbf{or} \begin{pmatrix} 3 & -1 \\ -1 & 7 \\ 3 & -1 \end{pmatrix}$ $\Rightarrow x =,$ Uses $\mathbf{Mx} = -3\mathbf{x}$ or $(\mathbf{M} - (-3)\mathbf{I})\mathbf{x} = 0$ to prove values for x, y and z (not all 0) or uses a components if $k \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $\mathbf{Mx} = \lambda \mathbf{x} \Rightarrow \text{e.g.}, -1(1) + 3(1) = \lambda$ $(\mathbf{M} - \lambda \mathbf{I}) \mathbf{x} = 0 \Rightarrow \text{e.g.}, -\lambda -1 + 3 = 0$ λ Correct value. May be seen in their \mathbf{D} where $k = 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +$	SchemeNotes $\mathbf{Mr} = \lambda \mathbf{x} \Rightarrow \begin{pmatrix} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ \lambda \end{pmatrix} = \begin{pmatrix} \lambda \\ -2\lambda \\ \lambda \end{pmatrix} \Rightarrow e.g., 2+3=\lambda \Rightarrow \lambda=5$ oror $(\mathbf{M} - \lambda \mathbf{I}) \mathbf{x} = 0 \Rightarrow \begin{pmatrix} -\lambda & -1 & 3 \\ -1 & 4 - \lambda & -1 \\ 3 & -1 & -\lambda \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -2 \\ \lambda \end{pmatrix} \Rightarrow e.g., -\lambda+2+3=0 \Rightarrow \lambda=5$ M1: Correct method leading to a value for λ A1: Correct valueNote that the working may be minimal so e.g. $2+3=\lambda \Rightarrow \lambda=5$ is sufficient. Correct answer only scores both marks. $\begin{pmatrix} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} = -3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} 3 & -1 & 3 \\ -1 & 7 & -1 \\ 3 & -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ or } e.g., \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ -1 \\ 3 \end{pmatrix} \times \begin{pmatrix} -1 \\ 7 \\ -1 \end{pmatrix}$ $\Rightarrow x =, y =, z =$ Uses $\mathbf{Mr} = -3\mathbf{x}$ or $(\mathbf{M} - (-3))\mathbf{x} = 0$ to produce simultaneous equations and obtains values for x_i y and z (not all 0) or uses a suitable vector product (with two correct components if method unclear) $k \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ Any correct eigenvector (allow $x =, y$ $=, z = and apply isw if a vector issubsequently formed incorrectly)\mathbf{Mr} = \lambda \mathbf{x} \Rightarrow e.g., -1(1) + 3(1) = \lambda\lambda^3 - 4\lambda^2 - 11\lambda + 30 = 0(\mathbf{M} - \lambda \mathbf{I}) \mathbf{x} = 0 \Rightarrow e.g., -\lambda - 1 + 3 = 0or\mathbf{Mr} = -30 = \lambda_1 \lambda_2 \lambda_3 = -15\lambda\lambda = 2Correct value. May be seen in their \mathbf{D} which may come from an attempt at \mathbf{P}^T \mathbf{MP}.Diagonal matrix with -3 and theireigenvalues anywhere on the leadingdiagonal and \mathbf{V} selector of the two giveneigenvalues anywhere or the leadingdiagonal and \mathbf{V} selector of the two giveneigenvalues any where or the leading\frac{d}{d} = \frac{d}{2}Correct method seen to normalise at least one eigenvector of the two giveneigenvalues or or their eigenvector from part (b). May be seen in their \mathbf{P}.\begin{pmatrix} \frac{d}{2} & d$	

Page 139 of 152

Note that some candidates go straight into solving $|\mathbf{M} - \lambda \mathbf{I}| = 0$ e.g.

$$\begin{vmatrix} -\lambda & -1 & 3 \\ -1 & 4-\lambda & -1 \\ 3 & -1 & -\lambda \end{vmatrix} = 0 \Longrightarrow -\lambda \left(\lambda \left(\lambda - 4\right) - 1\right) + 3 + \lambda + 3 \left(1 - 3 \left(4 - \lambda\right)\right) = 0$$
$$\Longrightarrow \lambda^3 - 4\lambda^2 - 11\lambda + 30 = 0 \Longrightarrow \lambda = -3, 5, 2$$

If this is all they do then the B mark in (c) can be awarded for $\lambda = 2$

The other marks in the question are available for the appropriate work.

Page 140 of 152

Question Number	Scheme	Notes	Marks
5(a) Way 1	$(1 - \operatorname{sech}^2 x =) 1 - (\frac{2}{e^x + e^{-x}})^2$	Replaces sech <i>x</i> with correct expression in terms of exponentials	B1
From LHS	$=\frac{\left(e^{x}+e^{-x}\right)^{2}-4}{\left(e^{x}+e^{-x}\right)^{2}}=\frac{e^{2x}+2+e^{-2x}-4}{\left(e^{x}+e^{-x}\right)^{2}}$	Expresses as a single fraction (or 2 fractions with the same denominator) and expands numerator	M1
	$= \frac{(e^{x} - e^{-x})^{2}}{(e^{x} + e^{-x})^{2}} = \tanh^{2} x$	Fully correct proof	A1*
Way 2	$1 - \operatorname{sech}^{2} x = (1 + \operatorname{sech} x)(1 - \operatorname{sech} x) = \left(1 + \frac{2}{e^{x} + e^{-x}}\right) \left(1 - \frac{2}{e^{x} + e^{-x}}\right)$		B1
Diff. of	Uses difference of two squares and replaces sech <i>x</i> with correct expression in terms of exponentials		DI
squares	$= \left(\frac{e^{x} + e^{-x} + 2}{e^{x} + e^{-x}}\right) \left(\frac{e^{x} + e^{-x} - 2}{e^{x} + e^{-x}}\right) = \frac{e^{2x} + 1 - 2e^{x} + 1 + e^{-2x} - 2e^{-x} + 2e^{x} + 2e^{-x} - 4}{\left(e^{x} + e^{-x}\right)^{2}}$		M1
	Expresses as a single fraction and expands numerator		
	$=\frac{e^{2x}-2+e^{-2x}}{\left(e^{x}+e^{-x}\right)^{2}}=\frac{\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}=\tanh^{2}x$	Fully correct proof	A1*
Way 3	$(\tanh^2 x =) \frac{(e^x - e^{-x})^2}{(e^x + e^{-x})^2}$	Replaces tanh x with correct expression in terms of exponentials	B1
From RHS	$= \frac{e^{2x} - 2 + e^{-2x}}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{e^{2x} + 2 + e^{-2x}}{\left(e^{x} + e^{-x}\right)^{2}} - \frac{4}{\left(e^{x} + e^{-x}\right)^{2}}$ Expands numerator and splits into two fractions		M1
	$= \frac{\left(e^{x} + e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}} - \left(\frac{2}{e^{x} + e^{-x}}\right)^{2} = 1 - \operatorname{sech}^{2} x$	Fully correct proof	A1*
			(3)

Allow "meet in the middle" approaches as long as a conclusion is given e.g. lhs = rhs Example: $rhs = \tanh^{2} x = \frac{\left(e^{2x}-1\right)^{2}}{\left(e^{2x}+1\right)^{2}} \text{ or } lhs = 1-\operatorname{sech}^{2} x = 1-\left(\frac{2}{e^{x}+e^{-x}}\right)^{2}$ B1: Replaces tanh x or sech x with a correct expression in terms of exponentials $\frac{\left(e^{2x}-1\right)^{2}}{\left(e^{2x}+1\right)^{2}} = \frac{e^{4x}-2e^{2x}+1}{e^{4x}+2e^{2x}+1} \text{ and } 1-\left(\frac{2}{e^{x}+e^{-x}}\right)^{2} = \frac{\left(e^{x}+e^{-x}\right)^{2}-4}{\left(e^{x}+e^{-x}\right)^{2}} = \frac{e^{2x}-2+e^{-2x}}{e^{2x}+2+e^{-2x}}$ M1: Makes progress by e.g. removing brackets on *rhs* and expressing *lhs* as a single fraction and expands numerator $e^{2x}-2+e^{-2x} = e^{4x}-2e^{2x}+1 = 12 = 12$

$$\frac{e^{-2x+e}}{e^{2x}+2+e^{-2x}} = \frac{e^{-2x}+1}{e^{4x}+2e^{2x}+1} \Longrightarrow 1-\operatorname{sech}^2 x = \tanh^2 x$$

A1: Correct proof and (minimal) conclusion e.g. "= rhs" etc.

Page 141 of 152

$$1 - \operatorname{sech}^{2} x = 1 - \left(\frac{2}{e^{x} + e^{-x}}\right)^{2} = \frac{e^{2x} + 2 + e^{-2x} - 4}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{e^{2x} + e^{-2x} - 2}{e^{2x} + e^{-2x} + 2} = \frac{\sinh^{2} x}{\cosh^{2} x} = \tanh^{2} x$$

$$1 - \operatorname{sech}^{2} x = 1 - \left(\frac{2}{e^{x} + e^{-x}}\right)^{2} = \frac{e^{2x} + 2 + e^{-2x} - 4}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{e^{2x} + e^{-2x} - 2}{e^{2x} + e^{-2x} + 2} = \tanh^{2} x$$

Both score B1M1A0 as we would need to see numerators and denominators factorised.

Note that we will allow an equivalent identity to be proved by exponentials and the given identity deduced e.g.

$$\cosh^2 x - \sinh^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2$$

B1: Correct exponential form seen for cosh or sinh used
$$= \frac{e^{2x}}{4} + \frac{1}{2} + \frac{e^{-2x}}{4} - \frac{e^{2x}}{4} + \frac{1}{2} - \frac{e^{-2x}}{4} = 1$$

M1: Expands and collects terms

 $\Rightarrow \cosh^2 x - \sinh^2 x = 1 \Rightarrow 1 - \operatorname{sech}^2 x = \tanh^2 x$

A1*: Fully correct work leading to the correct identity

(b)
$$\int \tanh^{n} 3x \, dx = \int \tanh^{n-2} 3x \tanh^2 3x \, dx$$

$$= \int \tanh^{n-2} 3x (1 - \operatorname{sech}^2 3x) \, dx$$
Splits $\tanh^n 3x \, dx = \int \tanh^{n-2} 3x \tanh^2 3x \, dx$

$$= \int \tanh^{n-2} 3x (1 - \operatorname{sech}^2 3x) \, dx$$
M1
$$\int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \tanh^2 3x \, dx$$
unless it is clear that 3x was
$$= \int \tanh^{n-2} 3x (1 - \operatorname{sech}^2 x) \, dx$$
unless it is clear that 3x was
$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx$$

$$= \int \tanh^{n-2} 3x \, dx = \int \tanh^{n-2} 3x \, dx = \int \det^{n-2} - \int \frac{d^{n-2}}{d(n-1)} \left(\frac{e^{2\ln 2} - 1}{e^{2n-2} + 1} \right)^{n-1} \, dx$$

$$= \int \det^{n-2} - \frac{(\frac{n}{2})^{n-1}}{1} \quad \text{Fully correct proof.}$$
Allow recovery from slips e.g. \tan \rightarrow \tan \rightarrow \tan + \cot x \, dx \, dx
$$= \int \det^{n-2} - \frac{(\frac{n}{2})^{n-1}}{1} \quad \text{Fully correct proof.}$$
Allow recovery from slips e.g. \tan \rightarrow \tan - \tan + \cot x \, dx \, dx \, dx \, dx

		<u>FP3 2024</u>	<u>01 MS</u>
(c)	$I_5 = I_3 - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)} = I_1$ Uses their reduction formul Note that there may have all Condone the use of the letter <i>p</i> for the $\frac{3}{5}$	$\int_{1}^{1} -\frac{\left(\frac{3}{5}\right)^{3-1}}{3(3-1)} - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}$ la to obtain I_5 in terms of I_1 lready been an attempt at I_1 and allow a "made up" p for this mark.	 M1
	This may be implied by e.g. $I_5 = I_3 - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}$, $I_3 = I_1 - \frac{\left(\frac{3}{5}\right)^{3-1}}{3(3-1)}$		
	$\int \tanh 3x \mathrm{d}x = \frac{1}{3} \ln(\cosh 3x)$	Integrates to obtain $q \ln(\cosh rx)$ oe e.g. $q \ln(\operatorname{sech} rx)$ Condone q and/or $r = 1$	M1
	$I_{5} = \frac{1}{3} \ln \left(\frac{e^{\ln 2} + e^{-\ln 2}}{2} \right) - \frac{\left(\frac{9}{25}\right)}{6} - \frac{\left(\frac{81}{625}\right)}{12}$ Applies $x = \frac{1}{3} \ln 2$ using correct exponential definition of cosh or uses a calculator if work is correct e.g. $\cosh(\ln 2) = \frac{5}{4}$ to obtain a numerical expression for I_{5}		dd M1
	Must not be in terms of p now and must $\frac{1}{3}\ln\frac{5}{4} - \frac{177}{2500}$	be using a value of p obtained in part (b) Correct answer in correct form (allow $a =, b =, c =$) Allow -0.0708 for c	A1 (4)
			Total 11

Note that part (c) is "Hence" so they need to be using the given reduction formula, however, it is possible to find *I*₃ directly e.g. :

$$I_{5} = I_{3} - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}$$
$$\int \tanh^{3} 3x \, dx = \int \left(\tanh 3x - \tanh 3x \operatorname{sech}^{2} 3x\right) dx = \left[\frac{1}{3}\ln\left(\cosh 3x\right) + \frac{1}{6}\operatorname{sech}^{2} 3x\right]$$

Score M1 for using the reduction formula to obtain I_5 in terms of I_3 (allow the letter p for the $\frac{3}{5}$ and

allow a "made up" p for this mark) **and** then integrating $\tanh^3 3x$ to the correct form e.g. $\alpha \ln(\cosh 3x) + \beta \operatorname{sech}^2 3x(\operatorname{oe})$

The second **M** mark would also score at this point as in the main scheme for integrating tanh 3x to obtain $q \ln(\cosh rx)$ or e.g. $q \ln(\operatorname{sech} rx)$

$$\left[\frac{1}{3}\ln\left(\cosh 3x\right) + \frac{1}{6}\operatorname{sech}^{2} 3x\right]_{0}^{\frac{1}{3}\ln 2} - \frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)} = \frac{1}{3}\ln\frac{5}{4} + \frac{1}{6}\times\frac{16}{25} - \frac{1}{6} - \frac{27}{2500}$$

ddM1 for a complete method **using both limits** to obtain a numerical expression for I_5 using the correct exponential definitions or via a calculator.

A1:
$$\frac{1}{3}\ln\frac{5}{4} - \frac{177}{2500}$$

Correct answer in correct form
(allow $a = ..., b = ..., c = ...$) Allow -0.0708 for c

Page 144 of 152
Question Number	Scheme	Notes	Marks
6(a)	$\pm \overline{AB} = \pm \left(\begin{pmatrix} -1\\1\\3 \end{pmatrix} - \begin{pmatrix} 3\\2\\2 \end{pmatrix} \right) = \pm \begin{pmatrix} -4\\-1\\1 \end{pmatrix}, \pm \overline{AC} = \pm \left(\begin{pmatrix} -2\\4\\2 \end{pmatrix} - \begin{pmatrix} 3\\2\\2 \end{pmatrix} \right) = \pm \begin{pmatrix} -5\\2\\0 \end{pmatrix}, \pm \overline{BC} = \pm \left(\begin{pmatrix} -2\\4\\2 \end{pmatrix} - \begin{pmatrix} -1\\1\\3 \end{pmatrix} \right) = \pm \begin{pmatrix} -1\\3\\-1 \end{pmatrix}$ Correct method to obtain two relevant vectors using subtraction . You can ignore labelling e.g. if they find \overline{BA} but call it \overline{AB}		M1
	e.g., $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix} \times \begin{pmatrix} -5 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ -5 \\ -13 \end{pmatrix}$ Correct method to find the vector product of two relevant vectors (if a correct method is not shown, two correct components for their vectors must be obtained)		
	e.g., $\begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 13 \end{pmatrix} =$ Attempts the scalar product between the vectors of	6+10+26 = 42 eir normal vector and any of the position	dd M1
	2x + 5y + 13z = 42 oe e.g. $-2x - 5y - 13z + 42 = 0$	Any correct Cartesian equation.	A1 (4)
(a) alt 1	$\pm \overrightarrow{AB} = \pm \begin{pmatrix} -1\\1\\3 \end{pmatrix} - \begin{pmatrix} 3\\2\\2 \end{pmatrix} = \pm \begin{pmatrix} -4\\-1\\1 \end{pmatrix}, \pm \overrightarrow{AC} = \pm \begin{pmatrix} -2\\4\\2 \end{pmatrix} - \frac{1}{2} = \pm \begin{pmatrix} -2\\$	$ = \begin{pmatrix} 3\\2\\2 \end{pmatrix} = \pm \begin{pmatrix} -5\\2\\0 \end{pmatrix}, \pm \overrightarrow{BC} = \pm \begin{pmatrix} -2\\4\\2 \end{pmatrix}, = \pm \begin{pmatrix} -1\\1\\3 \end{pmatrix} = \pm \begin{pmatrix} -1\\3\\-1 \end{pmatrix} $ levant vectors using subtraction	M1
	e.g., $\mathbf{r} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 2 \\ 0 \end{pmatrix} \Rightarrow \begin{array}{c} x = 3 - 4\lambda - 5\mu \\ \Rightarrow y = 2 - \lambda + 2\mu \Rightarrow \text{e.g. } \lambda = z - 2 \\ z = 2 + \lambda \end{array}$ Attempts the parametric equation of the plane and uses components to eliminate at least one of their parameters		
	$x = 3 - 4\lambda - 5\mu$ e.g., $y = 2 - \lambda + 2\mu \Rightarrow$ e.g. $\lambda = z - 2 \Rightarrow$ e.g. $\mu = \frac{1}{2}(y - 4 + z)$ $z = 2 + \lambda$ Eliminates both of their parameters		
	e.g. $x = 3 - 4(z - 2) - \frac{5}{2}(y - 4 + z)$	Any correct Cartesian equation.	A1
(a) alt 2	$3a+2b+2c$ $ax+by+cz=1 \rightarrow -a+b+3c$ $-2a+4b+2$ $\Rightarrow \frac{1}{21}x+\frac{5}{42}$ M1: Substitutes the given points the dM1: Solves simultaneously to ddM1: Substitutes back in the data and	z = 1 =1 $\Rightarrow a = \frac{1}{21}, b = \frac{5}{42}, c = \frac{13}{42}$ c = 1 $z = \frac{1}{2}, b = \frac{5}{42}, c = \frac{13}{42}$ z = 1 to give 3 equations in 3 unknowns find values for "a", "b" and "c" to obtain a Cartesian equation rect equation	

Page 145 of 152

		FP3 2024	01 MS
(b)	Line $DE: (\mathbf{r} =) \begin{pmatrix} -1\\1\\-2 \end{pmatrix} \pm \lambda \begin{pmatrix} 2\\5\\13 \end{pmatrix}$	Obtains parametric form for line <i>DE</i> with their normal (or recalculated normal) seen or implied. Allow one slip only.	M1
	$14(2\lambda - 1) - (5\lambda + 1) - 17(2\lambda - 1) - 17(2\lambda$	$(13\lambda - 2) = -66 \implies \lambda = \dots$	
	Substitutes their parametric form into the	the equation of Π_2 and solves for λ – can	M1
	follow M0 provided their parametric for	form was an attempt at $\overrightarrow{OD} \pm \lambda$ (their n)	
	$\lambda = \frac{85}{198}$	A correct exact value for λ depending on their method e.g. use of $\mathbf{n} = -2\mathbf{i} - 5\mathbf{j} - 13\mathbf{k}$ gives $\lambda = -\frac{85}{198}$	A1
	$DE = \sqrt{(2 \times \frac{85}{198})^2 + (5 \times \frac{85}{198})^2 + (13 \times \frac{85}{198})^2}$ or e.g. $E = \left(-\frac{14}{99}, \frac{623}{198}, \frac{709}{198}\right) \Rightarrow DE = \sqrt{\left(-1 + \frac{14}{99}\right)^2 + \left(1 - \frac{623}{198}\right)^2 + \left(-2 - \frac{709}{198}\right)^2}$ Correct method to find a numerical expression for distance <i>DE</i> Requires previous method mark Note $DE = -\frac{85}{198}\sqrt{(2)^2 + (5)^2 + (13)^2} = \dots$ is ok for this mark		d M1
	$DE = \frac{85\sqrt{22}}{66}$	Correct exact answer in the required form or $p = \frac{85}{66}$ or $1\frac{19}{66}$ Not $DE = -\frac{85\sqrt{22}}{66}$	A1
-		1 ~ ~ ~	(5)

Beware – Special Case!

An incorrect sign of λ may fortuitously give the correct length DE. **E.g.** $\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 5 \\ 13 \end{pmatrix}$ leading incorrectly to $\lambda = -\frac{85}{198}$ would lead in both **d**M1 cases above to $DE = \frac{85\sqrt{22}}{66}$

E.g.
$$\begin{pmatrix} -1\\1\\-2 \end{pmatrix} + \lambda \begin{pmatrix} -2\\-5\\-13 \end{pmatrix}$$
 leading incorrectly to $\lambda = \frac{85}{198}$ would lead in both **d**M1 cases above to $DE = \frac{85\sqrt{22}}{66}$

In such cases score as M1M1A0M1A1ft i.e. we will only penalise it once.

Page 146 of 152

		FP3 2024	<u>01 MS</u>
Way 2 Sim. eqns	$(\pm)\left(\frac{x+1}{2} = \frac{y-1}{5} = \frac{z+2}{13}\right)$ $\Rightarrow y = \frac{5}{2}x + \frac{7}{2}, \ z = \frac{13}{2}x + \frac{9}{2}$	Obtains Cartesian form for line <i>DE</i> with their normal (or recalculated normal) allowing one slip only and attempts to find two variables in terms of the other variable	 M1
For first three marks	$14x - \left(\frac{5}{2}x + \frac{7}{2}\right) - 17\left(\frac{13}{2}x + \frac{9}{2}\right) = -66$ $\Rightarrow x = -\frac{14}{99}, \ y = \frac{623}{198}, \ z = \frac{709}{198}$	M1: Substitutes into the plane equation and finds $x =, y =, z =$ A1: Correct exact values \Rightarrow Way 1 for last two marks	M1 A1
(c)	e.g. $\overrightarrow{AF}.\overrightarrow{AB}\times\overrightarrow{AC} = \begin{pmatrix} 1\\ 1\\ q-2 \end{pmatrix} \begin{pmatrix} 2\\ 5\\ 13 \end{pmatrix} = 2+5+13q-26$ or e.g. $\begin{vmatrix} -4 & -1 & 1\\ -5 & 2 & 0\\ 1 & 1 & q-2 \end{vmatrix} = -4(2(q-2))-5(q-2)-5-2$ or e.g. rule of Sarrus: $\begin{vmatrix} -4 & -1 & 1 & -4 & -1\\ -5 & 2 & 0 & -5 & 2\\ 1 & 1 & q-2 & 1 & 1 \end{vmatrix} = -4(2(q-2))-5-5(q-2)-2$ Correct method for vector between F and A, B or C and finds scalar product with their normal or attempts the scalar triple product to obtain a linear expression in q. For the scalar triple product look for at least 2 correct "elements"		M1
	$\frac{1}{6}(13q-19) = \pm 12 \Rightarrow q = \dots$ Sets $\frac{1}{6}$ of their expression in q equal to one or both of ± 12 (or equivalent work e.g. their expression in q equal to one or both of ± 72) and proceeds to a value for q		d M1
	$q = 7, -\frac{53}{13}$	Correct values. Allow exact equivalents for $-\frac{53}{13}$ e.g. $-4\frac{1}{13}$	A1
			(3)
l			Total 12

Question	Scheme/Notes			Marks
7(a)	$v = \arccos(\operatorname{sech} x)$			
	e.g.: $\cos y = \operatorname{sech} x \Longrightarrow$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{(-\operatorname{sech} x \tanh x)}{\sqrt{1 - \operatorname{sech}^2 x}}$	$-\sin y \frac{dy}{dx} = -\operatorname{sech} x \tanh x$ or, e.g., $-\sin y = -\operatorname{sech} x \tanh x \frac{dx}{dy}$	$\cos y = (\cosh x)^{-1} \Rightarrow$ $-\sin y \frac{dy}{dx} = -(\cosh x)^{-2} \sinh x$	M1
	Differentiates to obtain an equation in $\frac{dy}{dx}$ or $\frac{dx}{dy}$ of the correct form e.g. condone coefficient sign errors only.			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\operatorname{sech} x \tanh x}{\tanh x}$	$\sqrt{1 - \operatorname{sech}^2 x} \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x \tanh x$ $\Rightarrow \tanh x \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x \tanh x$	$\sqrt{1 - \operatorname{sech}^{2} x} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sinh x}{\cosh^{2} x}$ $\Rightarrow \tanh x \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sinh x}{\cosh^{2} x}$	d M1
	Uses correct identities to obta	in an equation in $\frac{dy}{dx}$ or $\frac{dx}{dy}$ in at accept $\sqrt{\tanh^2 x}$ as "no root	terms of x only with no roots	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x$	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \operatorname{sech} x$	$\frac{dy}{dx} = \frac{\cosh x}{\sinh x} \cdot \frac{\sinh x}{\cosh^2 x}$ $\Rightarrow \frac{dy}{dx} = \operatorname{sech} x$	
	Fully correct proof. An equation in $\frac{dy}{dx}$ or $\frac{dx}{dy}$ and exactly two different hyperbolic		tly two different hyperbolic	A 1 *
	functions with no roots must be seen before the given answer but accept $\sqrt{\tanh^2 x}$ as "no roots" Withhold this mark for any mathematical error e.g., clear use of $\frac{d}{dx}(\arccos x) = +\frac{1}{\sqrt{1-x^2}}$ and $\frac{d}{dx}(\operatorname{sech} x) = +\operatorname{sech} x \tanh x$			A1 ⁺
	or e.g. hyperbolic functions written as trig functions or vice versa. Allow slips if they are recovered but clear and consistent errors score A0			
	Note: There may be other methods seen, e.g., using exponentials and "meeting in the			
		miadle		(3)

Page 148 of 152

(b)
e.g.
$$\frac{d}{dx}(\cot h x) = -\csc h^2 x$$
 or $\frac{\sinh^2 x - \cosh^2 x}{\sinh^2 x}$ or $\frac{-\operatorname{sech}^2 x}{\tanh^2 x}$ or $1 - \coth^2 x$ etc.
or e.g. $\frac{(e^x - e^{-x})^2 - (e^x + e^{-x})^2}{(e^x - e^{-x})^2}$ or $\frac{2e^x (e^x - 1) - 2e^x (e^x + 1)}{(e^x - 1)^2}$ or $\frac{-4}{(e^x - e^{-x})^2}$ etc.
B1
Correct derivative of $\cot h x$ in any form. Allow recovery if the write e.g. $-\csc e^2 x$
when $-\operatorname{coscch}^2 x$ is $\operatorname{clearly}$ implied by subsequent work.
e.g., $\operatorname{sech} x - \operatorname{coscch}^2 x$ is $\operatorname{clearly}$ implied by subsequent work.
e.g., $\operatorname{sech} x - \operatorname{coscch}^2 x = 0 \Rightarrow \operatorname{sech} x = \operatorname{coscch}^2 x \Rightarrow \frac{1}{\cosh x} = \frac{1}{\sinh^2 x} \Rightarrow$
 $\operatorname{a \cosh}^2 x + b \cosh x + c = 0$ or $\operatorname{a sech}^2 x + b \cosh x + c = 0$
or
 $\operatorname{sech} x - \operatorname{coscch}^2 x = 0 \Rightarrow \operatorname{sech}^2 x = \operatorname{cosch}^2 x + b \operatorname{sech} x + c = 0$
or
 $\operatorname{sech}^2 x - \operatorname{coscch}^2 x = 0 \Rightarrow \operatorname{sech}^2 x = \operatorname{cosch}^2 x + b \operatorname{cosh} x = 0$
 $\operatorname{Seth}^2 (x) = 0$ and uses correct identities to obtain a 3TQ in $\cosh x$ or $\operatorname{sech} x$
 $\operatorname{cosh}^2 x - \operatorname{cosch}^2 x - 2e^{2x} - 2e^{x} + 1 = 0$ oe
 $\operatorname{Correct}$ quadratic equation or correct quartic equation.
 $\operatorname{cosh}^2 x = -2e^{3x} - 2e^{2x} - 2e^{2x} - 2e^{x} + 1 = 0$ oe
 $\operatorname{Correct} quadratic resulting from sech x + heir derivative of $\operatorname{coh} x = 0$
Must obtain a real and exert value > 1 (or between 0 and 1 if sech used).
Apply usual nules. (No need to reject invalid values).
If no solving method seen one solution must be consistent with their equation.
For the 5 term quartic in e^x process is unlikely unless they proceed via e.g.
 $\left(e^{x^2} - (1 + \sqrt{5})e^x + 1\right)^2 = 0$
 $x = \operatorname{arcosh}\left(\frac{1 + \sqrt{5}}{2} - \left(1 + \sqrt{5} e^x + 1 = 0 \Rightarrow e^x = \frac{1 + \sqrt{5} + \sqrt{\left(\frac{1 + \sqrt{5}}{2}\right)^2} - 1\right)$
 $\operatorname{or} \frac{e^x + e^{x^2}}{2} = 2e^{x^2} - (1 + \sqrt{5})e^x + 1 = 0 \Rightarrow e^x = \frac{1 + \sqrt{5} + \sqrt{\left(\frac{1 + \sqrt{5}}{2}\right)^2} - 1}{2}$
 $\operatorname{or} \frac{e^x + e^{x^2}}{2} = 2e^{x^2} - (1 + \sqrt{5})e^x + 1 = 0 \Rightarrow e^x = 1e^x + \sqrt{1 + \sqrt{5}} + \sqrt{\frac{1}{2}}$
 $\operatorname{ald} M1$
Note that $x = \ln \frac{1}{2}(1 + \sqrt{5}) + \sqrt{\frac{1}{2}}(1 + \sqrt{5})$ or accept $x = \ln \left(\frac{1 + \sqrt{5}}{2} + \sqrt{\frac{1 + \sqrt{5}}{2}}\right)$
A1
Note that $x = \ln \frac{1}{2}(1 + \sqrt{5}) + \sqrt{\frac{1}{2$$

Page 149 of 152

Correct work in (b) leading to:

$$\cosh^2 x - \cosh x - 1 = 0 \Longrightarrow \cosh x = \frac{1 + \sqrt{5}}{2}$$
$$x = \operatorname{arcosh}\left(\frac{1 + \sqrt{5}}{2}\right) = \ln\left(\frac{1 + \sqrt{5}}{2} + \sqrt{\frac{1 + \sqrt{5}}{2}}\right)$$

With no evidence where the $\sqrt{\frac{1+\sqrt{5}}{2}}$ comes from, scores: B1M1A1dM1ddM0A0

FP3_2024_01_MS

Question Number	Scheme	Notes	Marks
8(a)	$\frac{dx}{dy} = \frac{y}{4} \text{or} 2y\frac{dy}{dx} = 8 \text{or} \frac{dy}{dx} = \left(\frac{1}{2}\right)\left(2\sqrt{2}\right)x^{-\frac{1}{2}} \text{ or } \left(\frac{1}{2}\right)\left(2\sqrt{2}\right)\left(\frac{2\sqrt{2}}{y}\right) \text{ oe}$ Any correct equation in $\frac{dx}{dy}$ or $\frac{dy}{dx}$ in terms of y or x		
	$\left(\int \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy = \right) \int \sqrt{1 + \left(\frac{y}{4}\right)^2} (dy) \text{ or } \left(\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \cdot \frac{dx}{dy} dy = \right) \int \sqrt{1 + \left(\frac{4}{y}\right)^2} \cdot \frac{y}{4} (dy)$		M1
	Forms $\int \sqrt{1 + \left(\frac{dx}{dy}\right)^2} (dy)$ or $\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \cdot \frac{dx}{dy} (dy)$ correctly with their derivative		
	$x = 18 \implies y^2 = 144 \implies \beta = 12, \ \alpha = 24$ $\implies (\text{perimeter of } R =) 24 + 2 \int_{1-\frac{y^2}{y^2}}^{12} dy$	Correct expression	A1
			(3)

(b)	$y = 4 \sinh u \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}u} = 4 \cosh u$	Correct derivative. Condone $\frac{dy}{dx} = 4 \cosh u$	B1
	$\int \sqrt{1 + \frac{y^2}{16}} dy = \int \sqrt{1 + \frac{(4\sinh u)^2}{16}} (4\cosh u) (du)$ $(= 4\int \cosh^2 u du)$	Full substitution, correct for their $\frac{dy}{du}$	M1
	$\int \cosh^2 u du = \int \left(\frac{1}{2} \cosh 2u + \frac{1}{2}\right) du = \frac{1}{4} \sinh 2u + \frac{1}{2}u$		
	or $\int \left(\frac{\mathrm{e}^{u} + \mathrm{e}^{-u}}{2}\right)^{2} \mathrm{d}u = \int \left(\frac{\mathrm{e}^{2u}}{4} + \frac{\mathrm{e}^{2u}}{4}\right)^{2} \mathrm{d}u = \int \left(\frac{\mathrm{e}^{2u}}{4} + \frac{\mathrm{e}^{2u}}{4} + \frac{\mathrm{e}^{2u}}{4} + \frac{\mathrm{e}^{2u}}{4}\right)^{2} \mathrm{d}u = \int \left(\frac{\mathrm{e}^{2u}}{4} + \frac{\mathrm{e}^{2u}}{4}\right)^{2} $	$\frac{1}{2} + \frac{e^{-2u}}{4} du = \frac{e^{2u}}{8} + \frac{1}{2}u - \frac{e^{-2u}}{8}$	d M1 A1
	d M1: Uses $\cosh^2 u = \pm \frac{1}{2} \cosh 2u \pm \frac{1}{2}$ and integrates to obtain $a \sinh 2u + bu$ or uses		
	$k(e^{u} + e^{-u})$ for cosh <i>u</i> , expands and in	ntegrates to obtain $ae^{2u} + bu + ce^{-2u}$	
	A1: Correct integration		
	Perimeter of R :		
	$= 24 + (2)(4) \left[\frac{1}{4} \sinh 2u + \frac{1}{2} u \right]_{0}^{\operatorname{arsinh} 3 = \ln(3 + \sqrt{10})}$	$= 24 + (2)(4) \left[\frac{e^{2u}}{8} + \frac{1}{2}u - \frac{e^{-2u}}{8} \right]_{0}^{m(3+q_{10})}$	
	$= 24 + 2 \left[2 \sinh u \sqrt{1 + \sinh^2 u} + 2u \right]_0^{\operatorname{arsinh} 3 = \ln(3 + \sqrt{10})}$	$= 24 + e^{2\ln(3+\sqrt{10})} - e^{-2\ln(3+\sqrt{10})} + 4\ln(3+\sqrt{10})$	
	$= 24 + 2\left[(2)(3)\sqrt{1+3^2} + 2\ln\left(3+\sqrt{10}\right)\right]$	$24 + (3 + \sqrt{10})^{2} - \frac{1}{(3 + \sqrt{10})^{2}} + 4\ln(3 + \sqrt{10})$	ddM1
	Substitutes arsinh3 and/or $\ln(3+\sqrt{3^2+1})$ into their expression using correct identities or correctly removes exponentials to obtain a numerical expression in constants and lns only Accept use of calculator here e.g. $\sinh(2 \operatorname{arsinh3}) = 6\sqrt{10}$		
	$24 + 12\sqrt{10} + 4\ln(3 + \sqrt{10})$	Correct answer – any exact simplified	A 1
	or, e.g., $4\left(6+3\sqrt{10}+\ln\left(3+\sqrt{10}\right)\right)$	equivalent	AI
	Note: Integration by calculator is like	ly to access the first two marks only	(6)
			Total 9
		TOTAL FOR PAPER: 7	5 MARKS