FP3_2020_10_MS 2
FP3_2021_01_MS 15
FP3_2021_06_MS 36
FP3_2021_10_MS 48
FP3_2022_01_MS 66
FP3_2022_06_MS 84
FP3_2023_01_MS 99
FP3_2023_06_MS 117
FP3_2024_01_MS 132
IAL FP3 M ark Scheme

Question Number	Scheme	Notes	Marks
1(a)	$\begin{aligned} & 4 \sinh ^{3} x+3 \sinh x=4\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)^{3}+3\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right) \\ & \quad=4\left(\frac{\mathrm{e}^{3 x}-3 \mathrm{e}^{x}+3 \mathrm{e}^{-x}-\mathrm{e}^{-3 x}}{8}\right)+3\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right) \end{aligned}$ Uses $\sinh x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ on both sinh terms and attempts to cube the bracket (min accepted is a linear x a quadratic bracket)		M1
	$\begin{array}{r} =\frac{1}{2} \mathrm{e}^{3 x}-\frac{3}{2} \mathrm{e}^{x}+\frac{3}{2} \mathrm{e}^{-x} \\ =\frac{\mathrm{e}^{3 x}-\mathrm{e}^{-}}{2} \end{array}$	$\begin{aligned} & -\frac{1}{2} \mathrm{e}^{-3 x}+\frac{3}{2} \mathrm{e}^{x}-\frac{3}{2} \mathrm{e}^{-x} \\ & =\sinh 3 x^{*} \end{aligned}$	A1*
			(2)
(b)	$\begin{gathered} \sinh 3 x=19 \sinh x \Rightarrow 4 \sinh ^{3} x+3 \sinh x=19 \sinh x \\ \Rightarrow 4 \sinh ^{3} x-16 \sinh x=0 \end{gathered}$ Uses the result from (a) and combines terms		M1
	$\left(\sinh x=0\right.$ or) $\sinh ^{2} x=4$	$\sinh ^{2} x=4$ or $\sinh x=(\pm) 2$	A1
	$(0,0)$	States the origin as one intersection	B1
	$\ln (2+\sqrt{5})$ and $-\ln (2+\sqrt{5})$	Two correct non-zero x values(allow e.g. $\ln (-2+\sqrt{5})$ for $-\ln (2+\sqrt{5}))$	A1
	$(\ln (2+\sqrt{5}), 38)$ and $(-\ln (2+\sqrt{5}),-38)$	Two correct points (allow e.g. $\ln (-2+\sqrt{5})$ for $-\ln (2+\sqrt{5}))$	A1
			(5)
	Alternative for (b) using exponentials		
	$\sinh 3 x=19 \sinh x \Rightarrow \frac{\mathrm{e}^{3 x}-\mathrm{e}^{-3 x}}{2}=\frac{19\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{2} \Rightarrow \ldots$ Substitutes the correct exponential forms and collects terms to one side		M1
	$\Rightarrow \mathrm{e}^{6 x}-19 \mathrm{e}^{4 x}+19 \mathrm{e}^{2 x}-1=0$	Correct equation (or equivalent)	A1
	$(0,0)$	States the origin as one intersection	B1
	$\frac{1}{2} \ln (9+4 \sqrt{5})$ or $\frac{1}{2} \ln (9-4 \sqrt{5})$	Two correct non-zero x values (oe)	A1
	$\left(\frac{1}{2} \ln (9+4 \sqrt{5}), 38\right)$ and $\left(\frac{1}{2} \ln (9-4 \sqrt{5}),-38\right)$	Two correct points (oe)	A1

Total 7

Question Number	Scheme	Notes	Marks
4.	$I_{n}=\int x^{n} \cos x \mathrm{~d} x$		
(a)	$\int x^{n} \cos x \mathrm{~d} x=x^{n} \sin x-\int n x^{n-1} \sin x \mathrm{~d} x$ M1: Parts in the correct direction A1: Correct expression		M1A1
	$=x^{n} \sin x-\left\{-n x^{n-1} \cos x+\int n(n-1) x^{n-2} \cos x \mathrm{~d} x\right\}$ Uses integration by parts again (dependent on the first M)		dM1
	$=x^{n} \sin x+n x^{n-1} \cos x-n(n-1) I_{n-2} *$ Fully correct proof with no errors		A1*
			(4)
ALT			
	$I_{n}=\int x^{n} \cos x \mathrm{~d} x=\int x^{n-1}(x \cos x) \mathrm{d} x$		
	$\begin{array}{r} =x^{n} \sin x+x^{n-1} \cos x-(n-1) \int x^{n-2}(x \sin x+\cos x) \mathrm{d} x \\ \text { M1: Parts in the correct direction } \\ \text { A1: Correct expression } \end{array}$		M1A1
	$=x^{n} \sin x+x^{n-1} \cos x-(n-1) \int x^{n-1} \sin x \mathrm{~d} x-(n-1) I_{n-2}$		
	$=x^{n} \sin x+x^{n-1} \cos x-(n-1)\left\{-x^{n-1} \cos x+(n-1) I_{n-2}\right\}-(n-1) I_{n-2}$ Uses integration by parts again (dependent on the first M)		dM1
	$=x^{n} \sin x+n x^{n-1} \cos x-n(n-1) I_{n-2} *$ Fully correct proof with no errors		A1*
(b)	$I_{0}=\sin x(+k)$		B1
	$I_{4}=x^{4} \sin x+4 x^{3} \cos x-12 I_{2}$	Applies the reduction formula once for I_{4} or I_{2}	M1
	$=x^{4} \sin x+4 x^{3} \cos x-12\left(x^{2} \sin x+2 x \cos x-2 I_{0}\right)$ Applies the reduction formula again and obtains an expression for I_{4} which can include I_{0} but not I_{2} $=\left(x^{4}-12 x^{2}+24\right) \sin x+\left(4 x^{3}-24 x\right) \cos x+c$ Award A1 for either bracket and A1 for the other If the answer is not factorised but is otherwise correct, award A1A0		M1
			A1A1
			(5)
			Total 9

Question Number	Scheme Notes	Marks
5	$\frac{x^{2}}{25}-\frac{y^{2}}{4}=1 \quad y=m x+c$	
(a)	$\frac{x^{2}}{25}-\frac{(m x+c)^{2}}{4}=1 \Rightarrow 4 x^{2}-25\left(m^{2} x^{2}+2 c m x+c^{2}\right)=100$ Substitutes to obtain a quadratic in x and eliminates fractions	M1
	$\begin{gathered} 4 x^{2}-25\left(m^{2} x^{2}+2 c m x+c^{2}\right)=100 \\ \left(\Rightarrow\left(25 m^{2}-4\right) x^{2}+50 c m x+25 c^{2}+100=0\right) \\ \text { Correct 3TQ } \end{gathered}$	A1
	$" b^{2}=4 a c " \Rightarrow(50 c m)^{2}=4\left(25 m^{2}-4\right)\left(25 c^{2}+100\right)$ Uses ' $b^{2}=4 a c$ ' or equivalent	M1
	$\begin{gathered} 2500 c^{2} m^{2}=2500 c^{2} m^{2}+10000 m^{2}-400 c^{2}-1600 \\ 10000 m^{2}=400 c^{2}+1600 \\ 25 m^{2}=c^{2}+4^{*} \end{gathered}$ Fully correct proof with no errors	A1*
		(4)
ALT 1	Using hyperbolic parameters:	
	$x=5 \cosh t, y=2 \sinh t \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \cosh t}{5 \sinh t}$	
	$\frac{2 \cosh t}{5 \sinh t}(x-5 \cosh t)=y-2 \sinh t$ M1: Attempts the equation of the tangent A1: Correct equation (no simplification needed)	M1A1
	$y=\frac{2 \cosh t}{5 \sinh t} x-\frac{2 \cosh ^{2} t-25 \sinh ^{2} t}{\sinh t}$	
	$\begin{gathered} 25 m^{2}=\frac{4 \cosh ^{2} t}{\sinh ^{2} t}, 4+c^{2}=4+\frac{4}{\sinh ^{2} t}=\frac{4\left(\sinh ^{2} t+1\right)}{\sinh ^{2} t}=\frac{4 \cosh ^{2} t}{\sinh ^{2} t} \\ \text { Extracts } 25 m^{2} \text { and } 4+c^{2} \text { from their equation } \end{gathered}$	M1
	$\therefore 25 m^{2}=4+c^{2}$ Fully correct proof with no errors	A1*
		(4)
ALT 2	Using trigonometric parameters:	
	$x=5 \sec t, y=2 \tan t \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \sec t}{5 \tan t}$	
	$\frac{2 \sec t}{5 \tan t}(x-5 \sec t)=y-2 \tan t$ M1: Attempts the equation of the tangent A1: Correct equation (no simplification needed)	M1A1
	$y=\frac{2 \sec t}{5 \tan t} x+\frac{2 \tan ^{2} t-2 \sec ^{2} t}{\tan t}$	
	$25 m^{2}=\frac{4 \sec ^{2} t}{\tan ^{2} t}=\frac{4}{\sin ^{2} t} \quad 4+c^{2}=4\left(1+\frac{1}{\tan ^{2} t}\right)=4\left(\frac{\sin ^{2} t+\cos ^{2} t}{\sin ^{2} t}\right)=\frac{4}{\sin ^{2} t}$ Extracts $25 m^{2}$ and $4+c^{2}$ from their equation	M1
	$\therefore 25 m^{2}=4+c^{2} *$ Fully correct proof with no errors	A1*
		(4)

(b)	$\begin{gathered} 25 m^{2}=c^{2}+4 \text { and } 2=m+c \\ 25 m^{2}=(2-m)^{2}+4 \text { or } 25(2-c)^{2}=c^{2}+4 \end{gathered}$ Uses the given hyperbola and the straight line with the result from (a) to obtain an equation in m or c		M1
	$\begin{gathered} 24 m^{2}+4 m-8=0 \\ \text { or } \\ 24 c^{2}-100 c+96=0 \end{gathered}$	Correct 3TQ in m or c	A1
	$\begin{gathered} 24 m^{2}+4 m-8=0 \Rightarrow m=\frac{1}{2},-\frac{2}{3} \\ \text { Or } \\ 24 c^{2}-100 c+96=0 \Rightarrow c=\frac{3}{2}, \frac{8}{3} \end{gathered}$	Solves their 3TQ in m or c	M1
	$y=\frac{1}{2} x+\frac{3}{2}$ or $y=-\frac{2}{3} x+\frac{8}{3}$	One correct tangent	A1
	$y=\frac{1}{2} x+\frac{3}{2}$ and $y=-\frac{2}{3} x+\frac{8}{3}$	Both correct tangents	A1
			(5)
(c)	$\begin{gathered} m=\frac{1}{2}, c=\frac{3}{2} \Rightarrow \frac{9}{4} x^{2}+\frac{75}{2} x+\frac{625}{4}=0 \Rightarrow x=\ldots \\ m=-\frac{2}{3}, c=\frac{8}{3} \Rightarrow \frac{64}{9} x^{2}-\frac{800}{9} x+\frac{2500}{9}=0 \Rightarrow x=\ldots \end{gathered}$ Uses one of their m and c pairs and solves for x		M1
	$x=-\frac{25}{3}, y=-\frac{8}{3}$ or $x=\frac{25}{4}, y=-\frac{3}{2}$	One correct point	A1
	$x=-\frac{25}{3}, y=-\frac{8}{3}$ and $x=\frac{25}{4}, y=-\frac{3}{2}$	Both correct points	A1
			(3)
			Total 12

Question Number	Scheme	Notes	Marks
7	$x=\cosh t+t, \quad y=\cosh t-t$		
(a)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\sinh t+1, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\sinh t-1$	Correct derivatives	B1
	$\begin{array}{r} \left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}=\sinh ^{2} t+2 \sinh t \\ =2 \sinh ^{2} t \end{array}$ M1: Squares correctly, cance	$-1+\sinh ^{2} t-2 \sinh t+1$ 2 and collects terms	M1
	$=2\left(1+\sinh ^{2} t\right)=2 \cosh ^{2} t^{*}$	Uses $\cosh ^{2} t=1+\sinh ^{2} t$ to complete the proof with no errors	A1*
			(3)
(b)	$S=2 \pi \int y \mathrm{~d} s=2 \pi \int(\cosh t-t) \sqrt{2} \cosh t \mathrm{~d} t$	Uses $S=2 \pi \int y \mathrm{~d} s$ with the given y and the result from part (a)	M1
	$=2 \sqrt{2} \pi \int_{0}^{\ln 3}\left(\cosh ^{2} t-t \cosh t\right) \mathrm{d} t^{*}$	Correct proof with no errors	A1*
			(2)
(c)	$\int \cosh ^{2} t \mathrm{~d} t=\int \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2 t \mathrm{~d} t$	Uses $\cosh ^{2} t= \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2 t$	M1
	$\int t \cosh t \mathrm{~d} t=t \sinh t-\int \sinh t \mathrm{~d} t$	Attempts integration by parts the right way round on $t \cosh t$	M1
		Correct expression	A1
	$S=(2 \sqrt{2} \pi) \int\left(\cosh ^{2} t-t \cosh t\right) \mathrm{d} t=(2 \sqrt{2} \pi)\left[\frac{1}{2} t+\frac{1}{4} \sinh 2 t-t \sinh t+\cosh t\right]$ A1: 2 correct terms A1: All correct		A1A1
	$(S=) 2 \sqrt{2} \pi\left\{\left(\frac{1}{2} \ln 3+\frac{10}{9}-\frac{4}{3} \ln 3+\frac{5}{3}\right)-(1)\right\}$ dM1: Correct use of limits 0 and $\ln 3$ depends on both preceding M marks		dM1
	$S=\frac{1}{9} \sqrt{2} \pi(32-15 \ln 3)$	cao	A1 (7)
			Total 12
	Alternative for (c)		
	$\begin{aligned} & \int \cosh ^{2} t \mathrm{~d} t=\int\left(\frac{\mathrm{e}^{t}+\mathrm{e}^{-t}}{2}\right)^{2} \mathrm{~d} t \\ & =\frac{1}{4} \int\left(\mathrm{e}^{2 t}+2+\mathrm{e}^{-2 t}\right) \mathrm{d} t \end{aligned}$	Substitutes the exponential form and attempts to square	M1
	$\begin{aligned} & \int t \cosh t \mathrm{~d} t=\frac{1}{2} \int t\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right) \mathrm{d} t \\ & =\frac{1}{2} t \mathrm{e}^{t}-\frac{1}{2} \int t \mathrm{e}^{t} \mathrm{~d} t-\left\{\frac{1}{2} t \mathrm{e}^{-t}-\frac{1}{2} \int \mathrm{e}^{-t} \mathrm{~d} t\right\} \end{aligned}$	Substitutes the exponential form and attempts integration by parts the right way round Correct expression	M1 A1
	$(S=)(2 \sqrt{2} \pi)\left\{\frac{1}{4}\left(\frac{1}{2} \mathrm{e}^{2 t}+2 t-\frac{1}{2} \mathrm{e}^{-2 t}\right)-\frac{1}{2} t \mathrm{e}^{t}+\frac{1}{2} \mathrm{e}^{t}+\frac{1}{2} t \mathrm{e}^{-t}-\frac{1}{2} \mathrm{e}^{-t}\right\}$ A1: either integral correct A1: other integral correct but both must be in a complete expression for S		A1A1
	Depends on both M marks above	Correct use of limits 0 and $\ln 3$	dM1
	$S=\frac{1}{9} \sqrt{2} \pi(32-15 \ln 3)$	cao	A1

Question Number	Scheme	Notes	Marks
8(a)	$\mathbf{n}=\left(\begin{array}{r}1 \\ -5 \\ 3\end{array}\right) \times\left(\begin{array}{r}3 \\ -2 \\ 2\end{array}\right)=\left(\begin{array}{c}-10+6 \\ -(2-9) \\ -2+15\end{array}\right)$	Attempt vector product between normal vectors	M1
	$=\left(\begin{array}{r}-4 \\ 7 \\ 13\end{array}\right)$	Correct vector	A1
	$\begin{gathered} x=0 \Rightarrow-5 y+3 z=11, \quad-2 y+2 z=7 \\ \Rightarrow y=-\frac{1}{4}, z=\frac{13}{4} \end{gathered}$ or $y=0 \Rightarrow x+3 z=11, \quad 3 x+2 z=7$	Correct strategy to find a point on l	M1
	$\Rightarrow x=-\frac{1}{7}, z=\frac{26}{7}$ or $\begin{aligned} z=0 & \Rightarrow x-5 y=11,3 x-2 y=7 \\ & \Rightarrow x=1, y=-2 \end{aligned}$	Correct position vector of point on l	A1
	$\mathbf{r}=\mathbf{i}-2 \mathbf{j}+\lambda(-4 \mathbf{i}+7 \mathbf{j}+13 \mathbf{k})$	Correct equation. (follow through their position and direction vectors but must be "r =")	A1ft
			(5)
ALT	$x=11+5 y-3 z$		
	$\begin{array}{r} 3 x-2 y+2 z=7 \Rightarrow 3(11+5 y-3 z) \\ \Rightarrow y-\frac{7 z}{13}=-\frac{26}{13} \quad\left(z=\frac{13 y+26}{7}\right) \\ \text { Eliminate one variable } \end{array}$		M1
	$x=11+5\left(-\frac{26}{13}+\frac{7 z}{13}\right) \Rightarrow z=\frac{13-13 x}{4}$	Obtain 2 correct expressions for one of the variables	A1
	$\frac{x-1}{-\frac{4}{13}}=\frac{y+2}{\frac{7}{13}}=z$	M1 Obtain a Cartesian equation for l A1 Correct equation	M1A1
	$\mathbf{r}=(\mathbf{i}-2 \mathbf{j})+\lambda\left(-\frac{4}{13} \mathbf{i}+\frac{7}{13} \mathbf{j}+\mathbf{k}\right)$ oe	Deduce a vector equation for l Follow through their Cartesian equation	A1ft
			(5)

(b)	$\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)-\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)=\left(\begin{array}{r}1 \\ 2 \\ -2\end{array}\right)$	Correct vector joining P to Q	B1
	$\binom{-4}{7} \times\binom{ 1}{2}=\binom{-40}{5}$	Attempt vector product between the direction of l and their $\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$	M1
	(13) $(-2)(-15)$	Correct vector	A1
	$\sin \theta=\frac{\|-40 \mathbf{i}+5 \mathbf{j}-15 \mathbf{k}\|}{\|-4 \mathbf{i}+7 \mathbf{j}+13 \mathbf{k}\|\|\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}\|}$	Angle between $P Q$ and line n	
	$d=\|\overrightarrow{P Q}\| \sin \theta$		
	$d=\frac{\|-40 \mathbf{i}+5 \mathbf{j}-15 \mathbf{k}\|}{\|-4 \mathbf{i}+7 \mathbf{j}+13 \mathbf{k}\|}=\frac{1}{\sqrt{234}} \sqrt{40^{2}+5^{2}+15^{2}}$	Fully correct method for the distance	M1
	$d=\frac{5 \sqrt{481}}{39}$	Cao Allow equivalent exact forms e.g. $d=\frac{5 \sqrt{74}}{\sqrt{234}}$	A1
			(5)
ALT 1	$\mathbf{r}_{m}=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}-\frac{4}{7} \\ 1 \\ \frac{13}{7}\end{array}\right)$ or $\mathbf{r}_{n}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}-\frac{4}{7} \\ 1 \\ \frac{13}{7}\end{array}\right)$	Vector equation for either line with their direction vector from (a)	B1ft
	$\overrightarrow{O P}=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right) \overrightarrow{O N}=\left(\begin{array}{c}3-\frac{4}{7} \mu \\ 2+\mu \\ 1+\frac{13}{7} \mu\end{array}\right) \overrightarrow{N P}=\left(\begin{array}{c}-1+\frac{4}{7} \mu \\ -2-\mu \\ 2-\frac{13}{7} \mu\end{array}\right)$	Uses either P and the parametric form of a point on n OR Q and the parametric form of a point on m	
	$\left(\begin{array}{c}-1+\frac{4}{7} \mu \\ -2-\mu \\ 2-\frac{13}{7} \mu\end{array}\right) \cdot\left(\begin{array}{c}-\frac{4}{7} \\ 1 \\ \frac{13}{7}\end{array}\right)=0$	M1: Forms scalar product of vector $N P$ and direction vector of l and equates to zero A1: Correct vectors	M1A1
	$\Rightarrow \mu=\frac{56}{117}$	Solves	M1
	$\Rightarrow d=\sqrt{\left(-\frac{85}{117}\right)^{2}+\left(-\frac{290}{117}\right)^{2}+\left(\frac{10}{9}\right)^{2}}=\frac{5 \sqrt{481}}{39}$	Obtains the correct distance	A1
			(5)
	Alternative for M1A1M1		
	$\overrightarrow{N P}=\left(\begin{array}{c} -1+\frac{4}{7} \mu \\ -2-\mu \\ 2-\frac{13}{7} \mu \end{array}\right) \Rightarrow d=\sqrt{\left(-1+\frac{4}{7} \mu\right)^{2}+(-2-\mu)^{2}+\left(2-\frac{13}{7} \mu\right)^{2}} \Rightarrow d \text { is min when } \Rightarrow \mu=\frac{56}{117}$ M1: Find d in terms of a parameter A1: correct expression M1: use calculus (or simplify and complete the square) to find the parameter corresponding to the min d		

Page 13 of 152

ALT 2	Correct vector $P Q$		$\stackrel{10-\mathrm{MS}}{\mathrm{~B} 1-}$
	$\left.\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}-4 \\ 7 \\ 13\end{array}\right)=\left\|\begin{array}{c}1 \\ 2 \\ -2\end{array}\right\| \begin{gathered}-4 \\ 7 \\ 13\end{gathered} \right\rvert\, \cos \theta$	Forms the scalar product and attempts to evaluate the LHS	M1
	$\cos \theta=\frac{-16}{3 \sqrt{234}}$	Correct value for $\cos \theta$ exact or decimal	A1
	$d=\|P Q\| \sin \theta=3 \sqrt{1-\left(\frac{-16}{3 \sqrt{234}}\right)^{2}}=\frac{5 \sqrt{74}}{\sqrt{234}}$	M1: Correct method for the distance. A1: Correct EXACT distance	M1A1
			(5)
			Total 10

Question Number	Scheme	Notes	Marks
1(a)	$\pm \overrightarrow{A B}= \pm\left(\begin{array}{r} 4 \\ -4 \\ -1 \end{array}\right), \pm \overrightarrow{B C}= \pm\left(\begin{array}{r} -1 \\ 5 \\ 2 \end{array}\right), \pm \overrightarrow{A C}= \pm\left(\begin{array}{l} 3 \\ 1 \\ 1 \end{array}\right)$ Attempts any 2 of these vectors. Allow these to be written as coordinates.		M1
	E.g. $\overrightarrow{A B} \times \overrightarrow{A C}=\left(\begin{array}{r}4 \\ -4 \\ -1\end{array}\right) \times\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}-3 \\ -7 \\ 16\end{array}\right)$	Attempts the vector product of 2 appropriate vectors. If no working is shown, look for at least 2 correct elements.	dM1
	Area $=\frac{1}{2} \sqrt{3^{2}+7^{2}+16^{2}}=\frac{1}{2} \sqrt{314}$	Correct exact area. Allow recovery from sign errors in the vector product e.g. allow following a vector product of $\pm 3 \mathbf{i} \pm 7 \mathbf{j} \pm 16 \mathbf{k}$	A1
	Note that a correct exact area of $\frac{1}{2} \sqrt{314}$ with no evidence of any incorrect work scores full marks		
			(3)
Alternative 1 using cosine rule:			
	$\pm \overrightarrow{A B}= \pm\left(\begin{array}{r} 4 \\ -4 \\ -1 \end{array}\right), \pm \overrightarrow{B C}= \pm\left(\begin{array}{r} -1 \\ 5 \\ 2 \end{array}\right), \pm \overrightarrow{A C}= \pm\left(\begin{array}{l} 3 \\ 1 \\ 1 \end{array}\right)$ Attempts any 2 of these vectors		M1
	$\| \pm \overrightarrow{A B}\|=\sqrt{4^{2}+4^{2}+1^{2}},\| \pm \overrightarrow{B C}\|=\sqrt{1^{2}+5^{2}+2^{2}},\| \pm \overrightarrow{A C}\|=\sqrt{3^{2}+1^{2}+1^{2}}$ $\cos A=\frac{33+11-30}{2 \sqrt{33} \sqrt{11}}=\frac{7 \sqrt{3}}{33}$ or $\cos B=\frac{30+33-11}{2 \sqrt{30} \sqrt{33}}=\frac{13 \sqrt{2}}{3 \sqrt{55}}$ or $\cos C=\frac{30+11-33}{2 \sqrt{30} \sqrt{11}}=\frac{\sqrt{8}}{\sqrt{165}}$ (For reference $A=68.44 \ldots{ }^{\circ}, B=34.27 \ldots{ }^{\circ}, C=77.27 \ldots{ }^{\circ}$) Attempts the magnitude of all 3 sides and attempts the cosine of one of the angles using a correctly applied cosine rule or e.g. $\cos A=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\sqrt{33} \sqrt{11}}=\frac{12-4-1}{\sqrt{33} \sqrt{11}}$ Finds the magnitude of 2 sides and the cosine of the included angle using a correctly applied scalar product		dM1
	Area $=\frac{1}{2} \sqrt{11} \sqrt{33} \sin A=\frac{1}{2} \sqrt{314}$ Correct exact area. Allow recovery from sign errors in the vectors that do not affect the calculations e.g. allow or $\pm \overrightarrow{A B}= \pm 4 \mathbf{i} \pm 4 \mathbf{j} \pm \mathbf{k}$, Area $=\frac{1}{2} \sqrt{30} \sqrt{33} \sin B=\frac{1}{2} \sqrt{314}$ $\pm \overrightarrow{B C}= \pm \mathbf{i} \pm 5 \mathbf{j} \pm 2 \mathbf{k}$, or $\pm \overrightarrow{A C}= \pm 3 \mathbf{i} \pm \mathbf{j} \pm \mathbf{k}$ And allow work in decimals as long as a correct exact area is found.		A1
			(3)

Alternative 2 using scalar product:

$$
\pm \overrightarrow{A B}= \pm\left(\begin{array}{r}
4 \\
-4 \\
-1
\end{array}\right), \pm \overrightarrow{B C}= \pm\left(\begin{array}{r}
-1 \\
5 \\
2
\end{array}\right), \pm \overrightarrow{A C}= \pm\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)
$$

Attempts any 2 of these vectors
A to $B C$ is $\sqrt{A B^{2}-\left(\frac{\overrightarrow{A B} \cdot \overrightarrow{B C}}{B C}\right)^{2}}=\sqrt{\frac{157}{15}}$
B to $C A$ is $\sqrt{B C^{2}-\left(\frac{\text { or }}{\overrightarrow{B C} \cdot \overrightarrow{C A}}\right)^{2}}=\sqrt{\frac{314}{11}}$
C to $B A$ is $\sqrt{A C^{2}-\left(\frac{\text { or }}{\overrightarrow{A C} \cdot \overrightarrow{A B}}\right)^{2}}=\sqrt{\frac{314}{33}}$
Attempts one of the altitudes of triangle $A B C$ using a correct method
Area $=\frac{1}{2} \sqrt{30} \sqrt{\frac{157}{15}}=\frac{1}{2} \sqrt{314}$
or
Area $=\frac{1}{2} \sqrt{11} \sqrt{\frac{314}{11}}=\frac{1}{2} \sqrt{314}$
or
Area $=\frac{1}{2} \sqrt{33} \sqrt{\frac{314}{33}}=\frac{1}{2} \sqrt{314}$
Correct exact area. Allow work in decimals as long as a correct exact area is found.

Alternative 3 using vector products:

$$
\mathbf{a} \times \mathbf{b}=\left(\begin{array}{c}
0 \\
4 \\
-16
\end{array}\right), \mathbf{b} \times \mathbf{c}=\left(\begin{array}{c}
0 \\
-8 \\
20
\end{array}\right), \mathbf{c} \times \mathbf{a}=\left(\begin{array}{c}
-3 \\
-3 \\
12
\end{array}\right)
$$

Attempts these vector products

$$
\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{a}=\left(\begin{array}{c}
-3 \\
-7 \\
16
\end{array}\right)
$$

Adds the appropriate vector products
Area $=\frac{1}{2} \sqrt{3^{2}+7^{2}+16^{2}}=\frac{1}{2} \sqrt{314}$
Correct exact area. Allow work in decimals as long as a correct exact area is found.

Question Number	Scheme Notes	Marks
(b)	$\pm \overrightarrow{A D}= \pm\left(\begin{array}{c} 2 \\ -2 \\ k-1 \end{array}\right), \pm \overrightarrow{B D}= \pm\left(\begin{array}{c} -2 \\ 2 \\ k \end{array}\right), \pm \overrightarrow{C D}= \pm\left(\begin{array}{c} -1 \\ -3 \\ k-2 \end{array}\right)$ Attempts one of these vectors	M1
	$\begin{aligned} & \text { E.g. } \overrightarrow{A B} \times \overrightarrow{A C} \cdot \overrightarrow{A D}=\left(\begin{array}{c} -3 \\ -7 \\ 16 \end{array}\right) \bullet\left(\begin{array}{c} 2 \\ -2 \\ k-1 \end{array}\right)=-6+14+16 k-16 \\ & \text { E.g. } \overrightarrow{A B} \times \overrightarrow{A C} \cdot \overrightarrow{B D}=\left(\begin{array}{l} -3 \\ -7 \\ 16 \end{array}\right) \bullet\left(\begin{array}{r} -2 \\ 2 \\ k \end{array}\right)=6-14+16 k \\ & \text { E.g. } \overrightarrow{A B} \times \overrightarrow{A C} \cdot \overrightarrow{C D}=\left(\begin{array}{l} -3 \\ -7 \\ 16 \end{array}\right) \bullet\left(\begin{array}{c} -1 \\ -3 \\ k-2 \end{array}\right)=3+21+16 k-32 \end{aligned}$ Attempts a suitable triple product to obtain a scalar quantity ($\frac{1}{6}$ not required here). They must be forming the triple product correctly e.g. not the magnitude of a vector. Do not be too concerned if they make slips as long as appropriate vectors are being used and a scalar quantity is obtained. Must be an attempt at the tetrahedron $A B C D$.	dM1
	Volume $=\frac{1}{3}\|8 k-4\| \quad$Correct volume. Must see modulus and must be 2 terms but allow equivalents e.g. $\frac{4}{3}\|2 k-1\|, \frac{1}{6}\|16 k-8\|, \frac{1}{6}\|8-16 k\|$ Award once a correct answer is seen and apply isw if necessary.	A1
		(3)
		Total 6

Question Number	Scheme	Notes	Marks
2(a)	$\begin{gathered} y=\ln (\tanh 2 x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\tanh 2 x} \times 2 \operatorname{sech}^{2} 2 x \\ \text { or } \\ y=\ln (\tanh 2 x) \Rightarrow \mathrm{e}^{y}=\tanh 2 x \Rightarrow \mathrm{e}^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \operatorname{sech}^{2} 2 x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \operatorname{sech}^{2} 2 x}{\tanh 2 x} \end{gathered}$ M1: Applies the chain rule or eliminates the "ln" and differentiates implicitly to obtain to obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k \operatorname{sech}^{2} 2 x}{\tanh 2 x}$ A1: Correct derivative in any form Note that some candidates now convert to exponential form to complete this part - see below in the alternative for scoring the final M1A1		M1A1
	$=\frac{2 \cosh 2 x}{\sinh 2 x} \times \frac{1}{\cosh ^{2} 2 x}=\frac{2}{\sinh 2 x \cosh 2 x}$	Converts to $\sinh 2 x$ and $\cosh 2 x$ correctly to obtain $\frac{k}{\sinh 2 x \cosh 2 x}$	M1
	$=\frac{2}{\frac{1}{2} \sinh 4 x}=4 \operatorname{cosech} 4 x$	Correct answer. Note that this is not a given answer so you can allow if e.g. a sinh becomes a sin but is then recovered but if there are any obvious errors this mark should be withheld.	A1
			(4)
Alternative using exponentials:			
	$\begin{gathered} y=\ln (\tanh 2 x)=\ln \left(\frac{\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}\right) \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}}\left(\frac{\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)\left(2 \mathrm{e}^{2 x}+2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)\left(2 \mathrm{e}^{2 x}-2 \mathrm{e}^{-2 x}\right)}{\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)^{2}}\right) \\ \text { or } \\ y=\ln (\tanh 2 x)=\ln \left(\frac{\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}\right)=\ln \left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)-\ln \left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right) \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \mathrm{e}^{2 x}+2 \mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}}-\frac{2 \mathrm{e}^{2 x}-2 \mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}} \end{gathered}$ M1: Writes $\tanh 2 x$ correctly in terms of exponentials and applies the chain rule and quotient rule or uses the subtraction law of logs and applies the chain rule A1: Correct derivative in any form		M1A1
	$=\frac{2\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)^{2}-2\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}}$	$=\frac{8}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}} \quad$ Obtains $\frac{k}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}}$	M1
	$=\frac{4}{\sinh 4 x}=4 \operatorname{cosech} 4 x$	Correct answer. Note that this is not a given answer so you can allow if e.g. a sinh becomes a sin but is then recovered but if there are any obvious errors this mark should be withheld.	A1

(b) Way 1	$4 \operatorname{cosech} 4 x=1 \Rightarrow \sinh 4 x=4 \Rightarrow 4 x=\ln \left(4+\sqrt{4^{2}+1}\right)$ Changes to $\sinh 4 x=\ldots$ and uses the correct logarithmic form of arsinh to reach $4 x=\ldots$	M1
	$x=\frac{1}{4} \ln (4+\sqrt{17})$ $\begin{array}{l}\text { This value only. } \\ \text { Allow e.g. } x=\ln (4+\sqrt{17})^{\frac{1}{4}}\end{array}$	A1
		(2)
(b) Way 2	$4 \operatorname{cosech} 4 x=1 \Rightarrow 4 \times \frac{2}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}}=1 \Rightarrow \mathrm{e}^{8 x}-8 \mathrm{e}^{4 x}-1=0$ Changes to the correct exponential form to reach $\frac{k}{\mathrm{e}^{4 x}-\mathrm{e}^{-4 x}}$, obtains a 3 TQ in $\mathrm{e}^{4 x}$, solves and takes \ln 's to reach $4 x=\ldots$ (usual rules for solving a 3 TQ do not apply as long as the above conditions are met)	M1
	$x=\frac{1}{4} \ln (4+\sqrt{17})$ This value only. Allow e.g. $x=\ln (4+\sqrt{17})^{\frac{1}{4}}$	A1
		(2)
		Total 6

Question Number	Scheme Notes	Marks
3(a)	$\mathbf{A}=\left(\begin{array}{lll}2 & k & 2 \\ 2 & 2 & k \\ 1 & 2 & 2\end{array}\right)$	
	$\begin{aligned} \|\mathbf{A}\| & =2(4-2 k)-k(4-k)+2(4-2)=0 \\ & \Rightarrow k^{2}-8 k+12=0 \Rightarrow k=\ldots \end{aligned}$ Attempts $\operatorname{det} \mathbf{A}=0$ and solves 3 TQ to obtain 2 values for k Note that the usual rules for solving a 3 TQ do not need to be applied as long as 2 values for k are obtained. The attempt at the determinant should be a correct expression for their row or column so allow errors only when collecting terms Note that the rule of Sarrus gives $8+k^{2}+8-4-4 k-4 k=0$	M1
	$k=2,6 \quad$ Correct values.	A1
	Marks for part (a) can only be scored in their attempt at (a) and not recovered from part (b)	
		(2)
(b)	$\left(\begin{array}{ccc} 2 & k & 2 \\ 2 & 2 & k \\ 1 & 2 & 2 \end{array}\right) \rightarrow\left(\begin{array}{ccc} 4-2 k & 4-k & 2 \\ 2 k-4 & 2 & 4-k \\ k^{2}-4 & 2 k-4 & 4-2 k \end{array}\right) \rightarrow\left(\begin{array}{ccc} 4-2 k & k-4 & 2 \\ 4-2 k & 2 & k-4 \\ k^{2}-4 & 4-2 k & 4-2 k \end{array}\right)$ Applies the correct method to reach at least a matrix of cofactors Should be an attempt at the minors followed by $\left(\begin{array}{ccc}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right)$ If there is any doubt then look for at least 6 correct cofactors	M1
	$\left(\begin{array}{ccc} 4-2 k & k-4 & 2 \\ 4-2 k & 2 & k-4 \\ k^{2}-4 & 4-2 k & 4-2 k \end{array}\right) \rightarrow\left(\begin{array}{ccc} 4-2 k & 4-2 k & k^{2}-4 \\ k-4 & 2 & 4-2 k \\ 2 & k-4 & 4-2 k \end{array}\right)$ dM1: Attempts adjoint matrix by transposing. Dependent on previous mark. A1: Correct adjoint	dM1 A1
	$\mathbf{A}^{-1}=\frac{1}{k^{2}-8 k+12}\left(\begin{array}{ccc} 4-2 k & 4-2 k & k^{2}-4 \\ k-4 & 2 & 4-2 k \\ 2 & k-4 & 4-2 k \end{array}\right)$ Fully correct inverse or follow through their incorrect determinant from part (a) where their determinant is a function of k	A1ft
	Ignore any labelling of the matrices and allow any type of brackets around the matrices	
		(4)
		Total 6

Question Number	Scheme Notes	Marks
4	$\begin{gathered} x=4 \cosh \theta \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=4 \sinh \theta \\ \Rightarrow \int \frac{1}{\left(x^{2}-16\right)^{\frac{3}{2}}} \mathrm{~d} x=\int \frac{4 \sinh \theta}{\left(16 \cosh ^{2} \theta-16\right)^{\frac{3}{2}}} \mathrm{~d} \theta \end{gathered}$ Full attempt to use the given substitution. Award for $\int \frac{1}{\left(x^{2}-16\right)^{\frac{3}{2}}} \mathrm{~d} x=k \int \frac{\sinh \theta}{\left((4 \cosh \theta)^{2}-16\right)^{\frac{3}{2}}} \mathrm{~d} \theta$ Condone $4 \cosh ^{2} \theta$ for $(4 \cosh \theta)^{2}$	M1
	$=\int \frac{4 \sinh \theta}{\left(16 \sinh ^{2} \theta\right)^{\frac{3}{2}}} \mathrm{~d} \theta=\int \frac{4 \sinh \theta}{64 \sinh ^{3} \theta} \mathrm{~d} \theta$ Simplifies $\left(16 \cosh ^{2} \theta-16\right)^{\frac{3}{2}}$ to the form $k \sinh ^{3} \theta$ which may be implied by: $\int \frac{1}{\left(x^{2}-16\right)^{\frac{3}{2}}} \mathrm{~d} x=k \int \frac{1}{\sinh ^{2} \theta} \mathrm{~d} \theta$ Note that this is not dependent on the first M	M1
	$=\int \frac{1}{16 \sinh ^{2} \theta} \mathrm{~d} \theta$ Fully correct simplified integral. Allow equivalents e.g. $\frac{1}{16} \int \operatorname{cosech}^{2} \theta \mathrm{~d} \theta, \int \frac{1}{(4 \sinh \theta)^{2}} \mathrm{~d} \theta, \int(4 \sinh \theta)^{-2} \mathrm{~d} \theta$ etc. May be implied by subsequent work.	A1
	$=\int \frac{1}{16 \sinh ^{2} \theta} \mathrm{~d} \theta=\frac{1}{16} \int \operatorname{cosech}^{2} \theta \mathrm{~d} \theta=-\frac{1}{16} \operatorname{coth} \theta(+c)$ Integrates to obtain $k \operatorname{coth} \theta$. Depends on both previous method marks.	dM1
	$=-\frac{1}{16} \frac{\cosh \theta}{\sinh \theta}+c=-\frac{1}{16} \frac{\frac{x}{4}}{\sqrt{\frac{x^{2}}{16}-1}}+c \text { or e.g. }-\frac{1}{4} \frac{\frac{x}{4}}{\sqrt{x^{2}-16}}+c$ Substitutes back correctly for x by replacing $\cosh \theta$ with $\frac{x}{4}$ or equivalent e.g. $4 \cosh \theta$ with x and $\sinh \theta$ with $\sqrt{\left(\frac{x}{4}\right)^{2}-1}$ or equivalent e.g. $4 \sinh \theta$ with $\sqrt{x^{2}-16}$ Depends on all previous method marks and must be fully correct work for their " $-\frac{1}{16}{ }^{\prime}$	dM1
	$\frac{-x}{16 \sqrt{x^{2}-16}}(+c)$ oe e.g. $\frac{-\frac{1}{16} x}{\sqrt{x^{2}-16}}(+c) \quad$Correct answer. Award once the correct answer is seen and apply isw if necessary. Condone the omission of " $+c$ "	A1
	Note that you can condone the omission of the " $\mathrm{d} \theta$ " throughout	
		(6)
Page 21	Of 152	Total 6

Question Number	Scheme	Notes	Marks
	Mark (a) and (b) together but do not credit work for (a) that is seen in (c)		
5(a)	$\left(\begin{array}{rrr} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 8 x \\ 8 y \\ 8 z \end{array}\right) \text { or }$ Correct method for	$\left.\begin{array}{ccc} 2 & -2 & -1 \\ 2 & -2 & -1 \\ 1 & -1 & -3 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots$ btaining the eigenvector	M1
	\mathbf{i} - \mathbf{j}	Any multiple of this vector	A1
			(2)
(b)	$\begin{gathered} \|\mathbf{M}-\lambda \mathbf{I}\|=\left\|\begin{array}{ccc} 6-\lambda & -2 & -1 \\ -2 & 6-\lambda & -1 \\ -1 & -1 & 5-\lambda \end{array}\right\| \\ \Rightarrow \underline{(6-\lambda)} \underline{\underline{((6-\lambda)(5-\lambda)-1)}+2(\underline{\underline{(2(\lambda-5)-1)}} \underline{\underline{1}} \underline{\underline{(2+6-\lambda)}}} \end{gathered}$ Correct attempt at the determinant of $\mathbf{M}-\lambda \mathbf{I}$. The terms with single underlining should be correct with correct signs but allow minor slips in the brackets with double underlining. Note that the rule of Sarrus gives $(6-\lambda)(6-\lambda)(5-\lambda)-2-2-(6-\lambda)-(6-\lambda)-4(5-\lambda)$		M1
	$\Rightarrow \lambda^{3}-17 \lambda^{2}+90 \lambda-144=0 \Rightarrow \lambda=\ldots$	Solves $\mathbf{M}-\lambda \mathbf{I}=0$ to obtain 2 different distinct real eigenvalues excluding 8	M1
	$\Rightarrow \lambda=3,6,(8)$	For 3 and 6	A1
			(3)

Question Number	Scheme Notes	Marks
(c)	$(\mathbf{D}=)\left(\begin{array}{lll}8 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6\end{array}\right) \quad$lorrect \mathbf{D} with distinct non-zero eigenvalues in any order. Follow through their non-zero 3 and 6. Ignore labelling and score for sight of the correct or correct ft matrix.	B1ft
	$\begin{aligned} & \left(\begin{array}{rrr} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 3 x \\ 3 y \\ 3 z \end{array}\right) \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots \quad \text { NB } \mathbf{v}_{2}=k\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right) \\ & \left(\begin{array}{rrr} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 6 x \\ 6 y \\ 6 z \end{array}\right) \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots \quad \mathrm{NB} \mathbf{v}_{3}=k\left(\begin{array}{c} 1 \\ 1 \\ -2 \end{array}\right) \end{aligned}$ Attempts eigenvectors for their other 2 distinct eigenvalues not including 8 May use e.g. $(\mathbf{M}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$	M1
	$(\mathbf{P}=)\left(\begin{array}{rrr} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \end{array}\right)$ Forms a complete \mathbf{P} from normalised eigenvectors using their eigenvector from part (a) and their other 2 eigenvectors formed from their other 2 different distinct eigenvalues in any order. Ignore labelling and score for forming this matrix which may be seen as part of a calculation.	M1
	$\mathbf{D}=\left(\begin{array}{lll} 8 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{array}\right) \text { and } \mathbf{P}=\left(\begin{array}{rrr} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \end{array}\right)$ All fully correct and consistent and correctly labelled but the labelling may be implied by their working.	A1
		(4)
		Total 9

Question Number	Scheme Notes	Marks
$\begin{gathered} 6(a) \\ \text { Way } 1 \end{gathered}$	$\int \frac{x^{n}}{\sqrt{x^{2}+3}} \mathrm{~d} x=\int x^{n-1} x\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \text { or } \int \frac{x^{n}}{\sqrt{x^{2}+3}} \mathrm{~d} x=\int x^{n-1} \mathrm{~d}\left(x^{2}+3\right)^{\frac{1}{2}}$ Applies $x^{n}=x^{n-1} \times x$ to $\int \frac{x^{n}}{\sqrt{x^{2}+3}} \mathrm{~d} x$ but may be implied by subsequent work	M1
	$\int x^{n-1} x\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x=x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\int(n-1) x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x$ dM1: Applies integration by parts to obtain $\alpha x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\beta \int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x$ ($\mathrm{NB} \alpha, \beta$ may be functions of n) Note that if a correct formula for parts is quoted first and parts is applied in the correct direction then we can condone slips in signs as long as the expression is of the above form. If you are unsure - send to review. A1: Correct expression	dM1A1
	$=x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\int(n-1) x^{n-2}\left(x^{2}+3\right)\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x$ Applies $\left(x^{2}+3\right)^{\frac{1}{2}}=\left(x^{2}+3\right)\left(x^{2}+3\right)^{-\frac{1}{2}}$ having made an attempt at integration by parts in the correct direction	M1
	$\begin{gathered} =x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-(n-1) \int x^{n}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x-3(n-1) \int x^{n-2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \\ =x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-(n-1) I_{n}-3(n-1) I_{n-2} \end{gathered}$ Splits into 2 integrals involving I_{n} and I_{n-2} Depends on all the previous method marks	dM1
	$\Rightarrow I_{n}=\frac{x^{n-1}}{n}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{3(n-1)}{n} I_{n-2} *$ Obtains the printed answer. You can condone the odd missing " $\mathrm{d} x$ " but if there are any clear errors e.g. invisible brackets that are not recovered, sign errors etc. then this mark should be withheld.	A1*
		(6)

Question Number	Scheme Notes	Marks
6(a) Way 2	$\begin{gathered} \int \frac{x^{n}}{\sqrt{x^{2}+3}} \mathrm{~d} x=\int x^{n-2} x^{2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \\ \text { Applies } x^{n}=x^{n-2} \times x^{2} \end{gathered}$	M1
	$\begin{gathered} \int x^{n-2} x^{2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x=\int x^{n-2}\left(x^{2}+3-3\right)\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \\ =\int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x-\int 3 x^{n-2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x \end{gathered}$ $\mathbf{d M 1}$: Writes x^{2} as $\left(x^{2}+3-3\right)$ to obtain $\alpha \int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x-\beta \int x^{n-2}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x$ A1: Correct expression	dM1A1
	$\int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x=\frac{x^{n-1}}{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{1}{n-1} \int x^{n}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x$ Applies integration by parts on $\int x^{n-2}\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x$ to obtain $\alpha x^{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\beta \int x^{n}\left(x^{2}+3\right)^{-\frac{1}{2}} \mathrm{~d} x$ Note that if a correct formula for parts is quoted first and parts is applied in the correct direction then we can condone slips in signs as long as the expression is of the above form. If you are unsure - send to review.	M1
	$I_{n}=\frac{x^{n-1}}{n-1}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{1}{n-1} I_{n}-3 I_{n-2}$ Brings all together and introduces I_{n} and I_{n-2} Depends on all the previous method marks	dM1
	$\Rightarrow I_{n}=\frac{x^{n-1}}{n}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{3(n-1)}{n} I_{n-2} *$ Obtains the printed answer. You can condone the odd missing " $\mathrm{d} x$ " but if there are any clear errors e.g. invisible brackets that are not recovered, sign errors etc. then this mark should be withheld.	A1*

Question Number	Scheme Notes	Marks
(b) Way 1	$I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5} I_{3}$ Applies the reduction formula once to obtain I_{5} in terms of I_{3} Allow slips on coefficients only	M1
	$I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{6}{3} I_{1}\right)$ Applies the reduction formula again to obtain an expression for I_{5} in terms of I_{1} and allow " I_{1} "or what they think is I_{1} Allow slips on coefficients only	M1
	$\begin{aligned} & I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{6}{3}\left(x^{2}+3\right)^{\frac{1}{2}}\right) \\ & I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{4}{5} x^{2}\left(x^{2}+3\right)^{\frac{1}{2}}+\frac{24}{5}\left(x^{2}+3\right)^{\frac{1}{2}} \end{aligned}$ Any correct expression in terms of x only	A1
	$I_{5}=\frac{1}{5}\left(x^{2}+3\right)^{\frac{1}{2}}\left(x^{4}-4 x^{2}+24\right)+k$ Must include the " $+k$ " but allow other letter e.g. $+c$	A1
		(4)
		Total 10
$\begin{gathered} \text { (b) } \\ \text { Way } 2 \end{gathered}$	NB $I_{1}=\left(x^{2}+3\right)^{\frac{1}{2}}$	
	$I_{3}=\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{6}{3} I_{1}$ Applies the reduction formula once to obtain I_{3} in terms of I_{1} and allow " I_{1} " or what they think is I_{1} Allow slips on coefficients only	M1
	$I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-2 I_{1}\right)$ Applies the reduction formula again to obtain an expression for I_{5} in terms of I_{1} and allow " I_{1} " or what they think is I_{1} Allow slips on coefficients only	M1
	$\begin{aligned} & \text { E.g. } \\ & I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{x^{2}}{3}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{6}{3}\left(x^{2}+3\right)^{\frac{1}{2}}\right) \\ & I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{4}{5} x^{2}\left(x^{2}+3\right)^{\frac{1}{2}}+\frac{24}{5}\left(x^{2}+3\right)^{\frac{1}{2}} \end{aligned}$ Any correct expression in terms of x only	A1
	$I_{5}=\frac{1}{5}\left(x^{2}+3\right)^{\frac{1}{2}}\left(x^{4}-4 x^{2}+24\right)+k$ Must include the " $+k$ " but allow other letter e.g. $+c$	A1

Question Number	Scheme Notes	Marks
(b) Way 3	$I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5} I_{3}$ Applies the reduction formula once to obtain I_{5} in terms of I_{3} Allow slips on coefficients only	M1
	$\begin{gathered} I_{3}=\int \frac{x^{3}}{\left(x^{2}+3\right)^{\frac{1}{2}}} \mathrm{~d} x \\ u=x^{2}+3 \Rightarrow I_{3}=\int \frac{(u-3)^{\frac{3}{2}}}{u^{\frac{1}{2}}} \frac{\mathrm{~d} u}{2(u-3)^{\frac{1}{2}}}=\frac{1}{2} \int \frac{(u-3)}{u^{\frac{1}{2}}} \mathrm{~d} u=\frac{1}{3} u^{\frac{3}{2}}-6 u^{\frac{1}{2}} \\ =\frac{1}{3}\left(x^{2}+3\right)^{\frac{3}{2}}-6\left(x^{2}+3\right)^{\frac{1}{2}} \\ I_{5}=\frac{x^{4}}{5}\left(x^{2}+3\right)^{\frac{1}{2}}-\frac{12}{5}\left(\frac{1}{3}\left(x^{2}+3\right)^{\frac{3}{2}}-6\left(x^{2}+3\right)^{\frac{1}{2}}\right) \end{gathered}$ M1: A credible attempt to find I_{3} and then expresses I_{5} in terms of x A1: Any correct expression in terms of x only	M1A1
	$I_{5}=\frac{1}{5}\left(x^{2}+3\right)^{\frac{1}{2}}\left(x^{4}-4 x^{2}+24\right)+k$ Must include the " $+k$ " but allow other letter e.g. $+c$	A1

Question Number	Scheme	Notes	Marks
7(a)	$5 \mathbf{i}+3 \mathbf{j}-8 \mathbf{k}$ and $2 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k}$ lie in Π_{1}	Identifies 2 correct vectors lying in Π_{1}	B1
	$\mathbf{n}=\left(\begin{array}{r} 5 \\ 3 \\ -8 \end{array}\right) \times\left(\begin{array}{r} 2 \\ -3 \\ -6 \end{array}\right)=\left(\begin{array}{c} -18-24 \\ -(-30+16) \\ -15-6 \end{array}\right)$ Attempts the vector product between 2 correct vectors in Π_{1} If no working is shown, look for at least 2 correct elements. Or e.g. Let $\mathbf{n}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ then $\begin{aligned} & (a \mathbf{i}+b \mathbf{j}+c \mathbf{k}) \cdot(5 \mathbf{i}+3 \mathbf{j}-8 \mathbf{k})=0,(a \mathbf{i}+b \mathbf{j}+c \mathbf{k}) \cdot(2 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k})=0 \\ & \Rightarrow 5 a+3 b-8 c=0,2 a-3 b-6 c=0 \Rightarrow a=2 c, 3 b=-2 c \Rightarrow \mathbf{n}=\ldots \end{aligned}$		M1
	$=\left(\begin{array}{r}-42 \\ 14 \\ -21\end{array}\right)$ or e.g. $\left(\begin{array}{r}6 \\ -2 \\ 3\end{array}\right)$	Correct normal vector	A1
	$(6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}) \cdot(\mathbf{i}+2 \mathbf{j}+\mathbf{k})=\ldots$ Attempts scalar product between their normal vector and position vector of a point in Π_{1}. Do not allow this mark if the " 5 " (or equivalent) just 'appears'. There must be some evidence for its origin e.g. a. $\mathbf{n}=\ldots$ where \mathbf{a} and \mathbf{n} have been defined earlier. Depends on the first method mark.		dM1
	$6 x-2 y+3 z=5 *$	Correct proof	A1*
			(5)
	Alternative 1 for (a):		
	E.g. Let equation of Π_{1} be $a x+b y+z=c$ 3 points on Π_{1} are $(1,2,1),(3,-1,-5)$ and e.g. $(8,2,-13)$		B1
	$\begin{gathered} a+2 b+1=c, 3 a-b-5=c, 8 a+2 b-13=c \Rightarrow a=\ldots, b=\ldots, c=\ldots \\ \text { Solves simultaneously for } a, b \text { and } c \text { using correct points } \end{gathered}$		M1
	$\Rightarrow a=2, b=-\frac{2}{3}, c=\frac{5}{3}$	Correct values	A1
	$2 x-\frac{2}{3} y+z=\frac{5}{3}$	Forms Cartesian equation	dM1
	$6 x-2 y+3 z=5 *$	Correct proof	A1*
age 2	Alternative 2 for (a):		
	$\begin{array}{r} (1,2,1) \rightarrow \\ \\ \text { Shows }(1,2 \end{array}$	$-3 z=6-4+3=5$) lies on Π_{1}	B1
	$\frac{x-3}{5}=\frac{y+1}{3}=\frac{z+5}{-8} \rightarrow \mathbf{r}=$ M1: Converts l to correct parametric form s allow 1 slip with	$\left(\begin{array}{c}3 \\ -1 \\ -5\end{array}\right)+\lambda\left(\begin{array}{c}5 \\ 3 \\ -8\end{array}\right)$ or equivalent n as part of an attempt at this alternative e of the elements ct form	M1A1
	f $1526(3+5 \lambda)-2(-1+3 \lambda)$	价 $+3(-5-8 \lambda)=5$	dM1

	Shows l lies in Π_{1}		
	P lies in Π_{1} and l lies in Π_{1} so $6 x-2 y+3 z=5 *$ All correct with conclusion		A1*
$\begin{gathered} \text { (b) } \\ \text { Way } 1 \end{gathered}$	$d=\frac{\|6(2)-2 k+3(-7)-5\|}{\sqrt{6^{2}+2^{2}+3^{2}}}$	Correct method for the shortest distance	M1
	$=\frac{1}{7}\|-2 k-14\|=\frac{2}{7}\|k+7\|^{*}$	Correct completion	A1*
			(2)
(b) Way 2	Distance O to Π_{1} is $\frac{5}{\sqrt{6^{2}+2^{2}+3^{2}}}$. Distance O to parallel plane containing Q is $\frac{(6 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}) \cdot(2 \mathbf{i}+k \mathbf{j}-7 \mathbf{k})}{\sqrt{6^{2}+2^{2}+3^{2}}}=\frac{-9-2 k}{7}$ $d=\left\|\frac{5}{7}-\frac{-9-2 k}{7}\right\|$ Correct method for the shortest distance		M1
	$=\frac{1}{7}\|2 k+14\|=\frac{2}{7}\|k+7\| *$	Correct completion	A1*
(b) Way 3	$\begin{gathered} d=\left\|\frac{\overrightarrow{P Q} \cdot \mathbf{n}}{\|\mathbf{n}\|}\right\|=\left\|\frac{(\mathbf{i}+(k-2) \mathbf{j}-8 \mathbf{k}) \cdot(-42 \mathbf{i}+14 \mathbf{j}-21 \mathbf{k})}{\sqrt{42^{2}+14^{2}+21^{2}}}\right\| \\ \text { Correct method for the shortest distance } \end{gathered}$		M1
	$=\left\|\frac{-42+14 k-28+168}{49}\right\|=\left\|\frac{14 k+98}{49}\right\|=\frac{2}{7}\|k+7\|^{*}$	Correct completion	A1*
(c)	$\frac{2}{7}\|k+7\|=\frac{\|8(2)-4 k-7+3\|}{\sqrt{8^{2}+4^{2}+1^{2}}}$ Correctly attempts the distance between $(2, k,-7)$ and Π_{2} and sets equal to the result from (a). May see alternative methods here for the distance between $(2, k,-7)$ and Π_{2} e.g. finds the coordinates of a point on Π_{2} e.g. $R(1,1,-7)$ and then finds $\begin{gathered} d=\left\|\frac{\overrightarrow{R Q} \cdot(8 \mathbf{i}-4 \mathbf{j}+\mathbf{k})}{\|8 \mathbf{i}-4 \mathbf{j}+\mathbf{k}\|}\right\|=\left\|\frac{(\mathbf{i}+(k-1) \mathbf{j}) \cdot(8 \mathbf{i}-4 \mathbf{j}+\mathbf{k})}{\sqrt{8^{2}+4^{2}+1^{2}}}\right\|=\left\|\frac{8-4 k+4}{9}\right\|=\left\|\frac{12-4 k}{9}\right\| \\ \frac{2}{7}(k+7)=" \frac{1}{9}(12-4 k) " \Rightarrow k=\ldots \text { or } \frac{2}{7}(k+7)=" \frac{1}{9}(4 k-12) " \Rightarrow k=\ldots \end{gathered}$ Attempts to solve one of these equations where their distance from Q to Π_{2} is of the form $\mathrm{a} k+b$ where a and b are non-zero. or $\begin{aligned} \frac{2}{7}(k+7)= & " \frac{1}{9}(12-4 k) " \Rightarrow \frac{4}{49}(k+7)^{2}=" \frac{1}{81}(12-4 k)^{2} " \\ & \Rightarrow 23 k^{2}-462 k-441=0 \Rightarrow k=\ldots \end{aligned}$ Squares both sides and attempts to solve resulting quadratic. Condone poor attempts at squaring the brackets and there is no requirement to follow the usual guidance for solving the quadratic		M1
			dM1
	$k=-\frac{21}{23}$ or $k=21$	One correct value. Must be 21 but allow equivalent exact fractions for $-\frac{21}{23}$	A1

	$k=-\frac{21}{23} \text { and } k=21$	Both correct values. Must be 2Γ but allow equivalent exact fractions for $-\frac{21}{23}$ and no other values.	A1
			(4)
			Total 11

Question Number	Scheme	Notes	Marks
8(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 x}{1-x^{2}}$	Correct derivative	B1
	$1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\frac{4 x^{2}}{\left(1-x^{2}\right)^{2}}=\frac{\left(1-x^{2}\right)^{2}+4 x^{2}}{\left(1-x^{2}\right)^{2}}$ Attempts $1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}$, finds common numerator condoning sign slips only.	$\frac{x^{4}-2 x^{2}+1+4 x^{2}}{\left(1-x^{2}\right)^{2}} \text { or } \frac{x^{4}+2 x^{2}+1}{\left(1-x^{2}\right)^{2}}$ minator and shows working in the he denominator may be expanded)	M1
	$=\frac{\left(1+x^{2}\right)^{2}}{\left(1-x^{2}\right)^{2}}$ or $\left(\frac{1+x^{2}}{1-x^{2}}\right)^{2}$	Fully correct expression with factorised numerator and denominator.	A1
	$\int_{\frac{1}{2}}^{\frac{3}{4}} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=\int_{\frac{1}{2}}^{\frac{3}{4}}\left(\frac{1+x^{2}}{1-x^{2}}\right) \mathrm{d} x *$	Fully correct proof with no errors and integral as printed on the question paper but allow $x^{2}+1$ for $1+x^{2}$ and allow $\int_{\frac{1}{2}}^{\frac{3}{4}} \frac{\left(1+x^{2}\right)}{\left(1-x^{2}\right)} \mathrm{d} x \text { or } \int_{\frac{1}{2}}^{\frac{3}{4}} \frac{1+x^{2}}{1-x^{2}} \mathrm{~d} x$	A1*
			(4)

Question Number	Scheme	Notes	Marks
(b)	$\frac{\left(x^{2}+1\right)}{\left(1-x^{2}\right)}=-1+\frac{2}{1-x^{2}} \text { or e.g. }-1+\frac{1}{1-x}+\frac{1}{1+x}$ Writes the improper fraction correctly		B1
	$\begin{gathered} \int \frac{k}{1-x^{2}} \mathrm{~d} x= \pm \alpha \ln \frac{1+x}{1-x} \\ \text { Or e.g. } \\ \int \frac{k}{1-x^{2}} \mathrm{~d} x= \pm \alpha \ln (1+x) \pm \alpha \ln (1-x) \end{gathered}$ Achieves an acceptable logarithmic form for $\int \frac{k}{1-x^{2}} \mathrm{~d} x$ (k constant) (may see partial fraction approach). If they use artanh here, this mark and the next mark will become available when they change to logarithmic form e.g. when they substitute the limits later.		M1
	$\int-1+\frac{2}{1-x^{2}} \mathrm{~d} x=-x+\ln \frac{1+x}{1-x}$	Correct integration	A1
	$\left[-x+\ln \frac{1+x}{1-x}\right]_{\frac{1}{2}}^{4}=-\frac{3}{4}+\ln 7-\left(-\frac{1}{2}+\ln 3\right)$	Evidence that the given limits have been applied. Condone slips as long as the intention is clear. Depends on the previous M.	dM1
	$\frac{1}{4}+\ln \frac{7}{3}$	cao	A1
			(5)
	Note that a common incorrect approach is: $\begin{aligned} \int \frac{\left(1+x^{2}\right)}{\left(1-x^{2}\right)} \mathrm{d} x & =\int\left(\frac{1}{1-x^{2}}+\frac{x^{2}}{1-x^{2}}\right) \mathrm{d} x=\frac{1}{2} \ln \frac{1+x}{1-x}+\ldots \\ & =\left[\frac{1}{2} \ln \frac{1+x}{1-x}+\ldots\right]_{\frac{1}{2}}^{\frac{3}{4}}=\ldots \end{aligned}$ If there is no attempt at $\int\left(\frac{x^{2}}{1-x^{2}}\right) d x$ this will generally score B0M1A0M0A0 BUT If there is an attempt at $\int\left(\frac{x^{2}}{1-x^{2}}\right) \mathrm{d} x$ (however poor) and evidence that the limits have been applied this will generally score B0M1A0M1A0. Condone slips with the substitution of limits as long as the intention is clear. BUT note that attempts that consider partial fractions such as $\frac{1+x^{2}}{1-x^{2}} \equiv \frac{A}{1-x}+\frac{B}{1+x}$ will generally score no marks - if you are unsure, send to review. Note also that $\frac{1+x^{2}}{1-x^{2}} \equiv \frac{A}{1-x}+\frac{B}{1+x}+C$ is a correct form and could score full marks. Also, use of $\frac{\left(1+x^{2}\right)}{\left(1-x^{2}\right)}=\frac{1-x^{2}+2 x^{2}}{1-x^{2}}=1+\frac{2 x^{2}}{1-x^{2}}$ with no attempt to deal with the $\frac{2 x^{2}}{1-x^{2}}$ as an improper fraction as in the main scheme is likely to score no marks.		
			Total 9

Alternative approach to integration in part (b) by substitution:

(b)	$x=\tanh \theta \Rightarrow \int \frac{\left(1+x^{2}\right)}{\left(1-x^{2}\right)} \mathrm{d} x=\int \frac{\left(1+\tanh ^{2} \theta\right)}{\left(1-\tanh ^{2} \theta\right)} \operatorname{sech}^{2} \theta \mathrm{~d} \theta$ Substitutes fully		B1
	$\begin{gathered} \int \frac{\left(1+\tanh ^{2} \theta\right)}{\left(1-\tanh ^{2} \theta\right)} \operatorname{sech}^{2} \theta \mathrm{~d} \theta=\int\left(1+\tanh ^{2} \theta\right) \mathrm{d} \theta \\ =\int\left(2-\operatorname{sech}^{2} \theta\right) \mathrm{d} \theta \end{gathered}$ Cancel and applies $\tanh ^{2} \theta=1-\operatorname{sech}^{2} \theta$		M1
	$=\int\left(2-\operatorname{sech}^{2} \theta\right) \mathrm{d} \theta=2 \theta-\tanh \theta$	Correct integration	A1
	$[2 \operatorname{artanh} x-x]_{\frac{1}{2}}^{\frac{3}{4}}=2 \times \frac{1}{2} \ln \left(\frac{1+\frac{3}{4}}{1-\frac{3}{4}}\right)-\frac{3}{4}-\left(2 \times \frac{1}{2} \ln \left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right)-\frac{1}{2}\right)$ Evidence that the given limits have been applied. Condone slips as long as the intention is clear. Depends on the previous M.		dM1
	$=-\frac{1}{4}+\ln \frac{7}{3}$	cao	A1

Note that a similar approach can be applied to $\int\left(\frac{x^{2}}{1-x^{2}}\right) \mathrm{d} x$

Question Number	Scheme	Notes	Marks
9	$\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, \quad(5 \cos \theta, 4 \sin \theta)$		
(a)	$\begin{gathered} \frac{\mathrm{d} x}{\mathrm{~d} \theta}=-5 \sin \theta, \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=4 \cos \theta \\ \frac{2 x}{25}+\frac{2 y}{16} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \text { oe } \\ \text { or } \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4 x}{25}\left(1-\frac{x^{2}}{25}\right)^{-\frac{1}{2}} \text { oe } \end{gathered}$	Correct derivatives or correct implicit differentiation or correct explicit differentiation.	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \cos \theta}{-5 \sin \theta}$	Divides their derivatives correctly or substitutes and rearranges	M1
	$M_{N}=\frac{5 \sin \theta}{4 \cos \theta}$	Correct perpendicular gradient rule may be implied when they form the normal equation.	M1
	$y-4 \sin \theta=\frac{5 \sin \theta}{4 \cos \theta}(x-5 \cos \theta)$	Correct straight line method (any complete method). Must use their gradient of the normal.	M1
	$\begin{gathered} 5 x \sin \theta-4 y \cos \theta=9 \sin \theta \cos \theta^{*} \\ \text { or } \\ 9 \sin \theta \cos \theta=5 x \sin \theta-4 y \cos \theta^{*} \end{gathered}$	Achieves the printed answer with no errors and allow this answer to be obtained from the previous line. Allow $5 \sin \theta x$ for $5 x \sin \theta$ and $4 \cos \theta y$ for $4 y \cos \theta$.	A1*
	Allow all marks if the gradient is seen a straight line equation) as long	a function of x and y initially (even in the as this is recovered correctly.	
	Solutions that do not use calculus e.g. as $y-4 \sin \theta=\frac{5 \sin \theta}{4 \cos \theta}(x-5 \cos \theta)$ e.g. $a x \sin \theta-b y \sin \theta=\left(a^{2}-b^{2}\right) \sin$ result this sc But we would accept $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \operatorname{co}}{-5 \sin }$	ust quoting the equation of the normal nd to review however if they just quote $\theta \cos \theta$ and then write down the given res no marks. θ to be quoted for a full solution.	
			(5)
(b)	$\begin{gathered} b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow 16=25\left(1-e^{2}\right) \Rightarrow e=\frac{3}{5} \\ F \text { is }(a e, 0)=\left(5 \times \frac{3}{5}, 0\right) \end{gathered}$ Or e.g. " $c^{\prime \prime 2}=a^{2} e^{2}=a^{2}-b^{2}=25-16 \Rightarrow a^{2} e^{2}=9 \Rightarrow a e=\ldots$ Fully correct strategy for F (must be numerical so ($5 e, 0$) is M0		M1
	$(3,0)$	Correct coordinates. $(\pm 3,0)$ scores $\mathrm{A} 0$	A1
			(2)

(c)	$x=\frac{9}{5} \cos \theta \quad$ Correct x coordinate (of Q)	B1
	$P F^{2}=(5 \cos \theta-" 3 ")^{2}+(4 \sin \theta)^{2}$ Correct application of Pythagoras to find $P F$ or $P F^{2}$. Their " 3 " should be or $P F=\sqrt{(5 \cos \theta-" 3 ")^{2}+(4 \sin \theta)^{2}}$ e.g. " 5 b".	M1
	$\begin{array}{l\|l} \hline=25 \cos ^{2} \theta-30 \cos \theta+9+16 \sin ^{2} \theta & \begin{array}{l} \text { Applies } \sin ^{2} \theta=1-\cos ^{2} \theta \text { to obtain a } \\ \text { quadratic expression in } \cos \theta . \text { If the } \\ \text { correct identity is not seen explicitly } \\ \text { then their working must imply that a } \\ \text { correct identity has been used. } \\ \text { Depends on the previous M. } \end{array} \end{array}$	dM1
	$P F= \pm(5-3 \cos \theta)$ Correct expression for $P F$ or $P F^{2}$ in $P F^{2}=9 \cos ^{2} \theta-30 \cos \theta+25$ terms of $\cos \theta$ with terms collected.	A1
	Note that an alternative to using Pythagoras to find $P F$ is to use $P F=e P M$ where M is the foot of the perpendicular from P to the positive directrix. Score M1 for $x=\frac{a}{e}=\frac{5}{3 / 5}\left(=\frac{25}{3}\right)\left(\operatorname{not} \pm \frac{25}{3}\right)$ and dM1A1 for $P F=e P M=\frac{3}{5}\left(\frac{25}{3}-5 \cos \theta\right)$	
	$\begin{gathered} \frac{\|Q F\|}{\|P F\|}=\frac{3-\frac{9}{5} \cos \theta}{5-3 \cos \theta}=\frac{3\left(1-\frac{3}{5} \cos \theta\right)}{5\left(1-\frac{3}{5} \cos \theta\right)} \text { or e.g. } \frac{3}{5} \times \frac{1-\frac{3}{5} \cos \theta}{1-\frac{3}{5} \cos \theta}=\frac{3}{5}=e^{*} \\ \frac{Q F^{2}}{P F^{2}}=\frac{\left(3-\frac{9}{5} \cos \theta\right)^{2}}{9 \cos ^{2} \theta-30 \cos \theta+25}=\frac{9-\frac{54}{5} \cos \theta+\frac{81}{25} \cos ^{2} \theta}{9 \cos ^{2} \theta-30 \cos \theta+25} \\ =\frac{9\left(1-\frac{6}{5} \cos \theta+\frac{9}{25} \cos ^{2} \theta\right)}{25\left(1-\frac{6}{5} \cos \theta+\frac{9}{25} \cos ^{2} \theta\right)} \text { or e.g. }=\frac{9}{25} \times \frac{1-\frac{6}{5} \cos \theta+\frac{9}{25} \cos ^{2} \theta}{1-\frac{6}{5} \cos \theta+\frac{9}{25} \cos ^{2} \theta}=\frac{9}{25} \Rightarrow \frac{Q F}{P F}=\frac{3}{5}=e^{*} \end{gathered}$ Fully correct working including factorisation or equivalent leading to showing that $\frac{\|Q F\|}{\|P F\|}=e \text { with no errors and a conclusion " }=e " .$ Note that the value of e must have been seen earlier e.g. in part (b) or calculated independently somewhere in the question. Note that this mark depends on a ratio where the numerator and denominator are either both positive or both negative or modulus symbols are present throughout. This does not apply to the second case as both numerator and denominator must be positive as they are squared.	A1*
		(5)
		Total 12

Question Number	Scheme	Notes	Marks
1(a)	$1-\tanh ^{2} x \equiv \operatorname{sech}^{2} x$		
	$1-\tanh ^{2} x=1-\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)^{2}$	Replaces the $\tanh x$ on the lhs with a correct expression in terms of exponentials.	B1
	$=\frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}-\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\frac{\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}\right)}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}} \text { or e.g. } \frac{2 \mathrm{e}^{2 x} \times 2 \mathrm{e}^{-2 x}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}$ Attempts to find common denominator and expand numerator		M1
	$=\left(\frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}\right)=\operatorname{sech}^{2} x^{*}$	Obtains the rhs with no errors.	A1cso
			(3)
ALT 1	$\begin{aligned} & 1-\tanh ^{2} x=(1-\tanh x)(1+\tanh x) \\ & =\left(1-\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)\right)\left(1+\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)\right) \end{aligned}$	Uses the difference of 2 squares on the lhs and replaces the tanh x with a correct expression in terms of exponentials.	B1
	$=\left(\frac{2 e^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)\left(\frac{2 \mathrm{e}^{x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)$	Attempt to find common denominators and simplify numerators.	M1
	$=\left(\frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}\right)=\operatorname{sech}^{2} x^{*}$	Obtains the rhs with no errors.	A1cso
ALT 2	$\operatorname{sech}^{2} x=\frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}$	Replaces the sech x on the rhs with a correct expression in terms of exponentials.	B1
	$=\frac{\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}\right)}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}-\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}$ Attempts to express the " 4 " in terms of the denominator.		M1
	$=1-\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)^{2}=1-\tanh ^{2} x^{*}$	Obtains the lhs with no errors.	A1cso

(b)	$\begin{gathered} 2 \operatorname{sech}^{2} x+3 \tanh x=3 \Rightarrow 2\left(1-\tanh ^{2} x\right)+3 \tanh x=3 \\ \Rightarrow 2 \tanh ^{2} x-3 \tanh x+1=0 \end{gathered}$ Uses $\operatorname{sech}^{2} x=1-\tanh ^{2} x$ and forms a 3 term quadratic in $\tanh x$		M1
	$(2 \tanh x-1)(\tanh x-1)=0 \Rightarrow \tanh x=\ldots$	Solves 3TQ by any valid method including calculator.	M1
	$\tanh x=\frac{1}{2} \rightarrow x=\ln \sqrt{3}$	$\ln \sqrt{3} \text {. Accept } \frac{1}{2} \ln 3,-\frac{1}{2} \ln \frac{1}{3}$ And no other answers.	A1
			(3)
ALT	$\begin{gathered} 2 \operatorname{sech}^{2} x+3 \tanh x=3 \Rightarrow 2\left(\frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}\right)+3\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)=3 \\ \Rightarrow 8+3\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)=3\left(\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}\right) \Rightarrow \ldots \end{gathered}$ Substitutes the correct exponential forms, attempts to eliminate fractions and collect terms		M1
	$6 \mathrm{e}^{-2 x}=2 \Rightarrow \mathrm{e}^{-2 x}=\frac{1}{3}$	Rearranges to reach $\mathrm{e}^{-2 x}=\ldots$	M1
	$x=\ln \sqrt{3}$	$\ln \sqrt{3} \text {. Accept } \frac{1}{2} \ln 3,-\frac{1}{2} \ln \frac{1}{3}$ And no other answers.	A1
			Total 6

Question Number	Scheme	Notes	Marks
2.	$y=\sqrt{9-x^{2}}, 0 \leq x \leq 3$		
(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{\sqrt{9-x^{2}}}$	Correct derivative in any form.	B1
	Note that the derivative may be obtained implicitly after squaring e.g.$y=\sqrt{9-x^{2}} \Rightarrow y^{2}=9-x^{2} \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2 x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{x}{\sqrt{9-x^{2}}}$		
	Length of $C=\int \sqrt{1+\frac{x^{2}}{9-x^{2}}} \mathrm{~d} x$	Uses $\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x$ with their $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1
	Note that the above may be obtained via the implicit route as e.g. $\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=\int \sqrt{1+\frac{x^{2}}{y^{2}}} \mathrm{~d} x=\int \sqrt{1+\frac{x^{2}}{9-x^{2}}} \mathrm{~d} x$ In which case the B1 is implied.		
	$\begin{gathered} =\int \sqrt{\frac{9}{9-x^{2}}} \mathrm{~d} x=3 \arcsin \frac{x}{3}(+c)\left(\text { or }-3 \arccos \frac{x}{3}(+c)\right) \\ \int_{0}^{3} \sqrt{\frac{9}{9-x^{2}}} \mathrm{~d} x=3 \arcsin (1)-3 \arcsin (0)(\text { or }-3 \arccos (1)+3 \arccos (0)) \end{gathered}$ Finds common denominator, integrates to obtain arcsin... or arccos... and applies the limits 0 and 3 .		M1
	$=\frac{3 \pi}{2}$ *	Obtains the printed answer with no errors. This mark should be withheld if there is no evidence at all of the limits being applied.	A1
	Special case: If $+\frac{x}{\sqrt{9-x^{2}}}$ is obtained for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ score BOM1M1A1 if otherwise correct but allow full recovery in (b)		
			(4)
(b)	$=\int 2 \pi \sqrt{9-x^{2}}\left(\sqrt{\frac{9}{9-x^{2}}}\right) \mathrm{durface} \text { Area } x$	Uses $\int 2 \pi y \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x$ with their $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1
	$=\int_{0}^{3} 6 \pi \mathrm{~d} x=6 \pi[x]_{0}^{3}=\ldots$	Integrates to obtain $k x$ and applies the limits 0 and 3. Condone omission of the lower limit.	M1
	$=18 \pi$	18π cao	A1
			(3)
			Total 7

Question Number	Scheme	Notes	Marks
3.	$\mathbf{M}=\left(\begin{array}{cc}3 & 1 \\ 1 & 1 \\ -1 & p\end{array}\right.$	$\left.\begin{array}{l}p \\ 2 \\ 2\end{array}\right)$	
(a)	$\begin{aligned} \operatorname{det} \mathbf{M}=\left\|\begin{array}{ccc} 3 & 1 & p \\ 1 & 1 & 2 \\ -1 & p & 2 \end{array}\right\| \\ =3(2-2 p)-1(2+2)+p(p+1) \end{aligned}$	Attempts determinant. Requires at least 2 correct "terms". May use other rows/columns or rule of Sarrus.	M1
	$=p^{2}-5 p+2$	Correct simplified determinant.	A1
	$p^{2}-5 p+2=0 \Rightarrow p=\ldots$	Solves 3TQ	M1
	$\frac{5 \pm \sqrt{17}}{2}$	Correct values.	A1
	Minors $\left(\begin{array}{ccc}2-2 p & 4 & p+1 \\ \left(2-p^{2}\right) & 6+p & (3 p+1) \\ 2-p & (6-p) & 2\end{array}\right)$		(4)
(b)		Attempts the matrix of minors. If there is any doubt look for at least 6 correct elements. May be implied by their matrix of cofactors.	M1 (B1 on EPEN)
	Cofactors $\left(\begin{array}{ccc}2-2 p & -4 & p+1 \\ -\left(2-p^{2}\right) & 6+p & -(3 p+1) \\ 2-p & -(6-p) & 2\end{array}\right)$	Attempts cofactors.	M1
		Correct matrix	A1
	$\mathbf{M}^{-1}=\frac{1}{p^{2}-5 p+2}\left(\begin{array}{ccc}2-2 p & p^{2}-2 & 2-p \\ -4 & 6+p & p-6 \\ p+1 & -3 p-1 & 2\end{array}\right)$	Transposes matrix of cofactors and divides by determinant.	M1
		Follow though their det \mathbf{M} from part (a) but the adjoint matrix must be correct.	A1ft
			(5)
			Total 9

4(i)	$\mathrm{f}(x)=x \arccos x,-1 \leq x \leq 1$,		06 -MS
	$\mathrm{f}^{\prime}(x)=\arccos x-\frac{x}{\sqrt{1-x^{2}}}$ M1: Differentiates using the product rule to obtain an expression of the form: $\arccos x \pm \frac{x}{\sqrt{1-x^{2}}}$ A1: Correct derivative		M1A1
	$\mathrm{f}^{\prime}(0.5)=\arccos 0.5-\frac{0.5}{\sqrt{1-0.5^{2}}}=\frac{\pi-\sqrt{3}}{3}$	$\frac{\pi-\sqrt{3}}{3}$ oe e.g. $\frac{\pi}{3}-\frac{1}{\sqrt{3}}$	A1
			(3)
(ii)	$\mathrm{g}(\mathrm{x})=\arctan \left(\mathrm{e}^{2 x}\right)$		
	$\mathrm{g}^{\prime}(x)=\frac{2 \mathrm{e}^{2 x}}{\mathrm{e}^{4 x}+1}$ M1: Differentiates using the chain rule to obtain an expression of the form: $\frac{k \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}\right)^{2}+1}$ A1: Correct derivative in any form		M1A1
	$\mathrm{g}^{\prime}(x)=\frac{2}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}=\operatorname{sech}(2 x)$	Introduces sech(2x). Depends on previous M.	dM1
	$g{ }^{\prime \prime}(x)=-2 \operatorname{sech}(2 x) \tanh (2 x)$	Differentiates $\operatorname{sech}(u) \rightarrow \pm \operatorname{sech} u \tanh u$ Depends on both previous M's.	dM1
		Correct expression.	A1
			(5)
$\begin{gathered} \text { (ii) } \\ \text { ALT } 1 \end{gathered}$	$g^{\prime}(x)=\frac{2 \mathrm{e}^{2 x}}{\mathrm{e}^{4 x}+1}$ M1: Differentiates using the chain rule to obtain an expression of the form: $\frac{k \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}\right)^{2}+1}$ A1: Correct derivative in any form		M1A1
	$g^{\prime \prime}(x)=\frac{4 \mathrm{e}^{2 x}\left(1+\mathrm{e}^{4 x}\right)-4 \mathrm{e}^{4 x} \times 2 \mathrm{e}^{2 x}}{\left(\mathrm{e}^{4 x}+1\right)^{2}}$	Differentiates using quotient or product rule. Depends on first M.	dM1
	$=\frac{4 \mathrm{e}^{2 x}-4 \mathrm{e}^{6 x}}{\left(\mathrm{e}^{4 x}+1\right)^{2}}=\frac{-4\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)}{\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)^{2}}$	Multiply through by $\mathrm{e}^{-4 x}$. Depends on both previous M's.	dM1
	$\begin{aligned} = & -2 \frac{2}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}} \frac{\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}} \\ & =-2 \operatorname{sech} 2 x \tanh 2 x \end{aligned}$	Correct expression.	A1
	Note that the first derivative may be obtained implicitly in either method e.g.$y=\arctan \left(\mathrm{e}^{2 x}\right) \Rightarrow \tan y=\mathrm{e}^{2 x} \Rightarrow \sec ^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \mathrm{e}^{2 x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 \mathrm{e}^{2 x}}{1+\left(\mathrm{e}^{2 x}\right)^{2}}$		
			Total 8

Number

Scheme		Notes
Marks		
$I_{n}=\int \sec ^{n} x \mathrm{~d} x$,	$n \geq 0$	

5(a)	$\int \sec ^{n} x \mathrm{~d} x=\int \sec ^{n-2} x \sec ^{2} x \mathrm{~d} x$	Splits $\sec ^{n} x$ into $\sec ^{n-2} x \sec ^{2} x^{\text {FP3 }}$	M1 ${ }^{\text {M }}$
	$\int \sec ^{n} x \mathrm{~d} x=\sec ^{n-2} x \tan x-\int(n-2) \sec ^{n-2} x \tan ^{2} x \mathrm{~d} x$ Depends on previous M mark dM1: Uses integration by parts to obtain $\sec ^{n-2} x \tan x-k \int \sec ^{n-2} x \tan ^{2} x \mathrm{~d} x$ A1: Correct integration		dM1A1
	$\begin{gathered} \int \sec ^{n} x \mathrm{~d} x=\sec ^{n-2} x \tan x-\int(n-2) \sec ^{n-2} x\left(\sec ^{2} x-1\right) \mathrm{d} x \\ \text { Uses } \tan ^{2} x=\sec ^{2} x-1 \end{gathered}$		B1 (M1 on EPEN)
	$\begin{aligned} \int \sec ^{n} x \mathrm{~d} x & =\sec ^{n-2} x \tan x-(n-2) \int \sec ^{n} x \mathrm{~d} x+(n-2) \int \sec ^{n-2} x \mathrm{~d} x \\ = & \sec ^{n-2} x \tan x-(n-2) I_{n}+(n-2) I_{n-2} \Rightarrow(n-1) I_{n}=\ldots \end{aligned}$ Depends on all previous M and B marks Introduces I_{n} and I_{n-2} and makes progress to the given result.		ddM1
	$(n-1) I_{n}=\tan x \sec ^{n-2} x+(n-2) I_{n-2} *$	Fully correct proof.	A1cso
			(6)
ALT	$\int \sec ^{n} x \mathrm{~d} x=\int \sec ^{n-2} x \sec ^{2} x \mathrm{~d} x$	Splits $\sec ^{n} x$ into $\sec ^{n-2} x \sec ^{2} x$	M1
	$\begin{gathered} \int \sec ^{n-2} x \sec ^{2} x \mathrm{~d} x=\int \sec ^{n-2} x\left(1+\tan ^{2} x\right) \mathrm{d} x \\ =\int \sec ^{n-2} x \mathrm{~d} x+\int \tan ^{2} x \sec ^{n-2} x \mathrm{~d} x \end{gathered}$	Uses $\sec ^{2} x=1+\tan ^{2} x$ and splits into 2 integrals.	B1 (4 $4^{\text {th }}$ mark M1 on EPEN)
	$\int \tan ^{2} x \sec ^{n-2} x d x=\frac{1}{(n-2)} \tan x \sec ^{n-2} x-\frac{1}{(n-2)} \int \sec ^{n} x d x$ Uses integration by parts on $\int \tan ^{2} x \sec ^{n-2} x d x$ to obtain $A \tan x \sec ^{n-2} x-B \int \sec ^{n} x \mathrm{~d} x$ Note this is the $\mathbf{2}^{\text {nd }} \mathbf{M}$ on EPEN.		dM1
	$\int \sec ^{n} x \mathrm{~d} x=\int \sec ^{n-2} x \mathrm{~d} x+\frac{1}{(n-2)} \tan x \sec ^{n-2} x-\frac{1}{(n-2)} \int \sec ^{n} x \mathrm{~d} x$ Fully correct integration		A1
	$\int \sec ^{n} x \mathrm{~d} x=I_{n-2}+\frac{1}{(n-2)} \tan x \sec ^{n-2} x-\frac{1}{(n-2)} I_{n} \Rightarrow(n-1) I_{n}=\ldots$ Depends on previous M and B marks Introduces I_{n} and I_{n-2} and makes progress to the given result.		ddM1
	$(n-1) I_{n}=\tan x \sec ^{n-2} x+(n-2) I_{n-2} *$	Fully correct proof.	A1cso

5(b)	$I_{2}=1$	Correct value for I_{2} seen or implied.	B1
	$I_{6}=\frac{1}{5} \tan x \sec ^{4} x+\frac{4}{5} I_{4}$	Applies the given reduction formula once.	M1
Page 41 of $152 \quad$ or e.g.			

	$I_{6}=\frac{1}{5} \tan \frac{\pi}{4} \sec ^{4} \frac{\pi}{4}+\frac{4}{5} I_{4}$ or e.g. $I_{6}=\frac{1}{5}(1)(\sqrt{2})^{4}+\frac{4}{5} I_{4}$		6_\|VIS
	$=\frac{1}{5} \tan x \sec ^{4} x+\frac{4}{5}\left(\frac{1}{3} \tan x \operatorname{se}\right.$ Applies the given red to reach	$=\frac{1}{5}(1)(\sqrt{2})^{4}+\frac{4}{15}(1)(\sqrt{2})^{2}+\frac{8}{15}(1)$ ula again and uses the limits expression for I_{6}	M1
	$=\frac{28}{15}$	Correct value	A1
			(4)
ALT	$I_{2}=1$	Correct value for I_{2} seen or implied.	B1
	$I_{4}=\frac{1}{3} \tan x \sec ^{2} x+\frac{2}{3} I_{2}$ or e.g. $I_{4}=\frac{1}{3} \tan \frac{\pi}{4} \sec ^{2} \frac{\pi}{4}+\frac{2}{3} I_{2}$ or e.g. $I_{4}=\frac{1}{3}(1)(\sqrt{2})^{2}+\frac{2}{3} I_{2}$	Applies the given reduction formula once.	M1
	$\begin{gathered} I_{6}=\frac{1}{5} \tan x \sec ^{4} x+\frac{4}{5}\left(\frac{1}{3} \tan x \sec ^{2} x+\frac{2}{3} I_{2}\right)=\frac{1}{5}(1)(\sqrt{2})^{4}+\frac{4}{15}(1)(\sqrt{2})^{2}+\frac{8}{15} \\ \text { Applies the given reduction formula again and uses the limits } \\ \text { to reach a numerical expression for } I_{6} \end{gathered}$		M1
	$=\frac{28}{15}$	Correct value	A1

Total 10

In part (b), condone confusion with the coefficients provided the intention is clear.
For either method in part (b), all working must be shown and the given reduction formula must be used at least once. So do not allow e.g. I_{4} to be evaluated with a calculator but I_{4} can be evaluated directly without using the given reduction formula using an alternative method e.g. by parts or by substitution - see below:

$$
\begin{gathered}
I_{4}=\int \sec ^{4} x \mathrm{~d} x=\int \sec ^{2} x \sec ^{2} x \mathrm{~d} x=\sec ^{2} x \tan x-2 \int \sec ^{2} x \tan ^{2} x \mathrm{~d} x \\
=\sec ^{2} x \tan x-2 \int \sec ^{2} x\left(\sec ^{2} x-1\right) \mathrm{d} x=\sec ^{2} x \tan x-2 \int \sec ^{4} x \mathrm{~d} x+2 \int \sec ^{2} x \mathrm{~d} x \\
=\sec ^{2} x \tan x-2 I_{4}+2 \int \sec ^{2} x \mathrm{~d} x \Rightarrow 3 I_{4}=\sec ^{2} x \tan x+2 \tan x \Rightarrow I_{4}=\frac{1}{3} \sec ^{2} x \tan x+\frac{2}{3} \tan x
\end{gathered}
$$

Substitution:

$$
\begin{gathered}
I_{4}=\int \sec ^{4} x \mathrm{~d} x=\int \sec ^{2} x \sec ^{2} x \mathrm{~d} x=\int \sec ^{2} x\left(1+\tan ^{2} x\right) \mathrm{d} x \\
u=\tan x \Rightarrow \int \sec ^{2} x\left(1+\tan ^{2} x\right) \mathrm{d} x=\int \sec ^{2} x\left(1+u^{2}\right) \frac{\mathrm{d} u}{\sec ^{2} x}=\frac{u^{3}}{3}+u=\frac{\tan ^{3} x}{3}+\tan x
\end{gathered}
$$

6(a)	Normal to plane given by $\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 3 \\ 1 & -2 & 1\end{array}\right\|=\ldots$	Attempt cross product of direction vectors. If the method is unclear, look for at least 2 correct components.	-06_MS M1
	$=6 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}$	Or any multiple of this vector.	A1
	Substitute appropriate point into $6 x+2 y-2 z=d$ e.g. $(1,1,1)$ or $(2,1,4)$ to find " d "	Use a valid point and use scalar product with normal or substitute into Cartesian equation.	M1
	$\begin{gathered} 6 x+2 y-2 z=6 \\ 3 x+y-z=3^{*} \end{gathered}$	Given answer. No errors seen	A1* cso
			(4)
6(a) ALT	$\begin{gathered} \mathbf{r}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{k})+\mu(\mathbf{i}-2 \mathbf{j}+\mathbf{k}) \\ \Rightarrow x=1+\lambda+\mu, \quad y=1-2 \mu, \quad z=1+3 \lambda+\mu \end{gathered}$ M1: Forms equation of plane using $(1,1,1)$ and direction vectors and extracts 3 equations for x, y and z in terms of λ and μ A1: Correct equations		M1A1
	$x=1+\frac{1}{2}-\frac{1}{2} y+\frac{1}{3} z-\frac{1}{2}+\frac{1}{6} y$	Eliminates λ and μ and achieves an equation in x, y and z only.	M1
	$3 x+y-z=3^{*}$	Given answer. No errors seen.	A1
6(b)	$s=-3$	cao	B1
			(1)
6(c)	$\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -2 \\ 3 & 1 & -1\end{array}\right\|=\mathbf{i}-5 \mathbf{j}-2 \mathbf{k}$	Attempts cross product of normal vectors. If the method is unclear, look for at least 2 correct components.	M1
	$\begin{aligned} & \text { e.g. } x=0,2 y-2 z=6, y-2 z=3 \\ & \quad \Rightarrow y=3, z=0 \end{aligned}$	Any valid attempt to find a point on the line.	M1
	e.g. (0,3,0)	Any valid point on the line	A1
	$\mathbf{r}=3 \mathbf{j}+\lambda(\mathbf{i}-5 \mathbf{j}-2 \mathbf{k})$	Correct equation including " $\mathbf{r}=$ " or equivalent e.g. $x=\frac{y-3}{-5}=\frac{z}{-2}$	A1
			(4)
$\begin{gathered} \text { 6(c) } \\ \text { ALT } 1 \end{gathered}$	$\begin{gathered} \mathbf{r}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{k})+\mu(\mathbf{i}-2 \mathbf{j}+\mathbf{k}), \mathbf{r} .(\mathbf{i}+\mathbf{j}-2 \mathbf{k})=3 \\ \Rightarrow 1+\lambda+\mu+1-2 \mu-2-6 \lambda-2 \mu=3 \end{gathered}$ Forms equation of first plane using $(1,1,1)$ and direction vectors and substitutes into the second plane to form an equation in λ and μ		M1
	$\Rightarrow \mu=\frac{1}{3}(-5 \lambda-3)$	Solves to obtain μ in terms of λ or λ in terms of μ	M1
		Correct equation	A1
	E.g. $\mathbf{r}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}+\mathbf{3 k})$ Correct equation i	$\begin{aligned} &)+\frac{1}{3}(-5 \lambda-3)(\mathbf{i}-2 \mathbf{j}+\mathbf{k}) \\ & \text { including " } \mathbf{r}=" \end{aligned}$	A1
$\begin{gathered} \text { 6(c) } \\ \text { ALT } 2 \end{gathered}$	$3 x+y-z=3, x+y-2 z=3 \Rightarrow 2 x+z=0$	Uses the Cartesian equations of both planes and eliminates one variable	M1
	$z=\lambda \Rightarrow x=-\frac{1}{2} \lambda, y=3+2 z-x=3+\frac{5}{2} \lambda$	Introduces parameter and expresses other 2 variables in terms of the parameter	M1
		Correct equations	A1
	$\mathbf{r}=3 \mathbf{j}+\lambda(\mathbf{i}-5 \mathbf{j}-2 \mathbf{k})$	Correct equation including " $\mathbf{r}=$ " or equivalent e.g. $x=\frac{y-3}{-5}=\frac{z}{-2}$	A1

Question Number	Scheme	Notes	Marks
7(i)	$x^{2}-4 x+5=(x-2)^{2}+1$	Attempts to complete the square. Allow for $(x-2)^{2}+c, c>0$	M1
	$\int \frac{1}{(x-2)^{2}+1} \mathrm{~d} x=\arctan (x-2)$	Allow for karctan $\mathrm{f}(x)$.	M1
	$[\arctan (x-2)]_{1}^{2}=0-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}$	$\frac{\pi}{4}$ cao	A1
			(3)
7(ii)	$\int \frac{\sqrt{x^{2}-3}}{x^{2}} \mathrm{~d} x=-\frac{\sqrt{x^{2}-3}}{x}+\int \frac{1}{\sqrt{x^{2}-3}} \mathrm{~d} x$ Uses integration by parts and obtains $A \frac{\sqrt{x^{2}-3}}{x}+B \int \frac{1}{\sqrt{x^{2}-3}} \mathrm{~d} x$		M1
	$=-\frac{\sqrt{x^{2}-3}}{x}+\operatorname{arcosh} \frac{x}{\sqrt{3}}$	$B \int \frac{1}{\sqrt{x^{2}-3}} \mathrm{~d} x=\operatorname{karcosh} \mathrm{f}(\mathrm{x})$	M1
		All correct	A1
	$\begin{gathered} \int_{\sqrt{3}}^{3} \frac{\sqrt{x^{2}-3}}{x^{2}} \mathrm{~d} x=\left[-\frac{\sqrt{x^{2}-3}}{x}+\operatorname{arcosh} \frac{x}{\sqrt{3}}\right]_{\sqrt{3}}^{3}=\left(-\frac{\sqrt{6}}{3}+\operatorname{arcosh} \sqrt{3}\right)-(0+\operatorname{arcosh} 1) \\ \text { Applies the limits } 3 \text { and } \sqrt{ } 3 \\ \text { Depends on both previous } \mathbf{M} \text { marks } \end{gathered}$		dM1
	$\operatorname{arcosh} \sqrt{3}-\frac{1}{3} \sqrt{6}=\ln (\sqrt{2}+\sqrt{3})-\frac{1}{3} \sqrt{6}$	Accept either of these forms.	A1
			(5)
$\begin{gathered} \text { 7(ii) } \\ \text { ALT } 1 \end{gathered}$	$\int \frac{\sqrt{x^{2}-3}}{x^{2}} \mathrm{~d} x=\int \frac{\sqrt{3 \cosh ^{2} u-3}}{3 \cosh ^{2} u} \sqrt{3}$ sinh u du	A complete substitution using $x=\sqrt{ } 3 \cosh u$	M1
	$=\int \tanh ^{2} u \mathrm{~d} u$	Obtains $k \int \tanh ^{2} u \mathrm{~d} u$	M1
	$=\int\left(1-\operatorname{sech}^{2} u\right) \mathrm{d} u=u-\tanh u$	Correct integration	A1
	$\begin{gathered} \int_{\sqrt{3}}^{3} \frac{\sqrt{x^{2}-3}}{x^{2}} \mathrm{~d} x=[u-\tanh u]_{0}^{\operatorname{arcosh} \sqrt{3}}=\operatorname{arcosh} \sqrt{3}-\tanh (\operatorname{arcosh} \sqrt{3})-0 \\ \text { Applies the limits } 0 \text { and } \operatorname{arcosh} \sqrt{ } 3 \\ \text { Depends on both previous } \mathbf{M} \text { marks } \end{gathered}$		dM1
	$\operatorname{arcosh} \sqrt{3}-\frac{1}{3} \sqrt{6}=\ln (\sqrt{2}+\sqrt{3})-\frac{1}{3} \sqrt{6}$	Accept either of these forms.	A1

$\begin{gathered} \text { 7(ii) } \\ \text { ALT } 2 \end{gathered}$	$\int \frac{\sqrt{x^{2}-3}}{x^{2}} \mathrm{~d} x=\int \frac{\sqrt{3 \sec ^{2} u-3}}{3 \sec ^{2} u} \sqrt{3} \sec u \tan u \mathrm{~d} u$	A complete substitution using $x=\sqrt{ } 3 \sec u$	M1
	$=\int \frac{\tan ^{2} u}{\sec u} \mathrm{~d} u$	Obtains $k \int \frac{\tan ^{2} u}{\sec u} \mathrm{~d} u$	M1
	$=\ln (\sec u+\tan u)-\sin u$	Correct integration	A1
	$\begin{array}{r} \int_{\sqrt{3}}^{3} \frac{\sqrt{x^{2}-3}}{x^{2}} d x=[\ln (s \\ =\ln (\sec (\operatorname{arcsec} \sqrt{3})+\tan (\operatorname{arcsec} \sqrt{3} \\ \text { Applies the lim } \\ \text { Depends on bot } \end{array}$	$\begin{aligned} & u+\tan u)-\sin u]_{0}^{\operatorname{arcsec} \sqrt{3}} \\ & -\ln (\sec (0)+\tan (0))-\sin (\operatorname{arcsec} \sqrt{3}) \\ & 0 \text { and } \operatorname{arcsec} \sqrt{ } 3 \\ & \text { previous } \mathbf{M} \text { marks } \end{aligned}$	dM1
	$\int_{\sqrt{3}}^{3} \frac{\sqrt{x^{2}-3}}{x^{2}} \mathrm{~d} x=\ln (\sqrt{2}+\sqrt{3})-\frac{1}{3} \sqrt{6}$	Correct answer.	A1
			Total 8

Note that there may be other ways to perform the integration in part (ii) e.g. subsequent substitutions. Marks can be awarded if the method leads to something that is integrable and should be awarded as in the main scheme e.g. M1 for a complete method, M2 for simplifying and reaching an expression that itself can be integrated or can be integrated after rearrangement, A1 for correct integration, dM3 for using appropriate limits and A2 as above.

Alternative approach:

$$
\int \frac{\sqrt{x^{2}-3}}{x^{2}} \mathrm{~d} x=\int \frac{x^{2}-3}{x^{2} \sqrt{x^{2}-3}} \mathrm{~d} x=\int \frac{1}{\sqrt{x^{2}-3}} \mathrm{~d} x-\int \frac{3}{x^{2} \sqrt{x^{2}-3}} \mathrm{~d} x=\operatorname{arcosh} \frac{x}{\sqrt{3}}-\ldots
$$

Can score M0M1A0dM0A0 if there is no creditable attempt at the second integral.
If the second integral is attempted, it must be using a suitable method e.g. with either $x=\sqrt{3} \cosh u$ or $x=\sqrt{3} \sec u$:

$$
\begin{aligned}
& \int \frac{3}{x^{2} \sqrt{x^{2}-3}} \mathrm{~d} x=\int \frac{3}{3 \cosh ^{2} u \sqrt{3 \cosh ^{2} u-3}} \sqrt{3} \sinh u \mathrm{~d} u=\int \operatorname{sech}^{2} u \mathrm{~d} u=\tanh u+c \\
& \int \frac{3}{x^{2} \sqrt{x^{2}-3}} \mathrm{~d} x=\int \frac{3}{3 \sec ^{2} u \sqrt{3 \sec ^{2} u-3}} \sqrt{3} \sec u \tan u \mathrm{~d} u=\int \cos u \mathrm{~d} u=\sin u+c
\end{aligned}
$$

In these cases the first M can then be awarded and the other marks as defined with the appropriate limits used.

Question Number	Scheme	Notes	Marks
8(a)	Asymptotes are $y= \pm 2 x$	$y= \pm 2 x$ oe e.g. $x= \pm \frac{y}{2}$	B1
			(1)
8(b)	$4=e^{2}-1 \Rightarrow e=\sqrt{5}$	Uses the correct eccentricity formula with a $=1$ and $b=2$ to find a value for e.	M1
	Foci are ($\pm \sqrt{5}, 0$)	Both required.	A1
			(2)
8(c)	$\begin{aligned} & 8 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4 x}{y}=\frac{4 \sec \theta}{2 \tan \theta} \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{~d} x}=\frac{2 \sec ^{2} \theta}{\sec \theta \tan \theta} \\ & \text { M1: } A x+B y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{f}(\theta) \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{~d} x}=\mathrm{f}(\theta) \\ & \text { A1: Correct gradient in terms of } \theta \end{aligned}$		M1A1
	Explicit differentiation may be seen: $y^{2}=4 x^{2}-4 \Rightarrow y=\left(4 x^{2}-4\right)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}\left(4 x^{2}-4\right)^{-\frac{1}{2}} \times 8 x=\frac{4 \sec \theta}{\sqrt{4 \sec ^{2} \theta-4}}$ Score M1 for $\frac{\mathrm{d} y}{\mathrm{~d} x}=k x\left(4 x^{2}-4\right)^{-\frac{1}{2}}=\mathrm{f}(\theta)$ and A1 for correct gradient in terms of θ		
	E.g. $y-2 \tan \theta=\frac{4 \sec \theta}{2 \tan \theta}(x-\sec \theta)$	Correct straight line method using their gradient in terms of θ and $x=\sec \theta$, $y=2 \tan \theta$	M1
	$\begin{aligned} & y \tan \theta-2 \tan ^{2} \theta=2 x \sec \theta-2 \sec ^{2} \theta \\ & \Rightarrow y \tan \theta-2 \tan ^{2} \theta=2 x \sec \theta-2\left(1+\tan ^{2} \theta\right) \end{aligned}$		
	$y \tan \theta=2 x \sec \theta-2 *$	Obtains the given answer with sufficient working shown as above.	A1cso
			(4)
8(d)	$V P: V(-1,0) ; P(\sec \theta, 2 \tan \theta) \Rightarrow y=\frac{2 \tan \theta}{\sec \theta+1}(x+1)$ or $W Q: W(1,0) ; Q(\sec \theta .-2 \tan \theta) \Rightarrow y=\frac{-2 \tan \theta}{\sec \theta-1}(x-1)$ M1: Correct straight line method for either VP or $W Q$ A1: One correct equation in any form		M1A1
	$y=\frac{-2 \tan \theta}{\sec \theta-1}(x-1), y=\frac{2 \tan \theta}{\sec \theta+1}(x+1)$	Both equations correct in any form.	A1
	$\frac{2 \tan \theta}{\sec \theta+1}(x+1)=\frac{-2 \tan \theta}{\sec \theta-1}(x-1) \Rightarrow x / y=\ldots$	Attempt to solve and makes progress to achieve either $x=\ldots$ or $y=\ldots$ in terms of θ only.	M1
	$x=\cos \theta$ or $y=2 \sin \theta$	One correct coordinate	A1
	$x=\cos \theta$ and $y=2 \sin \theta$	Both correct	A1
	$x^{2}+\frac{y^{2}}{4}=1$ or $a=1, b=2$	Correct equation or correct values for a and b	A1
			(7)
			Total 14

1

$\frac{\mathrm{d} y}{\mathrm{~d} x}$	$=\frac{1}{2} \times \frac{2}{\sqrt{(2 x)^{2}-1}}$	M1
$1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}$	$=1+\frac{1}{4 x^{2}-1}=\frac{4 x^{2}}{4 x^{2}-1}$	M1
$\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x$	$=\int \sqrt{\frac{4 x^{2}}{4 x^{2}-1}} \mathrm{~d} x=2 \int \frac{x}{\sqrt{4 x^{2}-1}} \mathrm{~d} x$	A1
	$=\frac{2\left(4 x^{2}-1\right)^{\frac{1}{2}}}{8 \times 1 / 2}$	M1
$s=\left[\frac{\left(4 x^{2}-1\right)^{\frac{1}{2}}}{2}\right]_{\frac{7}{2}}^{13}=\frac{1}{2}\left(\sqrt{4 \times 169-1}-\sqrt{4 \times \frac{49}{4}-1}\right)=\ldots$	dM1	
$=\frac{1}{2}(15 \sqrt{3}-4 \sqrt{3})=\frac{11}{2} \sqrt{3}$	A1	
	(6)	
	(6 marks)	

Notes:
M1: Attempts $\frac{\mathrm{d} y}{\mathrm{~d} x}$, accept the form $\frac{A}{\sqrt{(2 x)^{2}-1}}$. Allow $\frac{A}{\sqrt{2 x^{2}-1}}$ (condone missing brackets)

Alternative 1:

Writes $\frac{1}{2} \operatorname{arcosh} 2 x$ as $\frac{1}{2} \ln \left(2 x+\sqrt{4 x^{2}-1}\right)$ leading to

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \times \frac{1}{2 x+\sqrt{4 x^{2}-1}} \times\left(2+\frac{4 x}{\sqrt{4 x^{2}-1}}\right)=\frac{2 x+\sqrt{4 x^{2}-1}}{\sqrt{4 x^{2}-1}\left(2 x+\sqrt{4 x^{2}-1}\right)}=\frac{1}{\sqrt{4 x^{2}-1}}
$$

Alternative 2:

$y=\frac{1}{2} \operatorname{arcosh} 2 x \Rightarrow 2 y=\operatorname{arcosh} 2 x \Rightarrow \cosh 2 y=2 x \rightarrow 4 \sinh 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{\sinh 2 y}=\frac{1}{\sqrt{4 x^{2}-1}}$
If either approach is taken then the same condition for the form of the derivative applies.
Note that this differentiation may be seen in an attempt by parts of $\int y \mathrm{~d} x$
M1: Attempts to find $1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}$ using their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and attempts common denominator.
A1: Reaches a correct simplified integral with $\sqrt{x^{2}}$ replaced with x as shown in the scheme.
Allow equivalent forms e.g. $2 \int x \sqrt{\frac{1}{4 x^{2}-1}} \mathrm{~d} x, \frac{1}{2} \int \frac{4 x}{\sqrt{(2 x)^{2}-1}} \mathrm{~d} x$
This may be implied by subsequent work.

M1: Attempts the integration and reaches the form $\alpha\left(\beta x^{2}-1\right)^{\frac{1}{2}} . \alpha$ and/or β may be 1
This may be implied by e.g.

$$
u=4 x^{2}-1 \rightarrow k \int \frac{1}{\sqrt{u}} \mathrm{~d} u=\alpha \sqrt{u} \text { or } u=x^{2} \rightarrow k \int \frac{1}{\sqrt{4 u-1}} \mathrm{~d} u=\alpha \sqrt{4 u-1}
$$

dM1: Applies the limits to their integral. Depends on the previous 2 method marks.
Any attempts at substitution requires use of changed limits e.g.

$$
u=4 x^{2}-1 \rightarrow \frac{1}{4} \int \frac{1}{\sqrt{u}} \mathrm{~d} u \rightarrow \frac{1}{2}[\sqrt{u}]_{48}^{675}=\ldots
$$

A1: cao Accept equivalents in the correct form, such as $\frac{1}{2} \sqrt{363}$

Examples of alternative for the final 3 marks:

$x=\frac{1}{2} \cosh u \Rightarrow 2 \int \frac{x}{\sqrt{4 x^{2}-1}} \mathrm{~d} x=\int \frac{\cosh u}{\sqrt{\cosh ^{2} u-1}} \frac{1}{2} \sinh u \mathrm{~d} u$
$\int \frac{1}{2} \cosh u \mathrm{~d} u=\frac{1}{2}[\sinh u]_{\operatorname{arcosh} 7}^{\operatorname{arcosh} 7}=\frac{1}{2}\left(\frac{\mathrm{e}^{\ln (26+15 \sqrt{3})}-\mathrm{e}^{-\ln (26+15 \sqrt{3})}}{2}-\frac{\mathrm{e}^{\ln (7+4 \sqrt{3})}-\mathrm{e}^{-\ln (7+4 \sqrt{3})}}{2}\right)$

$$
=\frac{1}{2}(15 \sqrt{3}-4 \sqrt{3})=\frac{11}{2} \sqrt{3}
$$

Score M1 for a complete method for the substitution leading to $k \sinh u$ and then dM 1 for applying changed limits (or reverts back to x) and A1 as above

$$
\begin{aligned}
x=\frac{1}{2} \sec u \Rightarrow & 2 \int \frac{x}{\sqrt{4 x^{2}-1}} \mathrm{~d} x=\int \frac{\sec u}{\sqrt{\sec ^{2} u-1}} \frac{1}{2} \sec u \tan u \mathrm{~d} u \\
& \int \frac{1}{2} \sec ^{2} u \mathrm{~d} u=\frac{1}{2}[\tan u]_{\operatorname{arcossh} \frac{1}{7}}^{\operatorname{arcosh}} \frac{1}{2}
\end{aligned}+\frac{1}{2}(15 \sqrt{3}-4 \sqrt{3})=\frac{11}{2} \sqrt{3} .
$$

Score M1 for a complete method for the substitution leading to $k \tan u$ and then dM 1 for applying changed limits (or reverts back to x) and A1 as above

Special Case if no integration is attempted:

Note that if candidates do not attempt the integration but obtain the correct exact answer then a special case of M1M1A1M0A0A1 (4/6) should be awarded.
2.

$\cosh y=x, y<0 \Rightarrow y=\ln \left[x-\sqrt{x^{2}-1}\right]$	
$\cosh y=x \Rightarrow x=\frac{\mathrm{e}^{y}+\mathrm{e}^{-y}}{2}$	B1
$\Rightarrow \Rightarrow 2 x \mathrm{e}^{y}=\mathrm{e}^{2 y}+1$	M1
$\Rightarrow \mathrm{e}^{2 y}-2 x \mathrm{e}^{y}+1=0 \Rightarrow \mathrm{e}^{y}=\frac{2 x \pm \sqrt{(2 x)^{2}-4 \times 1 \times 1}}{2}$	M1
or	
$\Rightarrow \mathrm{e}^{2 y}-2 x \mathrm{e}^{y}+1=0 \Rightarrow\left(\mathrm{e}^{y}-x\right)^{2}+1-x^{2}=0 \Rightarrow \mathrm{e}^{y}=\ldots$	A1
	$=x \pm \sqrt{x^{2}-1}$
So $y=\ln \left[x-\sqrt{x^{2}-1}\right] *$	A1*
since $y<0 \Rightarrow \mathrm{e}^{y}<1$ so need $x-\sqrt{x^{2}-1}($ as $x>1$ so must subtract $)$	B1
	(6)

Notes:

B1: Correct statement for x in terms of exponentials. $\cosh y=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ scores B0.
M1: Multiplies through by e^{y} to achieve a quadratic in e^{y}. (Terms need not be gathered.)
M1: Uses the quadratic formula or other valid method (e.g. completing the square) to solve for e^{y}.
A1: Correct solution(s) for e^{y}. Accept if only the negative one is given. Accept $\frac{2 x \pm \sqrt{4 x^{2}-4}}{2}$
A1*: Completely correct work leading to the given answer regardless of the justification why the negative root is taken (correct or incorrect). Must be no errors seen.
B1: Suitable justification for taking the negative root given.
E.g. $y<0$ so $y=\ln \left[x-\sqrt{x^{2}-1}\right]$. Condone $x \pm \sqrt{x^{2}-1}<1$ so $y=\ln \left[x-\sqrt{x^{2}-1}\right]$.

Note that the B1 can only be awarded if all previous marks have been awarded.

But the reason may be given before or after \ln has been taken.
E.g. $\left(\mathrm{e}^{y}-x\right)^{2}+1-x^{2}=0 \Rightarrow \mathrm{e}^{y}-x= \pm \sqrt{x^{2}-1}$ but $y<0$ so $\mathrm{e}^{y}-x=-\sqrt{x^{2}-1}$

Working backwards:

$$
\begin{aligned}
& y=\ln \left[x-\sqrt{x^{2}-1}\right] \Rightarrow \mathrm{e}^{y}=x-\sqrt{x^{2}-1}(\mathrm{~B} 1) \Rightarrow \mathrm{e}^{y}+\mathrm{e}^{-y}=x-\sqrt{x^{2}-1}+\frac{1}{x-\sqrt{x^{2}-1}}(\mathrm{M} 1) \\
& x-\sqrt{x^{2}-1}+\frac{1}{x-\sqrt{x^{2}-1}}=\frac{2 x\left(x-\sqrt{x^{2}-1}\right)}{x-\sqrt{x^{2}-1}}(\mathrm{M} 1)=2 x(\mathrm{~A} 1) \Rightarrow x=\frac{\mathrm{e}^{y}+\mathrm{e}^{-y}}{2}=\cosh y(\mathrm{~A} 1)
\end{aligned}
$$

Final B1 unlikely to be available.

Question	Scheme	Marks
3(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 \cos \theta}{-8 \sin \theta}$ or $\frac{2 x}{64}+\frac{2 y}{36} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{4} \times \frac{1}{2}\left(576-9 x^{2}\right)^{-\frac{1}{2}} \times-18 x$	B1
	$m_{T}=-\frac{3 \cos \theta}{4 \sin \theta} \Rightarrow m_{N}=-\frac{1}{m_{T}}=\frac{4 \sin \theta}{3 \cos \theta}$	M1
	So normal is $y-6 \sin \theta=\frac{4 \sin \theta}{3 \cos \theta}(x-8 \cos \theta)$ or $y=\frac{4 \sin \theta}{3 \cos \theta} x+c, c=6 \sin \theta-\frac{4 \sin \theta}{3 \cos \theta} \times 8 \cos \theta$	dM1
	$\begin{gathered} \Rightarrow 3 y \cos \theta-18 \sin \theta \cos \theta=4 x \sin \theta-32 \sin \theta \cos \theta \\ \Rightarrow 4 x \sin \theta-3 y \cos \theta=14 \sin \theta \cos \theta^{*} \end{gathered}$	A1*
		(4)
(b)	A is $\left(\frac{7}{2} \cos \theta, 0\right)$ and B is $\left(0,-\frac{14}{3} \sin \theta\right)$	B1
	M is $\left(\frac{\frac{7}{2} \cos \theta}{2},-\frac{\frac{14}{3} \sin \theta}{2}\right)=\left(\frac{7}{4} \cos \theta,-\frac{7}{3} \sin \theta\right)$	M1
	$\sin ^{2} \theta+\cos ^{2} \theta=1 \Rightarrow\left(-\frac{3}{7} y\right)^{2}+\left(\frac{4}{7} x\right)^{2}=1$	$\begin{gathered} \text { dM1 } \\ \text { A1 } \end{gathered}$
	$\Rightarrow 16 x^{2}+9 y^{2}=49$	A1
		(5)
		marks)

Notes:

(a)

B1: A correct statement for, or involving, $\frac{\mathrm{d} y}{\mathrm{~d} x}$. See examples in scheme for parametric, implicit and direct forms.
M1: Finds $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ and applies the perpendicular condition to find gradient of the normal.
dM1: Uses their normal gradient and P to find the equation of the normal
A1*: Correct answer from correct work with at least one intermediate step and no errors seen.
(b)

B1: Correct coordinates for A and B or correct intercepts of l seen or implied by working. Allow in any form simplified or unsimplified.
M1: Uses their A and B to attempt the midpoint, M. May be implied by at least one correct coordinate.
dM1: Uses $\sin ^{2} \theta+\cos ^{2} \theta=1$ with their M to form an equation in x and y only.

Depends on the previous mark.

A1: A correct unsimplified equation.
A1: Correct equation in the required form. Allow any integer multiple.

Special Case: If M is found as e.g. $\left(\frac{7}{4} \cos \theta, \frac{7}{3} \sin \theta\right)$ withhold the final mark only if otherwise correct.

Question	Scheme	Marks
4(a)	$\left\|\begin{array}{rrr}2 & 0 & -1 \\ k & 3 & 2 \\ -2 & 1 & k\end{array}\right\|=2\left\|\begin{array}{ll}3 & 2 \\ 1 & k\end{array}\right\|-0\left\|\begin{array}{rr}k & 2 \\ -2 & k\end{array}\right\|+(-1)\left\|\begin{array}{rr}k & 3 \\ -2 & 1\end{array}\right\|=2(3 k-2)-(k+6)=\ldots$	M1
	$=6 k-4-k-6=5 k-10$ *	A1*
		(2)
(b)	$\begin{gathered} \mathbf{M}^{T}=\left(\begin{array}{rrr} 2 & k & -2 \\ 0 & 3 & 1 \\ -1 & 2 & k \end{array}\right) \text { or minors }\left(\begin{array}{rrr} 3 k-2 & k^{2}+4 & k+6 \\ 1 & 2 k-2 & 2 \\ 3 & 4+k & 6 \end{array}\right) \text { or } \\ \text { cofactors }\left(\begin{array}{rrr} 3 k-2 & -k^{2}-4 & k+6 \\ -1 & 2 k-2 & -2 \\ 3 & -4-k & 6 \end{array}\right) \end{gathered}$	M1
	Adjugate matrix is $\left(\begin{array}{rrr}3 k-2 & -1 & 3 \\ -k^{2}-4 & 2 k-2 & -4-k \\ k+6 & -2 & 6\end{array}\right)(\geq 6$ entries correct $)$	M1
	Hence $\mathbf{M}^{-1}=\frac{1}{5 k-10}\left(\begin{array}{rrr}3 k-2 & -1 & 3 \\ -k^{2}-4 & 2 k-2 & -4-k \\ k+6 & -2 & 6\end{array}\right)$	dM1A1
		(4)
(c)	Images of A, B and C are $(5,4 k-18,3 k-16),(0,7-2 k, 9-4 k)$ and $(0,4 k-2,8 k-14)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$(\pm) 50=\frac{1}{6}\left\|\begin{array}{rrr} 5 & 4 k-18 & 3 k-16 \\ 0 & 7-2 k & 9-4 k \\ 0 & 4 k-2 & 8 k-14 \end{array}\right\| \Rightarrow(\pm) 300=5(\ldots)(=200 k-400) \Rightarrow k=\ldots$	M1
	$(300=200 k-400 \Rightarrow) k=\frac{7}{2} \quad$ or $(-300=200 k-400 \Rightarrow) k=\frac{1}{2}$	A1
	$k=\frac{1}{2}$ and $k=\frac{7}{2}$	A1
		(5)
$\begin{gathered} \text { Alt } \\ \text { method } \end{gathered}$	Using volume scale factor. Attempts $\mathbf{a} .(\mathbf{b} \times \mathbf{c})=\left\|\begin{array}{rrr} 4 & -8 & 3 \\ -2 & 5 & -4 \\ 4 & -6 & 8 \end{array}\right\|=4(40-24)+8(-16+16)+3(12-20)=\ldots$	M1
	Volume of T is $\left.\frac{1}{6}\|\mathbf{a .}(\mathbf{b} \times \mathbf{c})\|=\left\|\frac{1}{6}\right\| \begin{array}{rrr}4 & -8 & 3 \\ -2 & 5 & -3 \\ 4 & 6 & -8\end{array} \right\rvert\,=\ldots \frac{20}{3}$	A1
	Volume image of $T=\|\operatorname{det} \mathbf{M}\| \times \frac{20}{3} \Rightarrow \frac{20}{3}\|5 k-10\|=50 \Rightarrow k=\ldots$	M1

| $\left(\frac{20}{3}(5 k-10)=50 \Rightarrow\right) k=\frac{7}{2} \quad$ or $\left(\frac{20}{3}(10-5 k)=50 \Rightarrow\right) k=\frac{1}{2}$ | A1 |
| :---: | :---: | :---: |
| $k=\frac{1}{2}$ and $k=\frac{7}{2}$ | A1 |
| | $\mathbf{(1 1 ~ m a r k s)}$ |

Notes:

(a)

M1: Correct method for expanding the determinant to reach a linear expression in k. Expect expansion along the top row, but may expand along any row or column. Sarrus gives $6+k-(6+4)$.
A1*: Correct expression from correct work.
(b)

M1: Begins the process of finding the inverse by attempting either the transpose, or the matrix of minors or cofactors. Look for at least 6 correct entries.
M1: Proceeds to find the adjugate matrix (may include the reciprocal determinant). Again look for 6 correct entries.
dM1: Full method to find the inverse matrix, so divides their adjugate by the determinant.

Depends on both previous marks.

A1: Fully correct inverse.
(c)

M1: Attempts to find the image vectors of A, B and C under the transformation. (O mapping to O may be assumed). May be implied by at least two correct entries in one of the three vectors - but must be finding all three.
A1: Correct image vectors. Allow unsimplified and isw if necessary.
M1: Use their image vectors in a suitable scalar triple product to find the volume, and set volume equal to 50 and attempts to solve for k. Must include the $1 / 6$ but may appear later.

$$
\text { Usually } \frac{1}{6}(200 k-400)=50 \text { leading to } k=\frac{7}{2}
$$

A1: One correct value for k obtained, either $k=\frac{7}{2}$ or $k=\frac{1}{2}$
A1: Both values of k correctly found. $k=\frac{7}{2}$ and $k=\frac{1}{2}$
Alt method using determinant as volume scale factor.
M1: Attempts an appropriate scalar triple product. May have rows in different order.
A1: Correct volume for tetrahedron T. Need not be simplified, so $\frac{40}{6}$ is fine here.
M1: Uses the determinant as the volume scale factor to set up at least one equation in k using their volume and the given volume and attempts to solve for k. The $1 / 6$ may have been missing.

$$
\text { Usually } \frac{20}{3}(5 k-10)=50 \text { leading to } k=\frac{7}{2}
$$

A1: One correct value for k obtained, either $k=\frac{7}{2}$ or $k=\frac{1}{2}$
A1: Both values of k correctly found. $k=\frac{7}{2}$ and $k=\frac{1}{2}$

Question	Scheme	Marks
5(a)	$\begin{gathered} (5 \mathbf{i}+\mathbf{j}) \times(8 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})=\left\|\begin{array}{crc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 1 & 0 \\ 8 & -2 & 3 \end{array}\right\|=\ldots \\ \text { Or }_{(u \mathbf{i}+v \mathbf{j}+w \mathbf{k}) \cdot(8 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})=0}(u \mathbf{j}+w \mathbf{k}) \cdot(5 \mathbf{i}+\mathbf{j})=0 \\ 5 u+v=0 \\ 8 u-2 v+3 w=0 \end{gathered} \Rightarrow u, v, w=\ldots$	M1
	$\mathbf{n}=3 \mathbf{i}-15 \mathbf{j}-18 \mathbf{k}$ or $\alpha(\mathbf{i}-5 \mathbf{j}-6 \mathbf{k})$ for any $\alpha \neq 0$	A1
		(2)
(b)	(i) $\mathbf{r}=(2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})+s(8 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})+t(5 \mathbf{i}+\mathbf{j})$	B1
		(1)
	(ii) $(2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}) \cdot(3 \mathbf{i}-15 \mathbf{j}-18 \mathbf{k})=\ldots(=-6)$	M1
	So $\mathbf{r} .(3 \mathbf{i}-15 \mathbf{j}-18 \mathbf{k})=-6$ oe such as $\mathbf{r} .(-\mathbf{i}+5 \mathbf{j}+6 \mathbf{k})=2$	A1
		(2)
(c) Way 1	Distance from plane in (b) to origin is $\frac{ \pm 6}{\sqrt{3^{2}+15^{2}+18^{2}}}$ oe e.g. $\frac{2}{\sqrt{1^{2}+5^{2}+6^{2}}}$ Or attempts similar for parallel plane containing l_{1}, e.g. $\frac{(\mathbf{i}+2 \mathbf{j}-5 \mathbf{k}) \cdot(3 \mathbf{i}-15 \mathbf{j}-18 \mathbf{k})}{\sqrt{3^{2}+15^{2}+18^{2}}}=\ldots$	M1
	$= \pm \frac{2}{\sqrt{62}}$ (oe evaluated) or $\mp \frac{21}{\sqrt{62}}$ if considering other plane.	A1
	Both $\frac{ \pm 6}{\sqrt{3^{2}+15^{2}+18^{2}}}$ oe and $\frac{(\mathbf{i}+2 \mathbf{j}-5 \mathbf{k}) \cdot(3 \mathbf{i}-15 \mathbf{j}-18 \mathbf{k})}{\sqrt{3^{2}+15^{2}+18^{2}}}=\ldots$ attempted	M1
	Hence shortest distance between lines is $\frac{2}{\sqrt{62}}+\frac{21}{\sqrt{62}}=\ldots$	M1
	$=\frac{23}{\sqrt{62}}$ or $\frac{23 \sqrt{62}}{62}$	A1
		(5)
Way 2	$\overrightarrow{A B}= \pm((\mathbf{i}+2 \mathbf{j}-5 \mathbf{k})-(2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}))= \pm(-\mathbf{i}+6 \mathbf{j}-9 \mathbf{k})$	M1 A1
	$d=A B \cos \theta=\frac{\overrightarrow{A B} \cdot \mathbf{n}}{\|\mathbf{n}\|}=\frac{ \pm(-\mathbf{i}+6 \mathbf{j}-9 \mathbf{k}) \cdot(3 \mathbf{i}-15 \mathbf{j}-18 \mathbf{k})}{\sqrt{3^{2}+15^{2}+18^{2}}}$ oe	M1
	$=\frac{ \pm(-3-90+162)}{\sqrt{558}}=\frac{ \pm 69}{\sqrt{558}}=\ldots$	M1
	$=\frac{23}{\sqrt{62}}$ or $\frac{23 \sqrt{62}}{62}$	A1
		(5)

Way 3	$\begin{gathered} (2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})+\mu(8 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})-((\mathbf{i}+2 \mathbf{j}-5 \mathbf{k})+\lambda(5 \mathbf{i}+\mathbf{j})) \\ =(1+8 \mu-5 \lambda) \mathbf{i}+(-6-2 \mu-\lambda) \mathbf{j}+(9+3 \mu) \mathbf{k} \end{gathered}$	M1 A1
	$\begin{aligned} &((1+8 \mu-5 \lambda) \mathbf{i}+(-6-2 \mu-\lambda) \mathbf{j}+(9+3 \mu) \mathbf{k}) \cdot(5 \mathbf{i}+\mathbf{j})=0 \\ & \Rightarrow 38 \mu-26 \lambda=1 \\ &((1+8 \mu-5 \lambda) \mathbf{i}+(-6-2 \mu-\lambda) \mathbf{j}+(9+3 \mu) \mathbf{k}) \cdot(8 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})=0 \\ & \Rightarrow 77 \mu-38 \lambda=-47 \\ & \Rightarrow \lambda=-\frac{207}{62}, \mu=-\frac{70}{31} \end{aligned}$	M1
	$\begin{aligned} (2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})+ & \mu(8 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})-((\mathbf{i}+2 \mathbf{j}-5 \mathbf{k})+\lambda(5 \mathbf{i}+\mathbf{j})) \\ & =-\frac{23}{62} \mathbf{i}+\frac{115}{62} \mathbf{j}+\frac{69}{31} \mathbf{k} \\ d= & \sqrt{\left(\frac{23}{62}\right)^{2}+\left(\frac{115}{62}\right)^{2}+\left(\frac{69}{31}\right)^{2}} \end{aligned}$	M1
	$=\frac{23}{\sqrt{62}}$ or $\frac{23 \sqrt{62}}{62}$	A1
		(5)
(10 marks)		

Notes:

Accept equivalent vector notation, e.g. column vectors, throughout.

(a)

M1: Any correct method to find a vector perpendicular to the two direction vectors of the lines.
Look for the cross product between the two direction vectors, but may use dot products and solving equations. In the latter case the method should lead to values for u, v and w.
For the vector product, if no method is shown look for at least 2 correct components.
A1: Any correct vector, a scalar multiple of $-\mathbf{i}+5 \mathbf{j}+6 \mathbf{k}$
(b)

B1: Any correct equation. Must have $\mathbf{r}=\ldots$ or e.g. $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\ldots$
M1: Uses their normal vector from (a) with any point on the plane (probably $(2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})$ to find p Condone slips with the calculation so $(2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}) \cdot(3 \mathbf{i}-15 \mathbf{j}-18 \mathbf{k})$ evaluated as a scalar is sufficient for M1. May also be implied by $p=-6$
A1: Any correct equation of the correct form.
(c)

Way 1
M1: Uses the plane equation from (b) (or otherwise) OR the parallel plane containing l_{1} to find the distance of one of these planes to the origin.
A1: Correct distance between one of the planes and the origin, accept \pm here.
M1: Attempts distance of both the parallel planes containing l_{1} and l_{2} from the origin.

M1: Correct method for finding the distance between lines - i.e. subtracts their distances either way round.
A1: Correct answer. Accept $\frac{23}{\sqrt{62}}$ or $\frac{23 \sqrt{62}}{62}$
Way 2
M1: Subtracts position vectors of points on the lines (either way around). Implied by two correct coordinates if method not shown. (Forms suitable hypotenuse.)
A1: Correct vector or as coordinates, either direction.
M1: Correct formula for the distance using their vectors, $d=A B \cos \theta=\frac{\overrightarrow{A B} \cdot \mathbf{n}}{|\mathbf{n}|}$ with their $\overrightarrow{A B}$ and \mathbf{n}.
M1: Complete evaluation of the formula.
A1: Correct answer. Accept $\frac{23}{\sqrt{62}}$ or $\frac{23 \sqrt{62}}{62}$ but must be positive.
Way 3
M1: Subtracts position vectors of general points on each line (either way around). Implied by two correct coordinates if method not shown.
A1: Correct vector or as coordinates, either direction.
M1: Forms scalar product of the general vector with both direction vectors, sets $=0$ and solves simultaneously
M1: Substitutes the values of their parameters back into the general vector and attempts its magnitude
A1: Correct answer. Accept $\frac{23}{\sqrt{62}}$ or $\frac{23 \sqrt{62}}{62}$ but must be positive.
$\begin{gathered}\text { 6(a) } \\ \text { Way } 1\end{gathered} I_{n}=\int_{0}^{\sqrt{\frac{\pi}{2}}} x^{n-1} \cdot x \cos \left(x^{2}\right) \mathrm{d} x=\left[x^{n-1} \cdot \frac{1}{2} \sin \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}-\int_{0}^{\sqrt{\frac{\pi}{2}}}(n-1) x^{n-2} \cdot \frac{1}{2} \sin \left(x^{2}\right) \mathrm{d} x$

$$
=\left[x^{n-1} \cdot \frac{1}{2} \sin \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}-\frac{1}{2}(n-1) \int_{0}^{\sqrt{\frac{\pi}{2}}} x^{n-3} \cdot x \sin \left(x^{2}\right) \mathrm{d} x
$$

$$
=\left[x^{n-1} \cdot \frac{1}{2} \sin \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}-\frac{1}{2}(n-1)\left(\left[x^{n-3} \cdot-\frac{1}{2} \cos \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}-\int_{0}^{\sqrt{\frac{\pi}{2}}}(n-3) x^{n-4} \cdot-\frac{1}{2} \cos \left(x^{2}\right) \mathrm{d} x\right)
$$

$$
=\left(\frac{1}{2}\left(\sqrt{\frac{\pi}{2}}\right)^{n-1} \sin \frac{\pi}{2}-0\right)-\frac{1}{2}(n-1)\left[(0-0)+\frac{1}{2}(n-3) I_{n-4}\right]
$$

$$
=\frac{1}{2}\left(\frac{\pi}{2}\right)^{\frac{n-1}{2}}-\frac{1}{4}(n-1)(n-3) I_{n-4} *
$$

Way 2

$$
\begin{gathered}
I_{n}=\left[\frac{x^{n+1}}{n+1} \cdot \cos \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}-\int_{0}^{\sqrt{\frac{\pi}{2}}} \frac{x^{n+1}}{n+1} \cdot-2 x \sin \left(x^{2}\right) \mathrm{d} x \\
=\left[\frac{x^{n+1}}{n+1} \cdot \cos \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}+\frac{2}{n+1} \int_{0}^{\sqrt{\frac{\pi}{2}}} x^{n+2} \sin \left(x^{2}\right) \mathrm{d} x \\
=\left[\frac{x^{n+1}}{n+1} \cdot \cos \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}+\frac{2}{n+1}\left(\left[\frac{x^{n+3}}{n+3} \cdot \sin \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}-\int_{0}^{\sqrt{\frac{\pi}{2}}} \frac{x^{n+3}}{n+3} \cdot 2 x \cos \left(x^{2}\right) \mathrm{d} x\right) \\
=(0-0)+\frac{2}{n+1}\left(\frac{1}{n+3}\left(\sqrt{\frac{\pi}{2}}\right)^{n+3} \sin \frac{\pi}{2}-0-\frac{2}{n+3} I_{n+4}\right) \\
\Rightarrow I_{n+4}=\frac{1}{2}\left(\frac{\pi}{2}\right)^{\frac{n+3}{2}}-\frac{1}{4}(n+1)(n+3) I_{n} \operatorname{so~replacing~} n \text { by } n-4 \text { gives } \\
I_{n}=\frac{1}{2}\left(\frac{\pi}{2}\right)^{\frac{n-1}{2}}-\frac{1}{4}(n-1)(n-3) I_{n-4} *
\end{gathered}
$$

(b)

$$
\begin{gathered}
I_{1}=\int_{0}^{\sqrt{\frac{\pi}{2}}} x \cos \left(x^{2}\right) \mathrm{d} x=\left[\frac{1}{2} \sin \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}=\frac{1}{2} \\
I_{5}=\frac{1}{2}\left(\frac{\pi}{2}\right)^{\frac{5-1}{2}}-\frac{1}{4}(5-1)(5-3) \times{ }^{\prime \prime} \frac{1}{2} \\
=\frac{\pi^{2}}{8}-1 \text { oe e.g. } \frac{\pi^{2}-8}{8}, \frac{1}{2}\left(\frac{\pi}{2}\right)^{2}-1
\end{gathered}
$$

Notes:

(a) Way 1

M1: Applies integration by parts in the correct direction having made the 'split' and obtains:

$$
\left[\pm \alpha x^{n-1} \sin \left(x^{2}\right)\right] \pm \beta \int x^{n-2} \cdot \sin \left(x^{2}\right) \mathrm{d} x
$$

A1: Fully correct expression
dM1: Applies integration by parts in the correct direction to $\beta \int x^{n-2} \cdot \sin \left(x^{2}\right) d x$ and obtains:

$$
\left[\pm \alpha x^{n-3} \cos \left(x^{2}\right)\right] \pm \beta \int x^{n-4} \cos \left(x^{2}\right) d x
$$

Depends on the previous M mark.

A1: Correct second application of parts e.g.

$$
\int x^{n-2} \cdot \sin \left(x^{2}\right) \mathrm{d} x=\left[x^{n-3} \cdot-\frac{1}{2} \cos \left(x^{2}\right)\right]-\int(n-3) x^{n-4} \cdot-\frac{1}{2} \cos \left(x^{2}\right) \mathrm{d} x
$$

$\mathbf{d M 1}$: Applies the limits completely to their result and replaces final integral by I_{n-4}. The substitution of limits may have been carried out in stages throughout the work, or may be applied after integration by parts twice has been carried out. Depends on both previous M marks.
There must some explicit evidence that the limits have been applied but this may be taken
from either the $\left[x^{n-1} \cdot \frac{1}{2} \sin \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}=$ e.g. $\sqrt{\frac{\pi}{2}}^{n-1} \cdot \frac{1}{2} \sin \left(\sqrt{\frac{\pi}{2}}^{2}\right), \sqrt{\frac{\pi}{2}} \cdot \frac{n-1}{2}, \frac{1}{2}\left(\frac{\pi}{2}\right)^{\frac{n-1}{2}}-0$
or $\left[x^{n-3} \cdot-\frac{1}{2} \cos \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}=$ e.g. $0-0,0$
A1*: Achieves the printed answer from completely correct work with no errors seen and evidence of the given limits being applied.
Way 2
M1: Applies integration by parts in the correct direction and obtains:

$$
\left[\pm \alpha x^{n+1} \cos \left(x^{2}\right)\right] \pm \beta \int x^{n+1} \cdot x \sin \left(x^{2}\right) \mathrm{d} x
$$

A1: Fully correct expression
dM1: Applies integration by parts in the correct direction to $\beta \int x^{n+1} \cdot x \sin \left(x^{2}\right) \mathrm{d} x$ and obtains:

$$
\left[\pm \alpha x^{n+3} \sin \left(x^{2}\right)\right] \pm \beta \int x^{n+3} \cdot x \cos \left(x^{2}\right) \mathrm{d} x
$$

Depends on the previous M mark.
A1: Correct second application of parts e.g.

$$
\int x^{n+2} \cdot \sin \left(x^{2}\right) \mathrm{d} x=\left[\frac{x^{n+3}}{n+3} \cdot \sin \left(x^{2}\right)\right]-\int \frac{x^{n+3}}{n+3} \cdot 2 x \cos \left(x^{2}\right) \mathrm{d} x
$$

$\mathbf{d M 1}$: Applies the limits completely to their result and replaces final integral by I_{n+4}. The substitution of limits may have been carried out in stages throughout the work, or may be applied after integration by parts twice has been carried out. Depends on both previous M marks.
There must some explicit evidence that the limits have been applied but this may be taken from either the $\left[\frac{x^{n+1}}{n+1} \cdot \cos \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}=$ e.g. $0-0,0$ or

$$
\left[\frac{x^{n+3}}{n+3} \cdot \sin \left(x^{2}\right)\right]_{0}^{\sqrt{\frac{\pi}{2}}}=\text { e.g. } \frac{\sqrt{\frac{\pi}{2}}^{n+3}}{n+3} \cdot \sin \left(\sqrt{\sqrt[\pi]{2}^{2}}\right), \frac{\sqrt{\frac{\pi}{2}}^{n+3}}{n+3} \cdot \sin \left(\frac{\pi}{2}\right), \frac{\sqrt{\frac{\pi}{2}}^{n+3}}{n+3} \cdot(1), \frac{\left(\frac{\pi}{2}\right)^{\frac{n+3}{2}}}{n+3}-0
$$

A1*: Achieves the printed answer from completely correct work with no errors and evidence of the given limits being applied with a clear statement that n is replaced by $n-4$
(b)

B1: Correct I_{1}. May be seen after attempting the reduction.
M1: Applies the reduction formula with their I_{1} and $n=5$ to reach a value. Condone slips with evaluating $\frac{1}{4}(n-1)(n-3)$ as long as the intention is clear.
A1: Correct answer.

Note: Beware incorrect work in (a) leading to what appears to be a correct form e.g.

$$
I_{n}=\int_{0}^{\sqrt{\frac{\pi}{2}}} x^{n} \cos \left(x^{2}\right) \mathrm{d} x=\left[x^{n} \cdot \frac{\sin \left(x^{2}\right)}{2 x}\right]_{0}^{\sqrt{\frac{\pi}{2}}}-\int_{0}^{\sqrt{\frac{\pi}{2}}} n x^{n-1} \cdot \frac{\sin \left(x^{2}\right)}{2 x} \mathrm{~d} x
$$

This scores M0 at the start and hence will usually score no marks in part (a)

Question	Scheme	Marks
7(a)	$b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow e^{2}=\frac{25}{a^{2}}+1=\frac{25+a^{2}}{a^{2}}$ oe	B1
		(1)
(b)	$x=(\pm) \frac{a}{e} \quad \frac{x}{a}=(\pm) \frac{y}{5}$	B1
	$\frac{a}{e} \times \frac{1}{a}= \pm \frac{y}{5} \Rightarrow y= \pm \frac{5}{e} \Rightarrow A A ?=\times \frac{5}{e}$ or $\frac{5}{e}-\left(-\frac{5}{e}\right)$	M1
	$=\frac{10}{e}$	A1
		(3)
(c)	$\frac{1}{2} \times \frac{10}{e}{ }^{\prime \prime} \times\left(a e+\frac{a}{e}\right)$ or e.g. $\frac{1}{2} \times \frac{10 a}{\sqrt{25+a^{2}}} \times\left(\sqrt{25+a^{2}}+\frac{a^{2}}{\sqrt{25+a^{2}}}\right)$	M1
	$\begin{aligned} & \frac{1}{2} \frac{10}{e}\left(a e+\frac{a}{e}\right)=\frac{164}{3} \Rightarrow 15\left(a+\frac{a}{e^{2}}\right)=164 \\ & \frac{1}{2} \times \frac{10 a}{\sqrt{25+a^{2}}} \times\left(\sqrt{25+a^{2}}+\frac{a^{2}}{\sqrt{25+a^{2}}}\right)=\frac{164}{3} \end{aligned}$	M1
	$\Rightarrow 15 a\left(1+\frac{a^{2}}{25+a^{2}}\right)=164$	
	$\begin{gathered} \Rightarrow 15 a\left(\frac{25+2 a^{2}}{25+a^{2}}\right)=164 \Rightarrow 375 a+30 a^{3}=164\left(25+a^{2}\right) \\ \Rightarrow 30 a^{3}-164 a^{2}+375 a-4100=0^{*} \end{gathered}$	A1*
		(4)
(d)	$30 a^{3}-164 a^{2}+375 a-4100=(3 a-20)\left(10 a^{2}+12 a+205\right)$	
	$\begin{gathered} 12^{2}-4(10)(205)=\ldots \\ 10 a^{2}+12 a+205=10\left(\left(a+\frac{12}{20}\right)^{2}-\frac{144}{400}\right)+205 \end{gathered}$	M1
	E.g. $12^{2}-4(10)(205)<0$ so there are no other roots of the equation. Hence $a=\frac{20}{3}$ is only possible value.	A1
		(3)
(11 marks)		
Notes:		
(a) B1: Corre	ression.	

(b)

B1: Identifies at least one correct equation for a directrix and at least one asymptote, stated or used including the $b=5$.
M1: Solves to find y coordinates of A and A^{\prime} or just one of these and doubles to get length. Allow if b is used rather than 5 .
A1: Correct length (from subtracting or doubling). Must be positive.
(c)

M1: Uses focus $(-a e, 0)$ and directrix $x=\frac{a}{e}$ (allow if the alternative pair is used) with their length from (b), to form a correct or correct ft expression for the area of triangle $A F A^{\prime}$.
M1: Sets their area equation equal to $\frac{164}{3}$ to obtain an equation in e^{2} and a.
Their attempt at the area must be of the form $\frac{1}{2} \times \frac{10}{e}{ }^{\prime \prime} \times \pm\left(a e \pm \frac{a}{e}\right)$
Alternatively, allow an equation in just a^{2} if $e=\sqrt{\frac{25+a^{2}}{a^{2}}}$ is substituted first.
A1(M1 on EPEN): Correct equation in terms of a only. Allow any correct form.
A1*: Correct result achieved with no errors seen and sufficient working shown.
(d)

B1(M1 on EPEN): A correct method for showing that $a=\frac{20}{3}$ is a solution of the equation.
Examples:

$$
\begin{gathered}
30 a^{3}-164 a^{2}+375 a-4100=(3 a-20)\left(10 a^{2}+12 a+205\right) \\
30 a^{3}-164 a^{2}+375 a-4100=\left(a-\frac{20}{3}\right)\left(30 a^{2}+36 a+615\right) \\
\mathrm{f}\left(\frac{20}{3}\right)=\frac{80000}{9}-\frac{65600}{9}+2500-4100=0
\end{gathered}
$$

Or e.g. long division and obtains correct quotient and no remainder
M1: A correct method for showing there are no other roots. May use completing the square (as in scheme) or attempt discriminant or differentiation,
e.g. $\frac{\mathrm{d}}{\mathrm{d} a}($ eqn $)=90 a^{2}-328 a+375=90\left(a-\frac{82}{45}\right)^{2}+\frac{3427}{45}>0$ so strictly increasing hence only one solution.
If using discriminant then values must be used i.e. not just $b^{2}-4 a c<0$
An attempt at the discriminant may be seen as part of the quadratic formula e.g.
$a=\frac{-12 \pm \sqrt{12^{2}-4(10)(205)}}{2(10)}$
A1: All work correct with reason and conclusion made that $a=\frac{20}{3}$ is the only possible value. If the discriminant is evaluated then it must be correct. For reference $12^{2}-4(10)(205)=-8056$ and $36^{2}-4(30)(615)=-72504$ but note that e.g. $12^{2}-4(10)(205)<0$ with a conclusion is acceptable.
Note that just using a calculator to solve the cubic generally scores no marks.

$$
\begin{array}{r}
\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{1}{\sqrt{1-k \sqrt{x}^{2}}} \times \ldots x^{-\frac{1}{2}} \quad \text { or } \quad \cos y=2 x^{\frac{1}{2}} \Rightarrow \pm \sin y \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}= \pm \frac{1}{\sqrt{1-4 x}} \times\left(K x^{-\frac{1}{2}}\right) \quad \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{K x^{-\frac{1}{2}}}{\sqrt{1-(2 \sqrt{x})^{2}}} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{\sqrt{x} \sqrt{1-4 x}} \text { oe e.g. } \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{\sqrt{x-4 x^{2}}}
\end{array}
$$

(b)

Way 1

$$
\int y \mathrm{~d} x=\int 1 \times \arccos (2 \sqrt{x}) \mathrm{d} x=x \arccos (2 \sqrt{x})-\int x \frac{-1}{\sqrt{x} \sqrt{1-4 x}} \mathrm{~d} x
$$

$$
=x \arccos (2 \sqrt{x})+\int \frac{\sqrt{x}}{\sqrt{1-4 x}} \mathrm{~d} x^{*}
$$

Way 2

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}(x \arccos (2 \sqrt{x}))=1 \cdot \arccos (2 \sqrt{x})+x \cdot \frac{-1}{\sqrt{x} \sqrt{1-4 x}} \\
\Rightarrow \int \arccos (2 \sqrt{x}) \mathrm{d} x & =x \arccos (2 \sqrt{x})+\int \frac{\sqrt{x}}{\sqrt{1-4 x}} \mathrm{~d} x^{*}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{1}{2 \sqrt{x}} \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=-\frac{1}{2} \sin \theta, \mathrm{~d} x & =-\sqrt{x} \sin \theta \mathrm{~d} \theta, \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=-\frac{1}{2} \sin \theta \cos \theta \\
\frac{\mathrm{~d} x}{\mathrm{~d} \theta} & =-\frac{1}{4} \sin 2 \theta
\end{aligned}
$$

$$
\int \frac{\sqrt{x}}{\sqrt{1-4 x}} \mathrm{~d} x=\int \frac{-\left(\frac{1}{2} \cos \theta\right)^{2} \sin \theta}{\sqrt{1-4\left(\frac{1}{2} \cos \theta\right)^{2}}} \mathrm{~d} \theta
$$

$$
=-\frac{1}{4} \int \frac{\cos ^{2} \theta \sin \theta}{\sqrt{1-\cos ^{2} \theta}} \mathrm{~d} \theta=-\frac{1}{4} \int \cos ^{2} \theta \mathrm{~d} \theta
$$

$$
\begin{aligned}
& x=0 \Rightarrow \theta=\frac{\pi}{2} \\
& x=\frac{1}{8} \Rightarrow \theta=\frac{\pi}{4}
\end{aligned} \quad \text { So } \quad \int_{0}^{\frac{1}{8}} \frac{\sqrt{x}}{\sqrt{1-4 x}} \mathrm{~d} x=\frac{1}{4} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta
$$

(d)

$\frac{1}{4} \int \frac{1}{2}(1+\cos 2 \theta) \mathrm{d} \theta=K\left(\theta \pm \frac{1}{2} \sin 2 \theta\right)$	M1
$\begin{gathered} \int_{0}^{\frac{1}{8}} \frac{\sqrt{x}}{\sqrt{1-4 x}} \mathrm{~d} x=\frac{1}{8}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}=\ldots\left(=\frac{\pi}{32}-\frac{1}{16}\right) \\ \text { or e.g. } \\ \int_{0}^{\frac{1}{8}} \frac{\sqrt{x}}{\sqrt{1-4 x}} \mathrm{~d} x=\frac{1}{8}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}=-\frac{1}{8}\left[\arccos 2 \sqrt{x}+\frac{1}{2} \sin 2 \arccos 2 \sqrt{x}\right]_{0}^{\frac{1}{8}} \\ =\ldots\left(=-\frac{1}{8}\left(\frac{\pi}{4}+\frac{1}{2}-\frac{\pi}{2}\right)\right) \end{gathered}$	dM1
$\Rightarrow \int_{0}^{\frac{1}{8}} \arccos (2 \sqrt{x}) \mathrm{d} x=[x \arccos 2 \sqrt{x}]_{0}^{\frac{1}{8}}+\frac{\pi}{32}-\frac{1}{16}=\frac{1}{8} \arccos \frac{1}{\sqrt{2}}-0+\frac{\pi}{32}-\frac{1}{16}$	dM1
$=\frac{\pi}{16}-\frac{1}{16}$ oe	A1
	(4)
(13 marks)	

Notes:

(a)

M1: Attempts to apply the arccos derivative formula together with chain rule. Look for $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{1}{\sqrt{1-k \sqrt{x}^{2}}} \times \mathrm{f}(x)$ where $\mathrm{f}(x)$ is an attempt at differentiating $2 \sqrt{x}$ where $\mathrm{f}(x) \neq \alpha \sqrt{x}$
Note that k may be 1 for this mark.
Alternatively, takes cosine of both sides and differentiates to the form shown in the scheme.
dM1: Correct form for the overall derivative achieved, may be errors in sign or constants with $k \neq 1$ Alternatively, divides through by $\sin y$ and applies Pythagorean identity to achieve derivative in terms of x.
A1: Correct derivative, but need not be simplified. Award when first seen and isw.
(b) Way 1

M1: Attempts to apply integration by parts to $1 \times \arccos (2 \sqrt{x})$.
Look for $x \arccos (2 \sqrt{x})-\int x$ "their (a)" $\mathrm{d} x$ or $u=\arccos (2 \sqrt{x}) \Rightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}=\operatorname{part}(a), \frac{\mathrm{d} v}{\mathrm{~d} x}=1 \Rightarrow v=x$
$\mathbf{A 1 *}$: Correct work leading to the printed answer. There must be a clear statement for the integration by parts before the given answer is stated.
So e.g. $u=\arccos (2 \sqrt{x}) \Rightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}=\operatorname{part}(a), \frac{\mathrm{d} v}{\mathrm{~d} x}=1 \Rightarrow v=x$
$\Rightarrow \int \arccos (2 \sqrt{x}) \mathrm{d} x=x \arccos (2 \sqrt{x})+\int \frac{\sqrt{x}}{\sqrt{1-4 x}} \mathrm{~d} x *$ scores M1A0
You can condone $\int \arccos (2 \sqrt{x}) \mathrm{d} x=x \arccos (2 \sqrt{x})+\int \frac{x^{\frac{1}{2}}}{\sqrt{1-4 x}} \mathrm{~d} x *$

Way 2

M1: Applies the product rule to $x \arccos (2 \sqrt{x})$, look for $1 . \arccos (2 \sqrt{x})+x$."their (a)".
A1*: Rearranges and integrates to achieve the given result, with no errors seen.
(c)

B1: Any correct expression involving $\mathrm{d} x$ and $\mathrm{d} \theta$, see examples in scheme.
M1: Makes a complete substitution in the integral $\int \frac{\sqrt{x}}{\sqrt{1-4 x}} \mathrm{~d} x$ to achieve an integral in θ only. Ignore attempts at substitution into the $x \arccos (2 \sqrt{x})$.

A1: A correct simplified integral aside from limits. May be implied by e.g. $\frac{1}{4} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta$

Note that this mark depends on the B mark.

A1: Finds correct limits for θ and applies to the integral by reversing the sign - i.e. correct answer with limits and sign all correct. Accept equivalent limits e.g. $-\frac{\pi}{4}$ to $-\frac{\pi}{4}$ or $\frac{\pi}{2}$ to $\frac{3 \pi}{4}$

Note that this mark depends on the B mark.

(d)

M1: Applies double angle identity to get the integral in a suitable form and attempts to integrate.
Accept $\cos ^{2} \theta=\frac{1}{2}(\pm 1 \pm \cos 2 \theta)$ used as identity and look for $1 \rightarrow \theta$ and $\cos 2 \theta \rightarrow \pm \frac{1}{2} \sin 2 \theta$
dM1: Applies their limits (either way round) to their integral in θ or reverse substitution and applies limits 0 and $\frac{1}{8}$.

Depends on the previous method mark.

dM1: Applies limits of 0 and $\frac{1}{8}$ to the $x \arccos (2 \sqrt{x})$ to obtain a value (or their limits either way round if they applied the substitution to this to obtain a value) and combines with the result of the other integral.
Depends on both previous method marks.
A1: Correct final answer.

Question Number	Scheme Notes	Marks
1(a)	$8 \cosh ^{4} x=8\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{4}=\frac{8}{16}\left(\mathrm{e}^{4 x}+4 \mathrm{e}^{2 x}+6+4 \mathrm{e}^{-2 x}+\mathrm{e}^{-4 x}\right)$ Applies $\cosh x=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ and attempts to expand the bracket to at least 4 different and no more than 5 different terms of the correct form but they may be "uncollected" depending on how they do the expansion. Allow unsimplified terms e.g. $\left(\mathrm{e}^{x}\right)^{3} \mathrm{e}^{-x}$. May see $8\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}$ but must attempt to expand as above	M1
	$=\frac{1}{2}\left(\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}\right)+4\left(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}\right)+3=\ldots \quad \begin{aligned} & \text { Collects appropriate terms and reaches the } \\ & \text { form } \cosh 4 x+p \cosh 2 x+q \text { or obtains } \\ & \text { values of } p \text { and } q . \end{aligned}$	M1
	$=\cosh 4 x+4 \cosh 2 x+3 \quad$Correct expression or values e.g. $p=4$ and q $=3$	A1
	No marks are available in (a) if exponentials are not used but note that they may appear in combination with the use of hyperbolic identities e.g.: $\begin{gathered} 8 \cosh ^{4} x=8\left(\cosh ^{2} x\right)^{2}=8\left(\frac{\cosh 2 x+1}{2}\right)^{2}=2\left(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}+1\right)^{2} \\ =2\left(\frac{\mathrm{e}^{4 x}+2+\mathrm{e}^{-4 x}}{4}+\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}+1\right)=\frac{\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}}{2}+4\left(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}\right)+2 \\ =\cosh 4 x+4 \cosh 2 x+3 \end{gathered}$ Allow to "meet in the middle" e.g. expands as above and compares with $\frac{1}{2}\left(\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}\right)+p\left(\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}\right)+q \Rightarrow p=\ldots, q=\ldots$ but to score any marks the expansion must be attempted.	
		(3)

(b) Way 1	$\cosh 4 x-17 \cosh 2 x+9=0 \Rightarrow 8 \cosh ^{4} x-4 \cosh 2 x-3-17 \cosh 2 x+9=0$ $\Rightarrow 8 \cosh ^{4} x-21 \cosh 2 x+6=0 \Rightarrow 8 \cosh ^{4} x-21\left(2 \cosh ^{2} x-1\right)+6=0$ Uses their result from part (a) and $\cosh 2 x= \pm 2 \cosh ^{2} x \pm 1$ to obtain a quadratic equation in $\cosh ^{2} x$ or $\cosh 4 x-17 \cosh 2 x+9=0 \Rightarrow 2\left(2 \cosh ^{2} x-1\right)^{2}-1-17\left(2 \cosh ^{2} x-1\right)+9=0$ Uses $\cosh 4 x= \pm 2 \cosh ^{2} 2 x \pm 1$ and $\cosh 2 x= \pm 2 \cosh ^{2} x \pm 1$ to obtain a quadratic equation in $\cosh ^{2} x$	M1
	$\Rightarrow 8 \cosh ^{4} x-42 \cosh ^{2} x+27=0 \quad$ Correct 3TQ in $\cosh ^{2} x$	A1
	$\Rightarrow 8 \cosh ^{4} x-42 \cosh ^{2} x+27=0$ Solves 3TQ in $\cosh ^{2} x$ (apply usual rules if necessary) to obtain $\cosh ^{2} x=k(k \in \mathbb{R}$ and $>1)$. May be implied by their values - check if necessary.	M1
	$\begin{gathered} \cosh ^{2} x=\frac{9}{2} \Rightarrow \cosh x=\frac{3}{\sqrt{2}} \Rightarrow x= \pm \ln \left(\frac{3}{\sqrt{2}}+\sqrt{\frac{9}{2}-1}\right) \\ \cosh x=\frac{3}{\sqrt{2}} \Rightarrow \frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}=\frac{3}{\sqrt{2}} \Rightarrow \sqrt{2} \mathrm{e}^{2 x}-6 \mathrm{e}^{x}+\sqrt{2}=0 \Rightarrow \mathrm{e}^{x}=\ldots \Rightarrow x=\ldots \\ \cosh ^{2} x=\frac{9}{2} \Rightarrow\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}=\frac{9}{2} \Rightarrow \mathrm{e}^{4 x}-16 \mathrm{e}^{2 x}+1=0 \Rightarrow \mathrm{e}^{2 x}=\ldots \Rightarrow x=\ldots \end{gathered}$ Takes square root to obtain $\cosh x=k(k>1)$ and applies the correct logarithmic form for arcosh or uses the correct exponential form for $\cosh x$ to obtain at least one value for x The root(s) must be real to score this mark.	M1
	$x= \pm \ln \left(\frac{3 \sqrt{2}}{2}+\frac{\sqrt{14}}{2}\right)$ Both correct and exact including brackets. Accept simplified equivalents e.g. $x=\ln \left(\frac{3}{\sqrt{2}} \pm \frac{\sqrt{7}}{\sqrt{2}}\right)$ but withhold this mark if additional answers are given unless they are the same e.g. allow $x= \pm \ln \left(\frac{3 \sqrt{2}}{2} \pm \frac{\sqrt{14}}{2}\right)$	A1
		(5)

(b)

$$
\cosh 4 x-17 \cosh 2 x+9=0 \Rightarrow 2 \cosh ^{2} 2 x-1-17 \cosh 2 x+9=0
$$

Way 2
Applies $\cosh 4 x= \pm 2 \cosh ^{2} 2 x \pm 1$ to obtain a quadratic equation in $\cosh 2 x$

$$
\begin{array}{r}
2 \cosh ^{2} 2 x-17 \cosh 2 x+ \\
2 \cosh ^{2} 2 x-17 \cosh 2 x+ \\
\Rightarrow \cosh 2 x=8\left(, \frac{1}{2}\right)
\end{array}
$$

$$
\cosh 2 x=8 \Rightarrow 2 x= \pm \ln \left(8+\sqrt{8^{2}-1}\right)
$$

or
$\cosh 2 x=8 \Rightarrow \frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}{2}=8 \Rightarrow \mathrm{e}^{4 x}-16 \mathrm{e}^{2 x}+1=0 \Rightarrow \mathrm{e}^{2 x}=\ldots \Rightarrow 2 x=\ldots$
Applies the correct logarithmic form for arcosh from $\cosh 2 x=k(k>1)$ or uses the correct exponential form for $\cosh 2 x$ to obtain at least one value for $2 x$

The root(s) must be real to score this mark.

$$
\begin{gathered}
x= \pm \frac{1}{2} \ln (8+3 \sqrt{7}) \\
\text { or e.g. } \\
x= \pm \ln (8+3 \sqrt{7})^{\frac{1}{2}}
\end{gathered}
$$

Both correct and exact with brackets. Accept simplified equivalents e.g.
$x=\frac{1}{2} \ln (8 \pm \sqrt{63})$ but withhold this mark
Al if additional answers are given unless they are the same as above.
(b)

Way 3

$$
\begin{gathered}
\cosh 4 x-17 \cosh 2 x+9=0 \Rightarrow \frac{\mathrm{e}^{4 x}+\mathrm{e}^{-4 x}}{2}-\frac{17}{2}\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)+9=0 \\
\Rightarrow \mathrm{e}^{8 x}-17 \mathrm{e}^{6 x}+18 \mathrm{e}^{4 x}-17 \mathrm{e}^{2 x}+1=0
\end{gathered}
$$

M1: Applies the correct exponential forms and attempts a quartic equation in $\mathrm{e}^{2 x}$
A1: Correct equation

| $\mathrm{e}^{8 x}-17 \mathrm{e}^{6 x}+18 \mathrm{e}^{4 x}-17 \mathrm{e}^{2 x}+1=0$ |
| :---: | :--- | :--- |
| $\Rightarrow \mathrm{e}^{2 x}=8 \pm 3 \sqrt{7}, \ldots$ |\quad| Solves and proceeds to a value for $\mathrm{e}^{2 x}$ where |
| :--- |
| $\mathrm{e}^{2 x}>1$ and real. | M 1

Question Number	Scheme Notes	Marks
2	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta$ Do not condone missing brackets e.g. $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{1}{\sec \theta+\tan \theta} \times \sec \theta \tan \theta+\sec ^{2} \theta-\cos \theta$ unless a correct expression is implied by subsequent work. Award when a correct expression is seen but note that other forms are possible $\text { e.g. } \sec \theta-\cos \theta, \tan \theta \sin \theta$	B1
	$\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}=\left(\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta\right)^{2}+(-\sin \theta)^{2}$ Attempts $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ and then $\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}$	M1
	$\begin{gathered} S=(2 \pi) \int \cos \theta \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}} \mathrm{~d} \theta \\ =(2 \pi) \int \cos \theta \sqrt{\left(\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta\right)^{2}+(-\sin \theta)^{2}} \mathrm{~d} \theta \end{gathered}$ Applies a correct surface area formula using their $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ and their $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ with or without the 2π For reference: $\sqrt{\left(\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta\right)^{2}+(-\sin \theta)^{2}}=\tan \theta$ Allow π in front of the integral but must be an integral	M1
	$(2 \pi) \int \sin \theta \mathrm{d} \theta$ Fully correct simplified integral with or without the 2π	A1
	$=(2 \pi)[-\cos \theta](+c) \quad$ Correct integration with or without the 2π	A1
	$(2 \pi)[-\cos \theta]_{0}^{\frac{\pi}{4}}=(2 \pi)\left(-\frac{1}{\sqrt{2}}+1\right)$ Applies the limits 0 and $\frac{\pi}{4}$. Must see evidence of both limits if necessary but condone e.g. $(2 \pi)\left(-\frac{1}{\sqrt{2}}-1\right)$ Depends on both previous method marks.	dM1
	$\begin{array}{c\|l} \hline \text { TSA }= & \begin{array}{l} \text { Correct expressions for the } 2 \text { "ends" and adds } \\ \text { these to their curved surface area. Depends on } \\ \text { the previous method mark. } \end{array} \\ \hline \end{array}$	dM1
	$=\frac{\pi}{2}(7-2 \sqrt{2}) \quad$Correct answer in the required form or correct values for p and q.	A1
	Note: The final answer should follow correct work. The final mark should be withheld following e.g. $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ clearly seen as $+\sin \theta$ or $\int \sin \theta \mathrm{d} \theta=+\cos \theta$ Note: Without the "ends" the answer is $\frac{\pi}{2}(4-2 \sqrt{2})$ (usually scores 6/8)	
		(8)
		Total 8

Alternative for first 4 marks:

$$
\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}-\cos \theta
$$

Do not condone missing brackets e.g. $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{1}{\sec \theta+\tan \theta} \times \sec \theta \tan \theta+\sec ^{2} \theta-\cos \theta$
unless a correct expression is implied by subsequent work. Award when a correct expression is seen but note that other forms are possible

$$
\text { e.g. } \sec \theta-\cos \theta, \tan \theta \sin \theta
$$

$$
1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\left(\frac{-\sin \theta}{\sec \theta-\cos \theta}\right)^{2}
$$

$$
\text { Attempts } 1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} \text { with } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{~d} x}
$$

$$
S=(2 \pi) \int \cos \theta \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} \theta} \mathrm{~d} \theta
$$

$$
=(2 \pi) \int \cos \theta \sqrt{1+\left(\frac{-\sin \theta}{\sec \theta-\cos \theta}\right)^{2}}(\sec \theta-\cos \theta) \mathrm{d} \theta
$$

Applies a correct surface area formula using their $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ and their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with or without the 2π
For reference: $\sqrt{1+\left(\frac{-\sin \theta}{\sec \theta-\cos \theta}\right)^{2}}(\sec \theta-\cos \theta)=\tan \theta$
Allow π in front of the integral but must be an integral
$(2 \pi) \int \sin \theta \mathrm{d} \theta$
Fully correct simplified integral with or without the 2π

(a)
$y=\operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow \operatorname{sech} y=\frac{x}{2} \Rightarrow\left(\frac{x}{2}\right)^{2}=\operatorname{sech}^{2} y \Rightarrow \tanh y=\sqrt{1-\left(\frac{x}{2}\right)^{2}}$
$\Rightarrow \operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}}$
Differentiates to $\operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=k x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}}$ or equivalent
$\Rightarrow \operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}} \Rightarrow \frac{x^{2}}{4} \frac{\mathrm{~d} y}{\mathrm{~d} x}=-x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4}{x}\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}}$
M1: Replaces $\operatorname{sech}^{2} y$ with $\left(\frac{2}{x}\right)^{2}$
A1: Correct equation involving $\frac{d x}{d y}$ or $\frac{d y}{d x}$ in any form in terms of x only.

$$
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{x \sqrt{4-x^{2}}}
$$

Correct derivative in the required form or correct values for p and q.

$$
y=\operatorname{arsech}\left(\frac{x}{2}\right) \Rightarrow \operatorname{sech} y=\frac{x}{2} \Rightarrow y=\operatorname{artanh}\left(\sqrt{1-\left(\frac{x}{2}\right)^{2}}\right)
$$

Changes to "artanh" correctly. Score this as the second M mark on EPEN.

$$
\begin{gathered}
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2}\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}}}{1-\left(1-\frac{x^{2}}{4}\right)} \times-\frac{x}{2} \\
\text { M1: Differentiates to the form } \frac{k x\left(1-\frac{x^{2}}{4}\right)^{-\frac{1}{2}}}{1-\left(1-\frac{x^{2}}{4}\right)} \text { oe }
\end{gathered}
$$

A1: Correct equation involving $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form in terms of x only.

Score this as the first M mark and first A mark on EPEN.

$$
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2}{x \sqrt{4-x^{2}}}
$$

Correct derivative in the required form or

(b)	$\mathrm{f}(x)=\tanh ^{-1}(x)+\operatorname{sech}^{-1}\left(\frac{x}{2}\right) \Rightarrow \mathrm{f}^{\prime}(x)=\frac{1}{1-x^{2}}-\frac{2}{x \sqrt{4-x^{2}}}$ Correct $\mathrm{f}^{\prime}(x)$ following through their (a) of the form $\frac{p}{x \sqrt{q-x^{2}}}$ Also allow with "made up" p and q or the letters p and q.		B1ft
	$\begin{gathered} \frac{1}{1-x^{2}}-\frac{2}{x \sqrt{4-x^{2}}}=0 \Rightarrow 2\left(1-x^{2}\right)=x \sqrt{4-x^{2}} \Rightarrow 4\left(1-x^{2}\right)^{2}=x^{2}\left(4-x^{2}\right) \\ \text { Sets } \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { with their (a) of the form } \frac{p}{x \sqrt{q-x^{2}}} \end{gathered}$and squares both sides to reach a quartic equation		M1
	$5 x^{4}-12 x^{2}+4=0$	Correct quartic	A1
	$\begin{gathered} 5 x^{4}-12 x^{2}+4=0 \Rightarrow x^{2}=2,0.4 \\ \Rightarrow x=\ldots \end{gathered}$	Solves their quartic equation to obtain a value for x^{2} and proceeds to a value for x. Apply usual rules for solving and check if necessary. Allow complex roots.	M1
	$x=\sqrt{\frac{2}{5}}$	Correct exact answer (allow equivalents e.g. $\frac{\sqrt{10}}{5}$). If any extra answers given score A0 e.g. $x= \pm \sqrt{\frac{2}{5}}$	A1
			(5)
			Total 9

Special case:

It is possible for a correct solution in (b) following a sign error in (a) e.g.

$$
\begin{gathered}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x \sqrt{4-x^{2}}} \\
\mathrm{f}(x)=\tanh ^{-1}(x)+\operatorname{sech}^{-1}\left(\frac{x}{2}\right) \Rightarrow \mathrm{f}^{\prime}(x)=\frac{1}{1-x^{2}}+\frac{2}{x \sqrt{4-x^{2}}} \\
\frac{1}{1-x^{2}}+\frac{2}{x \sqrt{4-x^{2}}}=0 \Rightarrow 2\left(1-x^{2}\right)=-x \sqrt{4-x^{2}} \Rightarrow 4\left(1-x^{2}\right)^{2}=x^{2}\left(4-x^{2}\right) \text { etc. }
\end{gathered}
$$

This is likely to score M1M1A0A0 in (a) but allow full recovery in (b) if it leads to the correct answer.

Question Number	Scheme Notes	Marks
4(a)	$\begin{gathered} \lambda=3 \Rightarrow\|\mathbf{M}-3 \mathbf{I}\|=\left\|\begin{array}{lll} 3 & k & 2 \\ k & 2 & 0 \\ 2 & 0 & 4 \end{array}\right\|=0 \Rightarrow 3(8)-k(4 k)+2(-4)=0 \\ \quad\|\mathbf{M}-\lambda \mathbf{I}\|=\left\|\begin{array}{ccc} 6-\lambda & k & 2 \\ k & 5-\lambda & 0 \\ 2 & 0 & 7-\lambda \end{array}\right\|=0 \\ \Rightarrow(6-\lambda)(5-\lambda)(7-\lambda)-k(k(7-\lambda))+2(0-2(5-\lambda))=0 \Rightarrow 24-k(4 k)-8=0 \end{gathered}$ Correct interpretation of 3 being an eigenvalue leading to the formation of a quadratic equation in k only. If the method for forming the determinant is not clear then look for at least 2 correct "components". NB rule of Sarrus gives $24-8-4 k^{2}=0$	M1
	$\Rightarrow 4 k^{2}=16 \Rightarrow k=\ldots \quad$Solves quadratic. Depends on the first \mathbf{M}.	dM1
	$k= \pm 2$ Correct values	A1
		(3)
(a) Way 2	$\begin{gathered} \left(\begin{array}{lll} 6 & k & 2 \\ k & 5 & 0 \\ 2 & 0 & 7 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=3\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \Rightarrow \begin{array}{l} 6 x+k y+2 z=3 x \\ k x+5 y=3 y \\ 2 x+7 z=3 z \end{array} \\ z=-\frac{1}{2} x, y=-\frac{1}{2} k x \Rightarrow 6 x-\frac{k^{2} x}{2}-x=3 x \Rightarrow \frac{k^{2}}{2}=2 \end{gathered}$ Eliminates z and y and reaches a quadratic equation in k only	M1
	$\frac{k^{2}}{2}=2 \Rightarrow k=\ldots \quad$Solves quadratic. Depends on the first \mathbf{M}.	dM1
	$k= \pm 2$ Correct values	A1
(b)	$\begin{gathered} \quad k=-2 \Rightarrow\|\mathbf{M}-\lambda \mathbf{I}\|=\left\|\begin{array}{ccc} 6-\lambda & -2 & 2 \\ -2 & 5-\lambda & 0 \\ 2 & 0 & 7-\lambda \end{array}\right\| \\ \Rightarrow(6-\lambda)(7-\lambda)(5-\lambda)+2(2 \lambda-14)+2(2 \lambda-10)=0 \end{gathered}$ Applies a value of k from (a) and a recognisable attempt at the characteristic equation (the "= $0 "$ is not needed here). If the method is not clear then look for at least 2 correct "components".	M1
	$\Rightarrow \lambda^{3}-18 \lambda^{2}+99 \lambda-162=0 \Rightarrow \lambda=\ldots \quad \begin{aligned} & \text { Solves cubic. May use } \lambda=3 \text { as a factor or } \\ & \text { calculator to solve. Depends on the first } \\ & \text { mark. Allow complex roots. } \end{aligned}$	dM1
	$\lambda=6,9(, 3) \quad$Correct values. Allow to come from $k=2$	A1
		(3)

(c)	$\left.\begin{array}{l} \left(\begin{array}{rrr} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=3\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \begin{array}{l} 6 x-2 y+2 z=3 x \\ -2 x+5 y=3 y \\ 2 x+7 z=3 z \end{array} \\ \left(\begin{array}{rrr} 3 & -2 & 2 \\ -2 & 2 & 0 \\ 2 & 0 & 4 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots \\ 0 \\ 0 \end{array}\right) \begin{aligned} & 6 x-2 y+2 z=0 \\ & -2 x+5 y=0 \\ & 2 x+7 z=0 \end{aligned} \quad \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\ldots .$ Correct strategy for finding the eigenvector using a value of k from (a) Note that the cross product of any 2 rows or columns of $\mathbf{M}-3 \mathbf{I}$ gives an eigenvector		M1
	$p\left(\begin{array}{r}2 \\ 2 \\ -1\end{array}\right)$	Any correct eigenvector	A1
	$\frac{1}{3}\left(\begin{array}{r}2 \\ 2 \\ -1\end{array}\right)$	Any correct normalised eigenvector	A1
			(3)
			Total 9

Question Number	Scheme Notes	Marks
5(i)	$x^{2}-3 x+5=\left(x-\frac{3}{2}\right)^{2}+\frac{11}{4} \quad$ Correct completion of the square	B1
	$\int \frac{1}{\sqrt{x^{2}-3 x+5}} \mathrm{~d} x=\int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}+\frac{11}{4}}} \mathrm{~d} x=\sinh ^{-1} \frac{2 x-3}{\sqrt{11}}(+c)$ A1: Fully correct expression (condone omission of $+c$) Allow equivalent correct expressions e.g. $\sinh ^{-1} \frac{x-\frac{3}{2}}{\sqrt{\frac{11}{4}}}(+c), \sinh ^{-1} \frac{x-\frac{3}{2}}{\frac{\sqrt{11}}{2}}(+c)$ Allow equivalents for $\sinh ^{-1}$ e.g. arsinh, arcsinh but not arsin or arcsin	M1A1
	You may see logarithmic forms for the answer: $\text { e.g. } \ln \left(\frac{2 x-3}{\sqrt{11}}+\sqrt{\left(\frac{2 x-3}{\sqrt{11}}\right)^{2}+1}\right), \ln \left(x-\frac{3}{2}+\sqrt{\left(x-\frac{3}{2}\right)^{2}+\frac{11}{4}}\right)$ but apply isw once a correct answer is seen.	
		(3)
(ii)	$\begin{aligned} 63+4 x-4 x^{2}=-4\left(x^{2}-x-\frac{63}{4}\right) & \text { Obtains }-4\left(\left(x-\frac{1}{2}\right)^{2} \pm \ldots\right) \text { or } \\ =-4\left(\left(x-\frac{1}{2}\right)^{2}-\frac{64}{4}\right) & -4\left(x-\frac{1}{2}\right)^{2} \pm \ldots \text { or } \ldots-(2 x-1)^{2} \end{aligned}$	M1
	$\begin{array}{c\|c} -4\left(\left(x-\frac{1}{2}\right)^{2}-16\right) \text { or } 64-4\left(x-\frac{1}{2}\right)^{2} \\ \text { or } \\ 64-(2 x-1)^{2} \end{array} \quad \text { Correct completion of the square }$	A1
	$\int \frac{1}{\sqrt{63+4 x-4 x^{2}}} \mathrm{~d} x=\frac{1}{2} \sin ^{-1}\left(\frac{2 x-1}{8}\right)(+c)$ M1: Use of $\sin ^{-1}$ A1: Fully correct expression (condone omission of $+c$) Allow equivalent correct expressions e.g. $\frac{1}{2} \sin ^{-1} \frac{x-\frac{1}{2}}{4}(+c),-\frac{1}{2} \sin ^{-1} \frac{\frac{1}{2}-x}{4}(+c)$ Allow equivalents for $\sin ^{-1}$ e.g. arsin, arcsin but not arsinh or arcsinh	M1A1
		(4)
	In (ii) there are no marks for using $\int \frac{1}{\sqrt{63+4 x-4 x^{2}}} \mathrm{~d} x=-\int \frac{1}{\sqrt{4 x^{2}-63-4 x}} \mathrm{~d} x$ But if completion of square attempted first allow M1A1 e.g. for $\int \frac{1}{\sqrt{63+4 x-4 x^{2}}} \mathrm{~d} x=\int \frac{1}{\sqrt{64-(2 x-1)^{2}}} \mathrm{~d} x \text { but then M0 for }=\int \frac{-1}{\sqrt{(2 x-1)^{2}-64}} \mathrm{~d} x$	
		Total 7

Question Number	Scheme Notes	Marks
6(a)	$\int \mathrm{e}^{x} \sin ^{n} x \mathrm{~d} x=\mathrm{e}^{x} \sin ^{n} x-n \int \mathrm{e}^{x} \sin ^{n-1} x \cos x \mathrm{~d} x$ Applies integration by parts to obtain $\pm \mathrm{e}^{x} \sin ^{n} x \pm \alpha \int \mathrm{e}^{x} \sin ^{n-1} x \cos x \mathrm{~d} x$	M1
	$=\mathrm{e}^{x} \sin ^{n} x-n\left\{\mathrm{e}^{x} \sin ^{n-1} x \cos x-\int \mathrm{e}^{x}\left((n-1) \sin ^{n-2} x \cos ^{2} x-\sin ^{n} x\right) \mathrm{d} x\right\}$ M1: Applies integration by parts to $\pm \alpha \int \mathrm{e}^{x} \sin ^{n-1} x \cos x \mathrm{~d} x$ to obtain $\pm \mathrm{e}^{x} \sin ^{n-1} x \cos x \pm \int \mathrm{e}^{x}\left(\alpha \sin ^{n-2} x \cos ^{2} x-\beta \sin ^{n} x\right) \mathrm{d} x$ Or equivalent e.g. $\pm \mathrm{e}^{x} \sin ^{n-1} x \cos x \pm \int \mathrm{e}^{x}\left(\alpha \sin ^{n-2} x-\beta \sin ^{n} x\right) \mathrm{d} x$ (if Pythagoras applied first) A1: Fully correct expression for I_{n} from parts applied twice.	dM1A1
	$\begin{gathered} =\mathrm{e}^{x} \sin ^{n} x-n\left\{\mathrm{e}^{x} \sin ^{n-1} x \cos x-\int \mathrm{e}^{x}\left((n-1) \sin ^{n-2} x\left(1-\sin ^{2} x\right)-\sin ^{n} x\right) \mathrm{d} x\right\} \\ \text { Applies } \cos ^{2} x=1-\sin ^{2} x \end{gathered}$	dM1
	$\begin{gathered} =\mathrm{e}^{x} \sin ^{n} x-n\left\{\mathrm{e}^{x} \sin ^{n-1} x \cos x-\int \mathrm{e}^{x}\left((n-1) \sin ^{n-2} x-(n-1) \sin ^{n} x-\sin ^{n} x\right) \mathrm{d} x\right\} \\ =\mathrm{e}^{x} \sin ^{n} x-n\left\{\mathrm{e}^{x} \sin ^{n-1} x \cos x-\int \mathrm{e}^{x}\left((n-1) \sin ^{n-2} x-n \sin ^{n} x\right) \mathrm{d} x\right\} \\ =\mathrm{e}^{x} \sin ^{n} x-n \mathrm{e}^{x} \sin ^{n-1} x \cos x+n(n-1) I_{n-2}-n^{2} I_{n} \Rightarrow I_{n}=\ldots \\ \text { Completes by introducing } I_{n-2} \text { and } I_{n} \text { and makes } I_{n} \text { the subject } \end{gathered}$	dM1
	$I_{n}=\frac{\mathrm{e}^{x} \sin ^{n-1} x}{n^{2}+1}(\sin x-n \cos x)+\frac{n(n-1)}{n^{2}+1} I_{n-2} *$ Fully correct proof with no errors but allow e.g. the occasional missing "dx" but any clear errors must be recovered before final answer e.g. missing brackets.	A1*
		(6)

(b)	$\begin{gathered} I_{4}=\frac{\mathrm{e}^{x} \sin ^{3} x}{17}(\sin x-4 \cos x)+\frac{12}{17} I_{2} \\ \text { or } \\ I_{2}=\frac{\mathrm{e}^{x} \sin x}{5}(\sin x-2 \cos x)+\frac{2}{5} I_{0} \end{gathered}$ Applies the reduction formula once	M1
	$\begin{aligned} & =\frac{\mathrm{e}^{x} \sin ^{3} x}{17}(\sin x-4 \cos x)+\frac{12}{17}\left(\frac{\mathrm{e}^{x} \sin x}{5}(\sin x-2 \cos x)+\frac{2}{5} I_{0}\right) \\ & =\frac{\mathrm{e}^{x} \sin ^{3} x}{17}(\sin x-4 \cos x)+\frac{12 \mathrm{e}^{x} \sin x}{85}(\sin x-2 \cos x)+\frac{24}{85} \mathrm{e}^{x} \end{aligned}$ Applies the reduction formula again and uses $I_{0}=\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}$ to obtain an expression in terms of x	M1
	$\begin{gathered} \int_{0}^{\frac{\pi}{2}} \mathrm{e}^{x} \sin ^{4} x \mathrm{~d} x=\left[\frac{\mathrm{e}^{x} \sin ^{3} x}{17}(\sin x-4 \cos x)+\frac{12 \mathrm{e}^{x} \sin x}{85}(\sin x-2 \cos x)+\frac{24}{85} \mathrm{e}^{x}\right]_{0}^{\frac{\pi}{2}} \\ =\frac{\mathrm{e}^{\frac{\pi}{2}}}{17}+\frac{12 \mathrm{e}^{\frac{\pi}{2}}}{85}+\frac{24 \mathrm{e}^{\frac{\pi}{2}}}{85}-\frac{24}{85} \end{gathered}$ Uses the limits 0 and $\frac{\pi}{2}$ and subtracts. Depends on both previous marks.	dM1
	$=\frac{41 \mathrm{e}^{\frac{\pi}{2}}}{85}-\frac{24}{85}$ Correct expression or correct values e.g. $A=\ldots, B=\ldots$	A1
		(4)
	Note that the limits may be applied as they go e.g.: $\begin{gathered} \text { M1: } \quad I_{4}=\frac{\mathrm{e}^{\frac{\pi}{2}}}{17}(1-0)+\frac{12}{17} I_{2} \\ I_{2}=\frac{\mathrm{e}^{\frac{\pi}{2}}}{5}(1-0)+\frac{2}{5} I_{0} \\ I_{0}=\mathrm{e}^{\frac{\pi}{2}}-1 \\ \text { M1M1: } I_{4}=\frac{\mathrm{e}^{\frac{\pi}{2}}}{17}+\frac{12}{17}\left(\frac{\mathrm{e}^{\frac{\pi}{2}}}{5}+\frac{2}{5}\left(\mathrm{e}^{\frac{\pi}{2}}-1\right)\right) \\ \text { A1: }=\frac{41 \mathrm{e}^{\frac{\pi}{2}}}{85}-\frac{24}{85} \end{gathered}$	
		Total 10

Question Number	Scheme	Notes	Marks
7(a)	$\frac{x-3}{4}=\frac{y-5}{-2}=\frac{z-4}{7} \Rightarrow \mathbf{r}=\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right) \pm \lambda\left(\begin{array}{r}4 \\ -2 \\ 7\end{array}\right)$	Converts to parametric form. " $\mathbf{r}=$ " is not required	M1
	$\begin{gathered} 2 x+4 y-z=1 \\ \Rightarrow 2(3+4 \lambda)+4(5-2 \lambda)-4-7 \lambda=1 \\ \Rightarrow \lambda=\ldots(3) \Rightarrow P \text { is } \ldots \end{gathered}$	Correct strategy for finding P. Condone the use of $2 x+4 y-z=0$ for the plane equation.	M1
	$(15,-1,25)$	Correct coordinates. Condone if given as a vector.	A1
			(3)
(a) Way 2	$\frac{x-3}{4}=\frac{y-5}{-2} \Rightarrow x=13-2 y$	Uses the Cartesian equation to find x in terms of y	M1
	$\begin{gathered} 2 x+4 y-z=1 \Rightarrow 26-4 y+4 y-z=1 \\ \Rightarrow z=\ldots, x=\ldots, y=\ldots \end{gathered}$	Correct strategy for finding P. Condone the use of $2 x+4 y-z=0$ for the plane equation.	M1
	$(15,-1,25)$	Correct coordinates. Condone if given as a vector.	A1
(b)	$\left(\begin{array}{r}4 \\ -2 \\ 7\end{array}\right) \cdot\left(\begin{array}{r}2 \\ 4 \\ -1\end{array}\right)=8-8-7=-7$	Applies the scalar product between the direction of l_{1} and the normal to the plane	M1
	$\phi=\cos ^{-1} \frac{ \pm 7}{\sqrt{69} \sqrt{21}}=\ldots$ Attempts to find a relevant an Depends on the firs	$\sin ^{-1} \frac{ \pm 7}{\sqrt{69} \sqrt{21}}=\ldots$ in degrees or radians. ethod mark.	dM1
	$\theta=10.6{ }^{\circ}$	Allow awrt 10.6 but do not isw and mark the final answer. For reference $\theta=10.5965654^{\circ}$	A1
			(3)
(b) Way 2	$\left(\begin{array}{r}4 \\ -2 \\ 7\end{array}\right) \times\left(\begin{array}{r}2 \\ 4 \\ -1\end{array}\right)=\left(\begin{array}{r}26 \\ -18 \\ -20\end{array}\right)$	Attempts vector product of normal to Π and direction of l_{1}	M1
	$\begin{gathered} \sqrt{26^{2}+18^{2}+20^{2}}=\sqrt{21} \sqrt{69} \sin \alpha \\ \sin \alpha=\frac{10 \sqrt{46}}{69} \Rightarrow \alpha=\ldots \end{gathered}$	Attempts to find a relevant angle. Depends on the first method mark.	dM1
	$\theta=10.6{ }^{\circ}$	Allow awrt 10.6 but do not isw and mark the final answer. For reference $\theta=10.5965654^{\circ}$	A1

(c)	$\mathbf{a}=\left\|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 4 & -1 \\ 4 & -2 & 7\end{array}\right\|=\left(\begin{array}{r}26 \\ -18 \\ -20\end{array}\right)$	Attempts vector product of normal to Π and direction of l_{1}. If no method is seen expect at least 2 correct components.	M1
	$\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 13 & -9 & -10\end{array}\right\|=\binom{49}{-7}$	Attempts vector product of "a" with normal to Π to find direction of l_{2}	M1
	$\|$ 4 -1	Correct direction for l_{2}	A1
	$\mathbf{r}=\binom{15}{-1}+\mu\binom{7}{-1}$	Depends on both previous M marks Attempts vector equation using their direction vector and their P	ddM1
	$(25)(10)$	Correct equation or any equivalent correct vector equation	A1
			(5)
(c) Way 2	$\begin{gathered} \lambda=1 \Rightarrow(7,3,11) \text { lies on } l_{1} \\ \mathbf{r}=\left(\begin{array}{c} 7 \\ 3 \\ 11 \end{array}\right)+t\left(\begin{array}{r} 2 \\ 4 \\ -1 \end{array}\right) \\ \Rightarrow 2(7+2 t)+4(3+4 t)-11+t=1 \\ t=-\frac{2}{3} \Rightarrow\left(\frac{17}{3}, \frac{1}{3}, \frac{35}{3}\right) \text { is on } l_{2} \end{gathered}$	Complete method to find a point on l_{2}	M1
	Direction of l_{2} is $\binom{15}{-1}-\frac{1}{3}\binom{17}{1}=\frac{1}{3}\binom{28}{-4}$	Uses their point and their P to find direction of l_{2}	M1
	$(25)^{3}(35){ }^{3}(40)$	Correct direction for l_{2}	A1
	$\mathbf{r}=\left(\begin{array}{l}15 \\ -1 \\ 25\end{array}\right)+\mu\left(\begin{array}{r}7 \\ -1 \\ 10\end{array}\right)$	Attempts vector equation using their direction vector and their point on l_{2}	ddM1
		Correct equation or any equivalent correct vector equation. Must have $\mathbf{r}=$ and not e.g. $l_{2}=\ldots$	A1
(c) Way 3	$\begin{gathered} \text { Normal to plane from } l_{1} \\ \mathbf{r}=\left(\begin{array}{l} 3 \\ 5 \\ 4 \end{array}\right)+t\left(\begin{array}{r} 2 \\ 4 \\ -1 \end{array}\right) \\ \Rightarrow 2(3+2 t)+4(5+4 t)-(4-t)=1 \\ t=-1 \Rightarrow(1,1,5) \text { is on } l_{2} \end{gathered}$	Complete method to find a point on l_{2}	M1
	Direction of l_{2} is $\binom{15}{-1}-\binom{1}{1}=\binom{14}{-2}$	Uses their point and their P to find direction of l_{2}	M1
		Correct direction for l_{2}	A1
	$\mathbf{r}=\left(\begin{array}{l}1 \\ 1 \\ 5\end{array}\right)+\mu\left(\begin{array}{r}7 \\ -1 \\ 10\end{array}\right)$	Attempts vector equation using their direction vector and their point on l_{2}	ddM1
		Correct equation or any equivalent correct vector equation. Must have $\mathbf{r}=$ and not e.g. $l_{2}=$..	A1
			Total 11

Question Number	Scheme	Notes	Marks
8(a)	$\begin{gathered} b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow 4=9\left(1-e^{2}\right) \Rightarrow e=\ldots \\ \text { or e.g. } \\ e=\sqrt{1-\frac{b^{2}}{a^{2}}} \Rightarrow e=\ldots \end{gathered}$	Uses a correct formula with a and b correctly placed to find a value for e	M1
	$e=\frac{\sqrt{5}}{3}$	Correct value (or equivalent) $e= \pm \frac{\sqrt{5}}{3}$ scores A0	A1
			(2)
(b)(i)	$(\pm a e, 0)=(\pm \sqrt{5}, 0) \text { or }\left(\pm 3 \frac{\sqrt{5}}{3}, 0\right)$ Correct foci. Must be coordinates but allow unsimplified and isw if necessary. Follow through their e so allow for $(\pm 3 \times$ their $e, 0)$		B1ft
(ii)	$x= \pm \frac{a}{e}= \pm \frac{9}{\sqrt{5}} \text { or } x= \pm \frac{3}{\frac{\sqrt{5}}{3}}$ Correct directrices. Must be equations but allow unsimplified and isw if necessary. Follow through their e so allow for $x= \pm 3 /$ their e		B1ft
			(2)
	Special case:Use of a^{2} for a and b^{2} for b consistently scores M0A0 in (a) and B1 $\mathrm{ft} \mathrm{B1} 1 \mathrm{ft}$ in (b) This gives $e=\frac{\sqrt{65}}{9}, \quad(\pm \sqrt{65}, 0), \quad x= \pm \frac{81}{\sqrt{65}}$		
(c)	$\begin{gathered} \frac{\mathrm{d} x}{\mathrm{~d} \theta}=-3 \sin \theta, \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=2 \cos \theta \\ \text { or } \\ \frac{2 x}{9}+\frac{2 y}{4} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \end{gathered}$ or $\begin{gathered} y=\left(4-\frac{4 x^{2}}{9}\right)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4 x}{9}\left(4-\frac{4 x^{2}}{9}\right)^{-\frac{1}{2}} \\ \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots\left(=\frac{2 \cos \theta}{-3 \sin \theta}\right) \end{gathered}$	Correct strategy for the gradient of l in terms of θ. Allow $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos \theta}{-3 \sin \theta}$ to be stated.	M1
	$y-2 \sin \theta=\frac{2 \cos \theta}{-3 \sin \theta}(x-3 \cos \theta)$	Correct straight line method (any complete method). Finding the equation of the normal is M0.	M1
	$\begin{gathered} -3 y \sin \theta+6 \sin ^{2} \theta=2 x \cos \theta-6 \cos ^{2} \theta \\ 2 x \cos \theta+3 y \sin \theta=6^{*} \end{gathered}$	Cso with at least one intermediate line of working	A1*
			(3)

(d)

$l_{2}: y=\frac{3 \sin \theta}{2 \cos \theta} x$	Correct equation for l_{2}	B1
$2 x \cos \theta+3 y \sin \theta=6, y=\frac{3 \sin \theta}{2 \cos \theta} x$		
$\Rightarrow x=\ldots, y=\ldots$	Complete method for Q	M1
$Q:\left(\frac{12 \cos \theta}{4 \cos ^{2} \theta+9 \sin ^{2} \theta}, \frac{18 \sin \theta}{4 \cos ^{2} \theta+9 \sin ^{2} \theta}\right)$		
Correct coordinates. Allow as $x=\ldots, y=\ldots$ and allow equivalent correct expressions as	A1	
e.g. $x=\frac{12 \cos \theta}{4+5 \sin ^{2} \theta} \quad y=\frac{18 \sin \theta}{4+5 \sin ^{2} \theta}, \quad x=\frac{12 \cos \theta}{9-5 \cos ^{2} \theta} \quad y=\frac{18 \sin \theta}{9-5 \cos ^{2} \theta}$		

(e)	At $Q, \frac{y}{x}=\frac{3}{2} \tan \theta \quad$Uses their coordinates of Q to attempt an equation connecting x, y and θ or states or uses the equation found in (d)	M1
	$\begin{gathered} x=\frac{12 \cos \theta}{4 \cos ^{2} \theta+9 \sin ^{2} \theta}=\frac{12 \sec \theta}{4+9 \tan ^{2} \theta} \Rightarrow x^{2}=\frac{144 \sec ^{2} \theta}{\left(4+9 \tan ^{2} \theta\right)^{2}}=\frac{144\left(1+\frac{4 y^{2}}{9 x^{2}}\right)}{\left(4+9 \times \frac{4 y^{2}}{9 x^{2}}\right)^{2}} \\ y=\frac{18 \sin \theta}{4 \cos ^{2} \theta+9 \sin ^{2} \theta}=\frac{12 \sec \theta \tan \theta}{4+9 \tan ^{2} \theta} \\ \Rightarrow y^{2}=\frac{324 \sec ^{2} \theta \tan ^{2} \theta}{\left(4+9 \tan ^{2} \theta\right)^{2}}=\frac{324\left(1+\frac{4 y^{2}}{9 x^{2}}\right) \frac{4 y^{2}}{9 x^{2}}}{\left(4+9 \times \frac{4 y^{2}}{9 x^{2}}\right)^{2}} \end{gathered}$ Eliminates θ Depends on the first mark.	dM1
	$\begin{gathered} \Rightarrow x^{2}=\frac{x^{2}\left(9 x^{2}+4 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \Rightarrow\left(x^{2}+y^{2}\right)^{2}=9 x^{2}+4 y^{2} \\ \Rightarrow 9 \times 16 x^{2} y^{2}\left(1+\frac{y^{2}}{x^{2}}\right)^{2}=4 \times 18^{2}\left(1+\frac{4 y^{2}}{9 x^{2}}\right) \Rightarrow\left(x^{2}+y^{2}\right)^{2}=9 x^{2}+4 y^{2} \end{gathered}$ Correct equation or correct values for α and β.	A1
		(3)
(e) Way 2	$x=\frac{12 \cos \theta}{4+5 \sin ^{2} \theta} \quad y=\frac{18 \sin \theta}{4+5 \sin ^{2} \theta} \Rightarrow\left(x^{2}+y^{2}\right)^{2}=\left(\frac{144 \cos ^{2} \theta+324 \sin ^{2} \theta}{\left(4+5 \sin ^{2} \theta\right)^{2}}\right)^{2}$ Uses their Q to obtain an expression for $\left(x^{2}+y^{2}\right)^{2}$ in terms of θ	M1
	$\begin{aligned} & \left(\frac{144 \cos ^{2} \theta+324 \sin ^{2} \theta}{\left(4+5 \sin ^{2} \theta\right)^{2}}\right)^{2}=\left(\frac{144+180 \sin ^{2} \theta}{\left(4+5 \sin ^{2} \theta\right)^{2}}\right)^{2}=\left(\frac{36\left(4+5 \sin ^{2} \theta\right)}{\left(4+5 \sin ^{2} \theta\right)^{2}}\right)^{2}=\frac{1296}{\left(4+5 \sin ^{2} \theta\right)^{2}} \\ & \frac{1296}{\left(4+5 \sin ^{2} \theta\right)^{2}}=\alpha x^{2}+\beta y^{2}=\alpha \frac{144 \cos ^{2} \theta}{\left(4+5 \sin ^{2} \theta\right)^{2}}+\beta \frac{324 \sin ^{2} \theta}{\left(4+5 \sin ^{2} \theta\right)^{2}} \Rightarrow \alpha=\ldots, \beta=\ldots \end{aligned}$ Substitutes into the given answer and solves for α and β	dM1
	$\begin{array}{l\|l} \hline\left(x^{2}+y^{2}\right)^{2}=9 x^{2}+4 y^{2} & \begin{array}{l} \text { Correct expression or correct values for } \\ \alpha \text { and } \beta . \end{array} \\ \hline \end{array}$	A1
		Total 13

Way 2			
(b)	$\begin{gathered} \cosh (x+\ln 2)=\cosh x \cosh (\ln 2)+\sinh x \sinh (\ln 2) \\ =\left(\frac{2+\frac{1}{2}}{2}\right) \cosh x+\left(\frac{2-\frac{1}{2}}{2}\right) \sinh x \end{gathered}$ Applies the result from part (a) and evaluates both $\cosh (\ln 2)$ and $\sinh (\ln 2)$ Use of (a) must be seen		M1
	$\Rightarrow 5 \cosh x=17 \sinh x$ dM 1 : Collects terms and reaches an equation of form $A \cosh x=B \sinh x$ A1: Correct equation		dM1A1
	$5\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)=17\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)$		
	$12 \mathrm{e}^{x}=22 \mathrm{e}^{-x} \Rightarrow \mathrm{e}^{2 x}=\frac{22}{6} \Rightarrow x=\ldots$	Changes to exponentials (correct forms) And solves for x	ddM1
	$x=\frac{1}{2} \ln \left(\frac{11}{6}\right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1
Way 3			
$\begin{gathered} \cosh (x+\ln 2)=\cosh x \cosh (\ln 2)+\sinh x \sinh (\ln 2) \\ \left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{\ln 2}+\mathrm{e}^{-\ln 2}}{2}\right)+\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{\ln 2}-\mathrm{e}^{-\ln 2}}{2}\right)=5\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right) \end{gathered}$ Applies the result from part (a) and uses the exponential forms of the hyperbolic functions. Use of (a) must be seen	$\begin{gathered} \cosh (x+\ln 2)=\cosh x \cosh (\ln 2)+\sinh x \sinh (\ln 2) \\ \left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{\ln 2}+\mathrm{e}^{-\ln 2}}{2}\right)+\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{\ln 2}-\mathrm{e}^{-\ln 2}}{2}\right)=5\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right) \end{gathered}$ Applies the result from part (a) and uses the exponential forms of the hyperbolic functions. Use of (a) must be seen		M1
	eg $5 \mathrm{e}^{x}+5 \mathrm{e}^{-x}=17 \mathrm{e}^{x}-17 \mathrm{e}^{-x}$ oe	Evaluates $\mathrm{e}^{\ln 2}$ and $\mathrm{e}^{-\ln 2}$ and starts to collect terms	dM1
	$12 \mathrm{e}^{2 x}=22 \Rightarrow \mathrm{e}^{2 x}=\frac{11}{6}$	Correct value for $\mathrm{e}^{2 x}$	A1
	$x=\ldots$	Solves for x	ddM1
	$x=\frac{1}{2} \ln \left(\frac{11}{6}\right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1

NB: Squaring and obtaining a value for $\sinh \boldsymbol{x}$ or $\boldsymbol{\operatorname { c o s h }} \boldsymbol{x}$ introduces extra answers. If these extra answers are then eliminated M1A1 is available but if no attempt at elimination is made award M0A0

ALT \quad For B1 and final dM1A1 of (ii) dM1: Reverse the substitution A1: Correct reversed result A1: enter as B1 on e-PEN Correct final answer

Question Number	Scheme Notes	Marks
4.	$y=\operatorname{artanh}\left(\frac{\cos x+a}{\cos x-a}\right)$	
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times \frac{(\cos x-a) \times-\sin x-(\cos x+a) \times-\sin x}{(\cos x-a)^{2}} \\ & \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times\left(-\sin x \times(\cos x-a)^{-1}+(\cos x+a) \times \sin x(\cos x-a)^{-2}\right) \\ & \text { This requires } \frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times \text { An attempt at the quotient (or product) rule. } \end{aligned}$ A1: Correct derivative in any form	M1A1
	$=\frac{(\cos x-a)^{2}}{(\cos x-a)^{2}-(\cos x+a)^{2}} \times \frac{2 a \sin x}{(\cos x-a)^{2}}=\frac{2 a \sin x}{-4 a \cos x}=\ldots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.	dM1
	$=-\frac{1}{2} \tan x \quad$ cso	A1 (4)
Way 2	$y=\operatorname{artanh}\left(\frac{\cos x+a}{\cos x-a}\right) \Rightarrow \tanh y=\frac{\cos x+a}{\cos x-a} \Rightarrow \operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a \sin x}{(\cos x-a)^{2}}$ Takes tanh of both sides, obtains $\operatorname{sech}^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=$ an attempt at the quotient or product rule	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times \frac{2 a \sin x}{(\cos x-a)^{2}}$ Correct derivative in any form	A1
	$=\frac{(\cos x-a)^{2}}{(\cos x-a)^{2}-(\cos x+a)^{2}} \times \frac{2 a \sin x}{(\cos x-a)^{2}}=\frac{2 a \sin x}{-4 a \cos x}=\ldots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.	dM1
	$=-\frac{1}{2} \tan x \quad$ cso	A1 (4)

Way 3
Uses substitution $u=\frac{\cos x+a}{\cos x-a}$, obtains $\frac{\mathrm{d} u}{\mathrm{~d} x}\left(=\frac{2 a \sin x}{(\cos x-a)^{2}}\right)$ by quotient rule and $\frac{\mathrm{d} y}{\mathrm{~d} u}\left(=\frac{1}{1-u^{2}}\right)$ followed by chain rule to obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1-\left(\frac{\cos x+a}{\cos x-a}\right)^{2}} \times \frac{2 a \sin x}{(\cos x-a)^{2}}$

Correct derivative in any form	A1
Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.	dM 1
$=-\frac{1}{2} \tan x$	cso

Total 4
Way $4 \quad y=\frac{1}{2} \ln \left(\frac{1+\frac{\cos x+a}{\cos x-a}}{1-\frac{\cos x+a}{\cos x-a}}\right)=\frac{1}{2} \ln \left(-\frac{\cos x}{a}\right)$
M1: Converts to correct \ln form and uses chain rule to differentiate

M1A1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times\left(\frac{\sin x}{a}\right)$
A1: Correct derivative in any form
a
Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$
dM1
Depends on the first method mark.
$=-\frac{1}{2} \tan x$
cso
A1

$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times\left(\frac{\sin x}{a}\right)$	A1: Correct derivative in any form
Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$	
Depends on the first method mark.	dM
$=-\frac{1}{2} \tan x$	cso

Question Number	Scheme	Notes	Marks
5	$x=4 \mathrm{e}^{\frac{1}{2} t}, \quad y=\mathrm{e}^{t}$	$t \quad 0 \leqslant t \leqslant 4$	
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=2 \mathrm{e}^{\frac{1}{2} t}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\mathrm{e}^{t}-1$	Correct derivatives	B1
	NB: Allow missing $\mathrm{d} \boldsymbol{t} \boldsymbol{i n}$ the following integration work		
	$\begin{align*} & S=(2 \pi) \int y \sqrt{\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}}(\mathrm{~d} t)=(2 \pi \tag{dt}\\ & =(2 \pi) \int\left(\mathrm{e}^{t}-t\right) \sqrt{4 \mathrm{e}^{t}+\mathrm{e}^{2 t}-2 \mathrm{e}^{t}+1}(\mathrm{~d} t) \end{align*}$ Applies the surface area for	$\pi) \int\left(\mathrm{e}^{t}-t\right) \sqrt{\left(4 \mathrm{e}^{\frac{1}{2} t}\right)^{2}+\left(\mathrm{e}^{t}-t\right)^{2}}$ mula with or w/o the 2π	M1
	= $2 \pi) \int\left(\mathrm{e}^{t}-t\right)\left(\mathrm{e}^{t}+1\right)(\mathrm{d} t) \quad \left\lvert\, \begin{aligned} & \text { Cor } \\ & \text { Bra } \\ & \text { sub } \\ & (2 \pi)\end{aligned}\right.$	rrect simplified integral ackets must be present unless implied by bsequent work but award by implication if $\pi) \int\left(\mathrm{e}^{2 t}+\mathrm{e}^{t}-t \mathrm{e}^{t}-t\right)(\mathrm{d} t)$ is seen	A1
	$\begin{gathered} =(2 \pi) \int\left(\mathrm{e}^{t}-t\right)\left(\mathrm{e}^{t}+1\right)(\mathrm{d} t)=(2 \pi) \int\left(\mathrm{e}^{2 t}+\mathrm{e}^{t}-t \mathrm{e}^{t}-t\right)(\mathrm{d} t) \\ =(2 \pi)\left[\frac{1}{2} \mathrm{e}^{2 t}+\mathrm{e}^{t}-t \mathrm{e}^{t}+\mathrm{e}^{t}-\frac{1}{2} t^{2}\right] \\ \text { B1: For } \int t \mathrm{e}^{t} \mathrm{~d} t=t \mathrm{e}^{t}-\mathrm{e}^{t}(+c) \end{gathered}$ A1: Fully correct integration (the integration may be shown as 2 separate parts and score B1A1 if both parts correct)		B1A1
	$=2 \pi\left[\frac{1}{2} \mathrm{e}^{2 t}+2 \mathrm{e}^{t}-t \mathrm{e}^{t}-\frac{1}{2} t^{2}\right]_{0}^{4}=2 \pi\left\{\left(\frac{1}{2} \mathrm{e}^{8}+2 \mathrm{e}^{4}-4 \mathrm{e}^{4}-8\right)-\left(\frac{1}{2}+2\right)\right\}$ Applies the limits 0 and 4 Must include 2π now. If 2 integrals have been used limits must be applied to both and the results added Depends on the first M mark (and some valid integration)		dM1
	$\pi\left(\mathrm{e}^{8}-4 \mathrm{e}^{4}-21\right)$	Cao	A1
			(7)
			Total 7

Question Number	Scheme Notes	Marks
6(a)	$\mathbf{A}=\left(\begin{array}{rrr}x & 1 & 3 \\ 2 & 4 & x \\ -4 & -2 & -1\end{array}\right)$	
	NB: Work for (a) can only be awarded in (a)	
	$\|\mathbf{A}\|=x(-4+2 x)-(-2+4 x)+3(-4+16) \|$Correct determinant attempt (expand by any row or column) or use the Rule of Sarrus (send to review if unsure) Sign errors allowed only within the brackets	M1
	$=2 x^{2}-8 x+38 \quad$ Correct simplified determinant	A1
	$2 x^{2}-8 x+38=2(x-2)^{2}+30$ or\quadStarts the process of showing det $\mathbf{A} \neq 0$ $\frac{\mathrm{~d}}{\mathrm{~d} x}\left(2 x^{2}-8 x+38\right)=4 x-8=0 \Rightarrow x=2$ $\Rightarrow 2 x^{2}-8 x+38=\ldots$ or\quadE.g. Completes the square, finds the minimum point or finds discriminant May find discriminant of $x^{2}-4 x+19=\ldots$ $b^{2}-4 a c=64-4 \times 2 \times 38=\ldots$.$\quad$.	M1
	$2 x^{2}-8 x+38 \geqslant 30$ or $b^{2}-4 a c<0$$\quad$Appropriate reasoning for their chosen method and a conclusion stating that \mathbf{A} is non-singular. All 3 previous marks needed (No need to evaluate a discriminant, so Therefore $\operatorname{det} \mathbf{A} \neq 0$ which means \mathbf{A} is non- singular\quadISW slips in calculation provided $64-4 \times 2 \times 38=\ldots$ or $16-4 \times 19=\ldots$ seen	A1cso
		(4)
(b)	$\left(\begin{array}{rrr} x & 1 & 3 \\ 2 & 4 & x \\ -4 & -2 & -1 \end{array}\right) \rightarrow\left(\begin{array}{ccc} -4+2 x & -2+4 x & -4+16 \\ -1+6 & -x+12 & -2 x+4 \\ x-12 & x^{2}-6 & 4 x-2 \end{array}\right) \rightarrow\left(\begin{array}{ccc} -4+2 x & 2-4 x & 12 \\ -5 & -x+12 & 2 x-4 \\ x-12 & -x^{2}+6 & 4 x-2 \end{array}\right)$ M1: Applies the correct method to reach at least a matrix of cofactors 2 correct rows or 2 correct columns needed A1: Correct cofactor matrix	M1A1
	$\begin{gathered} \left(\begin{array}{ccc} -4+2 x & 2-4 x & 12 \\ -5 & -x+12 & 2 x-4 \\ x-12 & -x^{2}+6 & 4 x-2 \end{array}\right) \rightarrow\left(\begin{array}{ccc} -4+2 x & -5 & x-12 \\ 2-4 x & -x+12 & -x^{2}+6 \\ 12 & 2 x-4 & 4 x-2 \end{array}\right) \\ \mathbf{A}^{-1}=\frac{1}{2 x^{2}-8 x+38}\left(\begin{array}{ccc} -4+2 x & -5 & x-12 \\ 2-4 x & -x+12 & -x^{2}+6 \\ 12 & 2 x-4 & 4 x-2 \end{array}\right) \end{gathered}$	dM1A1

If their original determinant has been divided by 2 (acceptable for (a)) and then used here it is not their determinant and so scores dM0 2 correct rows or 2 correct columns needed from their previous matrix Depends on previous method mark. A1: Correct matrix		

Question Number	Scheme	Notes	Marks
7.	$I_{n}=\int \frac{x^{n}}{\sqrt{10-x^{2}}}$	$n \in \mathbb{N},\|x\|<\sqrt{10}$	
(a)	$I_{n}=\int \frac{x^{n}}{\sqrt{10-x^{2}}} \mathrm{~d} x=\int \frac{x^{n-1} \times x}{\sqrt{10-x^{2}}} \mathrm{~d} x$	Writes x^{n} as $x \times x^{n-1}$	M1
	$\int \frac{x^{n-1} \times x}{\sqrt{10-x^{2}}} \mathrm{~d} x=-x^{n-1}\left(10-x^{2}\right)^{\frac{1}{2}}+(n-1) \int x^{n-2}\left(10-x^{2}\right)^{\frac{1}{2}} \mathrm{~d} x$ dM1: Uses integration by parts to obtain $\int \frac{x^{n-1} \times x}{\sqrt{10-x^{2}}} \mathrm{~d} x=\alpha x^{n-1}\left(10-x^{2}\right)^{\frac{1}{2}}+\beta \int x^{n-2}\left(10-x^{2}\right)^{\frac{1}{2}} \mathrm{~d} x$ A1: Correct expression		dM1A1
	$\begin{gathered} =\ldots+(n-1) \int x^{n-2}\left(10-x^{2}\right)\left(10-x^{2}\right)^{-\frac{1}{2}} \mathrm{~d} x \\ =\ldots+10(n-1) \int x^{n-2}\left(10-x^{2}\right)^{-\frac{1}{2}} \mathrm{~d} x-(n-1) \int x^{n}\left(10-x^{2}\right)^{-\frac{1}{2}} \mathrm{~d} x \end{gathered}$ Applies $\left(10-x^{2}\right)^{\frac{1}{2}}=\left(10-x^{2}\right)\left(10-x^{2}\right)^{-\frac{1}{2}}$ and splits into 2 integrals		dM1
	$=\ldots+10(n-1) I_{n-2}-(n-1) I_{n} \Rightarrow n I_{n}$	Introduces I_{n-2} and I_{n} and makes progress to the given result	dM1
	$n I_{n}=10(n-1) I_{n-2}-x^{n-1}\left(10-x^{2}\right)^{\frac{1}{2}} *$ Fully correct proof with no errors (recovery of missing brackets counts as an error) as does missing $\mathrm{d} x$		A1*
			(6)
(b)	$I_{1}=\int_{0}^{1} \frac{x}{\sqrt{10-x^{2}}} \mathrm{~d} x=\left[-\left(10-x^{2}\right)^{\frac{1}{2}}\right]_{0}^{1}(=-3+\sqrt{10})$ Correct method for I_{1} Limits can be substituted later		M1
	$5 I_{5}=10 \times 4 I_{3}+\ldots$	Applies the reduction formula at least once Allow with 3 or $\left[-x^{4}\left(10-x^{2}\right)^{\frac{1}{2}}\right]_{0}^{1}$	M1
	$\begin{gathered} I_{5}=8 I_{3}-\frac{3}{5}=8\left(\frac{20}{3} I_{1}-1\right)-\frac{3}{5}=\frac{160}{3} I_{1}-\frac{43}{5} \\ I_{5}=\frac{160}{3}(\sqrt{10}-3)-\frac{43}{5} \end{gathered}$ Completes the process using their I_{1} to obtain a numerical value for I_{5} Limits must now be substituted		M1
	$=\frac{1}{15}(800 \sqrt{10}-2529)$	Cao	A1
			(4)
			Total 10

Question Number	Scheme	Notes	Marks
8(a)	$(\mathbf{r}=)\left(\begin{array}{r}-4 \\ -5 \\ 3\end{array}\right)+t\left(\begin{array}{r}3 \\ 4 \\ -1\end{array}\right)$	Forms the parametric form of the line	M1
	$\begin{gathered} 3(3 t-4)+4(4 t-5)-(3-t)=17 \\ \Rightarrow t=(2) \end{gathered}$	Substitutes the parametric form for the line into the plane equation and solves for " t ". Depends on the first mark.	dM1
	$\left(\begin{array}{r}-4 \\ -5 \\ 3\end{array}\right)+" 2{ }^{\prime \prime}\left(\begin{array}{r}3 \\ 4 \\ -1\end{array}\right)$	Uses their value of t correctly to find Q. Depends on the previous mark.	dM1
	$(2,3,1)$	Correct coordinates Accept if written as a column vector but not with $\mathbf{i}, \mathbf{j}, \mathbf{k}$	A1 (4)
Way 2	$\begin{gathered} \frac{x+4}{3}=\frac{y+5}{4}=\frac{z-3}{-1} \\ \text { eg } x=\mathrm{f}(y) \quad z=\mathrm{g}(y) \end{gathered}$	Forms the Cartesian equation of the line, rearranges twice to get 2 of x, y, z as functions of the third	M1
		Substitutes these into the plane equation and solves for one coordinate	dM1
		Obtains the other 2 coordinates	dM1
	$(2,3,1)$	Correct coordinates Accept if written as a column vector but not with $\mathbf{i}, \mathbf{j}, \mathbf{k}$	A1
			(4)
(b)	$\mathbf{P Q}=\left(\begin{array}{l}2+4 \\ 3+5 \\ 1-3\end{array}\right), \mathbf{P R}=\left(\begin{array}{r}-1+4 \\ 6+5 \\ 4-3\end{array}\right), \mathbf{R Q}=\left(\begin{array}{l}2+1 \\ 3-6 \\ 1-4\end{array}\right)$	Attempts 2 vectors in plane $P Q R$ (Must use the given coordinates of P, R and their coordinates of Q	M1
	$\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 8 & -2 \\ 3 & 11 & 1\end{array}\right\|=\left(\begin{array}{r}30 \\ -12 \\ 42\end{array}\right)$	Attempt vector product between 2 vectors in $P Q R$. Depends on the first mark.	dM1
	$\left(\begin{array}{r}5 \\ -2 \\ 7\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)=11$	Uses any of P, Q or R to find constant. Depends on the previous mark.	dM1
	$5 x-2 y+7 z=11$	Any correct Cartesian equation	A1
			(4)

(c)	Reflection of P in Π is $\left(\begin{array}{r} -4 \\ -5 \\ 3 \end{array}\right)+2 \times{ }^{\prime \prime} 2\left(\begin{array}{r} 3 \\ 4 \\ -1 \end{array}\right)\left(=\left(\begin{array}{r} 8 \\ 11 \\ -1 \end{array}\right)\right)$	Correct strategy for another point on l_{3}	M1
	$\left(\begin{array}{c}8 \\ 11 \\ -1\end{array}\right)-\left(\begin{array}{r}-1 \\ 6 \\ 4\end{array}\right)\left(=\left(\begin{array}{r}9 \\ 5 \\ -5\end{array}\right)\right)$	Attempts direction of l_{3}. Depends on the first mark.	dM1
	$\mathbf{r}=\binom{-1}{6}+\lambda\binom{9}{5}$	Forms the equation of l_{3} using R (or their reflected P) and their direction. Depends on the previous mark.	ddM1
	(4) (-5)	Any correct equation in vector form	A1 (4)
			Total 12

Question Number	Scheme	Notes	Marks
9	$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1, \quad y=k x-3$		
(a)	$\begin{gathered} \frac{x^{2}}{9}+\frac{(k x-3)^{2}}{4}=1\left(\text { or } \frac{x^{2}}{9}+\frac{k^{2} x^{2}-6 k x+9}{4}=1\right) \Rightarrow 4 x^{2}+9\left(k^{2} x^{2}-6 k x+9\right)=36 \\ \text { Substitutes to obtain a quadratic in } x \text { and eliminates fractions } \end{gathered}$		M1
	$\left(9 k^{2}+4\right) x^{2}-54 k x+45=0$ *	Correct proof with no errors	A1*
			(2)
(b)	$x=\frac{1}{2}\left(\frac{54 k}{9 k^{2}+4}\right)=\frac{27 k}{9 k^{2}+4}$ Uses $1 / 2$ sum of roots for the x coordinate OR Solve the equation (by formula), add the 2 roots and halve the result. OR $x=\frac{54 k \pm \sqrt{\text { discriminant }}}{2\left(9 k^{2}+4\right)}$ Must reach x_{m}. Allow errors in the discriminant		M1
	$\begin{gathered} y=k\left(\frac{27 k}{9 k^{2}+4}\right)-3 \\ y=\frac{27 k^{2}-27 k^{2}-12}{9 k^{2}+4}=-\frac{12}{9 k^{2}+4} \end{gathered}$	Uses the straight line equation to find y as a single fraction, can be unsimplified Depends on first M mark of (b)	dM1
	$x=\frac{27 k}{9 k^{2}+4}, y=-\frac{12}{9 k^{2}+4}$	Fully correct work	A1
			(3)
(c)	$x^{2}=\frac{729 k^{2}}{\left(9 k^{2}+4\right)^{2}} \Rightarrow x^{2}+p y^{2}=\frac{729 k^{2}+144 p}{\left(9 k^{2}+4\right)^{2}}$ Obtains an expression for $x^{2}+p y^{2}$ using their coordinates obtained in (b) and obtains a common denominator		M1
	$\begin{gathered} \frac{729 k^{2}+144 p}{\left(9 k^{2}+4\right)^{2}}=-\frac{12 q}{\left(9 k^{2}+4\right)} \Rightarrow 729 k^{2}+144 p=-12 q\left(9 k^{2}+4\right) \\ 729 k^{2}+144 p=81\left(9 k^{2}+\frac{16}{9} p\right) \\ \Rightarrow \frac{16}{9} p=4 \Rightarrow p=\ldots \end{gathered}$ Correct strategy to obtain a value for p or for q Depends on the first M mark of (c)		dM1
	$p=\frac{9}{4}$ or $q=-\frac{27}{4}$ oe	Correct value (or for q if found first)	A1
	$-12 q=81 \Rightarrow q=\ldots$	Correct strategy to obtain a value for the second variable Depends on both previous M marks	ddM1
	$\begin{aligned} \Rightarrow x^{2}+\frac{9}{4} y^{2} & =-\frac{27}{4} y \\ p & =\frac{9}{4} \text { and } q=-\frac{27}{4} \text { oe } \end{aligned}$	Both values correct - can be embedded in the equation	A1
			(5)

$\begin{gathered} (c) \\ \text { Way } 2 \end{gathered}$	$x=\frac{27 k}{9 k^{2}+4}, \quad y=-\frac{12}{9 k^{2}+4} \Rightarrow \frac{x}{y}=-\frac{27 k}{12} \Rightarrow k=-\frac{4 x}{9 y}$ Obtains k in terms of x and y using their coordinates found in (b)		M1
	$k=-\frac{4 x}{9 y} \Rightarrow y=-\frac{12}{9\left(\frac{16 x^{2}}{81 y^{2}}\right)+4} \quad \text { or } x=\frac{27\left(-\frac{4 x}{9 y}\right)}{9\left(\frac{16 x^{2}}{81 y^{2}}\right)+4}$ dM 1 :Substitutes k into y or x to obtain a Cartesian equation A1: Any correct Cartesian equation Depends on the first M mark of (c)		dM1A1
	$\Rightarrow x^{2}+\frac{9}{4} y^{2}=-\frac{27}{4} y$	Rearranges to the form required Depends on both previous M marks of (c)	ddM1
		Correct equation or correct values stated	A1

Question Number	Scheme	Notes	Marks
1(a)	$\begin{gathered} \frac{\mathrm{d} y}{\mathrm{~d} x}=3 \arcsin 2 x+3 x \frac{1}{\sqrt{1-(2 x)^{2}}} \times 2 \\ \left(=3 \arcsin 2 x+\frac{6 x}{\sqrt{1-4 x^{2}}}\right) \end{gathered}$	M1: Obtains $\begin{gathered} p \arcsin q x+\frac{r x}{\sqrt{1-(s x)^{2}}} \text { or } \\ p \arcsin q x+\frac{r x}{\sqrt{1-t x^{2}}} \\ p, q, r, s, t>0 \end{gathered}$ A1: Correct derivative. Allow unsimplified and isw. Allow $\sin ^{-1}$ and condone "arsin" but "arsinh" or "arcsinh" is M0	M1 A1
(b)	$x=\frac{1}{4} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\pi}{2}+\sqrt{3}$	$\frac{\pi}{2}+\sqrt{3}$ only but allow $\frac{1}{2} \pi$ or 0.5π. Terms as a sum in either order. Allow $a=\frac{1}{2}, b=\sqrt{3}$ Isw following a correct answer.	B1dep
	This is a "Hence" question so this mark can only be awarded following full marks in part (a)		
			Total 3

Question Number	Scheme	Notes	Marks
2(a)	$x=-\frac{4}{3}$	$x=-\frac{4}{3}$ or any equivalent equation. Allow $x= \pm \frac{4}{3}$	B1
			(1)
Way 1	$\begin{gathered} \frac{a}{e}=\frac{4}{3} \\ b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow 5=a^{2}\left(\frac{9 a^{2}}{16}-1\right) \end{gathered}$	Uses $\frac{a}{e}= \pm \frac{4}{3}$ oe and a correct eccentricity formula and obtains an equation in a. Condone replacing b^{2} with 25 if equation is otherwise correct	M1
	$\begin{aligned} 9 a^{4}-16 a^{2}-80 & =0 \\ \Rightarrow\left(9 a^{2}+20\right)\left(a^{2}-4\right) & =0 \Rightarrow a^{2}=\ldots \end{aligned}$	Solves a 3 TQ in a^{2} (or equation that would lead to a 3 TQ) to find a positive real root (usual rules - but if no working seen they must obtain one positive real value of a^{2} or a correct to 3 sf which is consistent with their equation). Do not award if confusion with variable e.g., $"\left(9 a^{2}+20\right)\left(a^{2}-4\right)=0 \Rightarrow a=4 "$ Requires previous M mark.	dM1
	$a=2$	Not $a= \pm 2$ unless negative rejected	A1
			(3)
Way 2	$\begin{gathered} \frac{a}{e}=\frac{4}{3} \\ b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow 5=\left(\frac{4 e}{3}\right)^{2}\left(e^{2}-1\right) \end{gathered}$	Uses $\frac{a}{e}= \pm \frac{4}{3}$ oe and a correct eccentricity formula and obtains an equation in e. Condone replacing b^{2} with 25 if equation is otherwise correct	M1
	$\begin{gathered} 16 e^{4}-16 e^{2}-45=0 \\ \Rightarrow\left(4 e^{2}-9\right)\left(4 e^{2}+5\right)=0 \Rightarrow e^{2}=\ldots \end{gathered}$	Solves a 3 TQ in e^{2} (or equation that would lead to a 3 TQ) to find a positive real root (usual rules - but if no working seen they must obtain one positive real value of e^{2} or e correct to 3 sf which is consistent with their equation). Do not award if confusion with variable e.g., $"\left(4 e^{2}-9\right)\left(4 e^{2}+5\right)=0 \Rightarrow e=\frac{9}{4} "$ Requires previous M mark.	dM1
	$\left(e=\frac{3}{2} \Rightarrow\right) \quad a=2$	Not $a= \pm 2$ unless negative rejected but condone sight of " $e= \pm \frac{3}{2}$ " or " $e=-\frac{3}{2}$ "	A1
			(3)

Question Number	Scheme	Notes	Marks
2(b)(ii)	$\begin{aligned} e= & \frac{3}{2} \Rightarrow a e=\frac{3}{2} \times 2 \text { or } a e=\frac{3 a^{2}}{4}=\frac{3}{4} \times 4 \\ & \text { or } a e=c=\sqrt{a^{2}+b^{2}}=\sqrt{2^{2}+5} \end{aligned}$	Uses a correct method to obtain a numerical expression for $a e$ oe with their values of a, e, a^{2}, b^{2} etc. however obtained. Condone use of a negative e or a	M1
	Foci are ($\pm 3,0$)	Both correct foci as coordinates	A1
	Allow " $\frac{a}{e}=\frac{4}{3} \Rightarrow a=4, e=3$ " to access the last M mark only in (b) for $(\pm 12,0)$ provided the values of both a and e are clearly seen beforehand		(2)
			Total 6
	Note that it is possible to answer (ii) before (i) - e.g., Let foci be $(\pm c, 0)$ $\begin{gathered} a^{2} e^{2}=c^{2}=b^{2}+a^{2}=5+a^{2} \text { and } \\ \frac{a}{e}=\frac{a^{2}}{a e}=\frac{a^{2}}{c}=\frac{4}{3} \Rightarrow a^{2}=\frac{4}{3} c \end{gathered}$ $\Rightarrow c^{2}=5+\frac{4}{3} c$ ((i) M1: Uses correct formulae to form an equation in c - condone b^{2} replaced with 25 as with main scheme) $\Rightarrow 3 c^{2}-4 c-15=0 \Rightarrow(3 c+5)(c-3)=0 \Rightarrow c=3$ ((i) dM1: Solves 3TQ to find positive real root) $\Rightarrow(\pm 3,0)((i) A 1$: Correct foci as coordinates) $a=\sqrt{\frac{4}{3} \times 3}$ ((ii) M1: Correct method for $\left.a\right)$ $a=2($ (ii) A1: Correct value)		

Question Number	Scheme	Notes	Marks
	$\begin{gathered} 4 \tanh x-\operatorname{sech} x=1 \\ 4 \frac{\sinh x}{\cosh x}-\frac{1}{\cosh x}=1 \\ 4 \sinh x-1-\cosh x=0 \\ 4 \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}-1-\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}=0 \end{gathered}$	Replaces one hyperbolic function with its correct exponential equivalent. Allow for correct replacement of just e.g., $\sinh x$ after using $\tanh x=\frac{\sinh x}{\cosh x}$ May follow errors but do not allow any further marks if the original equation was reduced to one in a single hyperbolic function.	M1
	$3 \mathrm{e}^{2 x}-2 \mathrm{e}^{x}-5=0$	M1: Obtains an equation which if terms are collected is a 3 TQ (or 2 TQ with no constant) in e^{x} A1: Correct 3TQ	M1 A1
	$\mathrm{e}^{x}=\frac{2 \pm \sqrt{4+60}}{6}\left(\Rightarrow \frac{2+8}{6}=\frac{5}{3}\right)$	M1: Solves 3TQ (or 2TQ with no constant) in e^{x}. Apply usual rules. If no working seen they must achieve one correct root of their equation to 3 sf which may be complex. If 2TQ must get a correct non-zero root of their equation. A1: Any correct unsimplified expression for e^{x} that includes the positive root. Must be exact	M1 A1
	$x=\ln \frac{5}{3}$	$\ln \frac{5}{3}, \ln 1 \frac{2}{3}, \ln 1 . \dot{6}$ only but allow $k=\ldots$ No unrejected extra solutions	A1
			Total 6
Way 2 Straight to e^{x}	$4 \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}-\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}=1$	Replaces one hyperbolic function with its correct exponential equivalent	M1
	$3 \mathrm{e}^{2 x}-2 \mathrm{e}^{x}-5=0$	M1: Obtains an equation which if terms are collected is a 3 TQ (or 2 TQ with no constant) in e^{x} A1: Correct 3TQ	M1 A1
	$\mathrm{e}^{x}=\frac{2 \pm \sqrt{4+60}}{6}\left(\Rightarrow \frac{2+8}{6}=\frac{5}{3}\right)$	M1: Solves 3TQ (or 2TQ with no constant) in e^{x}. Apply usual rules. If no working seen they must achieve one correct root of their equation to 3sf which may be complex. If 2TQ must get a correct non-zero root of their equation. A1: Any correct unsimplified expression for e^{x} that includes the positive root. Must be exact	M1 A1
	$x=\ln \frac{5}{3}$	$\ln \frac{5}{3}, \ln 1 \frac{2}{3}, \ln 1 . \dot{6}$ only but allow $k=\ldots$ No unrejected extra solutions	A1
			Total 6
	In Ways $1 \& 2$, if they form an equation which is not a quadratic in e^{x} they must achieve the correct exact root of $\frac{5}{3}$ to access the middle four marks		

Question Number	Scheme	Notes	Marks
3 Way 3a	$\begin{gathered} 4 \sinh x-1=\cosh x \\ 16 \sinh ^{2} x-8 \sinh x+1=\cosh ^{2} x \\ 16 \sinh ^{2} x-8 \sinh x+1=1+\sinh ^{2} x \end{gathered}$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in $\sinh x$	M1
Squaring (sinh)	$15 \sinh ^{2} x-8 \sinh x=0$	M1: Obtains a 2TQ with no constant or 3 TQ in $\sinh x$ A1: Correct 2TQ	M1 A1
	$\sinh x=\frac{8}{15}$	Solves 2TQ (with no constant) or 3TQ in $\sinh x$. Apply usual rules. If 2 TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3 sf which may be complex.	M1
	$\begin{gathered} x=\operatorname{arsinh} \frac{8}{15}=\ln \left(\frac{8}{15}+\sqrt{\left(\frac{8}{15}\right)^{2}+1}\right) \\ \text { or } 15 \mathrm{e}^{2 x}-16 \mathrm{e}^{x}-15=0 \Rightarrow \\ \mathrm{e}^{x}=\frac{16 \pm \sqrt{256+900}}{30} \end{gathered}$	A correct unsimplified expression for x as a \ln (or any correct unsimplified expression for e^{x} if they revert to exponentials). Must be exact	A1
	$x=\ln \frac{5}{3}$	$\ln \frac{5}{3}, \ln 1 \frac{2}{3}, \ln 1.6$ only but allow $k=\ldots$ No unrejected extra solutions	A1
			Total 6
Way 3b Squaring (sech)	$\begin{gathered} 4 \tanh x=1+\operatorname{sech} x \\ 16 \tanh ^{2} x=1+2 \operatorname{sech} x+\operatorname{sech}^{2} x \\ 16\left(1-\operatorname{sech}^{2} x\right)=1+2 \operatorname{sech} x+\operatorname{sech}^{2} x \end{gathered}$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in sech x	M1
	$17 \operatorname{sech}^{2} x+2$ sech $x-15=0$	M1: Obtains a 2TQ (with no constant) or 3TQ in sech x A1: Correct 3TQ	M1 A1
	$\begin{gathered} (17 \operatorname{sech} x-15)(\operatorname{sech} x+1)=0 \\ \operatorname{sech} x=\frac{15}{17} \end{gathered}$	Solves 2TQ with no constant or 3TQ in sech x. Apply usual rules. If 2TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3 sf which may be complex.	M1
	$\begin{gathered} x=\operatorname{arcosh} \frac{17}{15}=\ln \left(\frac{17}{15}+\sqrt{\left(\frac{17}{15}\right)^{2}-1}\right) \\ \text { or } 15 \mathrm{e}^{2 x}-34 \mathrm{e}^{x}+15=0 \Rightarrow \\ \mathrm{e}^{x}=\frac{34 \pm \sqrt{1156-900}}{30} \end{gathered}$	A correct unsimplified expression for x as a \ln (or any correct unsimplified expression for e^{x} if they revert to exponentials). Must be exact	A1
	$x=\ln \frac{5}{3}$	$\ln \frac{5}{3}, \ln 1 \frac{2}{3}, \ln 1 . \dot{6}$ only but allow $k=\ldots$ No unrejected extra solutions	A1
			Total 6

Question Number	Scheme	Notes	Marks
3 Way 3c	$\begin{gathered} 4 \tanh x-1=\operatorname{sech} x \\ 16 \tanh ^{2} x-8 \tanh x+1=\operatorname{sech}^{2} x \\ 16 \tanh ^{2} x-8 \tanh x+1=1-\tanh ^{2} x \\ \hline \end{gathered}$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in $\tanh x$	M1
Squaring (tanh)	$17 \tanh ^{2} x-8 \tanh x=0$	M1: Obtains a 2TQ with no constant or 3TQ in $\tanh x$ A1: Correct 2TQ	M1 A1
	$\tanh x=\frac{8}{17}$	Solves 2TQ with no constant or 3TQ in $\tanh x$. Apply usual rules. If 2TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3 sf which may be complex.	M1
	$\begin{gathered} x=\operatorname{artanh} \frac{8}{17}=\frac{1}{2} \ln \left(\frac{1+\frac{8}{17}}{1-\frac{8}{17}}\right) \\ \text { or } 9 \mathrm{e}^{2 x}-25=0 \Rightarrow \\ \mathrm{e}^{x}=\frac{5}{3} \end{gathered}$	A correct unsimplified expression for x as a \ln (or any correct unsimplified expression for e^{x} if they revert to exponentials). Must be exact	A1
	$x=\ln \frac{5}{3}$	$\ln \frac{5}{3}, \ln 1 \frac{2}{3}, \ln 1.6$ only but allow $k=\ldots$ No unrejected extra solutions	A1
			Total 6
$\begin{aligned} & \text { Way 3d } \\ & \begin{array}{c} \text { Squaring } \\ \text { (cosh) } \end{array} \end{aligned}$	$\begin{gathered} 4 \sinh x=1+\cosh x \\ 16 \sinh ^{2} x=1+2 \cosh x+\cosh ^{2} x \\ 16 \cosh ^{2} x-16=1+2 \cosh x+\cosh ^{2} x \end{gathered}$	Squares (condone poor squaring) and uses a correct hyperbolic identity to obtain a quadratic equation in $\cosh x$	M1
	$15 \cosh ^{2} x-2 \cosh x-17=0$	M1: Obtains a 2TQ with no constant or 3TQ in $\cosh x$ A1: Correct 3TQ	M1 A1
	$\begin{gathered} (15 \cosh x-17)(\cosh x+1)=0 \\ \cosh x=\frac{17}{15} \end{gathered}$	Solves 2TQ (with no constant) or 3TQ in $\cosh x$. Apply usual rules. If 2TQ must get a correct non-zero root of their equation. If no working seen they must achieve one correct root of their equation to 3 sf which may be complex.	M1
	$\begin{gathered} x=\operatorname{arcosh} \frac{17}{15}=\ln \left(\frac{17}{15}+\sqrt{\left(\frac{17}{15}\right)^{2}-1}\right) \\ \text { or } 15 \mathrm{e}^{2 x}-34 \mathrm{e}^{x}+15=0 \Rightarrow \\ \mathrm{e}^{x}=\frac{34 \pm \sqrt{1156-900}}{30} \end{gathered}$	A correct unsimplified expression for x as a \ln (or any correct unsimplified expression for e^{x} if they revert to exponentials). Must be exact	A1
	$x=\ln \frac{5}{3}$	$\ln \frac{5}{3}, \ln 1 \frac{2}{3}, \ln 1 . \dot{6}$ only but allow $k=\ldots$ No unrejected extra solutions	A1
			Total 6

Question Number	Scheme	Notes	Marks
4(a)	$\begin{aligned} & \int \frac{1}{\sqrt{9 x^{2}+16}} \mathrm{~d} x=\frac{1}{3} \int \frac{1}{\sqrt{x^{2}+\frac{16}{9}}} \mathrm{~d} x \\ = & \frac{1}{3} \operatorname{arsinh}\left(\frac{3 x}{4}\right) \text { or } \frac{1}{3} \operatorname{arsinh}\left(\frac{x}{\frac{4}{3}}\right)(+c) \\ & \text { or } \frac{1}{3} \ln \left(x+\sqrt{x^{2}+\left(\frac{4}{3}\right)^{2}}\right)(+c) \end{aligned}$	M1: Obtains $p \operatorname{arsinh}(q x)$ or $r \ln \left\{x+\sqrt{x^{2}+s}\right\}$ $\begin{gathered} \text { or } t \ln \left(u x+\sqrt{v x^{2}+w}\right) \\ p, q, r, s, t, u, v, w>0 \end{gathered}$ A1: Any correct expression. Could be unsimplified and isw. The " $+c$ " is not required. Allow sinh ${ }^{-1}$ and condone "arcsinh". "arcsin" or "arsin" is M0	M1 A1
			(2)
(b)	$\begin{gathered} \int_{-2}^{2} \frac{1}{\sqrt{9 x^{2}+16}} \mathrm{~d} x \\ =\left[\frac{1}{3} \operatorname{arsinh}\left(\frac{3 x}{4}\right)\right]_{-2}^{2} \text { or }\left[\frac{2}{3} \operatorname{arsinh}\left(\frac{3 x}{4}\right)\right]_{0}^{2} \\ =\frac{1}{3} \operatorname{arsinh}\left(\frac{3 \times 2}{4}\right)-\frac{1}{3} \operatorname{arsinh}\left(\frac{3 \times-2}{4}\right) \text { or } \frac{2}{3} \operatorname{arsinh}\left(\frac{3}{2}\right) \\ \text { OR } \\ \qquad\left[\frac{1}{3} \ln \left(x+\sqrt{x^{2}+\frac{16}{9}}\right)\right]_{-2}^{2} \\ =\frac{1}{3} \ln \left(2+\sqrt{2^{2}+\frac{16}{9}}\right)-\frac{1}{3} \ln \left(-2+\sqrt{(-2)^{2}+\frac{16}{9}}\right) \\ \text { or } \frac{2}{3}\left(\ln \left(2+\sqrt{2^{2}+\frac{16}{9}}\right)-\ln \left(0+\sqrt{0^{2}+\frac{16}{9}}\right)\right) \end{gathered}$	Substitutes the limits 2 and -2 into an expression of the form $p \operatorname{arsinh}(q x) \text { or } r \ln \left\{x+\sqrt{x^{2}+s}\right\}$ $\begin{gathered} \text { or } t \ln \left(u x+\sqrt{v x^{2}+w}\right) \\ p, q, r, s, t, u, v, w>0 \end{gathered}$ and subtracts either way round or obtains an $\text { expression for } 2[\ldots]_{0}^{ \pm 2}$ The expression does not have to be consistent with their answer to (a). No rounded decimals unless exact values recovered. Any $f(0)=0$ can be implied by omission. Condone poor bracketing.	M1
	$\begin{aligned} & \frac{1}{3} \ln \left(\frac{11}{2}+\frac{3 \sqrt{13}}{2}\right) \text { or } \frac{1}{3} \ln \frac{11+3 \sqrt{13}}{2} \\ & \text { or } \frac{2}{3} \ln \left(\frac{3}{2}+\frac{\sqrt{13}}{2}\right) \text { or } \frac{2}{3} \ln \frac{3+\sqrt{13}}{2} \end{aligned}$	dM1: Obtains an expression of the form $a \ln (b+c \sqrt{13}) \text { or } a \ln \left(\frac{d+e \sqrt{13}}{f}\right)$ where a, b, c, d, e, f are exact and >0. Condone poor bracketing. Requires previous M mark. A1: Any correct equivalent in an appropriate form (fractions may not be in simplest form) with correct bracketing if necessary and isw. Must come from correct work. Allow e.g., $a=\frac{2}{3}, b=\frac{3}{2}, c=\frac{1}{2}$	dM1 A1
	For information the decimal answer is 0.7965038115		(3)
			Total 5

Question Number	Scheme	Notes	Marks
5(a)	$\begin{aligned} & \left\|\begin{array}{ccc} a & a & 1 \\ -a & 4 & 0 \\ 4 & a & 5 \end{array}\right\| \\ & =a(4 \times 5-0)-a(-5 a-0)+1\left(-a^{2}-(4 \times 4)\right) \end{aligned}$	Uses a correct method for $\operatorname{det} \mathbf{A}$ (implied by two correct parts) to obtain an expression in a	M1
	$\begin{gathered} \Rightarrow 20 a+5 a^{2}-a^{2}-16=0 \\ \Rightarrow a^{2}+5 a-4=0 \\ \Rightarrow a=\frac{-5+\sqrt{41}}{2} \end{gathered}$	Correct exact value oe Condone $\frac{-5 \pm \sqrt{41}}{2}$	A1
			(2)
$\|\mathbf{A}-\lambda \mathbf{I}\|$	$\begin{gathered} \|\mathbf{A}-\lambda \mathbf{I}\|=\left\|\begin{array}{ccc} a-\lambda & a & 1 \\ -a & 4-\lambda & 0 \\ 4 & a & 5-\lambda \end{array}\right\| \\ =(a-\lambda)(4-\lambda)(5-\lambda)-a \times-a(5-\lambda)+\left(-a^{2}-4(4-\lambda)\right) \\ \text { or }\|\mathbf{A}-2 \mathbf{I}\|=\left\|\begin{array}{ccc} a-2 & a & 1 \\ -a & 2 & 0 \\ 4 & a & 3 \end{array}\right\| \\ =6(a-2)-a \times-3 a+\left(-a^{2}-8\right) \end{gathered}$	Obtains an expression for $\|\mathbf{A}-\lambda \mathbf{I}\|$ in terms of a and λ or just a if λ is replaced by 2 . If method unclear insist on 2 out of 3 correct parts. May multiply along any row/column. Sarrus leads to the same expressions shown (or the expressions all multiplied by -1 if " $=0$ ").	M1
	$\begin{aligned} & \lambda=2 \Rightarrow(a-2) \times 2 \times 3+3 a^{2}-a^{2}-8=0 \\ & 2 a^{2}+6 a-20=0 \Rightarrow a^{2}+3 a-10=0 \\ & \quad \Rightarrow(a-2)(a+5)=0 \Rightarrow a=\ldots \end{aligned}$	Following use of $\lambda=2$, forms and solves a 3 TQ in a. Apply usual rules. If no working they must obtain one correct solution for their 3TQ which could be complex. Could be implied. Requires previous M mark.	dM1
	$(a>0 \Rightarrow) a=2$	Correct value of a from correct work. If -5 is offered imply its rejection if 2 alone is used in (ii)	A1
	If $a=2$ is arrived at fortuitously, all marks a	e available for the remainder of the question	(3)
(b)(i) Way 2 $\mathbf{A x}=2 \mathbf{x}$	$\begin{aligned} \mathbf{A x}=2 \mathbf{x} & \Rightarrow \\ a x+a y+z & =2 x \\ -a x+4 y & =2 y \\ 4 x+a y+5 z & =2 z \end{aligned}$	Uses $\mathbf{A x}=2 \mathbf{x}[\operatorname{or}(\mathbf{A}-2 \mathbf{I}) \mathbf{x}=0]$ to obtain three simultaneous equations. Allow if given as two equal vectors.	M1
$\mathbf{A x}=2 \mathbf{x}$	$\begin{aligned} & \Rightarrow a^{2}+3 a-10=0 \\ \Rightarrow & (a-2)(a+5)=0 \Rightarrow a=\ldots \end{aligned}$	Forms and solves a 3TQ in a. Apply usual rules. If calculator used must obtain one correct solution for their 3 TQ which could be complex. Could be implied. Requires previous M mark.	dM1
	$(a>0 \Rightarrow) a=2$	Correct value of a from correct work. If -5 is offered imply its rejection if 2 alone is used in (ii)	A1
	If $a=2$ is arrived at fortuitously, all marks are available for the remainder of the question		(3)

Question Number	Scheme	Notes	Marks
5(b)(ii)	$\begin{gathered} (2-\lambda)(4-\lambda)(5-\lambda)+4(5-\lambda)+(-4-16+4 \lambda)=0 \\ \Rightarrow(5-\lambda)[(2-\lambda)(4-\lambda)+4-4]=0 \\ \Rightarrow(5-\lambda)(2-\lambda)(4-\lambda)=0 \Rightarrow \lambda=\ldots \end{gathered}$	Uses their value of a in a recognisable attempt at a characteristic equation and achieves a real non-zero eigenvalue $\neq 2$. There must be some algebra but it may be poor.	M1
	4 and 5	Both correct (no extra) and from correct work	A1
	For information the cubic is $\pm\left(\lambda^{3}-11 \lambda^{2}+38 \lambda-40\right)=0$		(2)
(c)	Uses $\mathbf{A x}=\lambda \mathbf{x}$ or $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0$ with their value of a and a real non-zero value of $\lambda \neq 2$ to obtain three simultaneous equations (allow if given as two equal vectors) Alternatively attempts vector product of two rows of $\mathbf{A}-4$ "I		M1
	$\pm\left(\begin{array}{r}0 \\ -1 \\ 2\end{array}\right) \quad$ or $\pm\left(\begin{array}{c}1 \\ -2 \\ 7\end{array}\right)$	One correct eigenvector. As shown or multiple or with components multiplied by e.g. " k " Accept e.g., $x=0, y=-1, z=2$	A1
	$\pm\left(\begin{array}{r}0 \\ -1 \\ 2\end{array}\right)$ and $\pm\left(\begin{array}{c}1 \\ -2 \\ 7\end{array}\right)$	Both correct eigenvectors. As shown or multiple or with components multiplied by e.g. k Accept $x=\ldots, y=\ldots, z=\ldots$ Both these 2 A marks could be implied by their normalised eigenvectors	A1
	$\pm \frac{1}{\sqrt{5}}\left(\begin{array}{c}0 \\ -1 \\ 2\end{array}\right), \pm \frac{1}{\sqrt{54}}\left(\begin{array}{c}1 \\ -2 \\ 7\end{array}\right) \mathrm{oe}$	M1: A correct method to normalise at least one of their eigenvectors A1: Both correct. Allow any exact equivalents. Isw	M1 A1
	All marks available regardless of how $a=2, \lambda_{2}=4 \& \lambda_{3}=5$ have been obtained		(5)
			Total 12

Question Number	Scheme	Notes	Marks
6(a)	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\left\{\begin{array}{c}a(1-\cos \theta) \\ \text { or } \\ a-a \cos \theta\end{array}\right.$ or $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=a \sin \theta$	At least one correct derivative	B1
	$\begin{gathered} a^{2}(1-\cos \theta)^{2}+(a \sin \theta)^{2} \\ =a^{2}\left(1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta\right) \\ =2 a^{2}(1-\cos \theta) \end{gathered}$	Squares and adds their derivatives and uses $\cos ^{2} \theta+\sin ^{2} \theta=1$ to obtain an expression in $\cos \theta$ only (not $\cos ^{2} \theta$) Could be implied	M1
	$=2 a^{2}\left(1-\left(1-2 \sin ^{2}\left(\frac{\theta}{2}\right)\right)\right)=4 a^{2} \sin ^{2} \frac{\theta}{2}$	dM1: Replaces $\cos \theta$ with $\pm 1 \pm 2 \sin ^{2} \frac{\theta}{2}$ or equivalent trig work (sign errors only on identities) to obtain an expression in $\sin ^{2} \frac{\theta}{2} \text { only }$ Requires previous M mark. Can be implied. A1: Achieves $4 a^{2} \sin ^{2} \frac{\theta}{2}$ or $k=4$ from correct work	dM1 A1
			(4)
(b)	$\begin{aligned} & \text { S.A. }=(2 \pi) \int y \sqrt{\left\{\left(\frac{\mathrm{~d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}\right\}} \mathrm{d} \theta \\ & =(2 \pi) \int_{(0)}^{(2 \pi)} a(1-\cos \theta)\left(2 a \sin \frac{\theta}{2}\right) \mathrm{d} \theta \end{aligned}$	$\text { Applies } y \sqrt{\left\{\left(\frac{\mathrm{~d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}\right\}}$ with their $k a^{2} \sin ^{2} \frac{\theta}{2}$ and square roots. The result of the square root may be incorrect but must be of the form $p \sin \frac{\theta}{2}$ Allow a slip replacing y but they must not have used $x, \frac{\mathrm{~d} x}{\mathrm{~d} \theta}$ or $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ for y Allow the letter k or an invented value. 2π may be absent or wrong. Integral not required.	M1
	$\begin{gathered} =(2 \pi) 2 a^{2} \int_{(0)}^{(2 \pi)}\left(\sin \frac{\theta}{2}-\sin \frac{\theta}{2} \cos \theta\right) \mathrm{d} \theta \\ \Rightarrow(2 \pi) 2 a^{2} \int_{(0)}^{(2 \pi)}\left(\sin \frac{\theta}{2}-\sin \frac{\theta}{2}\left(2 \cos ^{2} \frac{\theta}{2}-1\right)\right) \mathrm{d} \theta \\ \text { or e.g., } \Rightarrow(2 \pi) 2 a^{2} \int_{(0)}^{(2 \pi)} 2 \sin ^{3} \frac{\theta}{2} \mathrm{~d} \theta \end{gathered}$	Uses trig identity/identities (condoning sign errors) to obtain an expression with arguments of $\frac{\theta}{2}$ only. Allow the letter k or an invented value. 2π may be absent or wrong. Integral not required. Dependent on previous M mark.	dM1
	Scheme cos	tinues...	

Question Number	Scheme	Notes	Marks
cont.	$\begin{gathered} \left(=(2 \pi) 4 a^{2} \int_{(0)}^{(2 \pi)}\left(\sin \frac{\theta}{2}-\sin \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}\right) \mathrm{d} \theta\right) \\ S=8 \pi a^{2}\left[-2 \cos \frac{\theta}{2}+\frac{2}{3} \cos ^{3} \frac{\theta}{2}\right]_{(0)}^{(2 \pi)} \\ \text { or e.g., } \pi a^{2}\left[-16 \cos \frac{\theta}{2}+\frac{16}{3} \cos ^{3} \frac{\theta}{2}\right]_{(0)}^{(2 \pi)} \end{gathered}$	A correct expression for the surface area ignoring limits ft their numerical k, i.e., $S=2 k \pi a^{2}\left[-2 \cos \frac{\theta}{2}+\frac{2}{3} \cos ^{3} \frac{\theta}{2}\right]_{(0)}^{(2 \pi)} \mathrm{oe}$ If they integrate in a piecemeal fashion, award this mark if they have a correct expression for their k when integration is completed - any partial evaluations must be correct for their k	A1ft
	$=8 \pi a^{2}\left[\left(-2 \cos \frac{2 \pi}{2}+\frac{2}{3} \cos ^{3} \frac{2 \pi}{2}\right)-\left(-2 \cos 0+\frac{2}{3} \cos ^{3} 0\right)\right]$	Substitutes correct limits and attempts to subtract either way round following a completed attempt at integration with a numerical k. Requires previous M marks and must have used 2π Look for evidence of correct limit substitution and subtraction. There may be slips but insist on limits being applied on all integrations if they have been carried out separately. Algebraic results of integration must be seen	ddM1
	$\frac{64}{3} \pi a^{2}$	Correct exact answer. Accept equivalent fractions.	A1
	All marks available regardless of how $k=4$ was obtained		(5)
			Total 9
	Other integration methods: Allow the second M mark to be available before any attempt at integration is made. Otherwise the second M is only awarded if they complete integration without any loss of the required forms (i.e., sign and coefficient errors only and just sign errors only with any trig identities). The first A (ft) mark is for a fully correct expression ignoring limits for their k. The last two marks are the same as the main scheme. For information: $\begin{gathered} \text { Applying parts to } \int \sin \frac{\theta}{2} \cos \theta \mathrm{~d} \theta \text { gives } \frac{2}{3}\left(\cos \frac{\theta}{2}+2 \sin \frac{\theta}{2}\right) \\ \text { Using addition formulae: } \\ \int \sin \frac{\theta}{2} \cos \theta \mathrm{~d} \theta=\frac{1}{2} \int\left(\sin \frac{3 \theta}{2}-\sin \frac{\theta}{2}\right) \mathrm{d} \theta=\frac{1}{2}\left(2 \cos \frac{\theta}{2}-\frac{2}{3} \cos \frac{3 \theta}{2}\right) \end{gathered}$		

Question Number	Scheme	Notes	Marks
7(a)	$\left(\begin{array}{c}0 \\ 3 \\ -2\end{array}\right) \times\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=8 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k}$	M1: Attempts vector product of two vectors in the plane. Unless there is a full clear method they must achieve two correct components A1: $\pm(8 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k})$ or multiple	M1 A1
	Allow any vector notation throughout this question		(2)
(b)	l has direction vector $\pm(2 \mathbf{j}+2 \mathbf{k})$	Correct direction for l	B1
	$\begin{gathered} (\cos \alpha \text { or } \sin \theta=) \\ \left\|\frac{"(8 \mathbf{i}-\mathbf{2} \mathbf{j}-3 \mathbf{k}) " . "(2 \mathbf{j}+2 \mathbf{k}) "}{" \sqrt{8^{2}+2^{2}+3^{2}} " \times " \sqrt{2^{2}+2^{2}} \mid}\right\|=\left\|\frac{"(8)(0)+(-2)(2)+(-3)(2) "}{" \sqrt{8^{2}+2^{2}+3^{2}} " \times " \sqrt{0^{2}+2^{2}+2^{2}}}\right\|\left(=\left\|\frac{-10}{\sqrt{77} \times \sqrt{8}}\right\| \text { or }\left\|\frac{-5 \sqrt{154}}{154}\right\|\right) \end{gathered}$ M1: For the scalar product of their normal and direction vector divided by the product of the magnitudes of their vectors. The first expression above oe is sufficient. There must have been a valid attempt at both vectors. Allow copying errors/slips if intention is clear. Modulus not required. A1ft: A correct ft numerical expression with scalar product calculated as shown by second expression or better. Allow a decimal correct to 2 sf. Modulus not required. Ignore labelling. Actual decimal is 0.40291148 ... Implied by awrt 24 or 66 or 114 provided some work and nothing incorrect seen. Allow awrt $0.41,1.16$ or 1.99 if working in radians.		M1 A1ft
	$\begin{aligned} & \text { Acute angle between } l \text { and } P \\ & =90-\alpha=90-66.23968409 \ldots \\ & \text { or } \theta=23.76031591 \ldots \Rightarrow 24^{\circ} \\ & \text { to the nearest degree } \end{aligned}$	awrt 24 from correct work which could be minimal. Degrees symbol not required. Mark final answer.	A1
			(4)
	$\begin{aligned} & \text { Note that a vector product could be used: } \\ & \text { M1: } \left\lvert\, \begin{array}{l} \left\|\frac{\mid "(8 \mathbf{i}-\mathbf{2} \mathbf{j}-3 \mathbf{k}) " \times "(2 \mathbf{j}+2 \mathbf{k}) "}{n \sqrt{8^{2}+2^{2}+3^{2}} " \times " \sqrt{2^{2}+2^{2}} "}\right\| \text { A1: }\left\|\frac{" \sqrt{2^{2}+16^{2}+16^{2}} "}{" \sqrt{8^{2}+2^{2}+3^{2}} " \times \sqrt{2^{2}+2^{2}}}\right\|\left(=\frac{2 \sqrt{129}}{\sqrt{77} \sqrt{8}}=0.9152389511 \ldots\right) \\ \text { The modulus of the numerator is required for any marks } \end{array}\right. \\ & \hline \end{aligned}$		
(c) Way 1 Parallel planes	$\begin{gathered} (\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \cdot(" 8 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k} ")=-5 \\ \text { or } \\ (6 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k}) \cdot(" 8 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k} ")=72 \end{gathered}$	M1: Finds a value for the scalar product of a position vector of a point in the plane or the given point and their normal. A1: -5 or 72 (or 5 or -72 if normal is in the opposite direction). May be seen as a $\text { distance e.g., } \frac{-5}{\sqrt{" 77^{\prime}}}$	M1 A1
	$\begin{aligned} & \text { Shortest distance is } \\ & \left\|\frac{-5-72}{\sqrt{77}}\right\|=\frac{77}{\sqrt{77}} \text { or } \sqrt{77} \end{aligned}$	dM1: Having attempted both scalar products, obtains a numerical expression for the distance. $\text { Award for } \frac{ \pm " 5 " \pm " 72 "}{\sqrt{" 8^{\prime 2}+" 2^{2 \prime 2}+" 3 "^{2}}}$ Dependent on previous M mark. A1: Correct exact distance. Isw	dM1 A1
			(4)

Question Number	Scheme	Notes	Marks
7(c) Way 2 Perp.	$(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \cdot(" 8 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k} ")=-5$	M1: Finds a value for the scalar product of a position vector to a point the plane and their normal. A1: - 5 (or 5 if normal is in the opposite direction)	M1 A1
Perp. distance formula	$\begin{gathered} \text { " } 8 x-2 y-3 z+5=0 " \\ \text { Shortest distance is } \\ \frac{\|(" 8 ")(6)+("-2 ")(-3)+("-3 ")(-6)+" 5 "\|}{\sqrt{" 8^{\prime 2}+2^{\prime 2}+{ }^{\prime 2} 3^{2}}} \\ =\frac{77}{\sqrt{77}} \text { or } \sqrt{77} \end{gathered}$	dM1: Uses distance formula with their normal and plane equation to reach a numerical expression for the distance. Condone sign slip on their -5 and their d must not be zero. Dependent on previous M mark. A1: Correct exact distance. Isw	dM1 A1
			(4)
Way 3 Projection /resolving formula	Let Q be the point on the plane $(1,2,3)$ then $\overrightarrow{P Q}=(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})-(6 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k})$ $=-5 \mathbf{i}+5 \mathbf{j}+9 \mathbf{k}$	M1: Attempts vector from given point to a point on the plane A1: Correct vector (\pm)	M1 A1
	$\begin{gathered} \text { Shortest distance is }\|\overrightarrow{P Q} \cdot \mathbf{n}\|= \\ \left\lvert\, \frac{("-5 \mathbf{i}+5 \mathbf{j}+9 \mathbf{k} ") \cdot(" 8 \mathbf{i}+-2 \mathbf{j}+-3 \mathbf{k} ") \mid}{\sqrt{188^{\prime 2}+" 2^{n 2}+" 3^{\prime 2}}}=\ldots\right. \\ \quad=\frac{77}{\sqrt{77}} \text { or } \sqrt{77} \end{gathered}$	dM1: Uses formula with their vectors to reach a numerical expression for the distance Dependent on previous M mark. A1: Correct exact distance. Isw	dM1 A1
			(4)
Way 4 Example of method involving the point where the line meets plane	Line through given point in direction of normal is $r=(6 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k})+\lambda(8 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k})$ \& meets plane " $8 x-2 y-3 z+5=0$ " when $\begin{gathered} 8(6+8 \lambda)-2(-3-2 \lambda)-3(-6-3 \lambda)+5=0 \\ \Rightarrow \lambda=-1 \end{gathered}$	M1: Uses line through given point in the direction of their normal and substitutes into their plane to find a value for λ. The d in their plane equation must not be zero A1: Correct value	M1 A1
	$\|-1(" 8 \mathbf{i}+-2 \mathbf{j}+-3 \mathbf{k} ")\|=\sqrt{" 8^{\prime 2}+" 2^{\prime 2}+" 3{ }^{2 \prime}}$ Or point of intersection is (6-"8",-3-"-2", -6-"-3") $=(-2,-1,-3)$ and distance is $\begin{gathered} \sqrt{(6-"-2 ")^{2}+(-3-"-1 ")^{2}+(-6-"-3 ")^{2}} \\ \Rightarrow \sqrt{77} \end{gathered}$	$\mathbf{d M 1 : ~ A t t e m p t s ~}\|\lambda \mathbf{n}\|$ or finds point on the plane and obtains numerical expression for distance between this point and the given point Dependent on previous M mark. A1: Correct exact distance. Isw	dM1 A1
			(4)
	Marks are scored through the ay which is the best overall match for the attempt. Credit for work done in (b) is only available for part (c) if it is used in part (c).		
			Total 10

Question Number	Scheme	Notes	Marks
8(a)	$I_{n}=\int \cos ^{n} x \mathrm{~d} x=\int \cos x \cos ^{n-1} x(\mathrm{~d} x)$	Correct split. Could be implied by their work	M1
Way 1	$=\sin x \cos ^{n-1} x+\int(n-1) \cos ^{n-2} x \sin ^{2} x(\mathrm{~d} x)$	Obtains $p \sin x \cos ^{n-1} x+\int q \cos ^{n-2} x \sin ^{2} x(\mathrm{~d} x)$ oe Requires previous M mark.	dM1
	$=\sin x \cos ^{n-1} x+\int(n-1) \cos ^{n-2} x\left(1-\cos ^{2} x\right)(\mathrm{d} x)$	Replaces $\sin ^{2} x$ with $1-\cos ^{2} x$ to achieve a correct expression for I_{n}	A1
	$\begin{gathered} =\sin x \cos ^{n-1} x+(n-1) I_{n-2}-(n-1) I_{n} \\ \Rightarrow I_{n}=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} I_{n-2} * \end{gathered}$	Proceeds to the given answer with at least one intermediate step and no errors. Condone missing " $\mathrm{d} x$ "s but there must be no missing arguments. Any clear bracketing error must be recovered before given answer.	A1*
			(4)
Way 2	$\begin{gathered} I_{n}=\int \cos ^{n} x \mathrm{~d} x=\int \cos ^{2} x \cos ^{n-2} x(\mathrm{~d} x) \\ =\int\left(1-\sin ^{2} x\right) \cos ^{n-2} x(\mathrm{~d} x) \end{gathered}$	Correct split and replaces $\cos ^{2} x$ with $1-\sin ^{2} x$	M1
	$\begin{aligned} &=\int\left(\cos ^{n-2} x-1\right. \\ &=\int \cos ^{n-2} x(\mathrm{~d} x)-\int(\mathrm{s} \end{aligned}$ M1: Expands, splits and obtains $p \int \cos ^{n}$ Requires pr A1: Correct expression for $I_{n}: \int \cos ^{n-2} x($	$\begin{aligned} & \left.\operatorname{os}^{n-2} x \sin ^{2} x\right)(\mathrm{d} x) \\ & \left.\mathrm{n} x \sin x \cos ^{n-2} x\right)(\mathrm{d} x)=\ldots \\ & x(\mathrm{~d} x)+q \cos ^{n-1} x \sin x+\int r \cos ^{n} x(\mathrm{~d} x) \text { oe } \end{aligned}$ vious M mark. $x)-\left(-\frac{1}{n-1} \cos ^{n-1} x \sin x+\int \frac{1}{n-1} \cos ^{n} x(\mathrm{~d} x)\right) \text { oe }$	$\begin{array}{\|l} \mathrm{d} M 1 \\ \mathrm{~A} 1 \end{array}$
	$\begin{aligned} & =I_{n-2}+\frac{1}{n-1} \cos ^{n-1} x \sin x-\frac{1}{n-1} I_{n} \\ & \Rightarrow I_{n}=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} I_{n-2} * \end{aligned}$	Proceeds to the given answer with at least one intermediate step and no errors. Condone missing "dx"s but there must be no missing arguments. Any bracketing error must be recovered before given answer.	A1*
			(4)
(b)	$\begin{gathered} I_{n}=\frac{1}{n}\left[\cos ^{n-1} x \sin x\right]_{0}^{\frac{\pi}{2}}+\frac{n-1}{n} I_{n-2} \text { or }=\frac{1}{n}(n-1) I_{n-2} \\ I_{2}=\frac{1}{2}\left[\cos ^{2-1} x \sin x\right]_{0}^{\frac{\pi}{2}}+\frac{2-1}{2} I_{0} \text { or }=\frac{1}{2} I_{0} \end{gathered}$	Uses the RF to obtain an expression for I_{n} in terms of I_{n-2} or I_{2} in terms of I_{0} Condone if necessary if limits are absent.	M1
	$I_{n}=\frac{(n-1)(n-3) \ldots 5 \times 3 \times 1}{n(n-2)(n-4) \ldots 6 \times 4 \times 2} I_{0}$ with dots \& at least 3 terms in each product (first $2 \&$ last, or first \& last 2)	Correct expression for I_{n} in terms of I_{0} oe following correct work including 2 applications of the reduction formula (which could be embedded) prior to this answer. I_{0} may have been calculated previously but do not allow just the final printed answer to imply this mark.	A1
	e.g., $I_{0}=\int_{0}^{\frac{\pi}{2}} \mathrm{~d} x=\frac{\pi}{2}$ or $I_{0}=[x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}$ or $I_{0}=\frac{\pi}{2}-0$	Correct value for I_{0} - requires written evidence of integration (minimal)	B1
	$\therefore I_{n}=\frac{(n-1)(n-3) \ldots 5 \times 3 \times 1}{n(n-2)(n-4) \ldots 6 \times 4 \times 2} \times \frac{\pi}{2} *$ Allow extra terms in both products.	Proceeds to given answer. Requires all previous marks. Withhold this mark if no $\frac{1}{k}\left[\cos ^{k-1} x \sin x\right]_{0}^{\frac{\pi}{2}}$ is seen or expression just disappears - one such expression must be replaced by " 0 " or have substitution seen	A1*
	Attempts via proof by induction will be reviewed.		(4)
	Attempts may be seen via $I_{n}=\frac{(n-1)(n-3) \ldots 3}{n(n-2) \ldots 4} I_{2}$ and $I_{2}=\frac{1}{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\frac{\pi}{2}}=\frac{1}{2} \times \frac{\pi}{2}$		

Question Number	Scheme	Notes	Marks
8(c)	$\int_{0}^{\frac{\pi}{2}} \cos ^{6} x \sin ^{2} x \mathrm{~d} x=\int_{0}^{\frac{\pi}{2}} \cos ^{6} x\left(1-\cos ^{2} x\right) \mathrm{d} x$	Replaces $\sin ^{2} x$ with $1-\cos ^{2} x$ Can be implied by an attempt at $I_{6}-I_{8}$	M1
	$=I_{6}-I_{8}=\left(\frac{5 \times 3 \times 1}{6 \times 4 \times 2}-\frac{7 \times 5 \times 3 \times 1}{8 \times 6 \times 4 \times 2}\right) \frac{\pi}{2}$	Any correct numerical expression for the integral	A1
	$\left(=\frac{5}{32} \pi-\frac{35}{256} \pi=\right) \frac{5}{256} \pi$ oe	Correct exact value. Accept equivalent fractions and allow e.g., $\left(\frac{5}{128}\right) \frac{\pi}{2}$	A1
	This is a "Hence" and requires clear use of $I_{6}-I_{8}$ For the A marks there must be no evidence that the answer has been arrived at without using part (b). There is no credit in (b) for work in (c). Just " $I=\frac{5}{256} \pi$ " is $0 / 3$ but just " $I_{6}-I_{8}=\frac{5}{256} \pi$ " is $3 / 3$		
			(3)
			Total 11

Question Number	Scheme Notes	Marks
9(a)(i)	$b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow 1=9\left(1-e^{2}\right)$ M1: Uses a correct eccentricity formula with correct values for a and b and obtains $\Rightarrow e^{2}=\ldots\left(\frac{8}{9}\right), e=\frac{2 \sqrt{2}}{3}$ or $\frac{\sqrt{8}}{3}$ a value for e^{2} or e A1: Correct value for $e($ not $\pm)$ Could be implied	M1 A1
	Foci are $(\pm 2 \sqrt{2}, 0)$ or $(\pm \sqrt{8}, 0) \quad$B1: Both correct foci as coordinates Condone any use of a negative e Note that this is not an ft mark.	B1
		(3)
(a)(ii)	$x= \pm \frac{9 \sqrt{2}}{4} \text { or } \pm \frac{9 \sqrt{8}}{8} \text { or } \pm \frac{9}{\sqrt{8}} \text { oe }$ Both correct equations. Requires single fraction. Allow ft: $x= \pm \frac{\mathbf{3}}{\text { their } e}$ computed into a single fraction, condoning $\mathrm{e}<0$ $\text { Allow " } x_{1}=\ldots, x_{2}=\ldots "$ $" x= \pm \frac{a}{e}$ $\quad x= \pm \bar{e}$ Condone, e.g., $=\frac{9 \sqrt{2}}{4}$ or $-\frac{9 \sqrt{2}}{4} "$ but just " $\frac{a}{e}= \pm \frac{9 \sqrt{2}}{4}$ "is B0	B1ft
		(2)
(b) Way 1 $P F=e P M$	$\left\|P F_{1}\right\|=e\left\|P M_{1}\right\|$ or $\left\|P F_{2}\right\|=e\left\|P M_{2}\right\|$ oe \quad States this definition of an ellipse.	M1
	Correct method for a numerical expression (or with cancelling " x "s) for $\left\|P F_{1}\right\|+\left\|P F_{2}\right\|$ with their e and directrix. One of the underlined expressions must be seen for the first approach. Requires previous M mark.	dM1
	$=6 * \quad$Fully correct proof. Modulus signs are not required.	A1*
Way 1 Guidance	If they work in a and $e, e \times 2 \times \frac{a}{e}$ is only acceptable if $e\left(\left\|P M_{1}\right\|+\left\|P M_{2}\right\|\right)$ or $e\left(\left\|M_{1} M_{2}\right\|\right)$ is seen (as with using the values) and $e\left(\frac{a}{e}-x\right)+e\left(\frac{a}{e}+x\right)(\Rightarrow 2 a)$ is acceptable but note in both these general cases the second M mark becomes available when $a=3$ is substituted. The second \mathbf{M} is not available for any work which relies on $\left\|P F_{1}\right\|=\left\|P F_{2}\right\|$ Their proof needs to be shown to be valid for any position of P So $\left\|P F_{1}\right\|+\left\|P F_{2}\right\|=\frac{2 \sqrt{2}}{3} \times \frac{9 \sqrt{2}}{4}+\frac{2 \sqrt{2}}{3} \times \frac{9 \sqrt{2}}{4}$ or using $e \times \frac{a}{e}+e \times \frac{a}{e}$ cannot score the second M withoute $\underline{e\left(\left\|P M_{1}\right\|+\left\|P M_{2}\right\|\right)}$ or $e\left(\left\|M_{1} M_{2}\right\|\right)$ being seen. If e appears as a value it must be correct for the final mark. $\text { Just }\left\|P F_{1}\right\|+\left\|P F_{2}\right\|=2 a=2 \times 3=6 \text { is } 0 / 3$ Having earned the first mark in Way 1 , some candidates proceed to work with a specific point on the ellipse as in Way 2. Further credit is only available if they clearly state e.g, " $\left\|P F_{1}\right\|+\left\|P F_{2}\right\|$ is constant for any $P^{\prime \prime}$	(3)

Question Number	Scheme	Notes	Marks
9(b) Way 2	$\left\|P F_{1}\right\|+\left\|P F_{2}\right\|=\left\|Q F_{1}\right\|+\left\|Q F_{2}\right\|$ where P and Q are any points on the ellipse oe	States this oe definition of an ellipse, justified by explanation. Accept e.g., " $\left\|P F_{1}\right\|+\left\|P F_{2}\right\|$ is constant for any P "	M1
$P F_{1}+P F_{2}=k$	e.g. Q is where E crosses positive x-axis $\Rightarrow\left\|P F_{1}\right\|+\left\|P F_{2}\right\|=3-" 2 \sqrt{2} "+3+" 2 \sqrt{2} "$ Q is where E crosses positive y-axis $\Rightarrow\left\|P F_{1}\right\|+\left\|P F_{2}\right\|=2 \sqrt{1^{2}+" 2 \sqrt{2} "^{2}}$ Q is on E directly above F_{1} $\begin{aligned} & \Rightarrow\left\|P F_{1}\right\|+\left\|P F_{2}\right\|= \\ & \sqrt{1-\frac{\left(" 2 \sqrt{2}^{\prime \prime 2}\right)}{9}}+\sqrt{(2 \times " 2 \sqrt{2})^{\prime \prime}+1-\frac{\left(" 2 \sqrt{2}^{\prime \prime}\right)}{9}} \end{aligned}$	Correct method for a numerical value for $\left\|P F_{1}\right\|+\left\|P F_{2}\right\|$ using another point on the ellipse and their foci. Requires previous M mark.	dM1
	$=6$ *	Fully correct proof. Modulus signs are not required.	A1*
			(3)
Way 3 Point in terms of θ	$\begin{gathered} P(3 \cos \theta, \sin \theta) \\ \left\|P F_{1}\right\|^{2}=(3 \cos \theta-" 2 \sqrt{2} ")^{2}+\sin ^{2} \theta \\ \text { or }\left\|P F_{2}\right\|^{2}=\left(3 \cos \theta+" 2 \sqrt{2}{ }^{\prime \prime}\right)^{2}+\sin ^{2} \theta \end{gathered}$	Correct general point in parametric form and applies Pythagoras for the distance (or its square) to either of their foci. Allow in terms of a, b and θ	M1
	$\frac{\left\|P F_{1}\right\|+\left\|P F_{2}\right\|=}{\sqrt{8 \cos ^{2} \theta-12 \sqrt{2} \cos \theta+9}+\sqrt{8 \cos ^{2} \theta+12 \sqrt{2} \cos \theta+9}}$	Correct method for $\left\|P F_{1}\right\|+\left\|P F_{2}\right\|$ with their foci. Two three term quadratic expressions required but allow the second to be implied if its correct square root is seen. Score when a and b are substituted. Requires previous M mark.	dM1
	$\begin{gathered} \left\|P F_{1}\right\|+\left\|P F_{2}\right\|= \\ 3-2 \sqrt{2} \cos \theta+3+2 \sqrt{2} \cos \theta=6^{*} \end{gathered}$	Fully correct proof. Modulus signs are not required. The intermediate step shown oe is required for this Way.	A1*
			(3)
Way 4 Point in terms of \boldsymbol{x}	$\begin{gathered} P\left(x, \sqrt{1-\frac{x^{2}}{9}}\right) \text { or } P\left(x, \sqrt{\frac{9-x^{2}}{9}}\right) \\ \left\|P F_{1}\right\|^{2}=(" 2 \sqrt{2}-x)^{2}+1-\frac{x^{2}}{9} \\ \text { or }\left\|P F_{2}\right\|^{2}=(x+" 2 \sqrt{2} ")^{2}+1-\frac{x^{2}}{9} \end{gathered}$	Correct general point in terms of x and applies Pythagoras for the distance (or its square) to either of their foci. Allow in terms of a, b and x.	M1
	$\left\|P F_{1}\right\|+\left\|P F_{2}\right\|=\sqrt{\frac{8}{9} x^{2}-4 \sqrt{2} x+9}+\sqrt{\frac{8}{9} x^{2}+4 \sqrt{2} x+9}$	Correct method for $\left\|P F_{1}\right\|+\left\|P F_{2}\right\|$ with their foci. Two three term quadratic expressions required but allow the second to be implied if its correct square root is seen. Score when a and b are substituted. Requires previous M mark.	dM1
	$\left\|P F_{1}\right\|+\left\|P F_{2}\right\|=3-\frac{2 \sqrt{2}}{3} x+3+\frac{2 \sqrt{2}}{3} x=6 *$	Fully correct proof. Modulus signs are not required. The intermediate step shown oe is required for this Way.	A1*
	Creditworthy alternative ap	proaches will be reviewed	(3)

Question Number	Scheme		Notes	Marks
9(c)	$x^{2}+9(2 x+c)^{2}=9$ or $\frac{x^{2}}{9}+(2 x+c)^{2}=1$	Substitut Condone	ine into the ellipse equation. ips provided intention clear.	M1
	$\begin{gathered} 37 x^{2}+36 c x+9 c^{2}-9=0 \\ \text { or e.g., } \frac{37}{9} x^{2}+4 c x+c^{2}-1=0 \end{gathered}$	Correct	dratic with x^{2} terms collected (could be implied)	A1
	$\begin{gathered} 1 / 2 \text { (sum of roots) } \Rightarrow(x=) \frac{-18 c}{37} \\ =) \frac{1}{2}\left(\frac{-36 c+\sqrt{(36 c)^{2}-4(37)\left(9 c^{2}-9\right)}}{2(37)}+\frac{-36 c-\sqrt{(36 c)^{2}-4(37)\left(9 c^{2}-9\right)}}{2(37)}\right) \end{gathered}$ M1: Correct attempt at $1 / 2$ (sum of roots), i.e., $-\frac{b}{2 a}$ for their quadratic. Ignore how the expression is labelled. Requires previous M mark. A1: Any correct equation in x and c Allow this mark if e.g., x is seen as M_{x}			dM1 A1
	$\begin{gathered} \Rightarrow c="-\frac{37}{18} " x \Rightarrow y=2 x+\left("-\frac{37}{18} "\right) x \\ \text { or } x="-\frac{18}{37} " c \Rightarrow y=2 \times "-\frac{18}{37} " c+c \Rightarrow \ldots\left(y=\frac{c}{37} \Rightarrow \frac{y}{x}=-\frac{1}{18}\right) \end{gathered}$		Substitutes their $c=p x$ into the line to obtain an equation in \boldsymbol{x} and \boldsymbol{y} only. Allow e.g., x_{M} and y_{M} and condone e.g., suffixes of P \& Q This may also be achieved by e.g., finding y in terms of c and then eliminating c with their equation in x and c Must not be using " M_{x} " or " M_{y} " etc. but imply this mark from a locus equation in x and y or x_{\ldots} and y_{\ldots} with appropriate suffixes Requires both previous M marks	ddM1
	$\Rightarrow y_{\ldots}=-\frac{1}{18} x_{\mathrm{I}} \mathrm{oe}$ $\therefore l$ passes through the origin oe *	Obtains correct equation for locus (accept equivalents) and makes conclusion e.g., "passes/goes through origin $/ O /(0,0)$ " but allow "shown" $/$ "as required" $/$ "QED" etc. Requires all previous marks.		A1*
				(6)
				Total 13
PAPER TOTAL: 75				

Question Number	Scheme	Notes	Marks
1	$\begin{gathered} 7 \cosh x+3 \sinh x=2 \mathrm{e}^{x}+7 \Rightarrow \\ 7\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)+3\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)=2 \mathrm{e}^{x}+7 \\ \left\{\frac{7}{2} \mathrm{e}^{x}+\frac{7}{2} \mathrm{e}^{-x}+\frac{3}{2} \mathrm{e}^{x}-\frac{3}{2} \mathrm{e}^{-x}=2 \mathrm{e}^{x}+7\right\} \end{gathered}$	Substitutes at least one correct exponential form for either of the hyperbolic terms and achieves an equation in exponentials and constants alone	M1
	$\begin{gathered} \Rightarrow 7\left(\mathrm{e}^{2 x}+1\right)+3\left(\mathrm{e}^{2 x}-1\right)=4 \mathrm{e}^{2 x}+14 \mathrm{e}^{x} \\ \left\{\Rightarrow 5 \mathrm{e}^{2 x}+2=2 \mathrm{e}^{2 x}+7 \mathrm{e}^{x}\right\} \end{gathered}$	Multiplies through by e^{x} to obtain any equation that would form a 3TQ in e^{x} if like terms were collected	M1
	$\Rightarrow 6 \mathrm{e}^{2 x}-14 \mathrm{e}^{x}+4=0 \quad\left\{3 \mathrm{e}^{2 x}-7 \mathrm{e}^{x}+2=0\right\}$	A correct three term quadratic in e^{x}. Could be implied by a correct root even if terms have not been collected.	A1
	$\Rightarrow\left(3 \mathrm{e}^{x}-1\right)\left(\mathrm{e}^{x}-2\right)=0 \Rightarrow \mathrm{e}^{x}=\ldots$	Solves their 3TQ - usual rules. One correct root for their quadratic if no working. Ignore labelling of the roots even if e.g., " x " is used.	M1
	$x=\ln 2, \ln \frac{1}{3}$	Both correct and simplified but do not isw if there are other answers. $\text { Allow }-\ln \frac{1}{2} \text { for } \ln 2$ and $-\ln 3$ or $\ln 3^{-1}$ for $\ln \frac{1}{3}$	A1
	Answer only is $0 / 5$		Total 5
	Note that it is possible to multiply through by e^{-x} to form an equation in $\mathrm{e}^{-2 x}, \mathrm{e}^{-x}$ and constants. Score as main scheme, e.g.,$\begin{align*} & \frac{7}{2} \mathrm{e}^{x}+\frac{7}{2} \mathrm{e}^{-x}+\frac{3}{2} \mathrm{e}^{x}-\frac{3}{2} \mathrm{e}^{-x}=2 \mathrm{e}^{x}+7 \\ & \Rightarrow \frac{7}{2}+\frac{7}{2} \mathrm{e}^{-2 x}+\frac{3}{2}-\frac{3}{2} \mathrm{e}^{-2 x}=2+7 \mathrm{e}^{-x} \tag{M1}\\ & \Rightarrow 2 \mathrm{e}^{-2 x}-7 \mathrm{e}^{-x}+3=0 \tag{A1}\\ & \left(2 \mathrm{e}^{-x}-1\right)\left(\mathrm{e}^{-x}-3\right)=0 \Rightarrow \mathrm{e}^{-x}=\frac{1}{2}, 3 \tag{M1}\\ & \Rightarrow \mathrm{e}^{x}=2, \frac{1}{3} \Rightarrow x=\ln 2, \ln \frac{1}{3} \tag{A1} \end{align*}$		

Question Number	Scheme	Notes	Marks
2	Condone poor notation e.g., determinant lines	used for matrix bracketing	
(a)	$\operatorname{det}\left(\begin{array}{rrr}2 & 0 & 0 \\ 0 & 1 & 4 \\ 3 & -2 & -3\end{array}\right)\{=2 \times(-3+8)\}=10$	Correct value for determinant, seen or stated and not just in a final answer	B1
	$\left\{\right.$ Minors: $\left.\left(\begin{array}{ccc}5 & -12 & -3 \\ 0 & -6 & -4 \\ 0 & 8 & 2\end{array}\right)\right\}$ Cofactors: $\left(\begin{array}{ccc}5 & 12 & -3 \\ 0 & -6 & 4 \\ 0 & -8 & 2\end{array}\right)$	Attempts the cofactor matrix with at least 6 correct elements	M1
	$\frac{1}{\prime 10 "}$ Inverse is $\left(\begin{array}{rrr}5 & 0 & 0 \\ 12 & -6 & -8 \\ -3 & 4 & 2\end{array}\right)$ or e.g., $\left(\begin{array}{rrr}\frac{1}{2} & 0 & 0 \\ \frac{6}{5} & -\frac{3}{5} & -\frac{4}{5} \\ -\frac{3}{10} & \frac{2}{5} & \frac{1}{5}\end{array}\right)$	Correct inverse but allow ft on their " 10 ". Allow equivalent fractions/decimals. A0 if clearly obtained incorrectly	A1ft
	Work to obtain $\operatorname{Adj}(\mathbf{M})$ must be seen but it may be minimal, e.g., sight of the matrix of minors followed by the correct answer is acceptable. Note that B0 M1 A1 is possible.		(3)
(b)	$\frac{1}{10}\left(\begin{array}{rrr}5 & 0 & 0 \\ 12 & -6 & -8 \\ -3 & 4 & 2\end{array}\right)\left(\begin{array}{c}u \\ v \\ w\end{array}\right)=\ldots$	Multiplies their \mathbf{M}^{-1} by $\left(\begin{array}{c}u \\ v \\ w\end{array}\right)$ Must use a matrix other than \mathbf{M} not just changed by application of determinant. Condone sight of $\mathbf{v M}^{-1}=\ldots$ but must not be a clearly incorrect multiplication method	M1
	$\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\frac{1}{10}\left(\begin{array}{r} 5 u \\ 12 u-6 v-8 w \\ -3 u+4 v+2 w \end{array}\right) \text { or }\left(\begin{array}{r} \frac{1}{2} u \\ \frac{6}{5} u-\frac{3}{5} v-\frac{4}{5} w \\ -\frac{3}{10} u+\frac{2}{5} v+\frac{1}{5} w \end{array}\right) \text { or } \frac{1}{d}(.$ A1ft: Two correct vector components, coordinate Alft: All three correct ft their no Must be exact (and not rounded d These ft marks are not available for a	$\left.\begin{array}{r} 5 u \\ 12 u-6 v-8 w \\ -3 u+4 v+2 w \end{array}\right) \text { or }\left(\begin{array}{r} \frac{5}{d} u \\ \frac{12}{d} u-\frac{6}{d} v-\frac{8}{d} w \\ -\frac{3}{d} u+\frac{4}{d} v+\frac{2}{d} w \end{array}\right)$ or equations, ft their $d \neq 0$ -zero $d \neq 0$ cimals for ft) incorrect $\operatorname{Adj}(\mathbf{M})$	$\begin{array}{\|l\|l\|} \text { A1ft } \\ \text { A1ft } \end{array}$
			(3)
	$\begin{gathered} 2 x=u \\ y+4 z=v \\ 3 x-2 y-3 z=w \end{gathered} \Rightarrow \begin{aligned} & x=\ldots \\ & y=\ldots \\ & z=\ldots \end{aligned}$	Uses $\mathbf{M}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}u \\ v \\ w\end{array}\right)$ and finds x, y and z as functions of u, v and w Condone sight of $\mathbf{v M}=\ldots$ but must not be a clearly incorrect multiplication method	M1
	$\begin{gathered} x=\frac{1}{2} u \\ y=\frac{6}{5} u-\frac{3}{5} v-\frac{4}{5} w \\ z=-\frac{3}{10} u+\frac{2}{5} v+\frac{1}{5} w \end{gathered}$	A1: Two correct equations A1: All three correct Any form with terms collected	A1 A1
			(3)

FP3_2023_06_MS

Question Number	Scheme	Notes	Marks
2(c)	$3 x-7 y+2 z=-3 \Rightarrow 3\left(\frac{1}{2} u\right)-7\left(\frac{6}{5} u-\frac{3}{5} v-\frac{4}{5} w\right)+2\left(-\frac{3}{10} u+\frac{2}{5} v+\frac{1}{5} w\right)=-3$	Substitutes their expressions into the equation for Π_{1}	M1
	$-15 u+10 v+12 w=-6$	Correct equation. Terms in any order but constant isolated. Accept any integer multiples.	A1
			(2)
			Total 8
Alts	To gain any marks by an alternative approach, a complete attempt at a Cartesian equation for Π_{2} must be made by a viable strategy e.g.,		
	$\begin{array}{rc} \left(\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 1 & 4 \\ 3 & -2 & -3 \end{array}\right)\left(\begin{array}{c} s \\ t \\ -\frac{3}{2} s+\frac{7}{2} t-\frac{3}{2} \end{array}\right) \\ \Rightarrow v=-6 s+15 t-6 \Rightarrow & \begin{array}{c} u=2 s \\ w=\frac{15}{2} s-\frac{25}{2} t+\frac{9}{2} \end{array} \end{array} \begin{gathered} v=-3 u+15 t-6 \\ t=-\frac{2}{25}\left(w-\frac{15}{2}\left(\frac{u}{2}\right)-\frac{9}{2}\right) \end{gathered}$ Obtains a plane equation in any Cartesian form		M1
	$\begin{array}{r} \left\{v=\frac{3}{2} u-\frac{6}{5} w-\frac{3}{5} \Rightarrow\right\} \\ -15 u+10 v+12 w=-6 \end{array}$	Correct equation. Terms in any order but constant isolated. Accept any integer multiples.	A1
			(2)
			Total 8

Question Number	Scheme	Notes	Marks
3(a) Way 1 Identities first then squares	$y=\frac{1}{2}(\tan x+\cot x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right)$ oe	Correct derivative. Any equivalent.	B1
	$=\frac{1}{2}\left(1+\tan ^{2} x-\left(1+\cot ^{2} x\right)\right) \quad\left\{=\frac{1}{2}\left(\tan ^{2} x-\cot ^{2} x\right)\right\}$	Applies $\sec ^{2} x= \pm \tan ^{2} x \pm 1$ and $\operatorname{cosec}^{2} x= \pm \cot ^{2} x \pm 1$ to their derivative	M1
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=\frac{1}{4}\left(\tan ^{4} x+\cot ^{4} x-2 \tan ^{2} x \cot ^{2} x\right)$	Squares to a 3 term expression (or 4 if middle terms uncollected) $2 \tan ^{2} x \cot ^{2} x$ can be seen as 2 Requires previous M mark.	dM1
	$\begin{gathered} \left\{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\frac{1}{4}\left(\tan ^{4} x+\cot ^{4} x-2\right)\right\} \\ \Rightarrow \frac{1}{4}\left(\tan ^{4} x+\cot ^{4} x+2\right) \text { or } \frac{1}{4} \tan ^{4} x+\frac{1}{4} \cot ^{4} x+\frac{1}{2} \end{gathered}$ Not implied. Must be seen	Adds the 1 and achieves either expression shown but allow the constant to be multiplied by $\begin{gathered} \tan ^{2} x \cot ^{2} x \\ \text { May be seen as e.g. } \\ \frac{1}{2} \sqrt{\tan ^{4} x+\cot ^{4} x+2 \tan ^{2} x \cot ^{2} x} \end{gathered}$	A1
	$\begin{aligned} & s=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\tan ^{2} x+\cot ^{2} x\right) \mathrm{d} x^{*} \\ & \text { Allow } \int \frac{1}{2}\left(\tan ^{2} x+\cot ^{2} x\right) \text { or } \frac{1}{2} \int \tan ^{2} x+\cot ^{2} x \end{aligned}$	M1: Applies the arc length formula with their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ A1: Correct result achieved with no clear mathematical errors seen. Condone omission of " $d x$ " and/or limits and occasional missing arguments.	M1 A1*
	Converting to sin \& cos: likely to score max of 100010 un	ess tan \& cot are convincingly recovered	(6)
Way 2 Squares first then identities	$y=\frac{1}{2}(\tan x+\cot x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right)$ oe	Correct derivative. Any equivalent.	B1
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=\frac{1}{4}\left(\sec ^{4} x+\operatorname{cosec}^{4} x-2 \sec ^{2} x \operatorname{cosec}^{2} x\right)$	Squares a derivative of the correct form to obtain a 3 (or 4 if middle terms uncollected) term expression.	M1
	$\begin{gathered} =\frac{1}{4}\left(\left(1+\tan ^{2} x\right)^{2}+\left(1+\cot ^{2} x\right)^{2}-2\left(1+\tan ^{2} x\right)\left(1+\cot ^{2} x\right)\right) \\ \left\{=\frac{1}{4}\left(1+2 \tan ^{2} x+\tan ^{4} x+1+2 \cot ^{2} x+\cot ^{4} x-2-2 \tan ^{2} x-2 \cot ^{2} x-2 \tan ^{2} x \cot ^{2} x\right)\right\} \end{gathered}$	Applies $\sec ^{2} x= \pm \tan ^{2} x \pm 1$ twice and $\operatorname{cosec}^{2} x= \pm \cot ^{2} x \pm 1$ twice. Requires previous M mark.	dM1
	$\begin{gathered} \left\{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\frac{1}{4}\left(\tan ^{4} x+\cot ^{4} x-2\right)\right\} \\ \Rightarrow \frac{1}{4}\left(\tan ^{4} x+\cot ^{4} x+2\right) \text { or } \frac{1}{4} \tan ^{4} x+\frac{1}{4} \cot ^{4} x+\frac{1}{2} \end{gathered}$ Not implied. Must be seen	Adds the 1 and achieves either expression shown but allow the constant to be multiplied by $\begin{gathered} \tan ^{2} x \cot ^{2} x \\ \text { May be seen as e.g. } \\ \frac{1}{2} \sqrt{\tan ^{4} x+\cot ^{4} x+2 \tan ^{2} x \cot ^{2} x} \end{gathered}$	A1
	$s=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan ^{2} x+\cot ^{2} x \mathrm{~d} x *$ Allow $\int \frac{1}{2}\left(\tan ^{2} x+\cot ^{2} x\right)$ or $\frac{1}{2} \int \tan ^{2} x+\cot ^{2} x$	M1: Applies the arc length formula with their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ A1: Correct result achieved with no clear mathematical errors seen. Condone omission of " $\mathrm{d} x$ " and/or limits and occasional missing arguments.	M1 A1*
	Converting to sin \& cos: likely to score max of 100010 unless tan \& cot are convincingly recovered		(6)

Question Number	Scheme	Notes	Marks
3(b)	$\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\tan ^{2} x+\cot ^{2} x\right) \mathrm{d} x=\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(\sec ^{2} x-1+\operatorname{cosec}^{2} x-1\right) \mathrm{d} x$	Applies $\tan ^{2} x= \pm \sec ^{2} x \pm 1$ and $\cot ^{2} x= \pm \operatorname{cosec}^{2} x \pm 1$ to the integral	M1
	Work in \sin and cos must use identities (sign errors only) and lead to a result of the form below after integration condoning the absence of a term in x but allow the last M to be available following a completed attempt at integration.		
	$=\frac{1}{2}[\tan x-\cot x-2 x]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$	M1: For $\pm \sec ^{2} x \rightarrow \pm \tan x$ and $\pm \operatorname{cosec}^{2} x \rightarrow \pm \cot x$ Requires previous M mark. A1: Correct integration. Limits not required.	dM1 A1
	$\begin{gathered} \frac{1}{2}\left(\tan \frac{\pi}{3}-\cot \frac{\pi}{3}-\frac{2 \pi}{3}-\left(\tan \frac{\pi}{6}-\cot \frac{\pi}{6}-\frac{2 \pi}{6}\right)\right) \\ \left\{\frac{1}{2}\left(\sqrt{3}-\frac{2 \pi}{3}-\frac{\sqrt{3}}{3}-\left(\frac{\sqrt{3}}{3}-\frac{\pi}{3}-\sqrt{3}\right)\right)\right\} \end{gathered}$	Applies the limits (see note below) following any completed attempt at integration. Allow slips provided it is a clear attempt at $\mathrm{f}\left(\frac{\pi}{3}\right)-\mathrm{f}\left(\frac{\pi}{6}\right)$	M1
	Correct answer in any exact simplified form with 2 terms e.g.$\frac{1}{2}\left(\frac{4 \sqrt{3}}{3}-\frac{\pi}{3}\right), \frac{2 \sqrt{3}}{3}-\frac{\pi}{6}, \frac{2}{\sqrt{3}}-\frac{\pi}{6}, \frac{1}{3}\left(2 \sqrt{3}-\frac{\pi}{2}\right), \frac{4 \sqrt{3}-\pi}{6}$		A1
	Note they may apply the limits $\frac{\pi}{4} \& \frac{\pi}{6}$ or $\frac{\pi}{3} \& \frac{\pi}{4}$ and then double the result.		(5)
	Just the answer or decimal answer (0.6311017628) is $0 / 5$		Total 11

Question Number	Scheme Notes	Marks
4	Allow any suitable vector notation throughout this question.	
(a)	$\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{r}-1 \\ 3 \\ 3\end{array}\right)=\left(\begin{array}{r}2 \\ 4 \\ -5\end{array}\right) \cdot\left(\begin{array}{r}-1 \\ 3 \\ 3\end{array}\right) \Rightarrow \ldots$ or $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{r}2 \\ 0 \\ -5\end{array}\right)=\left(\begin{array}{r}3 \\ 6 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}2 \\ 0 \\ -5\end{array}\right) \Rightarrow \ldots$ $-x+3 y+3 z=-5$ and $2 x-5 z=16$ M1: Uses r.n = a.n at least once to obtain a plane equation A1: Both correct equations. Accept in $\mathbf{r} . \mathbf{n}=p$ form	M1 A1
	e.g., $x=\frac{16+5 z}{2} \quad$Obtains one variable (may be written as parameter for all marks) in terms of one of the other variables	M1
	$\begin{gathered} z=\frac{2 x-16}{5} \Rightarrow x=5+3 y+3\left(\frac{2 x-16}{5}\right) \\ \Rightarrow 5 x=25+15 y+6 x-48 \Rightarrow x=-15 y+23 \\ \left\{x=-15 y+23=\frac{16+5 z}{2}\right\} \end{gathered}$ M1: Obtains the variable/parameter in terms of the third variable (or the two other variables in terms of the parameter) A1: Both correct equations	M1 A1 (M1 on epen)
	Alternatively, $y=\frac{-x+23}{15}=\frac{6-z}{6}$ or $z=\frac{2 x-16}{5}=6-6 y$	
	$\left\{\frac{x-0}{1}=\frac{y-\frac{23}{15}}{-\frac{1}{15}}=\frac{z+\frac{16}{5}}{\frac{2}{5}} \Rightarrow\right\} \mathbf{r}=\left(\begin{array}{c} 0 \\ \frac{23}{15} \\ -\frac{16}{5} \end{array}\right)+\lambda\left(\begin{array}{c} 1 \\ -\frac{1}{15} \\ \frac{2}{5} \end{array}\right)$ M1: Attempts vector equation of line but " $\mathbf{r}=$ " may be missing. Requires all previous M marks. Allow numerical slips but it must be a correct method i.e., an attempt at $\Rightarrow \frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n} \Rightarrow \mathbf{r}=\left(\begin{array}{l} x_{1} \\ y_{1} \\ z_{1} \end{array}\right)+\lambda\left(\begin{array}{c} l \\ m \\ n \end{array}\right)$ A1: Any correct equation including " $\mathrm{r}=$ "	dM1 A1
	Or $\begin{gathered}\left\{\frac{x-23}{-15}=\frac{y-0}{1}=\frac{z-6}{-6} \Rightarrow\right\} \mathbf{r}=\left(\begin{array}{c}23 \\ 0 \\ 6\end{array}\right)+\lambda\left(\begin{array}{c}-15 \\ 1 \\ -6\end{array}\right) \text { or }\left\{\frac{x-8}{\frac{5}{2}}=\frac{y-1}{-\frac{1}{6}}=\frac{z-0}{1} \Rightarrow\right\} \mathbf{r}=\left(\begin{array}{l}8 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}\frac{5}{2} \\ -\frac{1}{6} \\ 1\end{array}\right) \\ \text { Note that the line may be given in }(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=0 \text { or } \mathbf{r} \times \mathbf{b}=\mathbf{a} \times \mathbf{b} \text { form }\end{gathered}$	
		(7)

Question Number	Scheme	Notes	Marks
	$\begin{gathered} \left(\begin{array}{l} x \\ y \\ z \end{array}\right) \cdot\left(\begin{array}{r} -1 \\ 3 \\ 3 \end{array}\right)=\left(\begin{array}{r} 2 \\ 4 \\ -5 \end{array}\right) \cdot\left(\begin{array}{r} -1 \\ 3 \\ 3 \end{array}\right) \Rightarrow \ldots \text { or }\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \cdot\left(\begin{array}{r} 2 \\ 0 \\ -5 \end{array}\right)=\left(\begin{array}{r} 3 \\ 6 \\ -2 \end{array}\right) \cdot\left(\begin{array}{r} 2 \\ 0 \\ -5 \end{array}\right) \Rightarrow \ldots \\ -x+3 y+3 z=-5 \text { and } 2 x-5 z=16 \end{gathered}$	M1: Uses $\mathbf{r} . \mathbf{n}=\mathbf{a} . \mathbf{n}$ at least once to obtain a plane equation A1: Both correct equations Accept in $\mathbf{r} . \mathbf{n}=p$ form	M1 A1
	e.g., $\quad x=0 \Rightarrow z=-\frac{16}{5}$	Sets one variable equal to a value and finds a value for another variable. Correct for their equations if no working.	M1
	$3 y=-5-3\left(-\frac{16}{5}\right) \Rightarrow y=\frac{23}{15}\left\{\Rightarrow\left(0, \frac{23}{15},-\frac{16}{5}\right)\right\}$ Or e.g., $(23,0,6),(8,1,0)$ Points will have the form $(23-15 \alpha, \alpha, 6-6 \alpha)$	M1: Proceeds to find a value for the remaining variable. Correct for their equations if no working. A1: Correct values	M1 A1 (M1 on epen)
	$\begin{aligned} & \left(\begin{array}{r} -1 \\ 3 \\ 3 \end{array}\right) \times\left(\begin{array}{c} 2 \\ 0 \\ -5 \end{array}\right)=\ldots \Rightarrow \mathbf{r}=\left(\begin{array}{c} 0 \\ \frac{23}{15} \\ -\frac{16}{5} \end{array}\right)+\lambda\left(\begin{array}{c} -15 \\ 1 \\ -6 \end{array}\right) \\ & \left\{\mathbf{r}=\left(\begin{array}{c} 23 \\ 0 \\ 6 \end{array}\right)+\lambda\left(\begin{array}{c} -15 \\ 1 \\ -6 \end{array}\right) \quad \mathbf{r}=\left(\begin{array}{c} 8 \\ 1 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{c} -15 \\ 1 \\ -6 \end{array}\right)\right\} \end{aligned}$	dM1: Attempts vector product of normals (two correct components if method unclear) and forms vector equation with point and direction in correct places but allow for a copying error or mix up with components. Note that they could obtain the direction from 2 points on the line. Requires all previous M marks. " $\mathbf{r}=$ " may be missing. A1: Any correct equation including " $\mathbf{r}=$ "	$\begin{array}{\|l} \text { dM1 } \\ \text { A1 } \end{array}$
			(7)

Question Number	Scheme	Notes	Marks
4(b)	Note: If $0 / 5$ allow SC 00010 for a correct volume formula seen for tetrahedron $\mathbf{A B C D}$ e.g.,$\frac{1}{6}\|\overrightarrow{C D} \cdot(\overrightarrow{C A} \times \overrightarrow{C B})\|$ Allow with missing modulus but not vector arrows unless implied by further work.		
Way 1 STP inc.$\overrightarrow{C D}$	$\left(\begin{array}{r}-15 \\ 1 \\ -6\end{array}\right) \left\lvert\,=\sqrt{262} \Rightarrow \overrightarrow{C D}=\frac{5}{\sqrt{262}}\left(\begin{array}{r}-15 \\ 1 \\ -6\end{array}\right)\right.$	Attempts magnitude (allow numerical slip) of their direction vector and scales correctly to length 5	M1
	Let C be the point $(8,1,0)$ $\overrightarrow{C A}=\left(\begin{array}{r} 2 \\ 4 \\ -5 \end{array}\right)-\left(\begin{array}{r} 8 \\ 1 \\ 0 \end{array}\right)=\ldots\left\{\left(\begin{array}{r} -6 \\ 3 \\ -5 \end{array}\right)\right\} \text { and } \overrightarrow{C B}=\left(\begin{array}{r} 3 \\ 6 \\ -2 \end{array}\right)-\left(\begin{array}{l} 8 \\ 1 \\ 0 \end{array}\right)=\ldots\left\{\left(\begin{array}{r} -5 \\ 5 \\ -2 \end{array}\right)\right\}$	Finds vectors for any two edges other than $C D$. Could be implied by a distance calculation if \boldsymbol{C} and/or \boldsymbol{D} defined. This mark is not scored if either vector is in terms of a parameter unless it is assigned a value (or is eliminated appropriately) later.	M1
	$\overrightarrow{C D} \cdot(\overrightarrow{C A} \times \overrightarrow{C B})=\frac{5}{\sqrt{262}}\left(\begin{array}{r}-15 \\ 1 \\ -6\end{array}\right) \cdot\left(\begin{array}{r}-6 \\ 3 \\ -5\end{array}\right) \times\left(\begin{array}{r}-5 \\ 5 \\ -2\end{array}\right)=\ldots \quad\left\{=-\frac{910}{\sqrt{262}}\right\}$	Uses an appropriate scalar triple product with their vectors and finds a value. Must not include position vectors. Could be inexact. M0 if clear evidence of an inappropriate method	M1
	$V=\frac{1}{6}\|\overrightarrow{C D} \cdot(\overrightarrow{C A} \times \overrightarrow{C B})\|=\ldots=\frac{455}{3 \sqrt{262}}$ or $\frac{455 \sqrt{262}}{786}$	dM1: Divides their STP result by 6 and obtains a positive value. Could be inexact. Modulus might not be seen. Requires previous M mark. A1: A correct exact value	$\begin{aligned} & \text { dM1 } \\ & \text { A1 } \end{aligned}$
			(5)
$\begin{aligned} & \text { Way } 2 \\ & \text { STP not } \\ & \text { inc. } \\ & \frac{D}{C D} \end{aligned}$	$\left\|\left(\begin{array}{r}-15 \\ 1 \\ -6\end{array}\right)\right\|=\sqrt{262} \Rightarrow \overrightarrow{C D}=\frac{5}{\sqrt{262}}\left(\begin{array}{r}-15 \\ 1 \\ -6\end{array}\right)$	Attempts magnitude (allow numerical slip) of their direction vector and scales correctly to length 5	M1
	Let C be the point $(8,1,0)$ $\overrightarrow{A C}=\left(\begin{array}{l} 8 \\ 1 \\ 0 \end{array}\right)-\left(\begin{array}{r} 2 \\ 4 \\ -5 \end{array}\right)=\ldots\left\{\left(\begin{array}{r} 6 \\ -3 \\ 5 \end{array}\right)\right\} \text { and } \overrightarrow{A B}=\left(\begin{array}{r} 3 \\ 6 \\ -2 \end{array}\right)-\left(\begin{array}{r} 2 \\ 4 \\ -5 \end{array}\right)=\ldots\left\{\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right)\right\}$	Finds vectors for any two edges other than $C D$. Could be implied by a distance calculation if \boldsymbol{C} and/or \boldsymbol{D} defined. (See also comment for second M1 in Way 1 re use of a parameter)	M1
	$\begin{aligned} & \overrightarrow{O D}=\left(\begin{array}{l} 8 \\ 1 \\ 0 \end{array}\right)+\frac{5}{\sqrt{262}}\left(\begin{array}{c} -15 \\ 1 \\ -6 \end{array}\right) \Rightarrow \overrightarrow{A D}=\left(\begin{array}{c} \frac{-75}{\sqrt{262}}+8 \\ \frac{5}{\sqrt{262}}+1 \\ \frac{-30}{\sqrt{262}} \end{array}\right)-\left(\begin{array}{r} 2 \\ 4 \\ -5 \end{array}\right)=\left(\begin{array}{c} \frac{-75}{\sqrt{262}}+6 \\ \frac{5}{\sqrt{262}}-3 \\ \frac{-30}{\sqrt{262}}+5 \end{array}\right) \\ & \Rightarrow \overrightarrow{A D} \cdot(\overrightarrow{A B} \times \overrightarrow{A C})=\left(\begin{array}{c} \frac{-75}{\sqrt{262}}+6 \\ \frac{5}{\sqrt{262}}-3 \\ \frac{-30}{\sqrt{262}}+5 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right) \times\left(\begin{array}{r} 6 \\ -3 \\ 5 \end{array}\right)=\ldots\left\{=-\frac{910}{\sqrt{262}}\right\} \end{aligned}$	Uses an appropriate scalar triple product with their vectors and finds a value. Must not include position vectors. Could be inexact. M0 if clear evidence of an inappropriate method	M1
	$V=\frac{1}{6}\|\overrightarrow{A D} \cdot(\overrightarrow{A B} \times \overrightarrow{A C})\|=\ldots=\frac{455}{3 \sqrt{262}}$ or $\frac{455 \sqrt{262}}{786}$	dM1: Divides their STP result by 6 and obtains a positive value. Could be inexact. Modulus might not be seen. Requires previous M mark. A1: A correct exact value	$\begin{aligned} & \text { dM1 } \\ & \text { A1 } \end{aligned}$
			(5)

Question Number	Scheme	Notes	Marks
4(b) Way 3 Triangle area + perp. distance to plane \& vol. of pyramid	$\left(\begin{array}{r}-15 \\ 1 \\ -6\end{array}\right) \left\lvert\,=\sqrt{262} \Rightarrow \overrightarrow{C D}=\frac{5}{\sqrt{262}}\left(\begin{array}{r}-15 \\ 1 \\ -6\end{array}\right)\right.$	Attempts magnitude of their direction vector and scales to length 5. See note after next M below.	M1
	Let C be the point $(8,1,0)$ $\text { Area } \triangle A C D=\frac{1}{2}\|\overrightarrow{C D} \times \overrightarrow{C A}\|=\frac{1}{2}\left\|\frac{5}{\sqrt{262}}\left(\begin{array}{c} -15 \\ 1 \\ -6 \end{array}\right) \times\left(\begin{array}{r} -6 \\ 3 \\ -5 \end{array}\right)\right\|=\ldots \quad\left\{=\frac{65 \sqrt{19}}{2 \sqrt{262}}\right\}$ Uses formula to find a value for the area of one of the faces. Must be a full method (vector product and modulus). Condone missing $\frac{1}{2}$ Any attempts by trig/Pythagoras must be complete and credible Note: It is possible to obtain the area of a relevant triangle such as $A C D$ by e.g., finding the length of the perpendicular distance of point A to the line and multiplying this by $\frac{1}{2} \times 5$ - in such cases allow the first M for completing a viable attempt at the height of the triangle and the second for the area (Condone missing $\frac{1}{2}$)		M1
	$\triangle A C D$ is in Π_{1} so perp. height of tetrahedron is shortest dist. of $B(3,6,-2)$ to $-x+3 y+3 z=-5$: $\left\|\frac{-1 \times 3+3 \times 6+3 \times(-2)+5}{\sqrt{(-1)^{2}+3^{2}+3^{2}}}\right\|=\ldots \quad\left\{\frac{14}{\sqrt{19}}\right\}$	Obtains a value for the perpendicular height via formula or any credible method (examples below)	M1
	Parallel planes: $\left(\begin{array}{r}3 \\ 6 \\ -2\end{array}\right) \cdot\left(\begin{array}{r}-1 \\ 3 \\ 3\end{array}\right)=9,\left(\begin{array}{r}2 \\ 4 \\ -5\end{array}\right) \cdot\left(\begin{array}{r}-1 \\ 3 \\ 3\end{array}\right)=-5$ Projection/Resolving: $\overrightarrow{B A}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \Rightarrow \frac{}{\sqrt{(}}$	$\Rightarrow\left\|\frac{-5-9}{\sqrt{(-1)^{2}+3^{2}+3^{2}}}\right\|=\frac{14}{\sqrt{19}}$ $\begin{aligned} & \left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right) \cdot\left(\begin{array}{r} -1 \\ 3 \\ 3 \end{array}\right) \\ & -1)^{2}+3^{2}+3^{2} \end{aligned}=\frac{14}{\sqrt{19}}$	
	$V=\frac{1}{3} \times \frac{65 \sqrt{19}}{2 \sqrt{262}} \times \frac{14}{\sqrt{19}}=\ldots=\frac{455}{3 \sqrt{262}}$ or $\frac{455 \sqrt{262}}{786}$	M1: Uses $\frac{1}{3} \times$ area $\Delta \times$ perp.height and obtains a positive value. $\frac{1}{2}$ must have been used for triangle area earlier unless they now use $\frac{1}{6} \times \ldots$ Requires previous M mark. A1: Either correct exact value	$\begin{aligned} & \text { dM1 } \\ & \text { A1 } \end{aligned}$
			(5)
			Total 12

Question Number	Scheme	Notes	Marks
5	$\mathbf{M}=\left(\begin{array}{rrr}1 & 2 & k \\ -1 & -3 & 4 \\ 2 & 6 & -8\end{array}\right)$		
(i) $\&$ (ii) Mark the parts together	$\begin{gathered} \operatorname{det}\left(\begin{array}{rrr} 1-\lambda & 2 & k \\ -1 & -3-\lambda & 4 \\ 2 & 6 & -8-\lambda \end{array}\right) \\ = \pm[(1-\lambda)((-3-\lambda)(-8-\lambda)-24)-2((-1)(-8-\lambda)-8)+k((-1)(6)-2(-3-\lambda))] \end{gathered}$	Recognisable complete attempt at $\operatorname{det}(\mathbf{M}-\lambda \mathbf{I})$. May use other rows/columns. Allow \pm and slips including +2 for first -2	M1
	Sarrus $\Rightarrow \pm[(1-\lambda)(-3-\lambda)(-8-\lambda)+(2)(4)(2)+(k)(-1)(6)-(k)(-3-\lambda)(2)-(1-\lambda)(4)(6)-(2)(-1)(-8-\lambda)]$		
	$\begin{aligned} = & (1-\lambda)\left(\lambda^{2}+11 \lambda\right)-2 \lambda+2 k \lambda \\ = & -\lambda^{3}-10 \lambda^{2}+9 \lambda+2 k \lambda \\ = & \lambda\left(-\lambda^{2}-10 \lambda+9+2 k\right) \end{aligned}$	M1: Obtains $\{\lambda\}\left(a \lambda^{2}+b \lambda+c+d k\right.$ oe $) \quad a, b, c, d \neq 0$ A1: Correct expression - allow: $\pm\{\lambda\}\left(-\lambda^{2}-10 \lambda+9+2 k \text { oe }\right)$ or $\pm\{\lambda\}\left(\lambda^{2}+10 \lambda-9-2 k\right.$ oe $)$ Allow quadratic to be unsimplified and the marks can be implied if the initial λ has been removed	M1 A1
	\{One eigenvalue is zero, if repeated then\} $9+2 k=0 \Rightarrow k=\ldots$ or $\begin{gathered} \left\{ \pm\left(-\lambda^{2}-10 \lambda+9+2 k\right) \text { has repeated roots so }\right\} \\ b^{2}-4 a c=0 \Rightarrow\left\{\begin{array}{l} 100-4(-1)(9+2 k)=0 \\ 100-4(1)(-9-2 k)=0 \end{array} \Rightarrow k=\ldots\right. \end{gathered}$	Attempts to set their $c+d k=0$ and solves for k or Considers the case of their quadratic $a \lambda^{2}+b \lambda+c+d k=0$ having a repeated root and uses a valid strategy to find k	M1
	Alternative approaches with $\lambda^{2}+10 \lambda-9-2 k=0$: $(\lambda+a)^{2}=\lambda^{2}+2 a \lambda+a^{2} \Rightarrow 2 a=10 \Rightarrow-9-2 k=5^{2} \Rightarrow k=\ldots$ sum of roots $=-10 \Rightarrow$ root $=-5 \Rightarrow$ product of roots $=(-5)^{2}=-9-2 k \Rightarrow k=\ldots$		
	$k=-\frac{9}{2}$ or $k=-17$	One correct value for k	A1
	\{One eigenvalue is zero, if repeated then\} $9+2 k=0 \Rightarrow k=\ldots$ and $\begin{gathered} \left\{ \pm\left(-\lambda^{2}-10 \lambda+9+2 k\right) \text { has repeated rootsso }\right\} \\ b^{2}-4 a c=0 \Rightarrow\left\{\begin{array}{l} 100-4(-1)(9+2 k)=0 \\ 100-4(1)(-9-2 k)=0 \end{array} \Rightarrow k=\ldots\right. \end{gathered}$	Attempts to set their $c+d k=0$ and solves for k and Considers the case of their quadratic $a \lambda^{2}+b \lambda+c+d k=0$ having a repeated root and uses a valid strategy to find k	M1
	$k=-\frac{9}{2}$ with eigenvalue $-10\{$ and 0 repeated $\}$ $k=-17$ with eigenvalue $-5\{$ repeated and 0$\}$	Both correct values of k and the associated non-zero eigenvalues clearly assigned. No additional eigenvalues or values for k	A1
			Total 7

Question Number	Scheme	Notes	Marks
	$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \quad P(4 \cos \theta$	$\sin \theta)$	
6(a)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{3 \cos \theta}{4 \sin \theta} \text { or } \frac{2 x}{16}+\frac{2 y}{9} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{18 x}{32 y} \\ & \text { or } \\ & \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \Rightarrow y=3\left(1-\frac{x^{2}}{16}\right)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{2}\left(1-\frac{x^{2}}{16}\right)^{-\frac{1}{2}} \times-\frac{2 x}{16} \end{aligned}$	Uses a correct method and finds an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ of the correct form (sign and coefficient slips only)	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{3 \cos \theta}{4 \sin \theta}$ oe e.g. $-\frac{3}{4} \cot \theta$ oe	Any correct derivative in terms of θ only.	A1
	$\begin{gathered} y-3 \sin \theta=-\frac{3 \cos \theta}{4 \sin \theta}(x-4 \cos \theta) \text { or } \\ \text { or } y=-\frac{3 \cos \theta}{4 \sin \theta} x+c \Rightarrow 3 \sin \theta=-\frac{3 \cos \theta}{4 \sin \theta} 4 \cos \theta+c \\ \Rightarrow c=\ldots\left\{\frac{12 \sin ^{2} \theta+12 \cos ^{2} \theta}{4 \sin \theta}\right\} \end{gathered}$	Applies correct straight line method using any gradient in terms of θ. If they use $y=m x+c$ they must substitute coordinates correctly and reach $c=.$. M0 if use normal gradient	M1
	$\begin{aligned} & \Rightarrow 4 y \sin \theta-12 \sin ^{2} \theta=-3 x \cos \theta+12 \cos ^{2} \theta \text { or } \\ \text { using } y & =m x+c: y=-\frac{3 \cos \theta}{4 \sin \theta} x+12 \Rightarrow 4 y \sin \theta=-3 x \cos \theta+12 \\ & \Rightarrow 3 x \cos \theta+4 y \sin \theta\left\{=12\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\right\}=12 \end{aligned}$ M1: Multiplies through to remove fraction to obtain an equation with trig expressions in sin and cos only. Allow this mark if they go straight to the given answer from a correct equation. Can score from use of a normal gradient and/or with coordinates wrongly placed but there must have been an attempt at a line. A1*: Correct equation from correct work. $\sin ^{2} \theta$ and $\cos ^{2} \theta$ must be seen somewhere in the working. Accept e.g., $\sin ^{2} \theta+\cos ^{2} \theta=1$ seen in side-working		M1 A1*
			(5)
(b)	$\begin{gathered} y-3 \sin \theta=\frac{4 \sin \theta}{3 \cos \theta}(x-4 \cos \theta) \text { oe } \\ \text { e.g., } 4 x \sin \theta-3 y \cos \theta=7 \sin \theta \cos \theta \\ \text { or } y=\frac{4 \sin \theta}{3 \cos \theta} x+c \\ \Rightarrow 3 \sin \theta=\frac{4 \sin \theta}{3 \cos \theta} 4 \cos \theta+c \Rightarrow c=\ldots \quad\left\{\frac{-7 \sin \theta \cos \theta}{3 \cos \theta}\right\} \end{gathered}$	M1: Applies correct straight line method with the negative reciprocal of their tangent gradient. If $y=m x+c$ is used coordinates must be substituted correctly and $c=\ldots$ reached A1: Any correct equation	M1 A1
			(2)

Question Number	Scheme	Notes	Marks
6(c)	A is $\left(\frac{4}{\cos \theta}, 0\right)$	Any correct x-axis intercept of the tangent. Allow e.g., $\{x=\} \frac{12}{3 \cos \theta}, 4 \sec \theta$ Could be on a diagram or implied by midpoint	B1
	$x=0 \Rightarrow y-3 \sin \theta=-\frac{16}{3} \sin \theta \Rightarrow B$ is $\left(0,-\frac{7}{3} \sin \theta\right)$	Sets $x=0$ in their normal equation (changed gradient) and finds y. Could be implied. Allow $\text { just }-\frac{7}{3} \sin \theta \text { oe }$	M1
	So midpoint M of $A B$ is $\left(\frac{2}{\cos \theta},-\frac{7}{6} \sin \theta\right)$	Any correct midpoint. Accept any equivalents and as $x=\ldots, y=\ldots$	A1
	$\sin ^{2} \theta+\cos ^{2} \theta=1 \Rightarrow\left(-\frac{6}{7} y\right)^{2}+\left(\frac{2}{x}\right)^{2}=1$	Uses $\sin ^{2} \theta+\cos ^{2} \theta=1$ to obtain an equation in x and y only. May follow incorrect or no attempt at midpoint	M1
	$\begin{gathered} \Rightarrow \frac{36}{49} y^{2}+\frac{4}{x^{2}}=1 \Rightarrow 36 x^{2} y^{2}+49 \times 4=49 x^{2} \\ \Rightarrow x^{2}\left(49-36 y^{2}\right)=196 \end{gathered}$	dM1: Rearranges to the form $x^{2}\left(p \pm q y^{2}\right)=r, \quad p, q, r \in \mathbb{Z}$ Requires all previous \mathbf{M} marks. A1: Correct equation	dM1 A1
			(6)
	Note that is possible to use e.g., $1+\tan ^{2} \theta=\sec ^{2} \theta$, for example:$\begin{aligned} & M\left(2 \sec \theta, \frac{-7 \tan \theta}{6 \sec \theta}\right) \Rightarrow \sec \theta=\frac{x}{2}, y=\frac{-7 \tan \theta}{3 x} \Rightarrow \tan \theta=\frac{-3 x y}{7} \Rightarrow 1+\frac{9 x^{2} y^{2}}{49}=\frac{x^{2}}{4} \text { (2ndM1) } \\ & \Rightarrow 1+\frac{9 x^{2} y^{2}}{49}=\frac{x^{2}}{4} \Rightarrow 196+36 x^{2} y^{2}=49 x^{2} \Rightarrow x^{2}\left(49-36 y^{2}\right)=196 \text { (3rdM1, A1) } \end{aligned}$		Total 13

Question Number	Scheme	Notes	Marks
7(a) Way 1	$\begin{gathered} I_{n}=\int \cosh ^{n} 2 x \mathrm{~d} x=\int \cosh 2 x \cosh ^{n-1} 2 x \mathrm{~d} x \\ =\frac{1}{2} \sinh 2 x \cosh ^{n-1} 2 x-\int \frac{1}{2} \sinh 2 x \times(n-1) \cosh ^{n-2} 2 x \times 2 \sinh 2 x \mathrm{~d} x \end{gathered}$	M1: Correct split and attempts to apply parts to obtain an expression of the correct form (sign and coefficient errors only). A1: Any correct expression	M1 A1
	$\begin{aligned} & \left\{=\frac{1}{2} \sinh 2 x \cosh ^{n-1} 2 x-(n-1) \int \sinh ^{2} 2 x \cosh ^{n-2} 2 x \mathrm{~d} x\right\} \\ = & \frac{1}{2} \sinh 2 x \cosh ^{n-1} 2 x-(n-1) \int\left(\cosh ^{2} 2 x-1\right) \cosh ^{n-2} 2 x \mathrm{~d} x \end{aligned}$	Applies $\sinh ^{2} 2 x= \pm \cosh ^{2} 2 x \pm 1$ Requires previous M mark.	dM1
	$\Rightarrow I_{n}=\frac{1}{2} \sinh 2 x \cosh ^{n-1} 2 x-(n-1)\left(I_{n}-I_{n-2}\right)$	Introduces I_{n} and I_{n-2} - not implied by given answer. Requires previous M mark.	ddM1
	$\begin{gathered} \left\{\Rightarrow n I_{n}=\frac{1}{2} \sinh 2 x \cosh ^{n-1} 2 x+(n-1) I_{n-2}\right\} \\ I_{n}=\frac{\sinh 2 x \cosh ^{n-1} 2 x}{2 n}+\frac{n-1}{n} I_{n-2} * \end{gathered}$	Fully correct proof. Condone missing ' $\mathrm{d} x$'s. Poor bracketing must be recovered before given answer but no other errors e.g., \sin for \sinh, or wrong or missing arguments	A1*
	Accept e.g., $I_{n}=\frac{(n-1) I_{n-2}}{n}+\frac{1}{2 n}$ i	$2 x \cosh ^{n-1} 2 x$	(5)
Way 2	$\begin{gathered} I_{n}=\int \cosh ^{n} 2 x \mathrm{~d} x=\int \cosh ^{2} 2 x \cosh ^{n-2} 2 x \mathrm{~d} x \\ =\int\left(\sinh ^{2} 2 x+1\right) \cosh ^{n-2} 2 x \mathrm{~d} x \end{gathered}$	M1: Correct split and applies $\sinh ^{2} 2 x= \pm \cosh ^{2} 2 x \pm 1$ to obtain an expression of the correct form (sign and coefficient errors only). A1: Correct expression	M1 A1
		Attempts to apply parts to obtain an expression of the correct form for $\int \sinh ^{2} 2 x \cosh ^{n-2} 2 x \mathrm{~d} x$ Requires previous M mark.	dM1
	$\Rightarrow I_{n}=I_{n-2}+\frac{1}{2(n-1)} \sinh 2 x \cosh ^{n-1} 2 x-\frac{1}{n-1} I_{n}$	Introduces I_{n} and I_{n-2} - not implied by given answer. Requires previous M mark	ddM1
	$\begin{gathered} \left\{\Rightarrow(n-1) I_{n}=\frac{1}{2} \sinh 2 x \cosh ^{n-1} 2 x+(n-1) I_{n-2}-I_{n}\right\} \\ I_{n}=\frac{\sinh 2 x \cosh ^{n-1} 2 x}{2 n}+\frac{n-1}{n} I_{n-2} * \end{gathered}$	Fully correct proof. Condone missing ' $\mathrm{d} x$'s. Poor bracketing must be recovered before given answer but no other errors e.g., \sin for sinh, or wrong or missing arguments	A1*
	Accept e.g., $I_{n}=\frac{(n-1) I_{n-2}}{n}+\frac{1}{2 n} \sinh 2 x \cosh ^{n-1} 2 x$		(5)

Question Number	Scheme	Notes	Marks
7(b)	$(1+\cosh 2 x)^{3}=1+3 \cosh 2 x+3 \cosh ^{2} 2 x+\cosh ^{3} 2 x$ Correct expansion. Could be implied e.g. by $x+3 I_{1}+3 I_{2}+I_{3}$ and allow if correct but terms are not collected. Condone if partially or completely in " x " provided terms are collected		B1
	$\begin{aligned} & \int \cosh ^{2} 2 x \mathrm{~d} x \text { or } I_{2}=\frac{1}{4} \sinh 2 x \cosh 2 x+\frac{1}{2} I_{0} \text { or } \\ & \int \cosh ^{3} 2 x \mathrm{~d} x \text { or } I_{3}=\frac{1}{6} \sinh 2 x \cosh ^{2} 2 x+\frac{2}{3} I_{1} \end{aligned}$	Completes an attempt to apply the reduction formula for I_{2} or I_{3}. May be slips but must get two terms. May be seen with I_{0} / I_{1} attempted and/or embedded in expression for $\int(1+\cosh 2 x)^{3} \mathrm{~d} x$	M1
	$\begin{gathered} I_{0}=x \quad I_{1}=\frac{1}{2} \sinh 2 x \\ \int(1+\cosh 2 x)^{3} \mathrm{~d} x=\int(1+3 \cosh 2 x) \mathrm{d} x+3 I_{2}+I_{3}= \\ x+\frac{3}{2} \sinh 2 x+\frac{3}{4} \sinh 2 x \cosh 2 x+\frac{3}{2} x+\frac{1}{6} \sinh 2 x \cosh ^{2} 2 x+\frac{1}{3} \sinh 2 x(+c) \end{gathered}$	$I_{0}=x \text { and } I_{1}= \pm k \sinh 2 x$ (condone I_{1} from formula) and $\int(1+3 \cosh 2 x) \mathrm{d} x \rightarrow x \pm q \sinh 2 x$ and uses the above to obtain an expression for $\int(1+\cosh 2 x)^{3} \mathrm{~d} x$ Requires previous M mark.	dM1
	Note: One of I_{2} and I_{3} may be attempted directly - if so correct identities must be used and an expression of a correct form obtained. Examples: $\begin{gathered} I_{2}=\int \cosh ^{2} 2 x \mathrm{~d} x=\int\left(\frac{1}{2} \cosh 4 x+\frac{1}{2}\right) \mathrm{d} x=\frac{1}{8} \sinh 4 x+\frac{x}{2} \\ \Rightarrow x+\frac{3}{2} \sinh 2 x+\frac{3}{8} \sinh 4 x+\frac{3}{2} x+\frac{1}{6} \sinh 2 x \cosh ^{2} 2 x+\frac{1}{3} \sinh 2 x(+c) \\ I_{3}=\int \cosh ^{3} 2 x \mathrm{~d} x=\int \cosh 2 x\left(\sinh ^{2} 2 x+1\right) \mathrm{d} x=\frac{1}{6} \sinh ^{3} 2 x+\frac{1}{2} \sinh 2 x \\ \Rightarrow x+\frac{3}{2} \sinh 2 x+\frac{3}{4} \sinh 2 x \cosh 2 x+\frac{3}{2} x+\frac{1}{6} \sinh ^{3} 2 x+\frac{1}{2} \sinh 2 x(+c) \end{gathered}$ If exponential definitions are used they must be correct.		
	$=\frac{5}{2} x+\frac{11}{6} \sinh 2 x+\frac{3}{4} \sinh 2 x \cosh 2 x+\frac{1}{6} \sinh 2 x \cosh ^{2} 2 x(+c)$	Correct answer. Award when a correct expression with collected like terms is seen.	A1
	$\begin{aligned} & I_{2} \text { attempted directly } \Rightarrow \frac{5}{2} x+\frac{11}{6} \sinh 2 x+\frac{3}{8} \sinh 4 x+\frac{1}{6} \sinh 2 x \cosh ^{2} 2 x(+c) \\ & I_{3} \text { attempted directly } \Rightarrow \frac{5}{2} x+2 \sinh 2 x+\frac{3}{4} \sinh 2 x \cosh 2 x+\frac{1}{6} \sinh ^{3} 2 x(+c) \end{aligned}$		(4)
	If identities are used before a correct answer is seen with like terms collected then the work must be correct		Total 9

Question Number	Scheme	Notes	Marks
8(a)	$\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\right\} \operatorname{arcosh} 5 x+\frac{a x}{\sqrt{b x^{2}-1}}$ or $\operatorname{arcosh} 5 x+\frac{c x}{\sqrt{x^{2}-d}}$ M1: Differentiates to obtain expression of the A1: Correct differentiation. Any	$\Rightarrow \operatorname{arcosh}(5 x)+\frac{5 x}{\sqrt{25 x^{2}-1}}(\mathrm{Al})$ ect form $a, b, c, d \neq 0$ valent form.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
			(2)
(b)	$\frac{\mathrm{d}}{\mathrm{~d} x}(x \operatorname{arcosh}(5 x))=\operatorname{arcosh}(5 x)+" \frac{5 x}{\sqrt{25 x^{2}-1}} " \Rightarrow \int \operatorname{arcosh}(5 x) \mathrm{d} x=x \operatorname{arcosh}(5 x)-\int " \frac{5 x}{\sqrt{25 x^{2}-1}} " \mathrm{~d} x$ M1: Rearranges their answer to (a) correctly and integrates or uses the correct formula to apply parts to $1 \times \operatorname{arcosh} 5 x$ to obtain the above.		M1
	$\int \operatorname{arcosh}(5 x) \mathrm{d} x=x \operatorname{arcosh}(5 x)-\int \frac{5 x}{\sqrt{25 x^{2}-1}} \mathrm{~d} x$ A1: Correct expression - but see note below on limited ft		A1 (limited ft)
	$=x \operatorname{arcosh}(5 x)-\frac{1}{5}\left(25 x^{2}-1\right)^{\frac{1}{2}}(+c) \quad \begin{array}{\|c} \mathrm{M} 1: \int \frac{A x}{\sqrt{B x^{2}-1}} \mathrm{~d} x \rightarrow C\left(B x^{2}-1\right)^{\frac{1}{2}} \\ \text { A1: Fully correct expression with } \\ x \operatorname{arcosh}(5 x) \text { - see note below for limited ft } \end{array}$		M1 A1 (limited ft)
	Note: Substitutions : $u=5 x \Rightarrow\left(u^{2}-1\right)^{\frac{1}{2}} \Rightarrow\left[\frac{1}{5} \sqrt{u^{2}-1}\right]_{\frac{5}{4}}^{3} \quad u=25 x^{2}-1 \Rightarrow\left[\frac{1}{5} \sqrt{u}\right]_{\frac{9}{16}}^{8}$ M1: Correct form A1: Fully correct expression with $x \operatorname{arcosh}(5 x)$		
	A limited ft for one of the errors in (a) shown below applies for the first two A marks. However also allow the following if this error occurs in part (b) which is most likely to come from not rearranging and effectively restarting by using parts. Note that substitutions could be used.$\begin{gathered} a=1 \Rightarrow x \operatorname{arcosh}(5 x)-\int \frac{x}{\sqrt{25 x^{2}-1}} \mathrm{~d} x \Rightarrow x \operatorname{arcosh}(5 x)-\frac{1}{25}\left(25 x^{2}-1\right)^{\frac{1}{2}}(+c) \\ b=5 \Rightarrow x \operatorname{arcosh}(5 x)-\int \frac{5 x}{\sqrt{5 x^{2}-1}} \mathrm{~d} x \Rightarrow x \operatorname{arcosh}(5 x)-\left(5 x^{2}-1\right)^{\frac{1}{2}}(+c) \\ a=-5 \Rightarrow x \operatorname{arcosh}(5 x)+\int \frac{5 x}{\sqrt{25 x^{2}-1}} \mathrm{~d} x \Rightarrow x \operatorname{arcosh}(5 x)+\frac{1}{5}\left(25 x^{2}-1\right)^{\frac{1}{2}}(+c) \end{gathered}$		
	$\int_{\frac{1}{4}}^{\frac{3}{5}} \operatorname{arcosh} 5 x \mathrm{~d} x=\frac{3}{5} \operatorname{arcosh}(3)-\frac{1}{5} \sqrt{25 \times \frac{9}{25}-1}-\left(\frac{1}{4} \operatorname{arcosh}\left(\frac{5}{4}\right)-\frac{1}{5} \sqrt{25 \times \frac{1}{16}-1}\right)$ Applies appropriate limits (note substitutions above) with subtraction the right way round seen to obtain an expression of the form $x \operatorname{arcosh}(5 x) \pm \mathrm{f}(x)$ where $\mathrm{f}(x)$ has come from integration		M1
	$=\frac{3}{5} \operatorname{arcosh}(3)-\frac{2 \sqrt{2}}{5}-\frac{1}{4} \operatorname{arcosh}\left(\frac{5}{4}\right)+\frac{3}{20}$	Correct answer seen in any form. Must not follow clearly incorrect work.	A1
	$\begin{aligned} \operatorname{arcosh} 3= & \ln \left(3+\sqrt{3^{2}-1^{2}}\right) \text { or } \operatorname{arcosh}\left(\frac{5}{4}\right)=\ln \left(\frac{5}{4}+\sqrt{\left(\frac{5}{4}\right)^{2}-1^{2}}\right) \\ & \left\{\Rightarrow \frac{3}{5} \ln (3+\sqrt{8})-\frac{2 \sqrt{2}}{5}-\frac{1}{4} \ln 2+\frac{3}{20}\right\} \end{aligned}$	Converts $\operatorname{arcosh}(3)$ or $\operatorname{arcosh}\left(\frac{5}{4}\right)$ to any correct log form. Independent mark but must have obtained $x \operatorname{arcosh}(5 x) \pm \mathrm{f}(x)$ where $f(x)$ has come from integration	M1
	$=\frac{3}{20}-\frac{2 \sqrt{2}}{5}+\ln (3+2 \sqrt{2})^{\frac{3}{5}}-\frac{1}{4} \ln 2$ Must not follow clearly incorrect work.	Correct answer. Terms in any order but otherwise written as shown. Allow values for $p, q, r \& k$	A1
			(8)
			Total 10
	PAPER TOTAL: 75		

Question Number	Scheme Notes	Marks
1(i)	(8) $\int \frac{1}{16+x^{2}} \mathrm{~d} x=(8)\left(\frac{1}{4} \arctan \left(\frac{x}{4}\right)\right) \quad \begin{gathered}\text { Obtains } \ldots \arctan (k x) \\ \text { Allow } k=1\end{gathered}$	M1
	$2\left[\arctan \left(\frac{x}{4}\right)\right]_{4}^{4 \sqrt{3}}=2(\arctan \sqrt{3}-\arctan 1)=\ldots$ Substitutes the given limits, subtracts either way round and obtains a value (could be a decimal). The substitution does not need to be seen explicitly and may be implied by their value.	dM1
	$\frac{\pi}{6} \text { or } p=\frac{1}{6} \text { Correct exact value (or value for } p \text {) }$ Accept equivalent exact expressions e.g. $\frac{2 \pi}{12}$ or $p=\frac{2}{12}$ and isw if necessary.	A1
		(3)
(ii)	$2 \int \frac{1}{\sqrt{9-4 x^{2}}} \mathrm{~d} x=2\left(\frac{1}{2} \arcsin \frac{2 x}{3}\right)\left(\text { or e.g. } \arcsin \frac{x}{3 / 2}\right)$ M1: Obtains $\ldots . \arcsin (k x)$. Allow $k=1$ so allow just $\arcsin x$. A1: Fully correct integration but allow unsimplified as above	M1 A1
	$\begin{gathered} {\left[\arcsin \left(\frac{2 x}{3}\right)\right]_{\frac{3}{4}}^{k}=\arcsin \left(\frac{2 k}{3}\right)-\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{12}} \\ \Rightarrow \arcsin \left(\frac{2 k}{3}\right)=\frac{\pi}{12}+\frac{\pi}{6} \Rightarrow \frac{2 k}{3}=\sin \left(\frac{\pi}{4}\right) \Rightarrow \frac{2 k}{3}=\frac{\sqrt{2}}{2} \Rightarrow k=\ldots \end{gathered}$ Substitutes the given limits, subtracts either way round, sets $=\frac{\pi}{12}$, uses $\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}$ and the correct order of operations condoning sign errors only to reach a value for k e.g. $\pm \alpha\left(\arcsin \left(\frac{2 k}{3}\right)-\frac{\pi}{6}\right)=\frac{\pi}{12} \Rightarrow \arcsin \left(\frac{2 k}{3}\right)=\frac{\pi}{12 \alpha} \pm \frac{\pi}{6} \Rightarrow k=\frac{3 \sin \left(\frac{\pi}{12 \alpha} \pm \frac{\pi}{6}\right)}{2}$ Note that k may be inexact (decimal) or may be in terms of "sin" but must have a simplified argument e.g. $k=\frac{3 \sin \left(\frac{\pi}{4}\right)}{2}$	dM1
	$k=\frac{3 \sqrt{2}}{4}$ or exact equivalent e.g., $\frac{3}{2 \sqrt{2}}$ Note that a common incorrect answer is $k=\frac{3}{2} \sin \left(\frac{5 \pi}{24}\right)(=0.913 \ldots)$ which comes from an incorrect integral of $2 \arcsin \left(\frac{2 x}{3}\right)$ (generally scoring 1010) Condone $x=\frac{3 \sqrt{2}}{4}$	A1
		(4)
		Total 7

Question Number	Scheme Notes	Marks
$\mathbf{T U}=\mathbf{I}$	$\begin{aligned} & \mathbf{T U}=\mathbf{I} \Rightarrow\left(\begin{array}{lll} 2 & 3 & 7 \\ 3 & 2 & 6 \\ a & 4 & b \end{array}\right)\left(\begin{array}{rrr} 6 & -1 & -4 \\ 15 & c & -9 \\ -8 & a & 5 \end{array}\right)=\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \\ & \Rightarrow \text { e.g., } 6 a+60-8 b=0 \quad-2+3 c+7 a=0 \\ &-4 a-36+5 b=1 \quad \text { or }-3+2 c+6 a=1 \end{aligned}$ Obtains at least 2 equations with at least one correct. (condone column \times row multiplication leading to the way 2 equations - see below). Ignore errors in unused elements or equations.	M1
	$\text { e.g., } \begin{gathered} 6 a-8 b=-60 \\ -4 a+5 b=37 \end{gathered} \Rightarrow a=\ldots, b=\ldots \quad \text { or } \quad \begin{aligned} & 7 a+3 c=2 \\ & 6 a+2 c=4 \end{aligned} \Rightarrow a=\ldots, c=\ldots$ Obtains values for two of a, b and c. You do not need to check their values. As long as the previous M mark was scored, it is sufficient to just write down values.	dM1
	$a=2, b=9, c=-4 \quad$A1: Two correct values A1: All three correct values and no extra values unless they are rejected.	A1 A1
		(4)
Way 2UT $=$ IFor first2 marks	$\begin{gathered} \mathbf{U T}=\mathbf{I} \Rightarrow\left(\begin{array}{rrr} 6 & -1 & -4 \\ 15 & c & -9 \\ -8 & a & 5 \end{array}\right)\left(\begin{array}{lll} 2 & 3 & 7 \\ 3 & 2 & 6 \\ a & 4 & b \end{array}\right)=\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \\ 12-3-4 a=1 \\ \Rightarrow \text { e.g., } 42-6-4 b=0 \\ {[45+2 c-36=1]} \end{gathered}$ Obtains at least 2 equations with at least one correct. (condone column \times row multiplication leading to the way 1 equations - see above). Ignore errors in unused elements or equations.	M1
	$\text { e.g., } \begin{aligned} -4 a & =-8,-4 b=-36[2 c=-8] \\ & \Rightarrow a=\ldots, b=\ldots \end{aligned}$ Obtains values for two of a, b and c. You do not need to check their values. As long as the previous M mark was scored, it is sufficient to just write down values.	dM1

Way 3

Inverses

$$
\begin{aligned}
\mathbf{T}^{-1} & =\mathbf{U} \Rightarrow \frac{1}{4 a-5 b+36}\left(\begin{array}{rrr}
2 b-24 & -3 b+28 & 4 \\
6 a-3 b & -7 a+2 b & 9 \\
-2 a+12 & 3 a-8 & -5
\end{array}\right)=\left(\begin{array}{rrr}
6 & -1 & -4 \\
15 & c & -9 \\
-8 & a & 5
\end{array}\right) \\
& \Rightarrow \text { e.g., } \frac{4}{4 a-5 b+36}=-4, \frac{2 b-24}{4 a-5 b+36}=6\left[\frac{-7 a+2 b}{4 a-5 b+36}=c\right]
\end{aligned}
$$

For $\mathbf{T}^{-1}=\frac{1}{\mathrm{f}(a, b)} \mathbf{M}$ where \mathbf{M} has at least 1 correct element and obtains 2 equations.
Note that there is no requirement to find all the elements of \mathbf{M}.
OR

$$
\begin{aligned}
\mathbf{U}^{-1} & =\mathbf{T} \Rightarrow \frac{1}{-6 a-2 c+3}\left(\begin{array}{ccc}
9 a+5 c & -4 a+5 & 4 c+9 \\
-3 & -2 & -6 \\
15 a+8 c & -6 a+8 & 6 c+15
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 7 \\
3 & 2 & 6 \\
a & 4 & b
\end{array}\right) \\
& \Rightarrow \text { e.g., } \frac{-3}{-6 a-2 c+3}=3, \frac{4 c+9}{-6 a-2 c+3}=7\left[\frac{6 c+15}{-6 a-2 c+3}=b\right]
\end{aligned}
$$

For $\mathbf{U}^{-1}=\frac{1}{\mathrm{f}(a, c)} \mathbf{M}$ where \mathbf{M} has at least 1 correct element and obtains 2 equations Note that there is no requirement to find all the elements of \mathbf{M}.

2(b)	$\frac{x-1}{3}=\frac{y}{-4}=z+2 \Rightarrow\left[l_{2}: \mathbf{r}=\right]\left(\begin{array}{r} 1 \\ 0 \\ -2 \end{array}\right) \pm \lambda\left(\begin{array}{r} 3 \\ -4 \\ 1 \end{array}\right)\left(\text { or }\left(\mathbf{r}-\left(\begin{array}{r} 1 \\ 0 \\ -2 \end{array}\right)\right) \times\left(\begin{array}{r} 3 \\ -4 \\ 1 \end{array}\right)\right)=\mathbf{0}$ Obtains parametric/vector form (allow one slip only) or clearly identifies position and direction vectors. May be implied by an attempt to transform both.	M1
	$\left(\begin{array}{ccc} 6 & -1 & -4 \\ 15 & -4 & -9 \\ -8 & ' 2 ' & 5 \end{array}\right)\left(\begin{array}{c} 1+3 \lambda \\ -4 \lambda \\ -2+\lambda \end{array}\right)=\left(\begin{array}{c} 6+18 \lambda+4 \lambda+8-4 \lambda \\ 15+45 \lambda+16 \lambda+18-9 \lambda \\ -8-24 \lambda-8 \lambda-10+5 \lambda \end{array}\right)$ or their $\mathbf{U} \times$ their $\left(\begin{array}{rr}1 & 3 \\ 0 & -4 \\ -2 & 1\end{array}\right)$ or \times their $\left(\begin{array}{r}1 \\ 0 \\ -2\end{array}\right)$ and \times their $\left(\begin{array}{r}3 \\ -4 \\ 1\end{array}\right)$ or their $\mathbf{U} \times$ their $\left(\begin{array}{r}1 \\ 0 \\ -2\end{array}\right)$ and $\mathbf{U} \times$ e.g. $\left(\begin{array}{r}4 \\ -4 \\ -1\end{array}\right)$ then $\operatorname{dir}=\left(\begin{array}{c}32 \\ 85 \\ -45\end{array}\right)-\left(\begin{array}{c}14 \\ 33 \\ -18\end{array}\right)$ Complete and correct method with their b and c for their $\mathbf{U} \times$ their parametric form or $\mathbf{U} \times$ both vectors or $\mathbf{U} \times 2$ points on the line and attempts direction. Must be an attempt to mutliply correctly i.e. clearly not row \times row but allow attempts that use \mathbf{T}^{-1} for \mathbf{U} using their a and b provided all elements are constants and it is a "changed" T OR $\begin{gathered} \left(\begin{array}{ccc} 2 & 3 & 7 \\ 3 & 2 & 6 \\ 2^{\prime \prime} & 4 & " 9 " \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{c} 1+3 \lambda \\ -4 \lambda \\ -2+\lambda \end{array}\right) \Rightarrow \begin{array}{c} 2 x+3 y+7 z=1+3 \lambda \\ 3 x+2 y+6 z=-4 \lambda \\ 2 x+4 y+9 z=-2+\lambda \end{array} \\ \\ \Rightarrow=18 \lambda+14 \\ z=52 \lambda+33 \\ z=-18-27 \lambda \end{gathered}$ A complete method using their parametric form and their \mathbf{T} to produce and solve 3 simultaneous equations to find x, y and z in terms of λ Alternatively solves $\mathbf{T} \boldsymbol{x}=(" \mathbf{i}-2 \mathbf{k} ")$ and $\mathbf{T} \boldsymbol{x}=(" 3 \mathbf{i}-4 \mathbf{k}+\mathbf{k} ")$ to find position and direction	M1
	$\begin{aligned} & {\left[l_{1}: \mathbf{r}=\right]\left(\begin{array}{r} 14+18 \lambda \\ 33+52 \lambda \\ -18-27 \lambda \end{array}\right) } \\ \Rightarrow & \frac{x-14}{18}=\frac{y-33}{52}=\frac{z+18}{-27} \end{aligned}$ dM1: Correctly converts their result into Cartesian equation. Requires previous method mark A1: Correct Cartesian equation - allow equivalents e.g., $\ldots=\frac{z-(-18)}{-27}, \ldots=\frac{-z-18}{27}$	dM1 A1
		(4)
		Total 8

2(b) Alternative

$$
x=t \Rightarrow y=\frac{4}{3}-\frac{4}{3} t, z=\frac{1}{3} t-\frac{7}{3}
$$

M1: Obtains parametric form (allow one slip only)

$$
\begin{gathered}
\left(\begin{array}{rrr}
6 & -1 & -4 \\
15 & -4 & -9 \\
-8 & ' 2 ' & 5
\end{array}\right)\left(\begin{array}{c}
t \\
\frac{4}{3}-\frac{4}{3} t \\
\frac{1}{3} t-\frac{7}{3}
\end{array}\right)=\left(\begin{array}{c}
6 t-\frac{4}{3}+\frac{4}{3} t-\frac{4}{3} t+\frac{28}{3} \\
15 t-\frac{16}{3}+\frac{16}{3} t-3 t+21 \\
-8 t+\frac{8}{3}-\frac{8}{3} t+\frac{5}{3} t-\frac{35}{5}
\end{array}\right) \\
\text { M1: As above } \\
{\left[l_{1}: \mathbf{r}=\right]\left(\begin{array}{c}
8+6 t \\
\frac{47}{3}+\frac{52}{3} t \\
-9-9 t
\end{array}\right)} \\
\Rightarrow \frac{x-8}{6}=\frac{y-\frac{47}{3}}{\frac{52}{3}}=\frac{z+9}{-9} \\
\text { dM1A1: As above }
\end{gathered}
$$

(e)

$x=\frac{7}{2} \Rightarrow \frac{\left(\frac{7}{2}\right)^{2}}{49}+\frac{y^{2}}{\prime 48^{\prime}}=1 \Rightarrow y=\ldots[(\pm) 6]$	Substitutes into their ellipse equation and obtains a value for y	M1
$\text { Area } \triangle O P M=\left(\frac{1}{2}\right)\left(\frac{7}{\prime\left(\frac{1}{7}\right)^{\prime}}-\frac{7}{2}\right)\left(6^{\prime}\right)=\ldots$ Correct method for area of triangle $O P M$ with their $\frac{7}{e}$ and their 6 May see other approaches, e.g., "shoelace" method e.g. $\frac{1}{2}\left\|\begin{array}{cccc}3.5 & 0 & 49 & 3.5 \\ 6 & 0 & 6 & 6\end{array}\right\|=\frac{1}{2}(49 \times 6-6 \times 3.5)=\ldots$		dM1
$\frac{273}{2}$ or $136 \frac{1}{2}$ or 136.5	Any correct exact value	A1
Special Case: $x=\frac{7}{2} \Rightarrow \frac{\left(\frac{7}{2}\right)^{2}}{49}+\frac{y^{2}}{{ }^{2}} 48^{\prime}=1 \Rightarrow y=36 \Rightarrow \text { Area } \triangle O P M=\left(\frac{1}{2}\right)\left(\frac{7}{\left(\left(\frac{1}{7}\right)^{\prime}\right.}-\frac{7}{2}\right)(36)=\ldots(819)$ Scores M0M1A0		
(3)		
		Total 11

Question Number	Scheme Notes	Marks
4(a)	$\begin{gathered} \mathbf{M} \boldsymbol{x}=\lambda \boldsymbol{x} \Rightarrow\left(\begin{array}{rrr} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{array}\right)\left(\begin{array}{r} 1 \\ -2 \\ 1 \end{array}\right)=\left(\begin{array}{r} \lambda \\ -2 \lambda \\ \lambda \end{array}\right) \Rightarrow \text { e.g., } 2+3=\lambda \Rightarrow \lambda=5 \\ (\mathbf{M}-\lambda \mathbf{I}) \boldsymbol{x}=0 \Rightarrow\left(\begin{array}{rcr} -\lambda & -1 & 3 \\ -1 & 4-\lambda & -1 \\ 3 & -1 & -\lambda \end{array}\right)\left(\begin{array}{r} 1 \\ -2 \\ 1 \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) \Rightarrow \text { e.g., }-\lambda+2+3=0 \Rightarrow \lambda=5 \end{gathered}$ M1: Correct method leading to a value for λ A1: Correct value Note that the working may be minimal so e.g. $2+3=\lambda \Rightarrow \lambda=5$ is sufficient. Correct answer only scores both marks.	M1 A1
		(2)
(b)	$\left.\begin{array}{c} \left(\begin{array}{rrr} 0 & -1 & 3 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=-3\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \\ \end{array}\right)=\left(\begin{array}{rrr} 3 & -1 & 3 \\ -1 & 7 & -1 \\ 3 & -1 & 3 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) \text { or e.g., }\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{r} 3 \\ -1 \\ 3 \end{array}\right) \times\left(\begin{array}{r} -1 \\ 7 \\ -1 \end{array}\right)$ Uses $\mathbf{M} \boldsymbol{x}=-3 \boldsymbol{x}$ or $(\mathbf{M}-(-3) \mathbf{I}) \boldsymbol{x}=\mathbf{0}$ to produce simultaneous equations and obtains values for x, y and z (not all 0) or uses a suitable vector product (with two correct components if method unclear)	M1
	$k\left(\begin{array}{r} 1 \\ 0 \\ -1 \end{array}\right) \quad \begin{gathered} \text { Any correct eigenvector (allow } x=\ldots, y \\ =\ldots, z=\ldots \text { and apply isw if a vector is } \\ \text { subsequently formed incorrectly) } \end{gathered}$	A1
		(2)
(c)	$\begin{gathered} \mathbf{M} \boldsymbol{x}=\lambda \boldsymbol{x} \Rightarrow \text { e.g., }-1(1)+3(1)=\lambda \\ (\mathbf{M}-\lambda \mathbf{I}) x=0 \Rightarrow \text { e.g., }-\lambda-1+3=0 \\ \lambda=2 \end{gathered} \text { or } \begin{aligned} & \lambda^{3}-4 \lambda^{2}-11 \lambda+30=0 \\ & \operatorname{det} \mathbf{M}=-30=\lambda_{1} \lambda_{2} \lambda_{3}=-15 \lambda \end{aligned}$ Correct value. May be seen in their \mathbf{D} which may come from an attempt at $\mathbf{P}^{\mathrm{T}} \mathbf{M P}$.	B1
	$(\mathbf{D}=)\left(\begin{array}{rcc} -3 & 0 & 0 \\ 0 & 2^{\prime} & 0 \\ 0 & 0 & ' 5 ' \end{array}\right) \quad \left\lvert\, \begin{gathered} \text { Diagonal matrix with }-3 \text { and their } \\ \text { eigenvalues anywhere on the leading } \\ \text { diagonal and 0's elsewhere. } \\ \text { Ignore labelling. } \\ \hline \end{gathered}\right.$	B1ft
	$\left(\begin{array}{r} 1 \\ -2 \\ 1 \end{array}\right) \rightarrow\left(\begin{array}{r} \frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{3} \\ \frac{\sqrt{6}}{6} \end{array}\right) \text { or } \quad\left(\begin{array}{r} 1 \\ 0 \\ -1 \end{array}\right) \rightarrow\left(\begin{array}{r} \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \end{array}\right) \text { or }\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right) \rightarrow\left(\begin{array}{c} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{array}\right)$ Correct method seen to normalise at least one eigenvector of the two given eigenvectors or their eigenvector from part (b). May be seen in their \mathbf{P}.	M1
	$\mathbf{D}=\left(\begin{array}{rrr} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{array}\right) \text { and } \mathbf{P}=\left(\begin{array}{rrr} \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \end{array}\right)$ Both fully correct, consistent and labelled matrices. Elements may not have had denominators rationalised. (Any columns of \mathbf{P} could be in opposite direction)	A1
		(4)
		Total 8

Note that some candidates go straight into solving $|\mathbf{M}-\lambda \mathbf{I}|=0$ e.g.

$$
\begin{gathered}
\left|\begin{array}{ccc}
-\lambda & -1 & 3 \\
-1 & 4-\lambda & -1 \\
3 & -1 & -\lambda
\end{array}\right|=0 \Rightarrow-\lambda(\lambda(\lambda-4)-1)+3+\lambda+3(1-3(4-\lambda))=0 \\
\Rightarrow \lambda^{3}-4 \lambda^{2}-11 \lambda+30=0 \Rightarrow \lambda=-3,5,2
\end{gathered}
$$

If this is all they do then the B mark in (c) can be awarded for $\lambda=2$

The other marks in the question are available for the appropriate work.

Question Number	Scheme	Notes	Marks
5(a) Way 1 From LHS	$\left(1-\operatorname{sech}^{2} x=\right) 1-\left(\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)^{2}$	Replaces sech x with correct expression in terms of exponentials	B1
	$=\frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}-4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\frac{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}-4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}$	Expresses as a single fraction (or 2 fractions with the same denominator) and expands numerator	M1
	$=\frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\tanh ^{2} x$	Fully correct proof	A1*
Way 2 Diff. of 2 squares	$1-\operatorname{sech}^{2} x=(1+\operatorname{sech} x)(1-\operatorname{sech} x)=\left(1+\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)\left(1-\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)$ Uses difference of two squares and replaces sech x with correct expression in terms of exponentials $=\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}+2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}-2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)=\frac{\mathrm{e}^{2 x}+1-2 \mathrm{e}^{x}+1+\mathrm{e}^{-2 x}-2 \mathrm{e}^{-x}+2 \mathrm{e}^{x}+2 \mathrm{e}^{-x}-4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}$ Expresses as a single fraction and expands numerator		B1
			M1
	$=\frac{\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\tanh ^{2} x$	Fully correct proof	A1*
Way 3 From RHS	$\left(\tanh ^{2} x=\right) \frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}$	Replaces $\tanh x$ with correct expression in terms of exponentials	B1
	$=\frac{\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\frac{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}-\frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}$ Expands numerator and splits into two fractions		M1
	$=\frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}-\left(\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)^{2}=1-\operatorname{sech}^{2} x$	Fully correct proof	A1*
			(3)

Allow "meet in the middle" approaches as long as a conclusion is given e.g. lhs = rhs

 Example:$$
r h s=\tanh ^{2} x=\frac{\left(\mathrm{e}^{2 x}-1\right)^{2}}{\left(\mathrm{e}^{2 x}+1\right)^{2}} \text { or } \text { lhs }=1-\operatorname{sech}^{2} x=1-\left(\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)^{2}
$$

B1: Replaces $\tanh x$ or sech x with a correct expression in terms of exponentials

$$
\frac{\left(\mathrm{e}^{2 x}-1\right)^{2}}{\left(\mathrm{e}^{2 x}+1\right)^{2}}=\frac{\mathrm{e}^{4 x}-2 \mathrm{e}^{2 x}+1}{\mathrm{e}^{4 x}+2 \mathrm{e}^{2 x}+1} \quad \text { and } \quad 1-\left(\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)^{2}=\frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}-4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\frac{\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}}
$$

M1: Makes progress by e.g. removing brackets on $r h s$ and expressing $l h s$ as a single fraction and expands numerator

$$
\frac{\mathrm{e}^{2 x}-2+\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}}=\frac{\mathrm{e}^{4 x}-2 \mathrm{e}^{2 x}+1}{\mathrm{e}^{4 x}+2 \mathrm{e}^{2 x}+1} \Rightarrow 1-\operatorname{sech}^{2} x=\tanh ^{2} x
$$

A1: Correct proof and (minimal) conclusion e.g. " $=$ rhs" etc.

$$
\begin{gathered}
1-\operatorname{sech}^{2} x=1-\left(\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)^{2}=\frac{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}-4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}-2}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}+2}=\frac{\sinh ^{2} x}{\cosh ^{2} x}=\tanh ^{2} x \\
1-\operatorname{sech}^{2} x=1-\left(\frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right)^{2}=\frac{\mathrm{e}^{2 x}+2+\mathrm{e}^{-2 x}-4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}=\frac{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}-2}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}+2}=\tanh ^{2} x
\end{gathered}
$$

Both score B1M1A0 as we would need to see numerators and denominators factorised.

Note that we will allow an equivalent identity to be proved by exponentials and the given identity deduced e.g.

$$
\cosh ^{2} x-\sinh ^{2} x=\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}-\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)^{2}
$$

B1: Correct exponential form seen for cosh or sinh used
$=\frac{\mathrm{e}^{2 x}}{4}+\frac{1}{2}+\frac{\mathrm{e}^{-2 x}}{4}-\frac{\mathrm{e}^{2 x}}{4}+\frac{1}{2}-\frac{\mathrm{e}^{-2 x}}{4}=1$
M1: Expands and collects terms

$$
\Rightarrow \cosh ^{2} x-\sinh ^{2} x=1 \Rightarrow 1-\operatorname{sech}^{2} x=\tanh ^{2} x
$$

A1*: Fully correct work leading to the correct identity

(b)	$\int \tanh ^{n} 3 x \mathrm{~d} x=\int \tanh ^{n-2} 3 x \tanh ^{2} 3 x \mathrm{~d} x$ Splits $\tanh ^{n} 3 x$ into $\tanh ^{n-2} 3 x \tanh ^{2} 3 x$ $=\int \tanh ^{n-2} 3 x\left(1-\operatorname{sech}^{2} 3 x\right) \mathrm{d} x$ and applies $\tanh ^{2} 3 x=1-\operatorname{sech}^{2} 3 x$	M1
	Do not condone $\begin{aligned} & \int \tanh ^{n} 3 x \mathrm{~d} x=\int \tanh ^{n-2} 3 x \tanh ^{2} 3 x \mathrm{~d} x \\ & =\int \tanh ^{n-2} 3 x\left(1-\operatorname{sech}^{2} x\right) \mathrm{d} x \quad \text { unless it is clear that } 3 x \text { was }\end{aligned}$ intended and is therefore recovered in subsequent work.	
	$\begin{aligned} & =\int \tanh ^{n-2} 3 x \mathrm{~d} x-\int \tanh ^{n-2} 3 x \operatorname{sech}^{2} 3 x \mathrm{~d} x \\ & \int \tanh ^{n-2} 3 x \operatorname{sech}^{2} 3 x \mathrm{~d} x=\frac{1}{3(n-1)} \tanh ^{n-1} 3 x \end{aligned}$ Expands and integrates $\tanh ^{n-2} 3 x \operatorname{sech}^{2} 3 x$ to obtain $\alpha \tanh ^{n-1} 3 x$ Or it is possible to use parts for $\int \tanh ^{n-2} 3 x \operatorname{sech}^{2} 3 x \mathrm{~d} x$: $\begin{aligned} \int \tanh ^{n-2} 3 x \operatorname{sech}^{2} 3 x \mathrm{~d} x & =\frac{1}{3} \tanh 3 x \tanh ^{n-2} 3 x-\frac{1}{3} \int 3(n-2) \tanh 3 x \tanh ^{n-3} 3 x \operatorname{sech}^{2} 3 x \mathrm{~d} x \\ & =\frac{1}{3} \tanh ^{n-1} 3 x-(n-2) \int \tanh ^{n-2} 3 x \operatorname{sech}^{2} 3 x \mathrm{~d} x \\ \Rightarrow & \int \tanh ^{n-2} 3 x \operatorname{sech}^{2} 3 x \mathrm{~d} x=\frac{1}{3(n-1)} \tanh ^{n-1} 3 x \end{aligned}$ To score it must be a complete method leading to $\alpha \tanh ^{n-1} 3 x$ as above	dM1
	$I_{n}=I_{n-2}-\frac{1}{3(n-1)}\left[\tanh ^{n-1} 3 x\right]_{0}^{\frac{1}{3} \ln 2}=I_{n-2}-\frac{1}{3(n-1)}\left(\frac{\mathrm{e}^{2 \ln 2}-1}{\mathrm{e}^{2 \ln 2}+1}\right)^{n-1}$ Introduces I_{n-2} and applies $x=\frac{1}{3} \ln 2$ using a correct exponential definition of tanh or accept use of a calculator if work is correct e.g. $\tanh (\ln 2)=\frac{3}{5}$	ddM1
	$I_{n}=I_{n-2}-\frac{\left(\frac{3}{5}\right)^{n-1}}{3(n-1)} \text { but condone } I_{n}=I_{n-2}-\frac{\frac{3}{5}^{n-1}}{3(n-1)}$ Fully correct proof. Allow recovery from slips e.g. $\tanh \rightarrow \tan \rightarrow \tanh$ or e.g. $3 x$ becoming x and then reverting to $3 x$ again If there are clear errors that are not recovered score A0.	A1
		(4)

(c)

$$
I_{5}=I_{3}-\frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}=I_{1}-\frac{\left(\frac{3}{5}\right)^{3-1}}{3(3-1)}-\frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}
$$

Uses their reduction formula to obtain I_{5} in terms of I_{1} Note that there may have already been an attempt at I_{1} Condone the use of the letter p for the $\frac{3}{5}$ and allow a "made up" p for this mark.

This may be implied by e.g. $I_{5}=I_{3}-\frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}, I_{3}=I_{1}-\frac{\left(\frac{3}{5}\right)^{3-1}}{3(3-1)}$

| 1 | Integrates to obtain $q \ln (\cosh r x)$ oe e.g. |
| :--- | :--- | $q \ln (\operatorname{sech} r x)$

$$
I_{5}=\frac{1}{3} \ln \left(\frac{\mathrm{e}^{\ln 2}+\mathrm{e}^{-\ln 2}}{2}\right)-\frac{\left(\frac{9}{25}\right)}{6}-\frac{\left(\frac{81}{625}\right)}{12}
$$

Applies $x=\frac{1}{3} \ln 2$ using correct exponential definition of cosh or uses a calculator if work is correct e.g. $\cosh (\ln 2)=\frac{5}{4}$ to obtain a numerical expression for I_{5} Must not be in terms of p now and must be using a value of p obtained in part (b)

$\frac{1}{3} \ln \frac{5}{4}-\frac{177}{2500}$	Correct answer in correct form (allow $a=\ldots, b=\ldots, c=\ldots)$ Allow -0.0708 for c	A1
	Total 11	

Note that part (c) is "Hence" so they need to be using the given reduction formula, however, it is possible to find I_{3} directly e.g. :

$$
\begin{gathered}
I_{5}=I_{3}-\frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)} \\
\int \tanh ^{3} 3 x \mathrm{~d} x=\int\left(\tanh 3 x-\tanh 3 x \operatorname{sech}^{2} 3 x\right) \mathrm{d} x=\left[\frac{1}{3} \ln (\cosh 3 x)+\frac{1}{6} \operatorname{sech}^{2} 3 x\right]
\end{gathered}
$$

Score M1 for using the reduction formula to obtain I_{5} in terms of I_{3} (allow the letter p for the $\frac{3}{5}$ and allow a "made up" p for this mark) and then integrating $\tanh ^{3} 3 x$ to the correct form e.g.

$$
\alpha \ln (\cosh 3 x)+\beta \operatorname{sech}^{2} 3 x(\mathrm{oe})
$$

The second \mathbf{M} mark would also score at this point as in the main scheme for integrating tanh $3 x$ to obtain $q \ln (\cosh r x)$ oe e.g. $q \ln (\operatorname{sech} r x)$

$$
\left[\frac{1}{3} \ln (\cosh 3 x)+\frac{1}{6} \operatorname{sech}^{2} 3 x\right]_{0}^{\frac{1}{3} \ln 2}-\frac{\left(\frac{3}{5}\right)^{5-1}}{3(5-1)}=\frac{1}{3} \ln \frac{5}{4}+\frac{1}{6} \times \frac{16}{25}-\frac{1}{6}-\frac{27}{2500}
$$

ddM1 for a complete method using both limits to obtain a numerical expression for I_{5} using the correct exponential definitions or via a calculator.

$$
\text { A1: } \frac{1}{3} \ln \frac{5}{4}-\frac{177}{2500}
$$

Correct answer in correct form
(allow $a=\ldots, b=\ldots, c=\ldots$) Allow -0.0708 for c

	Scheme Notes	Marks
6(a)	$\pm \overrightarrow{A B}= \pm\left(\left(\begin{array}{r} -1 \\ 1 \\ 3 \end{array}\right)-\left(\begin{array}{l} 3 \\ 2 \\ 2 \end{array}\right)\right)= \pm\left(\begin{array}{r} -4 \\ -1 \\ 1 \end{array}\right), \pm \overrightarrow{A C}= \pm\left(\left(\begin{array}{r} -2 \\ 4 \\ 2 \end{array}\right)-\left(\begin{array}{l} 3 \\ 2 \\ 2 \end{array}\right)\right)= \pm\left(\begin{array}{r} -5 \\ 2 \\ 0 \end{array}\right), \pm \overrightarrow{B C}= \pm\left(\left(\begin{array}{r} -2 \\ 4 \\ 2 \end{array}\right)-\left(\begin{array}{r} -1 \\ 1 \\ 3 \end{array}\right)\right)= \pm\left(\begin{array}{r} -1 \\ 3 \\ -1 \end{array}\right)$ Correct method to obtain two relevant vectors using subtraction. You can ignore labelling e.g. if they find $\overrightarrow{B A}$ but call it $\overrightarrow{A B}$	M1
	$\text { e.g., } \overrightarrow{A B} \times \overrightarrow{A C}=\left(\begin{array}{r} -4 \\ -1 \\ 1 \end{array}\right) \times\left(\begin{array}{r} -5 \\ 2 \\ 0 \end{array}\right)=\left(\begin{array}{c} -2 \\ -5 \\ -13 \end{array}\right)$ Correct method to find the vector product of two relevant vectors (if a correct method is not shown, two correct components for their vectors must be obtained)	dM1
	$\text { e.g., }\left(\begin{array}{l} 3 \\ 2 \\ 2 \end{array}\right) \cdot\left(\begin{array}{c} 2 \\ 5 \\ 13 \end{array}\right)=6+10+26=42$ Attempts the scalar product between their normal vector and any of the position vectors of A, B or C.	ddM1
	$2 x+5 y+13 z=42$ oe e.g. $-2 x-5 y-13 z+42=0$	A1
		(4)
(a) alt 1	$\pm \overrightarrow{A B}= \pm\left(\left(\begin{array}{r} -1 \\ 1 \\ 3 \end{array}\right)-\left(\begin{array}{l} 3 \\ 2 \\ 2 \end{array}\right)\right)= \pm\left(\begin{array}{r} -4 \\ -1 \\ 1 \end{array}\right), \pm \overrightarrow{A C}= \pm\left(\left(\begin{array}{r} -2 \\ 4 \\ 2 \end{array}\right)-\left(\begin{array}{l} 3 \\ 2 \\ 2 \end{array}\right)\right)= \pm\left(\begin{array}{c} -5 \\ 2 \\ 0 \end{array}\right), \pm \overrightarrow{B C}= \pm\left(\left(\begin{array}{r} -2 \\ 4 \\ 2 \end{array}\right)-\left(\begin{array}{r} -1 \\ 1 \\ 3 \end{array}\right)\right)= \pm\left(\begin{array}{r} -1 \\ 3 \\ -1 \end{array}\right)$ Correct method to obtain two relevant vectors using subtraction.	M1
	$\text { e.g., } \mathbf{r}=\left(\begin{array}{l} 3 \\ 2 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{r} -4 \\ -1 \\ 1 \end{array}\right)+\mu\left(\begin{array}{r} -5 \\ 2 \\ 0 \end{array}\right) \begin{gathered} x=3-4 \lambda-5 \mu \\ y=2-\lambda+2 \mu \Rightarrow \text { e.g. } \lambda=z-2 \\ z=2+\lambda \end{gathered}$ Attempts the parametric equation of the plane and uses components to eliminate at least one of their parameters.	dM1
	$\begin{aligned} & \begin{array}{l} x=3-4 \lambda-5 \mu \\ \text { e.g., } \quad y=2-\lambda+2 \mu \Rightarrow \text { e.g. } \lambda=z-2 \Rightarrow \text { e.g. } \mu=\frac{1}{2}(y-4+z) \\ \\ z=2+\lambda \end{array} \end{aligned}$ Eliminates both of their parameters.	ddM1
	e.g. $x=3-4(z-2)-\frac{5}{2}(y-4+z) \quad$ Any correct Cartesian equatio	A1
(a) alt 2	$\begin{gathered} a x+b y+c z=1 \rightarrow \begin{array}{c} 3 a+2 b+2 c=1 \\ -a+b+3 c=1 \\ -2 a+4 b+2 c=1 \end{array} \Rightarrow a=\frac{1}{21}, b=\frac{5}{42}, c=\frac{13}{42} \\ \Rightarrow \frac{1}{21} x+\frac{5}{42} y+\frac{13}{42} z=1 \end{gathered}$ M1: Substitutes the given points to give 3 equations in 3 unknowns dM1: Solves simultaneously to find values for " a ", " b " and " c " ddM1: Substitutes back in to obtain a Cartesian equation A1: Any correct equation	

(b)	Line $D E:(\mathbf{r}=)\left(\begin{array}{r}-1 \\ 1 \\ -2\end{array}\right) \pm \lambda\left(\begin{array}{c}2 \\ 5 \\ 13\end{array}\right)$	Obtains parametric form for line $D E$ with their normal (or recalculated normal) seen or implied. Allow one slip only.	M1
	$14(2 \lambda-1)-(5 \lambda+1)-17(13 \lambda-2)=-66 \Rightarrow \lambda=\ldots$ Substitutes their parametric form into the equation of Π_{2} and solves for λ - can follow M0 provided their parametric form was an attempt at $\overrightarrow{O D} \pm \lambda$ (their \mathbf{n})		M1
	$\lambda=\frac{85}{198}$	A correct exact value for λ depending on their method e.g. use of $\mathbf{n}=-2 \mathbf{i}-5 \mathbf{j}-13 \mathbf{k} \text { gives } \lambda=-\frac{85}{198}$	A1
	$\begin{gathered} D E=\sqrt{\left(2 \times \frac{85}{198}\right)^{2}+\left(5 \times \frac{85}{198}\right)^{2}+\left(13 \times \frac{85}{198}\right)^{2}} \\ \text { or e.g. } \\ E=\left(-\frac{14}{99}, \frac{623}{198}, \frac{709}{198}\right) \Rightarrow D E=\sqrt{\left(-1+\frac{14}{99}\right)^{2}+\left(1-\frac{623}{198}\right)^{2}+\left(-2-\frac{709}{198}\right)^{2}} \end{gathered}$ Correct method to find a numerical expression for distance $D E$ Requires previous method mark Note $D E=-\frac{85}{198} \sqrt{(2)^{2}+(5)^{2}+(13)^{2}}=\ldots$ is ok for this mark		dM1
	$D E=\frac{85 \sqrt{22}}{66}$	Correct exact answer in the required form or $p=\frac{85}{66}$ or $1 \frac{19}{66}$ Not $D E=-\frac{85 \sqrt{22}}{66}$	A1
	(5)		

Beware - Special Case!

An incorrect sign of λ may fortuitously give the correct length DE.

E.g. $\left(\begin{array}{r}-1 \\ 1 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 5 \\ 13\end{array}\right)$ leading incorrectly to $\lambda=-\frac{85}{198}$ would lead in both dM1 cases above to $D E=\frac{85 \sqrt{22}}{66}$
E.g. $\left(\begin{array}{r}-1 \\ 1 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ -5 \\ -13\end{array}\right)$ leading incorrectly to $\lambda=\frac{85}{198}$ would lead in both dM1 cases above to $D E=\frac{85 \sqrt{22}}{66}$

In such cases score as M1M1A0M1A1ft i.e. we will only penalise it once.

Way 2 Sim. eqns	$(\pm)\left(\frac{x+1}{2}=\frac{y-1}{5}=\frac{z+2}{13}\right)$ Obtains Cartesian form for line $D E$ with their normal (or recalculated normal) allowing one slip only and attempts to $\Rightarrow y=\frac{5}{2} x+\frac{7}{2}, z=\frac{13}{2} x+\frac{9}{2}$ find two variables in terms of the other variable	M1
For first three marks	$\begin{gathered} 14 x-\left(\frac{5}{2} x+\frac{7}{2}\right)-17\left(\frac{13}{2} x+\frac{9}{2}\right)=-66 \\ \Rightarrow x=-\frac{14}{99}, y=\frac{623}{198}, z=\frac{709}{198} \end{gathered}$ M1: Substitutes into the plane equation and finds $x=\ldots, y=\ldots, z=\ldots$ A1: Correct exact values \Rightarrow Way 1 for last two marks	M1 A1
(c)	$\begin{aligned} & \text { e.g. } \overrightarrow{A F} \cdot \overrightarrow{A B} \times \overrightarrow{A C}=\left(\begin{array}{c} 1 \\ 1 \\ q-2 \end{array}\right) \cdot\left(\begin{array}{c} 2 \\ 5 \\ 13 \end{array}\right)=2+5+13 q-26 \\ & \text { e.g. }\left\|\begin{array}{ccc} -4 & -1 & 1 \\ -5 & 2 & 0 \\ 1 & 1 & q-2 \end{array}\right\|=-4(2(q-2))-5(q-2)-5-2 \\ & \text { or e.g. rule of Sarrus: }\left\|\begin{array}{ccccc} -4 & -1 & 1 & -4 & -1 \\ -5 & 2 & 0 & -5 & 2 \\ 1 & 1 & q-2 & 1 & 1 \end{array}\right\|=-4(2(q-2))-5-5(q-2)-2 \end{aligned}$ Correct method for vector between F and A, B or C and finds scalar product with their normal or attempts the scalar triple product to obtain a linear expression in q. For the scalar triple product look for at least 2 correct "elements".	M1
	$\frac{1}{6}(13 q-19)= \pm 12 \Rightarrow q=\ldots$ Sets $\frac{1}{6}$ of their expression in q equal to one or both of ± 12 (or equivalent work e.g. their expression in q equal to one or both of ± 72) and proceeds to a value for q	dM1
	Correct values. Allow exact equivalents for $-\frac{53}{13}$ e.g. $-4 \frac{1}{13}$	A1
		(3)
		Total 12

Question Number	Scheme/Notes			Marks
7(a)	$y=\arccos (\operatorname{sech} x)$			
	e.g.:	$\cos y=$	sech $x \Rightarrow$	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{(-\operatorname{sech} x \tanh x)}{\sqrt{1-\operatorname{sech}^{2} x}}$	$\begin{gathered} -\sin y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\operatorname{sech} x \tanh x \\ \text { or, e.g., } \\ -\sin y=-\operatorname{sech} x \tanh x \frac{\mathrm{~d} x}{\mathrm{~d} y} \end{gathered}$	$\begin{aligned} \cos y & =(\cosh x)^{-1} \Rightarrow \\ -\sin y \frac{\mathrm{~d} y}{\mathrm{~d} x} & =-(\cosh x)^{-2} \sinh x \end{aligned}$	
	Differentiates to obtain an equation in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} y}$ of the correct form e.g. condone coefficient sign errors only.			
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\operatorname{sech} x \tanh x}{\tanh x}$	$\begin{aligned} & \sqrt{1-\operatorname{sech}^{2} x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\operatorname{sech} x \tanh x \\ & \Rightarrow \tanh x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\operatorname{sech} x \tanh x \end{aligned}$	$\begin{gathered} \sqrt{1-\operatorname{sech}^{2} x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\sinh x}{\cosh ^{2} x} \\ \Rightarrow \tanh x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\sinh x}{\cosh ^{2} x} \end{gathered}$	dM1
	Uses correct identities to obtain an equation in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of x only with no roots but accept $\sqrt{\tanh ^{2} x}$ as "no roots"			
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{sech} x$	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{sech} x$	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\cosh x}{\sinh x} \cdot \frac{\sinh x}{\cosh ^{2} x} \\ & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\operatorname{sech} x \end{aligned}$	A1*
	Fully correct proof. An equation in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} y}$ and exactly two different hyperbolic functions with no roots must be seen before the given answer but accept $\sqrt{\tanh ^{2} x}$ as "no roots" Withhold this mark for any mathematical error e.g., clear use of $\frac{\mathrm{d}}{\mathrm{~d} x}(\arccos x)=+\frac{1}{\sqrt{1-x^{2}}} \text { and } \frac{\mathrm{d}}{\mathrm{~d} x}(\operatorname{sech} x)=+\operatorname{sech} x \tanh x$ or e.g. hyperbolic functions written as trig functions or vice versa. Allow slips if they are recovered but clear and consistent errors score A0			
	Note: There may be other methods seen, e.g., using exponentials and "meeting in the middle"			
				(3)

(b)
e.g. $\frac{\mathrm{d}}{\mathrm{d} x}(\operatorname{coth} x)=-\operatorname{cosech}^{2} x$ or $\frac{\sinh ^{2} x-\cosh ^{2} x}{\sinh ^{2} x}$ or $\frac{-\operatorname{sech}^{2} x}{\tanh ^{2} x}$ or $1-\operatorname{coth}^{2} x$ etc.
or e.g. $\frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}-\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}$ or $\frac{2 \mathrm{e}^{2 x}\left(\mathrm{e}^{2 x}-1\right)-2 \mathrm{e}^{2 x}\left(\mathrm{e}^{2 x}+1\right)}{\left(\mathrm{e}^{2 x}-1\right)^{2}}$ or $\frac{-4}{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}$ etc.
Correct derivative of coth x in any form. Allow recovery if they write e.g. $-\operatorname{cosec}^{2} x$ when $-\operatorname{cosech}^{2} x$ is clearly implied by subsequent work.
e.g., sech $x-\operatorname{cosech}^{2} x=0 \Rightarrow \operatorname{sech} x=\operatorname{cosech}^{2} x \Rightarrow \frac{1}{\cosh x}=\frac{1}{\sinh ^{2} x} \Rightarrow$ $\begin{aligned} & a \cosh ^{2} x+b \cosh x+c=0 \text { or } a \operatorname{sech}^{2} x+b \operatorname{sech} x+c=0 \\ & \text { or }\end{aligned}$
$\operatorname{sech} x-\operatorname{cosech}^{2} x=0 \Rightarrow \Rightarrow \frac{2}{\mathrm{e}^{x}+\mathrm{e}^{-x}}-\left(\frac{2}{\mathrm{e}^{x}-\mathrm{e}^{-x}}\right)^{2}=0 \Rightarrow$ $\Rightarrow A \mathrm{e}^{4 x}+B \mathrm{e}^{3 x}+C \mathrm{e}^{2 x}+D \mathrm{e}^{x}+E=0$
Sets $\mathrm{f}^{\prime}(x)=0$ and uses correct identities to obtain a 3 TQ in $\cosh x$ or $\operatorname{sech} x$ or substitutes the correct exponential forms and obtains a 5 term quartic in e^{x}

$$
\begin{gathered}
\cosh ^{2} x-\cosh x-1=0 \text { or } \operatorname{sech}^{2} x+\operatorname{sech} x-1=0 \text { oe } \\
\Rightarrow \mathrm{e}^{4 x}-2 \mathrm{e}^{3 x}-2 \mathrm{e}^{2 x}-2 \mathrm{e}^{x}+1=0 \text { oe }
\end{gathered}
$$

Correct quadratic equation or correct quartic equation.

$$
\begin{aligned}
& \cosh x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}\left(=\frac{1+\sqrt{5}}{2}\right) \\
& \text { or e.g., }\left(\operatorname{sech} x+\frac{1}{2}\right)^{2}-\frac{1}{4}-1=0 \Rightarrow \operatorname{sech} x=\left(\frac{-1+\sqrt{5}}{2}\right)
\end{aligned}
$$

Solves quadratic resulting from sech $x+$ their derivative of $\operatorname{coth} x=0$
Must obtain a real and exact value > 1 (or between 0 and 1 if sech used).
Apply usual rules. (No need to reject invalid values)
If no solving method seen one solution must be consistent with their equation.
For the 5 term quartic in e^{x} progress is unlikely unless they proceed via e.g.

$$
\begin{gathered}
\left(\mathrm{e}^{2 x}-(1+\sqrt{5}) \mathrm{e}^{x}+1\right)^{2}=0 \\
x=\operatorname{arcosh}\left(\frac{1+\sqrt{5}}{2}\right)=\ln \left(\frac{1+\sqrt{5}}{2}+\sqrt{\left(\frac{1+\sqrt{5}}{2}\right)^{2}-1}\right) \\
\text { or } \frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}=\frac{1+\sqrt{5}}{2} \Rightarrow \mathrm{e}^{2 x}-(1+\sqrt{5}) \mathrm{e}^{x}+1=0 \Rightarrow \mathrm{e}^{x}=\frac{1+\sqrt{5}+\sqrt{(1+\sqrt{5})^{2}-4}}{2} \Rightarrow x=\ldots
\end{gathered}
$$

Uses correct logarithmic form or exponentials to find x as a \ln of an exact value. Exponential definition must be correct and quadratic solving subject to usual rules or consistent with their equation leading to a value of $\mathrm{e}^{x}>0$

$$
\Rightarrow x=\ln \left(\frac{1}{2}(1+\sqrt{5})+\sqrt{\frac{1}{2}(1+\sqrt{5})}\right) \text { or accept } x=\ln \left(\frac{1+\sqrt{5}}{2}+\sqrt{\frac{1+\sqrt{5}}{2}}\right)
$$

Note that $x=\ln \frac{1}{2}(1+\sqrt{5})+\sqrt{\frac{1}{2}(1+\sqrt{5})}$ scores A0

Correct work in (b) leading to:

$$
\begin{aligned}
& \cosh ^{2} x-\cosh x-1=0 \Rightarrow \cosh x=\frac{1+\sqrt{5}}{2} \\
& x=\operatorname{arcosh}\left(\frac{1+\sqrt{5}}{2}\right)=\ln \left(\frac{1+\sqrt{5}}{2}+\sqrt{\frac{1+\sqrt{5}}{2}}\right)
\end{aligned}
$$

With no evidence where the $\sqrt{\frac{1+\sqrt{5}}{2}}$ comes from, scores: B1M1A1dM1ddM0A0

Question Number	Scheme Notes	Marks
8(a)	$\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{y}{4} \quad$ or $\quad 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=8 \quad$ or $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{1}{2}\right)(2 \sqrt{2}) x^{-\frac{1}{2}}$ or $\left(\frac{1}{2}\right)(2 \sqrt{2})\left(\frac{2 \sqrt{2}}{y}\right)$ oe Any correct equation in $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of y or x	B1
	$\begin{gathered} \left(\int \sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}} \mathrm{~d} y=\right) \int \sqrt{1+\left(\frac{y}{4}\right)^{2}}(\mathrm{~d} y) \text { or }\left(\int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} y} \mathrm{~d} y=\iint \sqrt{1+\left(\frac{4}{y}\right)^{2}} \cdot \frac{y}{4}(\mathrm{~d} y)\right. \\ \text { Forms } \int \sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}}(\mathrm{~d} y) \text { or } \int \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} y}(\mathrm{~d} y) \text { correctly with their derivative }} \text {, } \end{gathered}$	M1
	$\begin{aligned} & x=18 \Rightarrow y^{2}=144 \Rightarrow \beta=12, \alpha=24 \\ & \Rightarrow(\text { perimeter of } R=) 24+2 \int_{0}^{12} \sqrt{1+\frac{y^{2}}{16}} \mathrm{~d} y \end{aligned}$ Correct expression	A1
		(3)

(b)	$y=4 \sinh u \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} u}=4 \cosh u$	Correct derivative. Condone $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 \cosh u$	B1
	$\begin{gathered} \int \sqrt{1+\frac{y^{2}}{16}} \mathrm{~d} y=\int \sqrt{1+\frac{(4 \sinh u)^{2}}{16}}(4 \cosh u)(\mathrm{d} u) \\ \left(=4 \int \cosh ^{2} u \mathrm{~d} u\right) \end{gathered}$	Full substitution, correct for their $\frac{\mathrm{d} y}{\mathrm{~d} u}$	M1
	$\begin{gathered} \int \cosh ^{2} u \mathrm{~d} u=\int\left(\frac{1}{2} \cosh 2 u+\frac{1}{2}\right) \mathrm{d} u=\frac{1}{4} \sinh 2 u+\frac{1}{2} u \\ \text { or } \int\left(\frac{\mathrm{e}^{u}+\mathrm{e}^{-u}}{2}\right)^{2} \mathrm{~d} u=\int\left(\frac{\mathrm{e}^{2 u}}{4}+\frac{1}{2}+\frac{\mathrm{e}^{-2 u}}{4}\right) \mathrm{d} u=\frac{\mathrm{e}^{2 u}}{8}+\frac{1}{2} u-\frac{\mathrm{e}^{-2 u}}{8} \end{gathered}$ dM1: Uses $\cosh ^{2} u= \pm \frac{1}{2} \cosh 2 u \pm \frac{1}{2}$ and integrates to obtain $a \sinh 2 u+b u$ or uses $k\left(\mathrm{e}^{u}+\mathrm{e}^{-u}\right)$ for cosh u, expands and integrates to obtain $a \mathrm{e}^{2 u}+b u+c \mathrm{e}^{-2 u}$ A1: Correct integration		dM1 A1
	Perimeter of R :		
	$\begin{aligned} & =24+(2)(4)\left[\frac{1}{4} \sinh 2 u+\frac{1}{2} u\right]_{0}^{\operatorname{arsinh} 3=\ln (3+\sqrt{10})} \\ & =24+2\left[2 \sinh u \sqrt{1+\sinh ^{2} u}+2 u\right]_{0}^{\operatorname{arsinh} 3=\ln (3+\sqrt{10})} \\ & =24+2\left[(2)(3) \sqrt{1+3^{2}}+2 \ln (3+\sqrt{10})\right] \end{aligned}$	$\begin{aligned} & =24+(2)(4)\left[\frac{\mathrm{e}^{2 u}}{8}+\frac{1}{2} u-\frac{\mathrm{e}^{-2 u}}{8}\right]_{0}^{\ln (3+\sqrt{10})} \\ & =24+\mathrm{e}^{2 \ln (3+\sqrt{10})}-\mathrm{e}^{-2 \ln (3+\sqrt{10})}+4 \ln (3+\sqrt{10}) \\ & 24+(3+\sqrt{10})^{2}-\frac{1}{(3+\sqrt{10})^{2}}+4 \ln (3+\sqrt{10}) \end{aligned}$	ddM1
	Substitutes arsinh 3 and/or $\ln \left(3+\sqrt{3^{2}+1}\right)$ into their expression using correct identities or correctly removes exponentials to obtain a numerical expression in constants and lns only Accept use of calculator here e.g. $\sinh (2 \operatorname{arsinh} 3)=6 \sqrt{10}$		
	$\begin{aligned} & 24+12 \sqrt{10}+4 \ln (3+\sqrt{10}) \\ & \text { or, e.g., } 4(6+3 \sqrt{10}+\ln (3+\sqrt{10})) \end{aligned}$	Correct answer - any exact simplified equivalent	A1
	Note: Integration by calculator is likely to access the first two marks only		(6)
			Total 9
	TOTAL FOR PAPER: 75 MARKS		

