Question Number	Scheme	Notes	Marks
1(a)	$ae = \frac{13}{2}$ or $\frac{a}{e} = \frac{72}{13}$	One correct equation in a and e . Allow equivalent correct equations. Could include – or \pm signs	B1
	e.g., $a = \frac{72}{13}e \Rightarrow \frac{72}{13}e^2 = \frac{13}{2} \Rightarrow e^2 = \dots \left(\frac{169}{144}\right)$ or $a = \frac{13}{2e} \Rightarrow \frac{13}{2e^2} = \frac{72}{13} \Rightarrow e^2 = \dots \left(\frac{169}{144}\right)$	Having obtained two equations in <i>a</i> and <i>e</i> of the correct form i.e., $ae = p$ and $\frac{a}{e} = q$ $p, q \neq 0$, solves simultaneously to find a <u>positive</u> value for e^2 (no requirement for $e > 1$) or <i>e</i> . Condone poor algebra provided a value is obtained. May find <i>a</i> first.	M1
	$e = \frac{13}{12}$ or Not $\pm \frac{13}{12}$ unless negative values	$1\frac{1}{12}$ or $1.08\dot{3}$. alue clearly rejected in this part.	A1
			(3)
(b)	$\begin{cases} a = \frac{72}{13} \times \frac{13}{12} = 6 \text{ or } a = \frac{13}{2\left(\frac{13}{12}\right)} = 6 \\ b^2 = a^2 \left(e^2 - 1\right) = \dots \\ \left\{ b^2 = 6^2 \left(\left(\frac{13}{12}\right)^2 - 1 \right) = \frac{25}{4} \text{ or } b = \frac{5}{2} \right\} \end{cases}$	With any value for <i>a</i> , which might be seen in part (a), and their <i>e</i> , uses a correct eccentricity formula with correct substitution to find a value for b^2 or <i>b</i> . Could be implied. May see $b = a\sqrt{e^2 - 1}$ or use of e.g., $e = \sqrt{1 + \frac{b^2}{a^2}}$ or $e = \frac{c}{a}$ with $c = \sqrt{a^2 + b^2}$	M1
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Longrightarrow \frac{x^2}{36} - \frac{y^2}{\frac{25}{4}} = 1$	Applies $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ correctly for their values. Not dependent. Could use e.g., $b^2x^2 - a^2y^2 = a^2b^2$	M1
	e.g., $25x^2$ A correct equation in correct form. R marks with A0 in (a) for $e = \pm \frac{13}{12}$ and Any positive integer multiple. Allow eq	$x^2 - 144y^2 = 900$ Requires all previous 5 marks but allow if 4 and negative value not rejected in part (a). Quivalents provided variables on one side and	A1
	constant on the other and y Just $p = 25$, $q = 144$, $r = 900$ Ignore wrong values for p , q , r follow	y^2 term has negative coefficient. requires $px^2 - qy^2 = r$ to be seen. wing a correct equation (e.g., " $q = -144$ ")	
Alt Using $PS^2 = e^2 PM^2$	$(x - \frac{13}{2})^{2} + y^{2} = (\frac{13}{12})^{2} (x - \frac{72}{13})^{2}$ M1: For $x^{2} - 13x + \frac{169}{4} + y^{2} = \frac{169}{144} x$ M1: Expands and reach A1: e.g., $25x^{2} - 144$	forms equation correct for their <i>ae</i> , <i>e</i> and $\frac{a}{e}$ $x^{2} - 13x + 36 \Rightarrow \frac{25}{144}x^{2} - y^{2} = \frac{25}{4}$ thes $rx^{2} - sy^{2} = t$, <i>r</i> , <i>s</i> , $t \neq 0$ $yy^{2} = 900$ as main scheme	
			(3)
			Total 6

Question	Scheme		Notes	Marks
Number			110105	11111110
2(a)	$\det (\mathbf{M} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 0 & 3 \\ 0 & -4 - \lambda & -3 \\ 0 & -4 & -\lambda \end{vmatrix}$ = e.g., $(2 - \lambda) [(-4 - \lambda)(-\lambda) - (-4)(-3)] - 0 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +$	(0) -4)	Obtains an unsimplified cubic expression for $det(\mathbf{M} - \lambda \mathbf{I})$ condoning sign/copying slips only. Allow poor bracketing if intention clear.	M1
	Note: It is possible to just use	Mx =	λx e.g.,	
	$-4y = \lambda z \Longrightarrow y = -\frac{\lambda z}{4} \text{ and } -4y - 3z = \lambda y \Longrightarrow \lambda z - 2$	$3z = -\frac{1}{2}$	$\frac{\lambda^2 z}{4} \Longrightarrow \lambda^2 + 4\lambda - 12 = 0 \Longrightarrow \dots$	
	Score the M1 for achieving a 3TQ in λ from copying/sign slips	n appro only	priate work condoning	
	$(2-\lambda)(\lambda^2+4\lambda-12)=0$ or $\lambda^3+2\lambda^2-20\lambda+24$	1 = 0 of	$r - \lambda^3 - 2\lambda^2 + 20\lambda - 24 = 0$	
	$(2-\lambda)(\lambda-2)(\lambda+6) = 0$ or $(\lambda+6)$	$6)(\lambda -$	$2)(\lambda-2)=0$	
	$\lambda_1 = -6 \left(\lambda_2 = 2\right)$	2)		
	d M1: Solves det $(\mathbf{M} - \lambda \mathbf{I}) = 0$ to obtain any valu	e for λ	including 2. Not usual rules	dM1
	- award for any value seen that is consi The " O" seen he implied by	stent w	th their equation.	A1
	Note that they may disregard the $(2 - x)$	y a son	solve a quadratic.	
	A1: -6 from a correct equation. Accept both so	lutions	e.g., $"-6$, 2" and allow if	
	mislabelled and/or -6 rejected. No	incorr	ect solutions.	
		Uses	$\mathbf{M}\boldsymbol{x} = \lambda \boldsymbol{x} \text{ or } (\mathbf{M} - \lambda \mathbf{I}) \boldsymbol{x} = 0$	
	2x+3z = -6x $\mathbf{M}\mathbf{x} = -6\mathbf{x} \implies -4y-3z = -6y \implies x = \dots, y = \dots, z = \dots$ -4y = -6z 8x+3z = 0 $(\mathbf{M}+6\mathbf{I})\mathbf{x} = 0 \implies 2y-3z = 0 \implies x = \dots, y = \dots, z = \dots$ -4y+6z = 0	wi eigenv form sol ¹ vecto need awa	ith any of their non-zero values (however obtained) to simultaneous equations and ves. No requirement for a or for this mark. There is no d to check their values but rd M0 for a zero solution.	M1
	Note: Could find vector product of fire	st 2 rov	vs of $\mathbf{M} - \lambda \mathbf{I}$ i.e.,	
	$(8\mathbf{i}+3\mathbf{k})\times(2\mathbf{j}-3\mathbf{k})=(-6\mathbf{i}+24\mathbf{j}+16\mathbf{k})$	(two c	orrect components)	
	$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 12 \\ 8 \end{pmatrix} \Rightarrow \frac{1}{\sqrt{3^2 + 12^2 + 8^2}} \begin{pmatrix} -3 \\ 12 \\ 8 \end{pmatrix}$		Correct method to normalise their eigenvector no matter how this vector is obtained provided it has at least 2 non-zero components.	M1
			Only allow slips if there is	
	e.g., $\frac{1}{\sqrt{217}} \begin{pmatrix} -3\\12\\8 \end{pmatrix}$ or $\begin{pmatrix} -\frac{3\sqrt{217}}{217}\\\frac{12\sqrt{217}}{217}\\\frac{8\sqrt{217}}{217} \end{pmatrix}$ or $\begin{pmatrix} -\frac{3}{\sqrt{217}}\\\frac{12}{\sqrt{217}}\\\frac{8\sqrt{217}}{217} \end{pmatrix}$ or $\frac{1}{2\sqrt{217}}$	$= \begin{pmatrix} -6\\24\\16 \end{pmatrix}$	A correct normalised eigenvector in any form. Note direction may be reversed. May use i , i , k notation	A1
			v , u,	(6)

Question Number	Scheme		Notes	Marks
2(b)	May use i , j , k notation			
2(0)	May use I , J , k notation Multiplies position and direction by M In parametric form: $ \begin{pmatrix} 2 & 0 & 3 \\ 0 & -4 & -3 \\ 0 & -4 & 0 \end{pmatrix} \begin{pmatrix} 4+2\mu \\ -1 \\ -\mu \end{pmatrix} = \dots \begin{cases} 8+4\mu \\ 4+3 \\ 4 \end{pmatrix} $ There is no requirement to extract the vectors if parametric form: mark if e.g., $8+4\mu-3\mu$ written as Allow this work without a parametric form: $ \begin{pmatrix} 2 & 0 & 3 \\ 0 & -4 & -3 \\ 0 & -4 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix} = \dots \begin{cases} 8 \\ 4 \\ 4 \end{pmatrix} $ and $ \begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix} = \dots$ $ \begin{pmatrix} 2 & 0 & 3 \\ 0 & -4 \\ 0 & -1 \end{pmatrix} $	$\frac{\partial n}{\partial (not)} = \frac{\partial n}{\partial (not)}$	$\begin{aligned} \mathbf{x} \text{ e.g., } \mathbf{M} - \lambda \mathbf{I} \\ = \begin{pmatrix} 8 \\ 4 \\ 4 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \\ \text{ric form is used. Allow this} \\ + 2\mu) - 3\mu \\ \text{er i.e.,} \\ 3 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} = \dots \begin{cases} \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \\ \end{pmatrix} \\ \frac{1}{3} \\ 0 \end{bmatrix} \end{aligned}$	M1
	$\begin{pmatrix} 0 & -4 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \end{pmatrix}$ Alternatively: Could find 2 points on l_1 , transform them both a Allow slips and condone the matrix product written they have attempted to multiply the elements appro (or 3 x 2 matrix) with the resulting valu	((4 nd su the priat	0)) Ibtract to find direction. wrong way round provided ely and they obtain a vector prrectly placed.	
	For $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 4 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ If $\mathbf{r} \times \begin{pmatrix}$	if RH Must Req prod prod (or th	 × direction = position × direction. × direction = position × direction × not clearly confuse their vectors. Allow HS = direction x position. aires previous M mark. airement to calculate vector act but the RHS could be d by 2 correct components ne negative version if the product is reversed) 	dM1
	$\mathbf{r} \times \begin{pmatrix} 1\\3\\0 \end{pmatrix} = \begin{pmatrix} -12\\4\\20 \end{pmatrix} \qquad $	iy co form × b =	rrect equation in the correct Not $\mathbf{b} = \dots$, $\mathbf{c} = \dots$ unless \mathbf{c} seen. Isw once a correct answer is seen.	A1
				(3)
				Total 9

Question Number	Scheme	Notes	Marks
3(a)	$y = \operatorname{arsinh}\left(\sqrt{x^2 - 1}\right)$		
	For all Ways allow the final answer to be written as	$s \frac{1}{(x^2-1)^{\frac{1}{2}}}$ or $(x^2-1)^{-\frac{1}{2}}$	
Way 1	$\frac{dy}{dx} = \frac{1}{\sqrt{1 + (\sqrt{x^2 - 1})^2}} \times \frac{1}{2} (x^2 - 1)^{-\frac{1}{2}}$ M1: Obtains $\frac{1}{\sqrt{1 + (\sqrt{x^2 - 1})^2}} \times f(x)$ or e.g., $\frac{1}{x}$ A1: Fully correct unsimplified exp	$\frac{1}{2}(2x)$ × f(x) f(x) ≠ k ression	M1 A1
	$= \frac{1}{\sqrt{1+x^2-1}} \times \frac{x}{\sqrt{x^2-1}} = \frac{1}{\sqrt{x^2-1}} *$ or e.g., $= \frac{1}{x} \times \frac{x}{\sqrt{x^2-1}} = \frac{1}{\sqrt{x^2-1}} *$	Correct completion with intermediate line of working and no errors	A1*
ļ			(3)
Way 2 Takes sinh of both	$y = \operatorname{arsinh}\left(\sqrt{x^2 - 1}\right) \Rightarrow \sinh y = \sqrt{x^2 - 1} \Rightarrow \cosh y$ M1: Takes sinh of both sides and differentiates to obtain A1: Fully correct unsimplified eq	$\frac{dy}{dx} = \frac{1}{2} \left(x^2 - 1 \right)^{-\frac{1}{2}} \left(2x \right)$ n $\cosh y \frac{dy}{dx} = f(x) f(x) \neq k$ uation	M1 A1
sides	$\cosh y = \sqrt{1 + \sinh^2 y}$ or $\sqrt{1 + x^2 - 1} \Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}} *$	Correct completion with clear use of identity (must see more than just $\cosh y = x$) and no errors	A1*
			(3)
Way 3 Takes sinh & squares	$y = \operatorname{arsinh}\left(\sqrt{x^2 - 1}\right) \Longrightarrow \sinh y = \sqrt{x^2 - 1} \Longrightarrow \sinh^2 y = x^2$ M1: Takes sinh of both sides, squares and differentiates to obtain A1: Fully correct unsimplified expressio	$-1 \Longrightarrow 2\sinh y \cosh y \frac{dy}{dx} = 2x$ $c \sinh y \cosh y \frac{dy}{dx} = f(x) f(x) \neq k$ in or equation	M1 A1
	$\cosh y = \sqrt{1 + \sinh^2 y}$ or $\sqrt{1 + x^2 - 1} \Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}}$	Correct completion with clear use of identity (must see more than just $\cosh y = x$) and no errors	A1*
XX7 4		1	(3)
Way 4 Takes sinh & squares & uses	$\Rightarrow \sinh y = \sqrt{x^2 - 1} \Rightarrow \sinh^2 y = x^2 - 1 \Rightarrow \cosh^2 y = 1 + (x^2 - 1) \Rightarrow \cosh^2 y = 1 + ($	$sh^{2} y = x^{2} \Rightarrow 2 \sinh y \cosh y \frac{dy}{dx} = 2x$ tain $c \sinh y \cosh y \frac{dy}{dx} = f(x)$ $f(x) \neq k$ the M mark. In or equation	M1 A1
identity	$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}}$ Correct conditioned	empletion with clear use of entity and no errors	A1*

Question Number	Scheme	Notes	Marks
3(a) Way 5 Takes sinh & squares & uses identity & roots	$\Rightarrow \sinh y = \sqrt{x^2 - 1} \Rightarrow \sinh^2 y = x^2 - 1 \Rightarrow \cosh^2 y = 1 + (x^2 - 1) \Rightarrow \cosh y = x \Rightarrow \sinh y \frac{dy}{dx} = 1$ M1: Takes sinh of both sides, squares, uses identity, roots and differentiates to obtain $c \sinh y \frac{dy}{dx} = f(x)$ or k Allow sign errors with identity. A1: Fully correct unsimplified expression or equation		
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x^2 - 1}}$	Correct completion with clear use of identity and no errors	A1*
			(3)
Way 6 Uses log form of arsinh first	$y = \operatorname{arsinh}\left(\sqrt{x^2 - 1}\right) \Longrightarrow y = \ln\left(\sqrt{x^2 - 1} + \sqrt{x^2 - 1} + \sqrt{x^2 - 1}\right)$ M1: Use log form of arsinh correctly a A1: Fully correct uns	$\overline{(+1)} = \ln(\sqrt{x^2 - 1} + x) \Longrightarrow \frac{dy}{dx} = \frac{\frac{1}{2}(x^2 - 1)^{-\frac{1}{2}}(2x) + 1}{\sqrt{x^2 - 1} + x}$ and differentiates to obtain $\frac{f(x) \neq k}{\sqrt{x^2 - 1} + x}$ simplified expression	M1 A1
	$=\frac{\frac{x}{\sqrt{x^2-1}}+1}{\sqrt{x^2-1}+x} \text{ or } \frac{x+\sqrt{x^2-1}}{\sqrt{x^2-1}} \times \frac{1}{\sqrt{x^2-1}+x}$	$\frac{1}{\sqrt{x^2 - 1}} * \begin{bmatrix} \text{Correct completion with} \\ \text{intermediate line of} \\ \text{working and no errors} \end{bmatrix}$	A1*
You may see other variations e.g., using exponential definitions, attempts via dx/dy . The M mark is for differentiating to obtain correct forms and the first A is awarded if it is correct. The final A is for correct completion.			

FP3_2024_06_MS

Question Number	Scheme	Notes	Marks
3(b)	$f(x) = \frac{1}{3} \operatorname{arsinh}(\sqrt{x^2 - 1}) - \arctan x$		
	$f'(x) = \frac{1}{3\sqrt{x^2 - 1}} - \frac{1}{1 + x^2}$	f'(x) = $\frac{A}{\sqrt{x^2 - 1}} \pm \frac{1}{1 \pm x^2}$ $A = \frac{1}{3}$, 3 or 1	M1 (B1 on ePen)
		Sets $\frac{A}{\sqrt{x^2-1}} \pm \frac{1}{1+x^2} = 0$ $A = \frac{1}{3}$, 3 or 1 Denominator of derivative of arctan x	
	$1 + x2 = 3\sqrt{x2 - 1}$ 1 + 2x ² + x ⁴ = 9x ² - 9	must now be $1 + x^2$ Cross multiplies and squares to obtain the correct form for both sides so do not	M 1
		condone e.g., $(1+x^2)^2 = 1+x^4$ May see the quartic obtained through equivalent work.	
	$x^{4} - 7x^{2} + 10 = 0 \Longrightarrow (x^{2} - 2)(x^{2} - 5) = 0 \Longrightarrow x^{2} = 2, 5$		
	Solves a 3TQ in x^2 (usual rules and one correct root if no working). No requirement to see the terms collected. Ignore labelling of solutions so allow e.g., " $\underline{x} = 2, 5$ ". One correct value for their equation if no working, which may be for x or x^2 , so just look for the values. May change the variable. Allow for a correct solution with no working from solving a three term quarties of the correct form on a colculator. Allow		ddM1
	if value for x^2 is negative or if roots are complex. Requires previous M marks.		
	$x = \sqrt{2}, \sqrt{5}$	Both exact and no other solutions e.g., ± is A0 unless negatives rejected. Must not reject either correct solution.	A1
			(4)
			I otal 7

Question	Scheme/Notes	Marks
Number $4(a)$	$\sinh(A + B) - \sinh A \cosh B + \cosh A \sinh B$	
("	$\frac{A+B}{A+B} = \sinh A \cosh B + \cosh A \sinh B$ There is no credit for proofs that do not use exponential definitions	
	$\frac{1}{\left\{\sinh 4\cosh B + \cosh 4\sinh B - \right\}}$	
	$\begin{cases} \sin \alpha x + \cos \alpha y + \cos \alpha x + \sin \alpha y + \cos \alpha x + \sin \alpha y + \sin \alpha x + \sin \alpha y + \sin \alpha x + \sin $	
	$\frac{e^{-e}}{2} \times \frac{e^{+e}}{2} + \frac{e^{+e}}{2} \times \frac{e^{-e}}{2}$ or	
	$e_{A}g_{A} = \frac{(e^{A} - e^{-A})(e^{B} + e^{-B}) + (e^{A} + e^{-A})(e^{B} - e^{-B})}{(e^{B} - e^{-B})}$	M1
	Replaces two of the four hyperbolic functions with correct exponential expressions.	
	implied by completely correct work (i.e., with exponential definitions correct) and	
	not just the fractions shown in the A1* note	
	$e^{A+B} - e^{B-A} + e^{A-B} - e^{-A-B} + e^{A+B} + e^{B-A} - e^{A-B} - e^{-A-B}$	
	4	
	Expands numerator (or numerators if 2 separate fractions). Allow for sign errors	
	only with coefficients and indices and must see at least four terms (but count terms which have been crossed out by cancelling)	
	Allow this mark for:	M1
	$e^{A}e^{B} - e^{-A}e^{B} + e^{A}e^{-B} - e^{-A}e^{-B} + e^{A}e^{B} + e^{-A}e^{B} - e^{A}e^{-B} - e^{-A}e^{-B}$	
	=	
	Must see at least four terms as before but the last mark will not be available unless	
	the requirements shown below are satisfied.	
	$=\frac{2e^{A+B}-2e^{-(A+B)}}{4} \text{ or } \frac{2\left(e^{A+B}-e^{-(A+B)}\right)}{4} \text{ or } \frac{e^{A+B}-e^{-(A+B)}}{2} \text{ or } \frac{1}{2}\left(e^{A+B}-e^{-(A+B)}\right) \text{ or } \frac{e^{A+B}}{2}-\frac{e^{-(A+B)}}{2}$	
	$= \sinh(A+B) *$	
	$\mathbf{P}_{\text{condenses}} = \frac{1}{2} \left(\frac{1}{2} + \frac{R}{2} \right)$	
	Reaches $\sinh(A+B)$ with no errors. Condone if the	
	" $\sinh A \cosh B + \cosh A \sinh B =$ " is missing at the start but the " $= \sinh (A + B)$ " or	A 1 4
	= LHS" must be seen.	AI*
	All bracketing correct where required but condone an unclosed bracket. One of the	
	expressions shown or similar must be seen and allow $-A-B$ used for $-(A+B)$.	
	Allow a "meet in the middle" proof and condone a "1=1" style approach provided it is complete. In both these cases a minimal conclusion is required a g. "chown" but	
	allow if both "LHS =" and "=RHS" are seen.	
	Do not condone sinh and/or cosh written as sin/cos for this mark	
	Attempts that start with the LHS and do not revert to a "meet in the middle"	
	approach: Score the second M provided an eight term expanded numerator is	
	achieved. The first M is for two explicitly clear correct replacements of hyperbolic expressions with two of sinh 4 cosh R cosh 4 and sinh R	
	Condone if the sinh $(A+B)$ = is missing at the start in these cases but the PHS or	
	$= - PHS^{n} \text{ must be seen}$	
	KHS must be seen.	(3)

Question Number	Scheme	Notes	Marks
4(b)	Condone the use of e.g., <i>B</i> for α or <i>k</i> for <i>k</i>	R for the first three marks but allow the A	
	$10\sinh x + 8\cosh x = R \sinh x$	$h x \cosh \alpha + R \cosh x \sinh \alpha$	
	$\Rightarrow R \sinh \alpha = 8,$	$R \cosh \alpha = 10$	B1
	Equates coefficients to obtain the two con by either correct	t elimination, i.e.,	(M1 on ePen)
	$R^2 = 10^2 - 8^2$ or $\tanh \alpha = \frac{8}{10}$ provide	d incorrect equations are not seen.	
	A complete attempt at find	ling a <u>positive</u> value for <i>R</i> :	
	$R^{2}\left(\cosh^{2}\alpha - \sinh^{2}\alpha\right) = 10$	$0^2 - 8^2 \Longrightarrow R^2 = 36 \Longrightarrow R = 6$	
	Allow this mark for $R = \sqrt{10^2 + 8^2} = 2\sqrt{4}$	1 or $\sqrt{164}$ May just see e.g. $R = 2\sqrt{41}$	
	Following a positive value obtained	for α where $\alpha = k \ln p$, $k > 0$, $p > 1$:	
	$\alpha = \frac{1}{2}\ln 9 = \ln 3 \Longrightarrow R \cosh(\ln 3) = 10 \Longrightarrow R \left(\frac{e}{2}\right)$	$\frac{e^{\ln 3} + e^{-\ln 3}}{2} = 10 \Longrightarrow R = \dots \left\{ \frac{5}{3} R = 10 \Longrightarrow R = 6 \right\}$	1 st M1
	or $R \sinh(\ln 3) = 8 \Longrightarrow R\left(\frac{e^{\ln 3} - e^{-\ln 3}}{2}\right)$	$ \stackrel{3}{=} = 8 \Longrightarrow R = \dots \left\{ \frac{4}{3} R = 8 \Longrightarrow R = 6 \right\} $	
	Correct exponential definitions must be Allow if the 10 and 8 are mixed	used but can be implied by correct work. ed up and allow slips in solving	
	A complete attempt at finding a <u>positive</u> value for α where $\alpha = k \ln p$, $k > 0$, $p > 1$:		
	By elim	ination: $1 (1 \pm 4) (1 = 1)$	
	$ \tan \alpha = \frac{3}{10} \Rightarrow \alpha = \operatorname{artanh}\left(\frac{4}{5}\right) = $	$\frac{1}{2}\ln\left(\frac{1+5}{1-\frac{4}{5}}\right) = \dots \left\{ = \frac{1}{2}\ln 9 = \ln 3 \right\}$	
	A correct logarithmic form must be v Following a positive	used with a valid value for artanh (<1) value obtained for <i>R</i> :	
	$\sinh \alpha = \frac{8}{"6"} \Longrightarrow \alpha = \operatorname{arsinh}\left(\frac{8}{"6"}\right)$	$= \ln\left(\frac{8}{"6"} + \sqrt{\left(\frac{8}{"6"}\right)^2 + 1}\right) \ \{=\ln 3\}$	
	$\cosh \alpha = \frac{10}{"6"} \Rightarrow \alpha = \operatorname{arcosh}\left(\frac{10}{"6"}\right)$	$= \ln\left(\frac{10}{"6"} + \sqrt{\left(\frac{10}{"6"}\right)^2 - 1}\right) \ \left\{=\ln 3\right\}$	2 nd M1
	A correct logarithmic form must be use	d with a valid value if using arcosh (>1)	
	The appropriate logarithmic forms Allow this mark if e.g., $\frac{8}{10}$ is erroneously the inverse hype	could be implied by correct values. simplified but the value must be valid for erbolic function.	
	If an exponential form is used to evaluat	e an inverse hyperbolic the form must be TO (most likely in a^{α} or a^{x}) must satisfy	
	usual rules with one root correct if no wo	rking. Note that using tanh leads to a 2TQ	
	which they must get	one correct root for. $\alpha = k \ln n + k \ge 0 + n \ge 1$	
	$f = \frac{1}{2} \int $	$(\alpha - \kappa \prod p, \kappa > 0, p > 1)$	
	Correct expression but allow	w values for <i>R</i> and α (or <i>n</i>).	
	If all the values are not seen in (b) then a	llow if they are seen in (c) and they could	A1
	be seen embedded in A0 for additional solution	a correct expression. ons e.g., $6\sinh(x+\ln 3)$	

Question Number	Scheme/Notes	Marks
4(c)	There is no credit for attempts that do not use part (b) so e.g., do not award marks for attempts that apply exponential definitions to $10\sinh x + 8\cosh x = 18\sqrt{7}$ but note that it is acceptable to use exponential definitions with $6\sinh(x+\ln 3) = 18\sqrt{7}$. Allow work with "made up" values for R and p provided $R > 0$, $p \in \mathbb{Z}$, $p > 1$ $6\sinh(x+\ln 3) = 18\sqrt{7}$ $\Rightarrow x = arsinh(3\sqrt{7}) - \ln 3$ $\Rightarrow x = \ln\left(3\sqrt{7} + \sqrt{(3\sqrt{7})^2 + 1}\right) - \ln 3$ Obtains $x = arsinh\left(\frac{18\sqrt{7}}{16^n}\right) \pm \ln^n 3^n$ or $x \pm \ln^n 3^n = arsinh\left(\frac{18\sqrt{7}}{16^n}\right)$ from "6" $\sinh(x \pm \ln^n 3^n) = 18\sqrt{7}$ and uses the correct logarithmic form to obtain an expression for, or equation in x in "In"s only but condone loss of the $-\ln$ "3" or $+\ln^n 3^n$ after it has been seen. If the $-\ln$ "3" or $+\ln^n 3^n$ is immediately incorporated to make a single logarithm the subtraction/addition law must be applied correctly. Work must be exact and not in decimals. If e.g., $C = arsinh(3\sqrt{7})$ is found using $\frac{e^C - e^{-C}}{2} = 3\sqrt{7}$, the exponential definition must be correct if no working) and proceed to a valid $C =$ (e.g., not ln(negative)). This also applies to attempts via $6\frac{e^{x+\ln^3} - e^{-x-\ln^3}}{2} = 18\sqrt{7}$ $\left\{ \Rightarrow 3e^x - \frac{1}{3}e^{-x} = 6\sqrt{7} \Rightarrow 9e^{2x} - 18\sqrt{7}e^x - 1 = 0 \Rightarrow x = \ln\left(\frac{8+3\sqrt{7}}{3}\right) \right\}$ Note that $e^{2(x+\ln^3)} - 6\sqrt{7}e^{x+\ln^3} - 1 = 0 \Rightarrow e^{x+\ln^3} = 8+3\sqrt{7} \Rightarrow x = \ln\left(\frac{8+3\sqrt{7}}{3}\right)$ is also possible	M1
	and in such cases the $x + \ln 3^{-3}$ must be handled correctly	
	$\left\{x = \ln\left(\frac{3\sqrt{7+3}}{3}\right) = \right\} \ln\left(\sqrt{7+\frac{3}{3}}\right)$	
	Correct answer in correct form. Accept e.g., $\ln\left(2\frac{2}{3}+\sqrt{7}\right)$. Must be fully bracketed	A1
	correctly. Accept $q = \frac{8}{3}$ if $\ln(\sqrt{7} + q)$ is seen. No additional answers.	
		(2)
		Total 9

Question Number	Scheme	Notes	 Marks
5(a)	$4x^{2} + 4x + 17 = 4\left(x^{2} + x + \frac{17}{4}\right) = 4\left[\left(x + \frac{1}{2}\right)^{2} - \frac{1}{4}\right]$ or $4x^{2} + 4x + 17 = 4x^{2} + 4px + q \Rightarrow 4px = 4x \Rightarrow p$ B1: Either <i>p</i> or <i>q</i> correct B1: Both correct values in part Values may be embedded within expression	$\begin{bmatrix} \frac{1}{4} + \frac{17}{4} \end{bmatrix} = (2x+1)^2 + 16$ $= 1, \ q+p^2 = 17 \Rightarrow \underline{q} = 16$ (a). Allow from any/no work. $n(2x+p)^2 + q.$	B1 B1
(b)	A = 8, B = 4 Both correct	values (accept if embedded)	B1
(a)	Note that this is a Honor question and there is no gradit fo	" work on the original fraction	(1)
(c)	Note that this is a Hence question and there is no credit fo $\int \frac{8x+5}{\sqrt{4x^2+4x+17}} dx = \int \frac{1}{\sqrt{(2x+1)^2+16}} dx + \int \frac{8x+4}{\sqrt{4x^2+4x+17}} dx$ $= \frac{1}{2} \operatorname{arsinh}\left(\frac{2x+1}{4}\right) + 2\left(4x^2+4x+17\right)^{\frac{1}{2}}$ or $\frac{1}{2}\ln\left(\frac{2x+1}{4} + \sqrt{\left(\frac{2x+1}{4}\right)^2+1}\right) + 2\left(4x^2+4x+17\right)^{\frac{1}{2}}$ or $\frac{1}{2}\ln\left(2x+1+\sqrt{(2x+1)^2+16}\right) + 2\left((2x+1)^2+16\right)^{\frac{1}{2}}$ Allow for equivalents in e.g., <i>u</i> if substitution $u = 2x+1 \Rightarrow \frac{1}{2}\int \frac{1}{\sqrt{u^2+16}} du \Rightarrow \frac{1}{2}\operatorname{arsinh}\left(\frac{u}{4}\right) u = 4x^2$ $4\sinh u = 2x+1 \Rightarrow \int \frac{2\cosh u}{\sqrt{16\cosh^2 u}} du \Rightarrow$	more work on the original fraction M1: Forarsinh (f (x)) f (x) $\neq k$ or logarithmic equivalent i.e., ln (f (x) + $\sqrt{(f(x))^2 + c}$) $c \neq 0$ M1: For (4x ² + 4x + 17) ^{1/2} or ((2x+1) ² + 16) ^{1/2} A1: Fully correct integration ons are used e.g., +4x+17 $\Rightarrow \int \frac{1}{\sqrt{u}} du \Rightarrow 2\sqrt{u}$ $\frac{1}{2} \int du = \frac{1}{2}u$	M1 M1 A1
	Score the M marks for appropriate forms (sign/coefficient working in terms of <i>u</i> the limits applied for the dd M1 must which for the above examples would be $3 \& \frac{5}{2}$, $25 \& \frac{169}{2}$	t errors only). If they continue t be correct for their substitution and arsinh $\left(\frac{3}{2}\right)$ & arsinh $\left(\frac{5}{22}\right)$	
	which for the doo to champles would be 2 d $_3$, 25 d $_9^2$ $\int_{\frac{1}{3}}^{1} \frac{8x+5}{\sqrt{4x^2+4x+17}} dx = \frac{1}{2} \operatorname{arsinh}\left(\frac{3}{4}\right) - \frac{1}{2} \operatorname{arsinh}\left(\frac{5}{12}\right) + 2\sqrt{25} - 2\sqrt{\frac{169}{9}}$ $\Rightarrow \frac{1}{2} \ln\left(\frac{3}{4} + \sqrt{\left(\frac{3}{4}\right)^2 + 1}\right) - \frac{1}{2} \ln\left(\frac{5}{12} + \sqrt{\left(\frac{5}{12}\right)^2 + 1}\right) + 2\sqrt{25} - \frac{26}{3}$ Condone replacement of $\operatorname{arsinh}\left(\frac{x}{a}\right)$ with $\ln\left(x + \sqrt{x^2 + a^2}\right)$ with $a \neq 1$ instead of using $\operatorname{arsinh}x = \ln\left(x + \sqrt{x^2 + 1}\right)$	Substitutes and subtracts with the given limits and uses the appropriate form for arsinh twice (if required). Results from separate integrals must be combined. Allow slips but the $f(\frac{1}{3})$ terms (and no others) must be subtracted. Not implied by just the final answer. Requires both previous M marks.	ddM1
	arsinh() may be evaluated using correct exp definition	& solving a exponential 3TQ	
	$\left\{ = \frac{1}{2} \ln 2 - \frac{1}{2} \ln \frac{3}{2} + 10 - \frac{26}{3} \right\} = \frac{4}{3}$ Correct answer in correct form. May be no further wo there must be nothing incorrect. Allow $k = \frac{4}{3}$ if $k + \frac{1}{2}$ Algebraic integration must be used. Answer or 1.477	$+\frac{1}{2}\ln\frac{4}{3}$ rk following substitution but $\ln k \text{ is seen. Allow } \frac{1}{2}\ln\frac{4}{3} + \frac{4}{3}$ 717 only scores no marks	A1
	Aigeoraic integration must be used. Answer of 1.4/		(5)
			Total 8

Question Number	Scheme		Notes	Marks
6(a)	$\frac{x^2}{25} + \frac{y^2}{9} = 1 \qquad P(5\cos\theta)$	θ, 3si	$n \theta$)	
	$\begin{cases} \frac{dx}{d\theta} = -5\sin\theta & \frac{dy}{d\theta} = 3\cos\theta \end{cases} \qquad \frac{2x}{25} + \frac{2y}{9}\frac{dy}{dx} = 0 \\ \frac{dy}{d\theta} = 3\cos\theta & \frac{dy}{d\theta} = -5\cos\theta \end{cases}$) dı	$y = \left(9 - \frac{9}{25}x^2\right)^{\frac{1}{2}}$	
	$\frac{dy}{dx} = -\frac{50000}{5\sin\theta} \qquad \qquad \frac{dy}{dx} = -\frac{5x}{25y} \left\{ = -\frac{100000}{75\sin\theta} \right\}$	$\int \frac{dy}{dx}$	$\frac{1}{x} = \frac{\frac{1}{25}x}{2\sqrt{9 - \frac{9}{25}x^2}} \left\{ = \frac{\frac{1}{25} \times 5\cos\theta}{2\sqrt{9 - 9\cos^2\theta}} \right\}$	B1
	Any correct expression for $\frac{dy}{dx}$ in terms of θ , or x and y,	or <i>x</i> . <i>A</i>	Allow for a correct $\frac{dx}{dy}$ or $-\frac{dx}{dy}$	
	$m_{\rm T} = -\frac{3\cos\theta}{5\sin\theta} \Longrightarrow m_{\rm N} = \frac{5\sin\theta}{3\cos\theta}$	(r M	Correct perpendicular gradient ule for their $\frac{dy}{dx}$ in terms of θ ay see $m_T = -\frac{3}{5}\cot\theta \Rightarrow m_N = \frac{5}{3}\tan\theta$	M1
	$y - 3\sin\theta = \frac{5\sin\theta}{3\cos\theta} (x - 5)$	$\cos\theta$) OR	
	$y = mx + c \Longrightarrow 3\sin\theta = \frac{5\sin\theta}{3\cos\theta} \times 5\cos\theta$	$\theta + c$	$\Rightarrow c = -\frac{16}{3}\sin\theta$	M1
	Correct straight line method with a chang	ged gr	adient in terms of θ	
	$3y\cos\theta - 9\sin\theta\cos\theta = 5x\sin\theta - 25\sin\theta\cos\theta$ $\Rightarrow 5x\sin\theta - 3y\cos\theta = 16\sin\theta\cos\theta^{*}$	Rea terme rors. A cevers der pr ne thir allow orde	aches given answer with ediate line of working and no Allow this equation written in e, x and y terms in different ovided they are together with rd term on the other side and y the products in a different er provided the numerical	A1*
			the front of the terms.	
	The last three marks require $P(5\cos\theta, 3\sin\theta)$ to	be su	ibstituted but condone using	
	e.g, $\frac{25y}{9x}$ as the normal gradient when forming the	straig	ght line provided appropriate	
	substitution is seen before the	giver	n answer.	
				(4)

$ \begin{aligned} \hline \mathbf{6(b)} & \operatorname{At}Q, x=0 \Rightarrow y=-\frac{u}{2}\sin\theta & \operatorname{Correct} y \ \operatorname{coordinate} \ of Q \ \operatorname{Accept} unsimplified \\ M \ \operatorname{is}\left(\frac{5\cos\theta+0}{2}, \frac{3\sin\theta+v-\frac{u}{2}\sin\theta'}{2}\right) \\ \operatorname{Accept} x=\frac{1}{2}\cos\theta, y=-\frac{2}{6}\sin\theta & \operatorname{Correct} method \ for \ midpoint \ for \ both \\ \operatorname{correct} method \ for \ midpoint \ for \ both \\ \operatorname{correct} x=x + \frac{4}{3}\sin\theta + 5\cos\theta \\ \operatorname{(sce area examples \ below)} & \operatorname{Correct} unsimplified \ expression \ for \ area \ of \\ \operatorname{AUPM} = + \operatorname{AOPQ} = \frac{1}{3}\times43 \pm \frac{4}{3}\sin\theta + 5\cos\theta \\ \operatorname{(sce area examples \ below)} & \operatorname{Correct} unsimplified \ expression \ for \ area \ of \\ \operatorname{AOPM} = \frac{1}{3}\operatorname{AOPM} = \frac{1}{3}\operatorname{AOPM} & \frac{1}{3}\operatorname{AOPM} = \frac{1}{3}\operatorname$	Question Number	Scheme	Notes	_00_Mo
$\frac{M \operatorname{is}\left(\frac{5\cos\theta+\theta}{2}, \frac{3\sin\theta+\frac{1-\theta}{2}\sin\theta'}{2}\right)}{\operatorname{Accept} x = \frac{3}{2}\cos\theta, y = -\frac{2}{6}\sin\theta}$ $\operatorname{Accept} x = \frac{3}{2}\cos\theta, y = -\frac{2}{6}\sin\theta$ $\operatorname{c.g.}, PQ \operatorname{mccts} x - \operatorname{axis} \operatorname{at} R\left(\frac{16}{5}\cos\theta, 0\right)$ $\Rightarrow \operatorname{Area} \Delta OPM = \Delta OPR + \Delta OMR$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta+\frac{7}{6}\sin\theta\right)$ $\operatorname{If} \operatorname{shoelace} \operatorname{method} \operatorname{is} \operatorname{used}, \operatorname{score} \operatorname{for} \operatorname{a} \operatorname{correct} \operatorname{wethatcled}^{\circ}\operatorname{weyression} \operatorname{for} \operatorname{areae} \operatorname{af} \Delta OPM$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta+\frac{7}{6}\sin\theta\right)$ $\operatorname{If} \operatorname{shoelace} \operatorname{method} \operatorname{is} \operatorname{used}, \operatorname{score} \operatorname{for} \operatorname{a} \operatorname{correct}^{\circ}\operatorname{weyression} \operatorname{for} \operatorname{areae} \operatorname{af} \Delta OPM$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta+\frac{7}{6}\sin\theta\right)$ $\operatorname{If} \operatorname{shoelace} \operatorname{method} \operatorname{is} \operatorname{used}, \operatorname{score} \operatorname{for} \operatorname{a} \operatorname{correct}^{\circ}\operatorname{wyression} \operatorname{for} \operatorname{areaeaf} \operatorname{area} \operatorname{af} \Delta OPM = \frac{1}{3} \wedge OPM = \frac{1}{3} \circ OP = -\Delta OMM = \frac{1}{3} \circ OPM = \frac{1}{3} \circ OP = -\Delta OMM = \frac{1}{3} \circ OPM = \frac{1}{3} \circ OP = -\Delta OMM = \frac{1}{3} \circ OPM = \frac{1}{3} \circ OP = -\Delta OMM = \frac{1}{3} \circ OPM = \frac{1}{3} \circ OP = -\Delta OMM = \frac{1}{3} \circ OPM = \frac{1}{3} \circ OP = -\Delta OMM = \frac{1}{3} \circ OPM = \frac{1}{3} \circ OP = -\Delta OMM = \frac{1}{3} \circ OPM = \frac{1}{3} \circ OP = -\Delta OMM = -\Delta PMU = \frac{1}{3} \circ OPM = -\frac{1}{3} \circ OP = -\Delta OMM = -\Delta PMU = \frac{1}{3} \circ OP = -\Delta OMM = -\Delta PMU = \frac{1}{3} \circ OP = -\Delta OMM = -\Delta PMU = \frac{1}{3} \circ OP = -\Delta OMM = -\Delta PMU = \frac{1}{3} \circ OP = -\frac{1}{3} \circ OP = -\frac{1}{3$	6(b)	At Q , $x = 0 \Rightarrow y = -\frac{16}{3}\sin\theta$	Correct <i>y</i> coordinate of <i>Q</i> . Accept unsimplified	B1
$\frac{e.g.,}{PQ \operatorname{mccts} x-\operatorname{axis}} \operatorname{at} R\left(\frac{16}{5}\cos\theta, 0\right)$ $\Rightarrow \operatorname{Area} \Delta OPM = \Delta OPR + \Delta OMR$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta + \frac{7}{6}\sin\theta\right)$ $\Rightarrow \operatorname{Area} \Delta OPM = \Delta OPR + \Delta OMR$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta + \frac{7}{6}\sin\theta\right)$ $\Rightarrow \operatorname{Area} \Delta OPM = \Delta OPR + \Delta OMR$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta + \frac{7}{6}\sin\theta\right)$ $\Rightarrow \operatorname{Area} \Delta OPM = \Delta OPR + \Delta OMR$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta + \frac{7}{6}\sin\theta\right)$ $\Rightarrow \operatorname{Area} \Delta OPM = \Delta OPR + \Delta OMR$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta + \frac{7}{6}\sin\theta\right)$ $\Rightarrow \operatorname{Area} \Delta OPM = \Delta OPR + \Delta OMR$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta + \frac{7}{6}\sin\theta\right)$ $\Rightarrow \operatorname{Area} \Delta OPA = \frac{1}{2} \Delta OPQ$ is used. $\operatorname{How with modulus if correct} e.g., \frac{1}{2}\left[0 - 5\cos\theta - \frac{1}{2}\cos\theta(3\sin\theta)\right]$ $\Rightarrow \frac{1}{2}\left[(5\cos\theta)(-\frac{2}{5}\sin\theta) - (\frac{5}{2}\cos\theta)(3\sin\theta)\right] = \frac{1}{2}\left[(5\cos\theta)(\frac{2}{5}\sin\theta) + (\frac{5}{2}\cos\theta)(3\sin\theta)\right]$ $= \frac{1}{2}\left[(5\cos\theta)(-\frac{2}{5}\sin\theta) - (\frac{5}{2}\cos\theta)(3\sin\theta)\right] = \frac{1}{2}\left[(5\cos\theta)(\frac{2}{5}\sin\theta) + (\frac{5}{2}\cos\theta)(3\sin\theta)\right]$ $= \frac{1}{2}\left[(5\cos\theta)(-\frac{2}{5}\sin\theta) - (\frac{5}{2}\cos\theta)(3\sin\theta)\right] = \frac{1}{2}\left[(5\cos\theta)(\frac{2}{5}\sin\theta) + (\frac{5}{2}\cos\theta)(3\sin\theta)\right]$ $= \frac{1}{2}\left[(5\cos\theta)(-\frac{2}{5}\sin\theta) - (\frac{5}{2}\cos\theta)(3\sin\theta) + (\frac{1}{2}\cos\theta)(3\sin\theta)\right]$ $= \frac{1}{2}\left[(5\cos\theta)(-\frac{2}{5}\sin\theta) - (\frac{5}{2}\cos\theta)(3\sin\theta) + (\frac{1}{2}\cos\theta)(3\sin\theta)\right]$ $= \frac{1}{2}\left[(5\cos\theta)(-\frac{2}{5}\sin\theta) - (\frac{5}{2}\cos\theta)(3\sin\theta) + (\frac{1}{2}\cos\theta)(3\sin\theta) + (\frac{1}{2}\cos\theta)(3\sin\theta)\right]$ $= \frac{1}{2}\left[(5\cos\theta)(-\frac{2}{5}\sin\theta) - (\frac{5}{5}\sin\theta) + (\frac{1}{5}\cos\theta) + (\frac{1}{5}\sin\theta)(2\theta) + (\frac{1}{5}\cos\theta)(3\theta)\right]$ $= \frac{1}{2}\left[(5\cos\theta)(-\frac{2}{5}\sin\theta) + (\frac{1}{5}\cos\theta) + (\frac{1}{5}\sin\theta)(2\theta) + (\frac{1}{5}\cos\theta) + (\frac{1}{5}\sin\theta)(2\theta) + (\frac{1}{5}\cos\theta)(3\theta)\right]$ $= \frac{1}{2}\left[(5\cos\theta)(-\frac{1}{5}\cos\theta) + (\frac{1}{5}\sin\theta)(2\theta) + (\frac{1}{5}\cos\theta) + (\frac{1}{5}\sin\theta)(2\theta) + (\frac{1}{5}\cos\theta) + (\frac{1}{5}\sin\theta)(2\theta) + (\frac{1}{5}\cos\theta) + (\frac{1}{5}\sin\theta)(2\theta) + (\frac$		$M \operatorname{is}\left(\frac{5\cos\theta + 0}{2}, \frac{3\sin\theta + -\frac{16}{3}\sin\theta'}{2}\right)$ Accept $x = \frac{5}{2}\cos\theta, \ y = -\frac{7}{6}\sin\theta$	Correct method for midpoint for both coordinates with their y_Q . Could be implied. Alternatively , award for $\Delta OPM = \frac{1}{2} \Delta OPQ = \frac{1}{2} \times \frac{1}{2} \times \frac{16}{5} \sin \theta \times 5 \cos \theta$	M1
$ \begin{array}{ c c c c c } \hline & e.g., \\ PQ meets x-axis at R\left(\frac{16}{5}\cos\theta, 0\right) \\ \Rightarrow Area \Delta OPR + \Delta ORR \\ = \frac{1}{2} \times \frac{16}{5}\cos\theta\left(3\sin\theta + \frac{7}{6}\sin\theta\right) \\ \hline & \text{on callow recovery from a negative area.} \\ \hline & \text{Can only follow incorrect work i.e., an incorrect midpoint if } \\ \Delta OPM = \frac{1}{2}\Delta OPQ \text{ is used.} \\ Please see below for alternatives \\ \hline & \text{If shoclace method is used, score for a correct "extracted" expression for the area (allow with modulus if correct) e.g., \frac{1}{2}\left[0 - 5\cos\theta - \frac{1}{2}\cos\theta - 0\right] \\ \hline & \frac{1}{2}\left[(5\cos\theta)\left(-\frac{2}{6}\sin\theta\right) - \left(\frac{2}{5}\cos\theta\right)\left(3\sin\theta\right)\right] \text{ or } \frac{1}{2}\left[(5\cos\theta)\left(\frac{2}{5}\sin\theta\right) + \left(\frac{1}{2}\cos\theta\right)\left(3\sin\theta\right)\right] \\ \hline & \frac{1}{2}\left[\frac{20}{3}\sin\theta\cos\theta - \frac{10}{3}\sin2\theta\right] \Rightarrow (area =)\frac{10}{3} \text{Correct area following a correct expression} \\ \hline & \frac{10}{9} \text{ and justification: From } \frac{10}{9}\sin2\theta \Rightarrow (area =)\frac{10}{3} \text{Correct area following a correct expression} \\ \hline & \frac{10}{9} \frac{\sin \alpha}{\sin \alpha} \frac{1}{3}\sin^2\theta = (area =)\frac{10}{3} \text{Correct area following a correct expression} \\ \hline & \frac{10}{9} \frac{\sin \alpha}{\sin \alpha} \frac{1}{3}\sin^2\theta = (area =)\frac{10}{3} \text{Correct area following a correct expression} \\ \hline & \text{ or states } \theta = \frac{\pi}{4} \text{ or } 45^\circ \text{ or obtains this using differentiation: } \left\{\frac{10}{9}\sin 2\theta - 1 \Rightarrow \sin 2\theta < 1 \\ \text{ or otal coept if there is any wrong statement e.g., \sin 2\theta \in 1 \Rightarrow -1 < \sin 2\theta < 1 \\ \text{ or otal ecept if there is any wrong statement e.g., \sin 2\theta = 1 \Rightarrow \theta = \frac{\pi}{4} \text{ or } 45^\circ \\ \text{ Ignore any turber differentiation to justify maximum} \\ \hline & \text{ for any other expression: Must differentiation to justify maximum} \\ \hline & \text{ for all } 9 \\ \hline & \text{ for } (1 \oplus \theta + \frac{\pi}{2}) = 0 \\ \hline & \frac{\pi}{4}\left(\frac{\pi}{4}\sin\theta + \frac{\pi}{2}\sin\theta\right) < 5\cos\theta - \frac{\pi}{2}\times\frac{\pi}{3}\sin\theta \times 5\cos\theta \\ = \frac{\pi}{4}\frac{\pi}{3}\sin\theta \times 5\cos\theta \\ = \frac{\pi}{4}\frac{\pi}{3}\sin\theta \times 5\cos\theta - \frac{\pi}{4}\frac{\pi}{3}\sin\theta \times 5\cos\theta \\ = \frac{\pi}{4}\frac{\pi}{3}\sin\theta \times 5\cos\theta - \frac{\pi}{4}\frac{\pi}{3}\sin\theta \times 5\cos\theta \\ = \frac{\pi}{4}\frac{\pi}{3}\sin\theta + \frac{\pi}{2}\sin\theta - \frac{\pi}{2}\frac{\pi}{3}\sin\theta \times 5\cos\theta \\ = \frac{\pi}{4}\frac{\pi}{3}\sin\theta \times 5\cos\theta - \frac{\pi}{4}\frac{\pi}{3}\sin\theta \times 5\cos\theta \\ = \frac{\pi}{4}$			(see area examples below)	
If shoelace method is used, score for a correct "extracted" expression for the area (allow with modulus if correct) e.g., $\frac{1}{2} \begin{bmatrix} 0 & 5\cos\theta & \frac{5}{2}\cos\theta & 0 \\ 0 & 3\sin\theta & -\frac{7}{6}\sin\theta & 0 \end{bmatrix}$ $\Rightarrow \frac{1}{2} [(5\cos\theta)(-\frac{7}{6}\sin\theta) - (\frac{5}{2}\cos\theta)(3\sin\theta)] \text{ or } \frac{1}{2} [(5\cos\theta)(\frac{7}{5}\sin\theta) + (\frac{5}{2}\cos\theta)(3\sin\theta)]$ $\left\{ = \frac{20}{3}\sin\theta\cos\theta = \frac{10}{3}\sin2\theta \right\} \Rightarrow (\text{area} = 1)\frac{10}{3}$ Correct area following a correct expression A1 $\frac{10}{3}$ and justification: From $\frac{10}{3}\sin2\theta$ area (value) of $\sin 2\theta$ is 1 or e.g., $-1 \le \sin 2\theta \le 1$ or states $\theta = \frac{\pi}{4}$ or 45° or obtains this using differentiation: $\{\frac{10}{3}\}\sin2\theta \Rightarrow \{\frac{39}{3}\}\cos2\theta = 0 \Rightarrow$ Do not accept if there is any wrong statement e.g., $\sin 2\theta \le 1, -1 < \sin 2\theta < 1$ but we will condone the ambiguous " $\sin 2\theta$ is between 1 and -1 " From any other expression: Must differentiate (unless rewrites as $\frac{10}{3}\sin2\theta$) e.g., $\frac{39}{3}\sin\theta\cos\theta = \frac{29}{3}(\cos^2\theta - \sin^2\theta) \Rightarrow \frac{29}{3}\cos2\theta = 0$ or $\tan^2\theta = 1 \Rightarrow \theta = \frac{\pi}{4}$ or 45° Ignore any further differentiation to justify maximum (5) Total 9 May sec: $\Delta OPM = \frac{1}{2}\Delta OPQ = \frac{1}{2} \times \frac{1}{2} \times \frac{15}{3}\sin\theta \times 5\cos\theta$ (Scores the first 2 M marks together since <i>M</i> is not required $-ignore an absent or wrong M$) $\Delta OPM = \Delta OPQ - \Delta OMQ$ $\frac{1}{2} \times \frac{15}{3}\sin\theta \times 5\cos\theta - \frac{1}{2} \times \frac{15}{3}\sin\theta \times 5\cos\theta$ $(Sores 0 - \frac{3}{3}\sin\theta \cos\theta - \frac{15}{3}\sin\theta + \frac{5}{3}\cos\theta$ $\Delta OPM = PSTU - \Delta PSO - \Delta OMT - \Delta PMU$ $= 5\cos\theta \times (3\sin\theta - \frac{7}{5}\sin\theta) - \frac{1}{2} \times 3\sin\theta \times 5\cos\theta$ $\left\{ = \frac{125}{5}\cos\theta - \frac{15}{5}\sin\theta + \frac{1}{5}\cos\theta - \frac{1}{2} \times 3\sin\theta + 5\cos\theta$ $\left\{ = \frac{125}{5}\cos\theta - \frac{1}{5}\sin\theta - \frac{1}{5}\cos\theta - \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta$ $\left\{ = \frac{125}{5}\cos\theta - \frac{1}{5}\sin\theta - \frac{1}{5}\cos\theta - \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta$ $\left\{ = \frac{125}{5}\cos\theta - \frac{1}{5}\sin\theta - \frac{1}{5}\cos\theta - \frac{1}{5}\sin\theta + \frac{1}{5}\sin\theta} + \frac{1}{5}\cos\theta$ $\left\{ = \frac{125}{5}\cos\theta - \frac{1}{5}\sin\theta - \frac{1}{5}\cos\theta - \frac{1}{5}\sin\theta + \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta} - \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta - \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta} - \frac{1}{5}\sin\theta + \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta} + \frac{1}{5}\sin\theta + \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta} + \frac{1}{5}\sin\theta + \frac{1}{5}\sin\theta + \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta} + \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta + \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta} + \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta + \frac{1}{5}\sin\theta + \frac{1}{5}\cos\theta} $		e.g., $PQ \text{ meets } x \text{-axis at } R\left(\frac{16}{5}\cos\theta, 0\right)$ $\Rightarrow \text{Area } \Delta OPM = \Delta OPR + \Delta OMR$ $= \frac{1}{2} \times \frac{16}{5}\cos\theta \left(3\sin\theta + \frac{7}{6}\sin\theta\right)$	Correct unsimplified expression for area of ΔOPM Do not allow recovery from a negative area. Can only follow incorrect work i.e., an incorrect midpoint if $\Delta OPM = \frac{1}{2} \Delta OPQ$ is used. Please see below for alternatives	M1
$\begin{cases} = \frac{20}{3}\sin\theta\cos\theta = \frac{10}{3}\sin 2\theta \\ \Rightarrow (\operatorname{area} =)\frac{10}{3} \text{Correct area following a correct expression} \\ \hline \begin{cases} = \frac{20}{3}\sin\theta\cos\theta = \frac{10}{3}\sin 2\theta \\ \Rightarrow (\operatorname{area} =)\frac{10}{3} \text{Correct area following a correct expression} \\ \hline \\ \frac{10}{3} \text{ and justification: From } \frac{10}{3}\sin 2\theta \\ \Rightarrow (\operatorname{area} =)\frac{10}{3} \text{Correct area following a correct expression} \\ \hline \\ \text{or states } \theta = \frac{\pi}{4} \text{ or } 45^\circ \text{ or obtains this using differentiation: } \{\frac{10}{3}\}\sin 2\theta \\ \Rightarrow (\frac{10}{3})\sin 2\theta \\ \Rightarrow (\frac{10}{3})\sin 2\theta \\ \Rightarrow (\frac{10}{3})\sin 2\theta \\ \Rightarrow (\frac{10}{3})\cos 2\theta = 0 \\ \Rightarrow (\frac{10}{3})\sin 2\theta \\ \Rightarrow (\frac{10}{3})\sin$		If shoelace method is used, score for (allow with modulus if correct $\Rightarrow \frac{1}{2} (5\cos\theta) (-\frac{7}{6}\sin\theta) - (\frac{5}{2}\cos\theta) (3\sin\theta) (3\sin\theta) - (\frac{5}{2}\cos\theta) (3\sin\theta) (3\sin\theta) - (1+\cos\theta) (3\sin\theta) -$	a correct "extracted" expression for the area et) e.g., $\frac{1}{2} \begin{vmatrix} 0 & 5\cos\theta & \frac{5}{2}\cos\theta & 0 \\ 0 & 3\sin\theta & -\frac{7}{6}\sin\theta & 0 \end{vmatrix}$ a) or $\frac{1}{2} \lceil (5\cos\theta) (\frac{7}{6}\sin\theta) + (\frac{5}{2}\cos\theta) (3\sin\theta) \rceil$	
$\frac{10}{3} and justification: From \frac{10}{3} \sin 2\theta : \max (\text{value}) \text{ of } \sin 2\theta \text{ is } 1 \text{ or } e.g., -1 \leqslant \sin 2\theta \leqslant 1or states \theta = \frac{\pi}{4} or 45^\circ or obtains this using differentiation: \{\frac{10}{3}\}\sin 2\theta \Rightarrow \{\frac{20}{3}\}\cos 2\theta = 0 \Rightarrow \dotsDo not accept if there is any wrong statement e.g., \sin 2\theta \leqslant 1, -1 < \sin 2\theta < 1 but we willcondone the ambiguous "\sin 2\theta is between 1 and -1"From any other expression: Must differentiate (unless rewrites as \frac{10}{3}\sin 2\theta)e.g., \frac{20}{3}\sin\theta\cos\theta = \frac{20}{3}(\cos^2\theta - \sin^2\theta) \Rightarrow \frac{20}{3}\cos 2\theta = 0 or \tan^2\theta = 1 \Rightarrow \theta = \frac{\pi}{4} or 45^\circIgnore any further differentiation to justify maximum(5)Total 9\frac{\Phi(\frac{1}{2}\cos\theta, \frac{3}{2}\sin\theta)}{\sqrt{2}\cos^2(\theta - \frac{1}{2})^2(\frac{1}{2}\sin\theta)^2(\frac{1}{2}\cos\theta)} = \frac{1}{2} \times \frac{16}{3}\sin\theta \times 5\cos\theta}(Scores the first 2 M marks together since M is notrequired -i gnore an absent or wrong M)\Delta OPM = \Delta OPQ - \Delta OMQ\frac{1}{2} \times \frac{16}{3}\sin\theta \times 5\cos\theta - \frac{1}{2} \times \frac{16}{3}\sin\theta \times 5\cos\theta}\left\{ = \frac{125}{6}\sin\theta\cos\theta - \frac{20}{3}\sin\theta\cos\theta - \frac{15}{2}\sin\theta\cos\theta + \frac{15}{2}\sin\theta\cos\theta} \right\}\Delta OPM = PSTU - \Delta PSO - \Delta OMT - \Delta PMU= 5\cos\theta \times (3\sin\theta + \frac{7}{6}\sin\theta) - \frac{1}{2} \times 3\sin\theta \times 5\cos\theta}\left\{ = (\frac{125}{2} - \frac{15}{2} - \frac{15}{2} - \frac{15}{2} - \frac{15}{2} - \frac{15}{2} \sin\theta} \right\}$		$\left\{ = \frac{20}{3} \sin \theta \cos \theta = \frac{10}{3} \sin 2\theta \right\} \Rightarrow (\text{area} =) \frac{10}{3} \text{ Correct area } \frac{\text{following a correct expression}}{10} \right\}$		
(5) $Total 9$ $May see:$ $\Delta OPM = \frac{1}{2} \Delta OPQ = \frac{1}{2} \times \frac{1}{2} \times \frac{16}{3} \sin \theta \times 5 \cos \theta$ $(Scores the first 2 M marks together since M is not required - ignore an absent or wrong M)$ $\Delta OPM = \Delta OPQ - \Delta OMQ$ $\frac{1}{2} \times \frac{16}{3} \sin \theta \times 5 \cos \theta - \frac{1}{2} \times \frac{16}{3} \sin \theta \times \frac{5}{2} \cos \theta$ $\Delta OPM = \Delta OPQ - \Delta OMQ$ $\frac{1}{2} \times \frac{16}{3} \sin \theta \times 5 \cos \theta - \frac{1}{2} \times \frac{16}{3} \sin \theta \times \frac{5}{2} \cos \theta$ $\Delta OPM = \Delta PQS - \Delta OMQ - \Delta PSO$ $= \frac{1}{2} \times (\frac{16}{3} \sin \theta + 3\sin \theta) \times 5 \cos \theta - \frac{1}{2} \times \frac{15}{3} \sin \theta \times 5 \cos \theta$ $\left\{ = \frac{125}{6} \sin \theta \cos \theta - \frac{20}{3} \sin \theta \cos \theta - \frac{15}{2} \sin \theta \cos \theta \right\}$ $\Delta OPM = PSTU - \Delta PSO - \Delta OMT - \Delta PMU$ $= 5 \cos \theta \times (3 \sin \theta + \frac{7}{6} \sin \theta) - \frac{1}{2} \times 3 \sin \theta \times 5 \cos \theta$ $-\frac{1}{2} \times \frac{5}{2} \cos \theta \times (3\sin \theta + \frac{7}{6} \sin \theta) - \frac{1}{2} \times 3\sin \theta \times 5 \cos \theta$ $\left\{ = (\frac{125}{2} - \frac{15}{2} - \frac{15}{2} - \frac{125}{2}) \sin \theta \cos \theta \right\}$	$\frac{10}{3} \text{ and justification: From } \frac{10}{3} \sin 2\theta : \max \text{ (value) of } \sin 2\theta \text{ is } 1 \text{ or e.g., } -1 \leqslant \sin 2\theta \leqslant 1$ or states $\theta = \frac{\pi}{4}$ or 45° or obtains this using differentiation: $\left\{\frac{10}{3}\right\} \sin 2\theta \Rightarrow \left\{\frac{20}{3}\right\} \cos 2\theta = 0 \Rightarrow$ Do not accept if there is any wrong statement e.g., $\sin 2\theta \leqslant 1$, $-1 < \sin 2\theta < 1$ but we will condone the ambiguous " $\sin 2\theta$ is between 1 and -1 " From any other expression: Must differentiate (unless rewrites as $\frac{10}{3} \sin 2\theta$) e.g., $\frac{20}{3} \sin \theta \cos \theta = \frac{20}{3} \left(\cos^2 \theta - \sin^2 \theta\right) \Rightarrow \frac{20}{3} \cos 2\theta = 0$ or $\tan^2 \theta = 1 \Rightarrow \theta = \frac{\pi}{4}$ or 45°			A1
$\frac{\operatorname{Total 9}}{\operatorname{May see:}}$ $\Delta OPM = \frac{1}{2} \Delta OPQ = \frac{1}{2} \times \frac{1}{2} \times \frac{16}{3} \sin \theta \times 5 \cos \theta$ (Scores the first 2 M marks together since <i>M</i> is not required – ignore an absent or wrong <i>M</i>) $\Delta OPM = \Delta OPQ - \Delta OMQ$ $\frac{1}{2} \times \frac{16}{3} \sin \theta \times 5 \cos \theta - \frac{1}{2} \times \frac{16}{3} \sin \theta \times \frac{5}{2} \cos \theta$ $\Delta OPM = \Delta OPQ - \Delta OMQ$ $\frac{1}{2} \times \frac{16}{3} \sin \theta \times 5 \cos \theta - \frac{1}{2} \times \frac{16}{3} \sin \theta \times \frac{5}{2} \cos \theta$ $\Delta OPM = \Delta PQS - \Delta OMQ - \Delta PSO$ $= \frac{1}{2} \times (\frac{16}{3} \sin \theta \times 5 \cos \theta - \frac{1}{2} \times \frac{16}{3} \sin \theta \times 5 \cos \theta - \frac{1}{2} \times 3 \sin \theta \times 5 \cos \theta$ $\left\{ = \frac{125}{6} \sin \theta \cos \theta - \frac{20}{3} \sin \theta \cos \theta - \frac{15}{2} \sin \theta \cos \theta \right\}$ $\Delta OPM = PSTU - \Delta PSO - \Delta OMT - \Delta PMU$ $= 5 \cos \theta \times (3 \sin \theta + \frac{7}{6} \sin \theta) - \frac{1}{2} \times 3 \sin \theta \times 5 \cos \theta$ $-\frac{1}{2} \times \frac{5}{2} \cos \theta \times \frac{7}{6} \sin \theta - \frac{1}{2} \times (5 \cos \theta - \frac{5}{2} \cos \theta) (3 \sin \theta + \frac{7}{6} \sin \theta)$ $\left\{ = (\frac{125}{2} - \frac{15}{2} - \frac{35}{2} - \frac{125}{2}) \sin \theta \cos \theta \right\}$			ý ý	(5)
Note that attempts that start by using Pythagoras for PM will also require the perpendicular distance from	$\frac{10 \text{ (al } 9}{10 \text{ (al } 9)}$ $\frac{10 \text{ (al } 9}{10 \text{ (al } 9)}$ $\frac{10 \text{ (al } 9}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 9}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 9}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 9}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 9}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$ $\frac{10 \text{ (al } 10 \text{ (al } 10)}{10 \text{ (al } 10)}$			

Question Number	Scheme	Notes	 Marks
7	$y = \ln\left(\tanh\frac{x}{2}\right) \qquad 1 \leqslant$	$x \leqslant 2$	
(a)	$\frac{dy}{dx} = \frac{1}{\tanh \frac{x}{2}} \times \frac{1}{2} \operatorname{sech}^{2} \frac{x}{2} \text{ or e.g., } \frac{1}{2} \operatorname{coth}^{2}$ or $e^{y} = \tanh \frac{x}{2} \Rightarrow \left(\tanh \frac{x}{2} \right) \frac{dy}{dx} = \frac{1}{2}$ or $\Rightarrow \operatorname{artanh} \left(e^{y} \right) = \frac{x}{2} \Rightarrow \left(\frac{e^{y}}{1 - e^{2y}} \right) \frac{dy}{dx} = \frac{1}{2} \Rightarrow \frac{dy}{dx}$ Obtains an expression for (or equation involving) $\frac{dy}{dx}$ sign/coefficient errors only and any $\frac{x}{2}$ s written as x missing "h"s in hyperbolic functions unless	$\ln \frac{x}{2} \left(1 - \tanh^2 \frac{x}{2} \right)$ $\frac{1}{2} \operatorname{sech}^2 \frac{x}{2}$ $= \frac{1}{2} \operatorname{coth} \frac{x}{2} \left(1 - \tanh^2 \left(\frac{x}{2} \right) \right)$ of appropriate form. Condone but no "y"s. Do not condone is they are recovered	M1
	$\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \Rightarrow \int \sqrt{1 + \left(\frac{\operatorname{sech}^2 x}{2 \tanh \frac{x}{2}}\right)^2} (dx) \text{ or e.g., } \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ Applies arc length formula (with or without the integration have been simplified incorrectly before substitution. Do not have worked backwards to deduce that the derivative is constrained work processing $1 + \left(\frac{dy}{dx}\right)^2$ provided the expression is shown of the derivative and the derivative of the expression is shown of the derivative of	$\overline{\left(\frac{dy}{dx}\right)^2} \Rightarrow \sqrt{1 + \left(\frac{\cosh \frac{x}{2}}{2\sinh \frac{x}{2}\cosh^2 \frac{x}{2}}\right)^2}$ on sign) with their $\frac{dy}{dx}$ which may not condone attempts that clearly cosech x. Also condone incorrect own as square rooted afterwards. k but forming $y\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ is M0	M1
	$\sqrt{1 + \left(\frac{1}{2\sinh\frac{x}{2}\cosh\frac{x}{2}}\right)^2} \rightarrow \sqrt{1 + \left(\frac{1}{2\sinh\frac{x}{2}\cosh\frac{x}{2}}\right)^2}$ Uses identity/identities (sign errors only) to obtain $\sqrt{1 + 1}$ Attempts that square the derivative and add the 1 first to x must be convincing Requires both previous M	$\frac{\left(\frac{dy}{dx}\right)^2}{\left(\frac{dy}{dx}\right)^2}$ in terms of x and not $\frac{x}{2}$. st before attempting to convert g. marks.	ddM1
	$\sqrt{1 + \left(\frac{1}{\sinh x}\right)^2} = \sqrt{1 + \operatorname{cosech}^2 x} \Rightarrow s = \int_1^2 \coth x dx \text{ or e.g.}, = \int_1^2 \operatorname{coth} x $	$\sqrt{\frac{\sinh^2 x + 1}{\sinh^2 x}} dx \Rightarrow s = \int_1^2 \coth x dx$ e non-trivial intermediate line ithout "s = " but RHS must be coach but it must be convincing een. arguments even if recovered. r e.g., sech $\frac{x^2}{2}$ if recovered	A1*
			(4)

7(b) $\int \cot x dx = \ln(\sinh x)$ Correct integration. May see $-\ln(\operatorname{cosech} x)$ May see the sinh x in exponentials without the "2" which may come from the substitution $u = e^x - e^{-x}$ i.e., $\ln(e^x - e^{-x})$ 1, 2 & 3. $\ln\left(\frac{e^2 - e^{-2}}{2}\right) - \ln\left(\frac{e - e^{-1}}{2}\right) = \ln\left(\frac{e^2 - \frac{1}{e^2}}{e^-\frac{1}{e}}\right)$ or 4. $\ln(\sinh 2) - \ln(\sinh 1) = \ln\left(\frac{\sinh 2}{\sinh 1}\right)$ Following replacement of $\int \coth x dx with \pm \ln(\sinh x)$, $\pm \ln(\cosh x)$, $\pm \ln(\cosh x) or \pm \ln(\operatorname{sech} x)$, substitutes given limits, subtracts and writes as a single logarithm. Condone sign errors if exponential forms used and may use negative powers of e. 1. $\ln\left(\frac{e^2 - \frac{1}{e^2}}{e^-\frac{1}{e}}\right) = \ln\left(\frac{e^4 - 1}{e^3 - e}\right)$ or 2. $\Rightarrow \ln\left(\frac{\left(e + \frac{1}{e}\right)\left(e - \frac{1}{e}\right)}{e^-\frac{1}{e}}\right)$ or $\ln\left(\frac{\left(e + e^{-1}\right)\left(e - e^{-1}\right)}{(e^-e^{-1})}\right)$ or 3. $\Rightarrow \ln\left(\frac{e^2 - e^{-2}}{e^-e^{-1}} \times \frac{e^+e^{-1}}{e^+e^{-1}}\right) = \ln\left(\frac{\left(e^2 - e^{-2}\right)\left(e^+e^{-1}\right)}{e^2 - e^{-2}}\right)$ or 4. $\ln\left(\frac{\sinh 2}{\sinh 1}\right) = \ln\left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$ Following use of correct exponential form for sinh/cosech: 1. Obtains a correct ln of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces sinh 2 with 2 sinh 1 cosh 1 allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1}$ Requires previous M mark. 1. $s = \ln\left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e(e^2 - 1)}\right) = \ln\left(e + \frac{1}{e}\right)$ or $2 \& 3. \ s = \ln\left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route to a single or $2 \& 3. \ s = \ln\left(e + \frac{1}{e}\right)$	Question Number	Scheme	Notes	Marks
B1 Correct integration. May see $-\ln(\operatorname{cosech} x)$ May see the sinh x in exponentials without the "2" which may come from the substitution $u = e^x - e^{-x}$ i.e., $\ln(e^x - e^{-x})$ 1, 2 & 3. $\ln\left(\frac{e^2 - e^{-2}}{2}\right) - \ln\left(\frac{e - e^{-1}}{2}\right) = \ln\left(\frac{e^2 - \frac{1}{e^2}}{e^{-1} - \frac{1}{e}}\right)$ or 4. $\ln(\sinh 2) - \ln(\sinh 1) = \ln\left(\frac{\sinh 2}{\sinh 1}\right)$ Following replacement of $\int \coth dx$ with $\pm \ln(\sinh x)$, $\pm \ln(\cosh x)$, $\pm \ln(\cosh x)$ or $\pm \ln(\operatorname{sech} x)$, substitutes given limits, subtracts and writes as a single logarithm. Condone sign errors if exponential forms used and may use negative powers of e. 1. $\ln\left(\frac{e^2 - \frac{1}{e^2}}{e^{-\frac{1}{e}}}\right) = \ln\left(\frac{e^4 - 1}{e^3 - e}\right)$ or 2. $\Rightarrow \ln\left(\frac{\left(e^{+\frac{1}{e}}\right)\left(e^{-\frac{1}{e}}\right)}{e^{-\frac{1}{e}}}\right)$ or $\ln\left(\frac{\left(e + e^{-1}\right)\left(e - e^{-1}\right)}{(e^{-e^{-1}})}\right)$ or 3. $\Rightarrow \ln\left(\frac{e^2 - e^{-2}}{e^{-e^{-2}}} \times \frac{e + e^{-1}}{e^{+e^{-1}}}\right) = \ln\left(\frac{\left(e^2 - e^{-2}\right)\left(e + e^{-1}\right)}{e^2 - e^{-2}}\right)$ or 4. $\ln\left(\frac{\sinh 2}{\sinh 1}\right) = \ln\left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$ Following use of correct exponential form for sinh/cosech: 1. Obtains a correct ln of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces $\sinh 2$ with 2 $\sinh 1 \cosh 1$ allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln\sqrt{4\cosh^2 1}$ Requires previous M mark. 1. $s = \ln\left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e(e^2 - 1)}\right) = \ln\left(e + \frac{1}{e}\right)$ or $2 \& 3. \ s = \ln\left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route of the set of	7(b)	$\int \coth x dx = \ln(\sinh x)$		
B1 May see the sinh x in exponentials without the "2" which may come from the substitution $u = e^x - e^{-x}$ i.e., $\ln(e^x - e^{-x})$ 1,2&3. $\ln\left(\frac{e^2 - e^{-2}}{2}\right) - \ln\left(\frac{e - e^{-1}}{2}\right) = \ln\left(\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right)$ or 4. $\ln(\sinh 2) - \ln(\sinh 1) = \ln\left(\frac{\sinh 2}{\sinh 1}\right)$ Following replacement of $\int \coth x dx$ with $\pm \ln(\sinh x)$, $\pm \ln(\cosh x)$, $\pm \ln(\cosh x)$ or $\pm \ln(\operatorname{sech} x)$, substitutes given limits, subtracts and writes as a single logarithm. Condone sign errors if exponential forms used and may use negative powers of e. 1. $\ln\left(\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right) = \ln\left(\frac{e^4 - 1}{e^3 - e}\right)$ or 2. $\Rightarrow \ln\left(\frac{\left(e + \frac{1}{e}\right)\left(e - \frac{1}{e}\right)}{e - \frac{1}{e}}\right)$ or $\ln\left(\frac{\left(e + e^{-1}\right)\left(e - e^{-1}\right)}{\left(e - e^{-1}\right)}\right)$ or 3. $\Rightarrow \ln\left(\frac{e^2 - e^{-2}}{e - e^{-1}} \times \frac{e + e^{-1}}{e + e^{-1}}\right) = \ln\left(\frac{\left(e^2 - e^{-2}\right)\left(e + e^{-1}\right)}{e^2 - e^{-2}}\right)$ or 4. $\ln\left(\frac{\sinh 2}{\sinh 1}\right) = \ln\left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$ Following use of correct exponential form for sinh/cosech: 1. Obtains a correct h of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces sinh 2 with 2 sinh1 cosh1 allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1}$ Requires previous M mark. 1. $s = \ln\left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e(e^2 - 1)}\right) = \ln\left(e + \frac{1}{e}\right)$ or 2 & 3. $s = \ln\left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		Correct integration May see -ln	$(\operatorname{cosech} r)$	
$\frac{1}{1 + 1} = \ln \left(\frac{1}{2} + \frac{1}{2}\right) = \ln \left(\frac{e^{-1}}{2}\right) = \ln \left(\frac{e^{-1}}{2}\right) = \ln \left(\frac{e^{2}}{e^{-1}}\right) = \ln \left(\frac{e^{2}}$		May see the sinh r in exponentials without the "?"	'which may come from the	B 1
$1, 2 \& 3. \ln\left(\frac{e^2 - e^{-2}}{2}\right) - \ln\left(\frac{e - e^{-1}}{2}\right) = \ln\left(\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right) \text{ or } 4. \ln\left(\sinh 2\right) - \ln\left(\sinh 1\right) = \ln\left(\frac{\sinh 2}{\sinh 1}\right)$ $M1$ Following replacement of $\int \coth x dx with \pm \ln\left(\sinh x\right), \pm \ln\left(\cosh x\right), \pm \ln\left(\cosh x\right) \text{ or } t \ln\left(\operatorname{sech} x\right), \text{ substitutes given limits, subtracts and writes as a single logarithm. Condone sign errors if exponential forms used and may use negative powers of e. 1. \ln\left(\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right) = \ln\left(\frac{\frac{e^4 - 1}{e^3 - e}}{e^3 - e}\right) \text{ or } 2. \Rightarrow \ln\left(\frac{\left(e + \frac{1}{e}\right)\left(e - \frac{1}{e}\right)}{e - \frac{1}{e}}\right) \text{ or } \ln\left(\frac{\left(e + e^{-1}\right)\left(e - e^{-1}\right)}{\left(e - e^{-1}\right)}\right) or 3. \Rightarrow \ln\left(\frac{e^2 - e^{-2}}{e - e^{-1}} \times \frac{e + e^{-1}}{e^{+} e^{-1}}\right) = \ln\left(\frac{\left(e^2 - e^{-2}\right)\left(e + e^{-1}\right)}{e^2 - e^{-2}}\right) \text{ or } 4. \ln\left(\frac{\sinh 2}{\sinh 1}\right) = \ln\left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right) Following use of correct exponential form for sinh/cosech: 1. Obtains a correct In of a single fraction (or product of single fractions) with no negative powers of c or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces sinh 2 with 2 sinh 1 cosh 1 allowing equivalent work e.g., \frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1} Requires previous M mark. 1. s = \ln\left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e(e^2 - 1)}\right) = \ln\left(e + \frac{1}{e}\right) \text{ or } 2\& 3. s = \ln\left(e + \frac{1}{e}\right) Obtains given answer from complete and correct work. Minimum for each route$		substitution $u = e^x - e^{-x}$ i.e., ln	$(e^x - e^{-x})$	
$1, 2 \& 3. \ln\left(\frac{e^2 - e^{-2}}{2}\right) - \ln\left(\frac{e - e^{-1}}{2}\right) = \ln\left(\frac{e^2 - \frac{e^2}{e^2}}{e - \frac{1}{e}}\right) \text{ or } 4. \ln(\sinh 2) - \ln(\sinh 1) = \ln\left(\frac{\sinh 2}{\sinh 1}\right)$ $M1$ Following replacement of $\int \coth x dx \text{ with } \pm \ln(\sinh x), \pm \ln(\cosh x), \pm \ln(\cosh x) \text{ or } \pm \ln(\operatorname{sech} x), \text{ substitutes given limits, subtracts and writes as a single logarithm. Condone sign errors if exponential forms used and may use negative powers of e. 1. \ln\left(\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right) = \ln\left(\frac{e^4 - 1}{e^3 - e}\right) \text{ or } 2. \Rightarrow \ln\left(\frac{\left(e + \frac{1}{e}\right)\left(e - \frac{1}{e}\right)}{e - \frac{1}{e}}\right) \text{ or } \ln\left(\frac{\left(e + e^{-1}\right)\left(e - e^{-1}\right)}{\left(e - e^{-1}\right)}\right) or 3. \Rightarrow \ln\left(\frac{e^2 - e^{-2}}{e - e^{-1}} \times \frac{e + e^{-1}}{e + e^{-1}}\right) = \ln\left(\frac{\left(e^2 - e^{-2}\right)\left(e + e^{-1}\right)}{e^2 - e^{-2}}\right) \text{ or } 4. \ln\left(\frac{\sinh 2}{\sinh 1}\right) = \ln\left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right) Following use of correct exponential form for sinh/cosech: 1. Obtains a correct ln of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces sinh 2 with 2 sinh 1 cosh 1 allowing equivalent work e.g., \frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1} \frac{\ln\left(\frac{(e^2 + 1)(e^2 - 1)}{e(e^2 - 1)}\right)}{\ln\left(e(e^2 - 1)\right)} = \ln\left(e + \frac{1}{e}\right) \text{ or } 2\& 3. s = \ln\left(e + \frac{1}{e}\right)$				
Following replacement of $\int \cot x dx$ with $\pm \ln(\sinh x)$, $\pm \ln(\cosh x)$, $\pm \ln(\cosh x)$, $\pm \ln(\cosh x)$, $\sin \ln(\cosh x)$, $\sin \ln(\cosh x)$, substitutes given limits, subtracts and writes as a single logarithm. Condone sign errors if exponential forms used and may use negative powers of e. 1. $\ln \left(\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right) = \ln \left(\frac{e^4 - 1}{e^3 - e}\right)$ or 2. $\Rightarrow \ln \left(\frac{\left(e + \frac{1}{e}\right)\left(e - \frac{1}{e}\right)}{e - \frac{1}{e}}\right)$ or $\ln \left(\frac{\left(e + e^{-1}\right)\left(e - e^{-1}\right)}{\left(e - e^{-1}\right)}\right)$ or 3. $\Rightarrow \ln \left(\frac{e^2 - e^{-2}}{e - e^{-1}} \times \frac{e + e^{-1}}{e + e^{-1}}\right) = \ln \left(\frac{\left(e^2 - e^{-2}\right)\left(e + e^{-1}\right)}{e^2 - e^{-2}}\right)$ or 4. $\ln \left(\frac{\sinh 2}{\sinh 1}\right) = \ln \left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$ Following use of correct exponential form for $\sinh/\cosh e$ in the formula of e^{-1} . 1. Obtains a correct In of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces $\sinh 2$ with $2\sinh 1\cosh 1$ allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1}$ Requires previous M mark. 1. $s = \ln \left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e\left(e^2 - 1\right)}\right) = \ln \left(e + \frac{1}{e}\right)$ or $2\& 3$. $s = \ln \left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		1,2 & 3. $\ln\left(\frac{e^2 - e^{-2}}{2}\right) - \ln\left(\frac{e - e^{-1}}{2}\right) = \ln\left(\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right)$ or 4. In	$\ln(\sinh 2) - \ln(\sinh 1) = \ln\left(\frac{\sinh 2}{\sinh 1}\right)$	M 1
substitutes given limits, subtracts and writes as a single logarithm. Condone sign errors if exponential forms used and may use negative powers of e. $1. \ln \left(\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right) = \ln \left(\frac{e^4 - 1}{e^3 - e}\right) \text{ or } 2. \Rightarrow \ln \left(\frac{\left(e + \frac{1}{e}\right)\left(e - \frac{1}{e}\right)}{e - \frac{1}{e}}\right) \text{ or } \ln \left(\frac{\left(e + e^{-1}\right)\left(e - e^{-1}\right)}{\left(e - e^{-1}\right)}\right)$ or $3. \Rightarrow \ln \left(\frac{e^2 - e^{-2}}{e - e^{-1}} \times \frac{e + e^{-1}}{e + e^{-1}}\right) = \ln \left(\frac{\left(e^2 - e^{-2}\right)\left(e + e^{-1}\right)}{e^2 - e^{-2}}\right)$ or $4. \ln \left(\frac{\sin 2}{\sinh 1}\right) = \ln \left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$ Following use of correct exponential form for sinh/cosech: 1. Obtains a correct ln of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces sinh 2 with 2 sinh 1 cosh 1 allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1}$ Requires previous M mark. $1. s = \ln \left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e\left(e^2 - 1\right)}\right) = \ln \left(e + \frac{1}{e}\right) \text{ or } 2\& 3. s = \ln \left(e + \frac{1}{e}\right)$ Dottains given answer from complete and correct work. Minimum for each route		Following replacement of $\int \coth x dx$ with $\pm \ln(\sinh x), \pm \ln(\cosh x)$	$\cosh x$, $\pm \ln(\operatorname{cosech} x)$ or $\pm \ln(\operatorname{sech} x)$,	
$\frac{e^{2} - \frac{1}{e^{2}}}{e - \frac{1}{e}} = \ln \left(\frac{e^{4} - 1}{e^{3} - e}\right) = \ln \left(\frac{e^{4} - 1}{e^{3} - e}\right) \text{ or } 2. \Rightarrow \ln \left(\frac{\left(e + \frac{1}{e}\right)\left(e - \frac{1}{e}\right)}{e - \frac{1}{e}}\right) \text{ or } \ln \left(\frac{\left(e + e^{-1}\right)\left(e - e^{-1}\right)}{\left(e - e^{-1}\right)}\right)$ or $3. \Rightarrow \ln \left(\frac{e^{2} - e^{-2}}{e - e^{-1}} \times \frac{e + e^{-1}}{e + e^{-1}}\right) = \ln \left(\frac{\left(e^{2} - e^{-2}\right)\left(e + e^{-1}\right)}{e^{2} - e^{-2}}\right) \text{ or } 4. \ln \left(\frac{\sinh 2}{\sinh 1}\right) = \ln \left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$ Following use of correct exponential form for sinh/cosech: 1. Obtains a correct ln of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces sinh 2 with 2 sinh 1 cosh 1 allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^{2} 1 - 1\right)^{2} - 1}{\cosh^{2} 1 - 1}} = \sqrt{\frac{4\cosh^{4} 1 - 4\cosh^{2} 1}{\cosh^{2} 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^{2} 1}$ Requires previous M mark. $1. s = \ln \left(\frac{\left(e^{2} + 1\right)\left(e^{2} - 1\right)}{e\left(e^{2} - 1\right)}\right) = \ln \left(e + \frac{1}{e}\right) \text{ or } 2\& 3. s = \ln \left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		substitutes given limits, subtracts and writes as a single le	ogarithm. Condone sign errors if	
$1. \ln \left[\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right] = \ln \left[\frac{e^2 - 1}{e^2 - 1}\right] = \ln \left(\frac{e^4 - 1}{e^3 - e}\right) \text{ or } 2. \Rightarrow \ln \left[\frac{\left e + \frac{1}{e}\right \left e - \frac{1}{e}\right }{e - \frac{1}{e}}\right] \text{ or } \ln \left(\frac{\left(e + e^{-1}\right)\left(e - e^{-1}\right)}{\left(e - e^{-1}\right)}\right)\right]$ or $3. \Rightarrow \ln \left(\frac{e^2 - e^{-2}}{e - e^{-1}} \times \frac{e + e^{-1}}{e + e^{-1}}\right) = \ln \left(\frac{\left(e^2 - e^{-2}\right)\left(e + e^{-1}\right)}{e^2 - e^{-2}}\right) \text{ or } 4. \ln \left(\frac{\sin 2}{\sinh 1}\right) = \ln \left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$ Following use of correct exponential form for sinh/cosech: 1. Obtains a correct ln of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces sinh 2 with 2 sinh 1 cosh 1 allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1}$ Requires previous M mark. $1. s = \ln \left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e\left(e^2 - 1\right)}\right) = \ln \left(e + \frac{1}{e}\right) \text{ or } 2\& 3. s = \ln \left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		(1) (e^4-1) $((1)$	(1)	
or $3 \Rightarrow \ln\left(\frac{e^2 - e^{-2}}{e - e^{-1}} \times \frac{e + e^{-1}}{e + e^{-1}}\right) = \ln\left(\frac{(e^2 - e^{-2})(e + e^{-1})}{e^2 - e^{-2}}\right)$ or 4 . $\ln\left(\frac{\sinh 2}{\sinh 1}\right) = \ln\left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$ Following use of correct exponential form for sinh/cosech: 1. Obtains a correct ln of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces $\sinh 2$ with $2\sinh 1\cosh 1$ allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{(2\cosh^2 1 - 1)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln\sqrt{4\cosh^2 1}$ Requires previous M mark. 1. $s = \ln\left(\frac{(e^2 + 1)(e^2 - 1)}{e(e^2 - 1)}\right) = \ln\left(e + \frac{1}{e}\right)$ or $2\& 3$. $s = \ln\left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		$1. \ln\left(\frac{e^2 - \frac{1}{e^2}}{e - \frac{1}{e}}\right) = \ln\left(\frac{\frac{e^2}{e^2}}{\frac{e^2 - 1}{e}}\right) = \ln\left(\frac{e^4 - 1}{e^3 - e}\right) \text{ or } 2. \Rightarrow \ln\left(\frac{\frac{e^4 - 1}{e^2}}{e^2}\right)$	$\frac{\left(\frac{e-e}{e}\right)}{e-\frac{1}{e}} \text{or } \ln\left(\frac{\left(e+e^{-1}\right)\left(e-e^{-1}\right)}{\left(e-e^{-1}\right)}\right)$	
Following use of correct exponential form for sinh/cosech: 1. Obtains a correct ln of a single fraction (or product of single fractions) with no negative powers of e or 2. Uses difference of two squares to correctly factorise numerator or 3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces sinh 2 with 2 sinh 1 cosh 1 allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1}$ Requires previous M mark. 1. $s = \ln\left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e\left(e^2 - 1\right)}\right) = \ln\left(e + \frac{1}{e}\right)$ or 2 & 3. $s = \ln\left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		or $3. \Rightarrow \ln\left(\frac{e^2 - e^{-2}}{e - e^{-1}} \times \frac{e + e^{-1}}{e + e^{-1}}\right) = \ln\left(\frac{(e^2 - e^{-2})(e + e^{-1})}{e^2 - e^{-2}}\right)$ or	4. $\ln\left(\frac{\sinh 2}{\sinh 1}\right) = \ln\left(\frac{2\sinh 1\cosh 1}{\sinh 1}\right)$	
1. $s = \ln\left(\frac{(e^2+1)(e^2-1)}{e(e^2-1)}\right) = \ln\left(e+\frac{1}{e}\right)$ or 2&3. $s = \ln\left(e+\frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		Following use of correct exponential for 1. Obtains a correct ln of a single fraction (or produ	m for sinh/cosech: act of single fractions) with no	dM1
3. Applies correct multiplier to achieve expression shown or 4. Correctly replaces sinh 2 with 2 sinh 1 cosh 1 allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1}$ Requires previous M mark. 1. $s = \ln \left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e\left(e^2 - 1\right)}\right) = \ln \left(e + \frac{1}{e}\right)$ or 2 & 3. $s = \ln \left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		2. Uses difference of two squares to correctly	r factorise numerator or	
4. Correctly replaces sinh 2 with 2 sinh 1 cosh 1 allowing equivalent work e.g., $\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln \sqrt{4\cosh^2 1}$ Requires previous M mark. 1. $s = \ln \left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e\left(e^2 - 1\right)}\right) = \ln \left(e + \frac{1}{e}\right)$ or 2 & 3. $s = \ln \left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		3. Applies correct multiplier to achieve ex	pression shown or	
$\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cosh^2 1}{\cosh^2 1 - 1}} \Rightarrow s = \ln\sqrt{4\cosh^2 1}$ Requires previous M mark. $1. \ s = \ln\left(\frac{\left(e^2 + 1\right)\left(e^2 - 1\right)}{e\left(e^2 - 1\right)}\right) = \ln\left(e + \frac{1}{e}\right) \text{ or } 2 \& 3. \ s = \ln\left(e + \frac{1}{e}\right) $ Obtains given answer from complete and correct work. Minimum for each route		4. Correctly replaces sinh 2 with 2 sinh1 cosh1 all	lowing equivalent work e.g.,	
Requires previous M mark. 1. $s = \ln\left(\frac{(e^2 + 1)(e^2 - 1)}{e(e^2 - 1)}\right) = \ln\left(e + \frac{1}{e}\right)$ or 2 & 3. $s = \ln\left(e + \frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route A 1*		$\frac{\sinh 2}{\sinh 1} = \sqrt{\frac{\left(2\cosh^2 1 - 1\right)^2 - 1}{\cosh^2 1 - 1}} = \sqrt{\frac{4\cosh^4 1 - 4\cos^2 1}{\cosh^2 1 - 1}}$	$\frac{\mathrm{sh}^2 1}{\mathrm{sh}^2 1} \Longrightarrow \mathrm{s} = \ln \sqrt{4 \mathrm{cosh}^2 1}$	
1. $s = \ln\left(\frac{(e^2+1)(e^2-1)}{e(e^2-1)}\right) = \ln\left(e+\frac{1}{e}\right)$ or 2 & 3. $s = \ln\left(e+\frac{1}{e}\right)$ Obtains given answer from complete and correct work. Minimum for each route		Requires previous M ma	nrk.	
		1. $s = \ln\left(\frac{(e^2+1)(e^2-1)}{e(e^2-1)}\right) = \ln\left(e+\frac{1}{e}\right)$ or 2 & 3. $s = \ln\left(e+\frac{1}{e}\right)$	Obtains given answer from complete and correct work. Minimum for each route	Δ1*
or 4. $s = \ln(2\cosh 1)$ or $\ln\left(2\left(\frac{e+e^{-1}}{2}\right)\right) = \ln\left(e+\frac{1}{e}\right)$ shown. Allow $\ln\left(e^{-1}+e\right)$		or 4. $s = \ln(2\cosh 1)$ or $\ln\left(2\left(\frac{e+e^{-1}}{2}\right)\right) = \ln\left(e+\frac{1}{e}\right)$	$\frac{\text{shown.}}{\text{Allow } \ln(e^{-1} + e)}$	
Algebraic integration must be used		Algebraic integration must b	e used	
Note that there are potentially other ways e.g., factorising followed by log laws: $\begin{pmatrix} 2 & -2 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 1 & $		Note that there are potentially other ways e.g., facto $\begin{pmatrix} 2^2 & 2^{-2} \end{pmatrix}$	rising followed by log laws: 1 $(1$ (1)	
$\ln\left(\frac{e-e}{2}\right) - \ln\left(\frac{e-e}{2}\right) = \ln\left(\frac{1}{2}\left(e+\frac{1}{e}\right)\left(e-\frac{1}{e}\right)\right) - \ln\left(\frac{1}{2}\left(e-\frac{1}{e}\right)\right) M1$		$\ln\left(\frac{e-e}{2}\right) - \ln\left(\frac{e-e}{2}\right) = \ln\left(\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\left(e+\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e-\frac{1}{2}\left(e+\frac{1}{e}\right)\left(e+\frac{1}{2}\left(e+\frac{1}{e}\right)\left(e+\frac{1}{2}\left(e+\frac{1}{e}\right)\right)\left(e+\frac{1}{2}\left(e+1$	$\left(\frac{1}{e}\right) - \ln\left(\frac{1}{2}\left(e - \frac{1}{e}\right)\right) M1$	
$= \ln\left(e + \frac{1}{e}\right) + \ln\left(\frac{1}{2}\left(e - \frac{1}{e}\right)\right) - \ln\left(\frac{1}{2}\left(e - \frac{1}{e}\right)\right) dM1 = \ln\left(e + \frac{1}{e}\right) A1^*$		$= \ln\left(e + \frac{1}{e}\right) + \ln\left(\frac{1}{2}\left(e - \frac{1}{e}\right)\right) - \ln\left(\frac{1}{2}\left(e - \frac{1}{e}\right)\right) + \ln\left(\frac{1}{2}\left(e$	$dM1 = \ln\left(e + \frac{1}{e}\right) A1^*$	
(4 Total				(4) Total 8

8 $I_{n} = \int_{0}^{k} x^{n} (k - x)^{\frac{1}{2}} dx n \ge 0$ If d() notation is used marks are only scored when it is removed. Please see overleaf if the split is done first (a) $u = x^{n} u' = nx^{n-1} v' = (k - x)^{\frac{1}{2}} v = -\frac{2}{3}(k - x)^{\frac{2}{2}}$ $I_{n} = \left[-\frac{2}{3}x^{n}(k - x)^{\frac{1}{2}}\right]_{0}^{h} - \int_{0}^{k} -\frac{2}{3}x^{n-1}(k - x)^{\frac{2}{2}} dx$ M1 $U = x^{n} u' = nx^{n-1} v' = (k - x)^{\frac{1}{2}} v = -\frac{2}{3}(k - x)^{\frac{2}{2}}$ $I_{n} = \left[-\frac{2}{3}x^{n}(k - x)^{\frac{1}{2}}\right]_{0}^{h} - \int_{0}^{k} -\frac{2}{3}x^{n-1}(k - x)^{\frac{2}{2}} dx$ M1 $M1: Uses parts in the correct direction to obtain an expression of the form \pm \dots x^{n}(k - x)^{\frac{1}{2}} \pm \int \dots x^{n-1}(k - x)^{\frac{1}{2}} dx A1: Correct expression (limits not required on either part and 'dx' may be missing) (I_{n} = 0 + \frac{2}{3}n\int_{0}^{k} x^{n-1}(k - x)(k - x)^{\frac{1}{2}} dx$ $Arriscale (I_{n} - x)(k - x)^{\frac{1}{2}} dx$ $\frac{Applies(k - x)^{\frac{1}{2}} = (k - x)(k - x)^{\frac{1}{2}}}{10 torgraf. Could be impliced if work correct build not accept going straight to and accept going are and and write strate and allow going straight to and accept going are and and and and and and and and and and$	Question Number	Scheme Notes		 Marks	
(a) If d() notation is used marks are only seored when it is removed. Please see overlaf if the split is done first $u = x^{a} u' = nx^{a-1} v' = (k-x)^{\frac{1}{2}} v = -\frac{2}{3}(k-x)^{\frac{3}{2}}$ $I_{a} = \left[-\frac{2}{3}x^{a}(k-x)^{\frac{3}{2}}\right]_{a}^{b} - \int_{0}^{k} -\frac{2}{3}nx^{a-1}(k-x)^{\frac{3}{2}} dx$ M1 M1: Uses parts in the correct direction to obtain an expression of the form $\frac{1}{2}x^{a}(k-x)^{\frac{3}{2}} \pm \intx^{n-1}(k-x)^{\frac{3}{2}} (dx)$ A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) (I_{a} =) 0 + \frac{2}{3}n\int_{0}^{k}x^{a-1}(k-x)(k-x)^{\frac{1}{2}} dx $\frac{2}{3}n\int_{0}^{k} \sqrt{x^{a-1}}(k-x)^{\frac{1}{2}} - x^{n}(k-x)^{\frac{1}{2}} dx$ $\frac{2}{3}n\int_{0}^{k} \sqrt{x^{a-1}}(k-x)^{\frac{1}{2}} - \frac{2}{3}nI_{n}(k-x)^{\frac{1}{2}} - \frac{2}{3}nI_{n}(k-x)^{\frac{1}{2}} dx$ $\frac{2}{3}n\int_{0}^{k} \sqrt{x^{a-1}}(k-x)^{\frac{1}{2}} - \frac{2}{3}nI_{n}(k-x)^{\frac{1}{2}} - \frac{2}{3}nI_{n}(k-x)^{\frac$	8	$I_n = \int_0^k x^n \left(k - x\right)^{\frac{1}{2}} \mathrm{d}x \qquad n \ge 0$			
(a) $u = x^{e} u' = nx^{e-1} v' = (k - x)^{\frac{1}{2}} v = -\frac{2}{3}(k - x)^{\frac{3}{2}}$ $I_{n} = \left[-\frac{2}{3}x^{e}(k - x)^{\frac{3}{2}}\right]_{0}^{k} - \int_{0}^{k} -\frac{2}{3}nx^{e-1}(k - x)^{\frac{3}{2}} dx$ M1 M1: Uses parts in the correct direction to obtain an expression of the form $\pmx^{e}(k - x)^{\frac{3}{2}} \pm \intx^{e-1}(k - x)^{\frac{3}{2}} dx$ A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) A2: $n \int_{0}^{k} x^{n-1}(k - x)(k - x)^{\frac{1}{2}} dx$ $= \frac{2}{3}n(kI_{n-1} - I_{n})$ or $\frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n}$ or $\frac{2}{3}n \int_{0}^{k} (kx^{n-1}(k - x)^{\frac{1}{2}} - x^{n}(k - x)^{\frac{1}{2}}) dx$ $= \frac{2}{3}n(kI_{n-1} - I_{n})$ or $\frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n}$ or $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k - x)^{\frac{1}{2}} (dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k - x)^{\frac{1}{2}} (dx)$ $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k - x)^{\frac{1}{2}} (dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k - x)^{\frac{1}{2}} dx$ $\frac{2}{3}nI_{n-1} - \frac{2}{3}nI_{n}$ provided the split was seen. Requires both previous M marks. $= \left(1 + \frac{2}{3}n\right)I_{n} - \frac{2}{3}knI_{n-1}}$ or $\Rightarrow \frac{3 + 2n}{3}I_{n} - \frac{2}{3}knI_{n-1}}$ $\Rightarrow I_{n} = \frac{2knI_{n-1}}{3}I_{n} - \frac{2}{3}knI_{n-1}}$ Reaches given answer with no mathematical errors seen. Allow por bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_{n}$ allowing e.g., $I_{n} + \frac{2}{3}I_{n} $		If $d()$ notation is used marks are only scored when it is removed.			
(a) $u = x^{n} u' = nx^{n-1} v' = (k - x)^{\frac{1}{2}} v = -\frac{2}{3}(k - x)^{\frac{2}{2}}$ $I_{a} = \left[-\frac{2}{3}x^{a}(k - x)^{\frac{3}{2}}\right]_{b}^{b} - \int_{0}^{k} -\frac{2}{3}nx^{n-1}(k - x)^{\frac{3}{2}} dx$ M1 M1: Uses parts in the correct direction to obtain an expression of the form $\pmx^{n}(k - x)^{\frac{3}{2}} \pm \intx^{n-1}(k - x)^{\frac{3}{2}} (dx)$ A1: Correct expression (limits not required on either part and 'dx' may be missing) (I_{a} = 0 + \frac{2}{3}n\int_{0}^{k}x^{n-1}(k - x)(k - x)^{\frac{1}{2}} dx A1: Correct expression (limits not required on either part and 'dx' may be missing) (I_{a} = 0 + \frac{2}{3}n\int_{0}^{k}x^{n-1}(k - x)(k - x)^{\frac{1}{2}} dx Applics $(k - x)^{\frac{3}{2}} = (k - x)(k - x)^{\frac{1}{2}}$ to integral. Could be implied if work correct but do not accept going straight to $u^{n}\frac{2}{3}nkI_{n-1} - \frac{2}{3}nI_{n}^{n}$ Requires previous M mark. Expands and writes RHS in terms of both I_{n} and I_{n-1} e., RHS = $I_{n-1} \pmI_{n}$ with no other terms. This mark is not available until the $\left[x^{n}(k - x)^{\frac{1}{2}}\right]_{n}^{k} disappears.$ Allow if actual integrals are used for both I_{n} and or I_{n-1} and allow going straight to $\frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n}$ or $\frac{2}{3}nJ_{n}^{k}x^{n-1}(k - x)^{\frac{1}{2}}(dx) - \frac{2}{3}n}\frac{k}{n}x^{n}(k - x)^{\frac{1}{2}}(dx)$ $\frac{\Rightarrow \left(1 + \frac{2}{3}n\right)I_{n} - \frac{2}{3}nI_{n}I_{n}}$ or $\Rightarrow \frac{3 + 2n}{3}I_{n} - \frac{2}{3}knI_{n-1}$ $\Rightarrow I_{n} = \frac{2kn}{3}I_{n} - \frac{2}{3}knI_{n-1}$ $\frac{\Rightarrow I_{n}}{2}I_{n} - \frac{2}{3}knI_{n-1}$ $\frac{\Rightarrow I_{n}}{2}I_{n} - \frac{2}{3}knI_{n-1} + \frac{2}{3}I_{n} - \frac{2}{3}knI_{n-1}$ $\frac{\Rightarrow I_{n}}{2}I_{n} - \frac{2}{3}knI_{n-1} + \frac{2}{3}I_{n} - \frac{2}{3}knI_{n-1}$ $\frac{\Rightarrow I_{n}}{2}I_{n} - \frac{2}{3}x^{n}(k - x)^{\frac{1}{2}}I_{n}^{n}$ Recaches given answer with no mathematical errors seen. Allow poor brackcting if it is recovered. There must be at least one non-trivial intermediate line where the LHS = f(n)I_{n} allowing e.g., $I_{n} + \frac{2}{3}I_{n} = \frac{2n}{2}nx^{n}(k - x)^{\frac{1}{2}}I_{n}^{n}$ Condone missing 'dx's and allow if limits only scen one cus ture $\left[-\frac{2}{3}x^{n}(k - x)^{\frac{1}{2}}\right]_{n}^{k}$	()	Please see overleaf if	the s	plit is done first	
$I_{n} = \left[-\frac{2}{3} x^{n} (k-x)^{\frac{3}{2}} \right]_{n}^{k} - \int_{0}^{k} -\frac{2}{3} nx^{n-1} (k-x)^{\frac{3}{2}} dx$ M1 M1: Uses parts in the correct direction to obtain an expression of the form $\pmx^{n} (k-x)^{\frac{3}{2}} \pm \intx^{n-1} (k-x)^{\frac{3}{2}} (dx)$ A1: Correct expression (limits not required on either part and 'dx' may be missing) (I_{n} =) 0 + $\frac{2}{3} n \int_{0}^{k} x^{n-1} (k-x) (k-x)^{\frac{1}{2}} dx$ Applies $(k-x)^{\frac{3}{2}} = (k-x) (k-x)^{\frac{1}{2}}$ to integral. Could be implied if work correct but do not accept going straight to $\frac{2}{3} n \int_{0}^{k} (kx^{n-1} (k-x)^{\frac{1}{2}} - x^{n} (k-x)^{\frac{1}{2}}) dx$ $\frac{2}{3} n \int_{0}^{k} (kx^{n-1} (k-x)^{\frac{1}{2}} - x^{n} (k-x)^{\frac{1}{2}}) dx$ $\frac{2}{3} n (kI_{n-1} - I_{n}) \text{ or } \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_{n}$ or $\frac{2}{3} kn \int_{0}^{k} x^{n-1} (k-x)^{\frac{1}{2}} - x^{n} (k-x)^{\frac{1}{2}} dx$ $\frac{2}{3} n (kI_{n-1} - I_{n}) \text{ or } \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_{n}$ or $\frac{2}{3} n (kI_{n-1} - I_{n}) \text{ or } \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_{n}$ or $\frac{2}{3} kn \int_{0}^{k} x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3} n \int_{0}^{k} x^{n} (k-x)^{\frac{1}{2}} (dx)$ $\frac{1}{2} kn \int_{0}^{k} x^{n-1} (k-x)^{\frac{1}{2}} dx - \frac{2}{3} nI_{n}$ or $\frac{2}{3} kn \int_{0}^{k} x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3} n \int_{0}^{k} x^{n} (k-x)^{\frac{1}{2}} (dx)$ $\frac{1}{2} kn I_{n-1} - \frac{2}{3} nI_{n}$ provided the split was scen. Requires both previous M marks. $\frac{1}{2} (1 + \frac{2}{3} n) I_{n} = \frac{2}{3} knI_{n-1} \text{ or } 3 + \frac{2}{3} nI_{n} = \frac{2}{3} knI_{n-1} $ $\frac{1}{2} kn I_{n-1} + \frac{2}{3} knI_{n-1} + \frac{2}{3} knI_{n-1}$	(a)	$u = x^n \qquad u' = nx^{n-1} \qquad v' =$	(k-1)	$(x)^{\frac{1}{2}}$ $v = -\frac{2}{3}(k-x)^{\frac{3}{2}}$	
M1: Uses parts in the correct direction to obtain an expression of the form $ \frac{\pm \dots x^{n} (k-x)^{\frac{3}{2}} \pm \int \dots x^{n-1} (k-x)^{\frac{3}{2}} (dx) $ A1: Correct expression (limits not required on either part and 'dx' may be missing) A1: Correct expression (limits not required on either part and 'dx' may be missing) ($I_{n} = 0 + \frac{2}{3}n \int_{0}^{k} x^{n-1} (k-x)(k-x)^{\frac{1}{2}} dx$ Applies $(k-x)^{\frac{3}{2}} = (k-x)(k-x)^{\frac{1}{2}}$ to integral. Could be implied if work correct but do not accept going straight to $\frac{n^{2}}{3}nkI_{n-1} - \frac{2}{3}nI_{n}^{n}$ Requires previous M mark. Expands and writes RHS in terms of both I_{n} and I_{n-1} i.e., RHS = $\dots I_{n-1} \pm \dots I_{n}$ with no other terms. This mark is not available until the $\left[\dots x^{n} (k-x)^{\frac{3}{2}}\right]_{0}^{k}$ dM1 $\frac{2}{3}n \int_{0}^{k} (kx^{n-1} (k-x)^{\frac{1}{2}} - x^{n} (k-x)^{\frac{1}{2}}) dx$ $\Rightarrow \frac{2}{3}n \int_{0}^{k} x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3}n \int_{0}^{k} x^{n} (k-x)^{\frac{1}{2}} (dx)$ $\frac{2}{3}n \int_{0}^{k} x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3}n \int_{0}^{k} x^{n} (k-x)^{\frac{1}{2}} (dx)$ $\frac{2}{3}n I_{n-1} - \frac{2}{3}n I_{n}$ provided the split was seen. Requires both previous M marks. $\frac{2}{3}n I_{n-1} - \frac{2}{3}n I_{n-1} + \frac{2}{3$		$I_{n} = \left[-\frac{2}{3} x^{n} (k-x)^{\frac{3}{2}} \right]_{0}^{k} -$	$-\int_0^k -$	$\frac{2}{3}nx^{n-1}(k-x)^{\frac{3}{2}}\mathrm{d}x$	M1
$\frac{\pmx^{n} (k-x)^{\frac{3}{2}} \pm \intx^{n-1} (k-x)^{\frac{3}{2}} (dx)}{A1: \text{ Correct expression (limits not required on either part and 'dx' may be missing)}}$ $\frac{A1: \text{ Correct expression (limits not required on either part and 'dx' may be missing)}}{(I_n =) 0 + \frac{2}{3}n \int_0^k x^{n-1} (k-x)(k-x)^{\frac{1}{2}} dx}$ $\frac{Applics(k-x)^{\frac{3}{2}} = (k-x)(k-x)^{\frac{1}{2}}}{\text{ to integral. Could be implied if work correct but do not accept going straight to} \frac{2}{3}nk_{n-1} - \frac{2}{3}nl_n^{n}}$ $\frac{2}{3}n \int_0^k (kx^{n-1} (k-x)^{\frac{1}{2}} - x^n (k-x)^{\frac{1}{2}}) dx}{\sum \frac{2}{3}n k(l_{n-1} - l_n) \text{ or } \frac{2}{3}knl_{n-1} - \frac{2}{3}nl_n \text{ or } \frac{2}{3}knl_{n-1} - \frac{2}{3}nl_n \text{ or } \frac{2}{3}knl_{n-1} - \frac{2}{3}nl_n^{n}}$ $\frac{2}{3}nk \int_0^k x^{n-1} (k-x)^{\frac{1}{2}} - x^n (k-x)^{\frac{1}{2}} dx}{\sum \frac{2}{3}nl_n \text{ or } \frac{2}{3}knl_{n-1} - \frac{2}{3}nl_n \text{ provided the split to} \frac{2}{3}knl_{n-1} - \frac{2}{3}nl_n \text{ provided the split twas seen.}$ $\frac{2}{3}kn \int_0^k x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3}n \int_0^k x^n (k-x)^{\frac{1}{2}} (dx)$ $\frac{2}{3}knl_{n-1} - \frac{2}{3}nl_n \text{ provided the split was seen.}$ $\frac{2}{3}knl_{n-1} - \frac{2}{3}knl_{n-1}} = \frac{2knl_{n-1}}{3} = \frac{2knl_{n-1}}{3}$ $\frac{2}{3}l_n = \frac{2knl_{n-1}}{3} + \frac{2knl_{n-1}}{3} + \frac{2knl_{n-1}}{3} + \frac{2knl_{n-1}}{3}$ $\frac{2}{3}l_n = \frac{2knl_{n-1}}{3} + \frac{2knl_{n-1}}$		M1: Uses parts in the correct direction	n to c	obtain an expression of the form	A1
A1: Correct expression (limits not required on either part and 'dx' may be missing)($I_a =) 0 + \frac{2}{3} n \int_0^k x^{n-1} (k-x) (k-x)^{\frac{1}{2}} dx$ Applics $(k-x)^{\frac{3}{2}} = (k-x)(k-x)^{\frac{1}{2}}$ to integral. Could be implied if work correct but do not accept going straight to $\frac{2}{3} n k I_{n-1} - \frac{2}{3} n I_n$ " Requires previous M mark. dM1 $\frac{2}{3} n \int_0^k (kx^{n-1} (k-x)^{\frac{1}{2}} - x^n (k-x)^{\frac{1}{2}}) dx$ $\Rightarrow \frac{2}{3} n (kI_{n-1} - I_n)$ or $\frac{2}{3} knI_{n-1} - \frac{2}{3} nI_n$ or $\frac{2}{3} kn \int_0^k x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3} n \int_0^k x^n (k-x)^{\frac{1}{2}} (dx)$ Expands and writes RHS in terms of both I_n and I_{n-1} i.e., RHS = $I_{n-1} \pmI_n$ with no other terms. This mark is not available until the $\left[x^n (k-x)^{\frac{3}{2}} \right]_0^k$ disappears. Allow if actual integrals are used for both I_n and/or I_{n-1} and allow going straight to $\frac{2}{3} kn I_{n-1} - \frac{2}{3} n I_n$ or $\frac{2}{3} kn I_{n-1} - \frac{2}{3} n I_n$ provided the split was seen. Requires both previous M marks. $\Rightarrow (1 + \frac{2}{3}n)I_n = \frac{2}{3} kn I_{n-1}$ or $\Rightarrow \frac{3 + 2n}{3} I_n = \frac{2}{3} kn I_{n-1}$ $\Rightarrow I_n = \frac{2kn}{3} I_{n-1} x_{n-1}$ Al*Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3} x^n (k-x)^{\frac{3}{2}} \right]_0^{\frac{1}{n}}$ Al*		$\pmx^{n} (k-x)^{\frac{3}{2}} \pm \intx^{n-1} (k-x)^{\frac{3}{2}} (dx)$			
$\frac{\left[\left(I_{n}=\right)0+\frac{2}{3}n\int_{0}^{k}x^{n-1}(k-x)(k-x)^{\frac{1}{2}}dx\right]}{\left[\left(I_{n}=\right)0+\frac{2}{3}n\int_{0}^{k}x^{n-1}(k-x)(k-x)^{\frac{1}{2}}dx\right]}$ $\frac{Applics(k-x)^{\frac{3}{2}}=(k-x)(k-x)^{\frac{1}{2}}}{\operatorname{to integral. Could be implied if work correct but do not accept going straight to \frac{n^{2}}{3}nkI_{n-1}-\frac{2}{3}nI_{n} \frac{2}{3}n\int_{0}^{k}\left(kx^{n-1}(k-x)^{\frac{1}{2}}-x^{n}(k-x)^{\frac{1}{2}}\right)dx \Rightarrow \frac{2}{3}n(kI_{n-1}-I_{n}) \text{ or } \frac{2}{3}knI_{n-1}-\frac{2}{3}nI_{n} \text{ provided the split was scen.} \frac{2}{3}kn\int_{0}^{k}x^{n-1}(k-x)^{\frac{1}{2}}(dx)-\frac{2}{3}n\int_{0}^{k}x^{n}(k-x)^{\frac{1}{2}}(dx) \Rightarrow \left(1+\frac{2}{3}n\right)I_{n}=\frac{2}{3}knI_{n-1} \text{ or } \Rightarrow \frac{3+2n}{3}I_{n}=\frac{2}{3}knI_{n-1} \Rightarrow I_{n}=\frac{2kn}{3+2n}I_{n-1}^{n} Reaches given answer with no mathematical errors scen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS = f(n)I_{n}$ allowing e.g., $I_{n}+\frac{3}{3}I_{n}=$ Allow minor variations in given answer e.g., $I_{n}=\frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^{n}(k-x)^{\frac{3}{2}}\right]_{0}^{k}$		A1: Correct expression (limits not required on either part and 'dx' may be missing)			
$\frac{\left(I_{n}=\right)0+\frac{2}{3}n\int_{0}^{k}x^{n-1}(k-x)(k-x)^{\frac{1}{2}}dx}{\left(kx^{n-1}(k-x)^{\frac{1}{2}}-x^{n}(k-x)^{\frac{1}{2}}\right)dx}$ to integral. Could be implied if work correct but do not accept going straight to $\frac{n^{2}}{3}nkI_{n-1}-\frac{2}{3}nI_{n}$ " Requires previous M mark. $\frac{2}{3}n\int_{0}^{k}\left(kx^{n-1}(k-x)^{\frac{1}{2}}-x^{n}(k-x)^{\frac{1}{2}}\right)dx$ $\Rightarrow \frac{2}{3}n\left(kI_{n-1}-I_{n}\right) \text{ or } \frac{2}{3}knI_{n-1}-\frac{2}{3}nI_{n} \text{ or } \frac{2}{3}knI_{n-1}-\frac{2}{3}nI_{n} \text{ or } \frac{2}{3}knI_{n-1}-\frac{2}{3}nI_{n} \text{ or } \frac{2}{3}knI_{n-1}-\frac{2}{3}nI_{n} \text{ provided the split was scen.}$ Requires both previous M marks. $\Rightarrow \left(1+\frac{2}{3}n\right)I_{n}=\frac{2}{3}knI_{n-1} \text{ or } \Rightarrow \frac{3+2n}{3}I_{n}=\frac{2}{3}knI_{n-1}$ $\Rightarrow I_{n}=\frac{2kn}{3+2n}I_{n-1}^{*}$ Reaches given answer with no mathematical errors see. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_{n}$ allowing e.g., $I_{n}+\frac{2}{3}I_{n}=\ldots$ Allow minor variations in given answer e.g., $I_{n}=\frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^{n}(k-x)^{\frac{3}{2}}\right]_{0}^{k}$		Applies $(k-x)^{\frac{3}{2}} = (k-x)(k-x)^{\frac{1}{2}}$			
$\frac{(I_n =)}{2} 0 + \frac{1}{3} n \int_0^1 x^{-1} (k - x)^{1/2} dx + \frac{1}{3} (k - x)^{1/2} dx + \frac{2}{3} n k - \frac{1}{3} \int_0^1 x^{-1} (k - x)^{1/2} - x^n (k - x)^{1/2} dx + \frac{2}{3} n k - \frac{1}{3} \int_0^1 x^{-1} (k - x)^{1/2} - x^n (k - x)^{1/2} dx + \frac{2}{3} n k - \frac{1}{3} \int_0^1 x^{-1} (k - x)^{1/2} - x^n (k - x)^{1/2} dx + \frac{2}{3} n k - \frac{1}{3} \int_0^1 x^{-1} (k - x)^{1/2} - x^n (k - x)^{1/2} dx + \frac{2}{3} n k - \frac{1}{3} \int_0^1 x^{-1} (k - x)^{1/2} dx + \frac{2}{3} n k - \frac{2}{3} n k - \frac{1}{3} \int_0^1 x^n (k - x)^{1/2} dx + \frac{2}{3} n k - \frac{2}{3} \int_0^1 x^n (k - x)^{1/2} dx + \frac{2}{3} n k - \frac{2}{3} \int_0^1 x^{-1} (k - x)^{1/2} dx + \frac{2}{3} n k - \frac{2}{3} $		$(I_{k-1}) = 0 + \frac{2}{2} \pi \int_{0}^{k} e^{n-1} (k-n)^{\frac{1}{2}} dn$ to integral. Could be implied if work			dM1
$\frac{1}{2} n \int_{0}^{3} \left(kx^{n-1} (k-x)^{\frac{1}{2}} - x^{n} (k-x)^{\frac{1}{2}} \right) dx}{\sum_{n=1}^{2} n \int_{0}^{k} \left(kx^{n-1} (k-x)^{\frac{1}{2}} - x^{n} (k-x)^{\frac{1}{2}} \right) dx}$ $\frac{2}{3} n \int_{0}^{k} \left(kx^{n-1} (k-x)^{\frac{1}{2}} - x^{n} (k-x)^{\frac{1}{2}} \right) dx}{\sum_{n=1}^{2} n \int_{0}^{k} x^{n-1} (k-x)^{\frac{1}{2}} - x^{n} (k-x)^{\frac{1}{2}} dx}$ $\frac{2}{3} n (kI_{n-1} - I_{n}) \text{ or } \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_{n} \text{ or}}{\frac{2}{3} kn \int_{0}^{k} x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3} n \int_{0}^{k} x^{n} (k-x)^{\frac{1}{2}} (dx)$ $\frac{2}{3} kn \int_{0}^{k} x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3} n \int_{0}^{k} x^{n} (k-x)^{\frac{1}{2}} (dx)$ $\frac{2}{3} knI_{n-1} - \frac{2}{3} nI_{n} \text{ provided the split was seen.}$ Requires both previous M marks. $\frac{2}{3} (1 + \frac{2}{3}n) I_{n} = \frac{2}{3} knI_{n-1} \text{ or } \Rightarrow \frac{3 + 2n}{3} I_{n} = \frac{2}{3} knI_{n-1}$ $\Rightarrow I_{n} = \frac{2kn}{3 + 2n} I_{n-1} *$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS = f(n) I_{n} allowing e.g., $I_{n} = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3} x^{n} (k-x)^{\frac{3}{2}} \right]_{0}^{k}$ A1*		$\left[(I_n =) 0 + \frac{1}{3}n \int_0^1 x^{n-1} (k-x)(k-x)^2 dx \right] $ connect but do not accept going straight to " $\frac{2}{3}nkI_{n-1} - \frac{2}{3}nI_n$ "			
$\frac{2}{3}n \int_{0}^{k} \left(kx^{n-1}(k-x)^{\frac{1}{2}} - x^{n}(k-x)^{\frac{1}{2}}\right) dx$ $\Rightarrow \frac{2}{3}n \left(kI_{n-1} - I_{n}\right) \text{ or } \frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n} \text{ or}$ $\frac{2}{3}xn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}} - x^{n}(k-x)^{\frac{1}{2}} dx$ $\Rightarrow \frac{2}{3}n(kI_{n-1} - I_{n}) \text{ or } \frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n} \text{ or}$ $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}} (dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k-x)^{\frac{1}{2}} (dx)$ $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}} (dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k-x)^{\frac{1}{2}} (dx)$ $\frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n} \text{ provided the split was}$ $\frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n} \text{ provided the split was}$ $\frac{2}{3}knI_{n-1} - \frac{2}{3}knI_{n-1} + \frac{2}{3}knI_{n-1}}{x}$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_{n} \text{ allowing e.g., } I_{n} + \frac{2}{3}I_{n} = \dots$ Allow minor variations in given answer e.g., $I_{n} = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^{n}(k-x)^{\frac{3}{2}}\right]_{0}^{k}$ $A1*$				3 3 Requires previous M mark	
$\frac{2}{3}n \int_{0}^{k} \left(kx^{n-1}(k-x)^{\frac{1}{2}} - x^{n}(k-x)^{\frac{1}{2}}\right) dx$ $\Rightarrow \frac{2}{3}n \left(kI_{n-1} - I_{n}\right) \text{ or } \frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n} \text{ or}$ $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k-x)^{\frac{1}{2}}(dx)$ $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k-x)^{\frac{1}{2}}(dx)$ $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k-x)^{\frac{1}{2}}(dx)$ $\frac{2}{3}kn I_{n-1} - \frac{2}{3}nI_{n} \text{ provided the split was seen.}$ $\frac{2}{3}kn I_{n-1} - \frac{2}{3}nI_{n} \text{ provided the split was seen.}$ $\frac{2}{3}kn I_{n-1} - \frac{2}{3}nI_{n} \text{ provided the split was seen.}$ $\frac{2}{3}kn I_{n-1} - \frac{2}{3}kn I_{n-1} - \frac{2}{3}kn I_{n-1} + \frac{2}{3}kn I_{n-$			Expa	ands and writes RHS in terms of both	
$\frac{2}{3}n \int_{0}^{k} \left(kx^{n-1}(k-x)^{\frac{1}{2}} - x^{n}(k-x)^{\frac{1}{2}}\right) dx$ $\Rightarrow \frac{2}{3}n(kI_{n-1} - I_{n}) \text{ or } \frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n} \text{ or}$ $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k-x)^{\frac{1}{2}}(dx)$ Allow if actual integrals are used for both $I_{n} \text{ and/or } I_{n-1} \text{ and allow going straight to}$ $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k-x)^{\frac{1}{2}}(dx)$ $\frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n} \text{ provided the split was}$ seen. Requires both previous M marks. $\frac{\Rightarrow \left(1 + \frac{2}{3}n\right)I_{n} = \frac{2}{3}knI_{n-1} \text{ or } \Rightarrow \frac{3+2n}{3}I_{n} = \frac{2}{3}knI_{n-1}$ $\Rightarrow I_{n} = \frac{2kn}{3+2n}I_{n-1} *$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_{n} \text{ allowing e.g., } I_{n} + \frac{2}{3}I_{n} = \dots$ Allow minor variations in given answer e.g., $I_{n} = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^{n}(k-x)^{\frac{2}{3}}\right]_{0}^{k}$ A1*			I_n and	nd I_{n-1} i.e., RHS = $I_{n-1} \pmI_n$ with no	
$\frac{2}{3}n \int_{0}^{1} \left(kx^{n-1}(k-x)^{\frac{1}{2}} - x^{n}(k-x)^{\frac{1}{2}}\right) dx$ $\Rightarrow \frac{2}{3}n(kI_{n-1} - I_{n}) \text{ or } \frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n} \text{ or}$ $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k-x)^{\frac{1}{2}}(dx)$ His mark is not available until the $\begin{bmatrix}x^{n}(k-x)^{\frac{3}{2}} \end{bmatrix}_{0}^{k} \text{ disappears.}$ Allow if actual integrals are used for both I_{n} and/or I_{n-1} and allow going straight to $\frac{2}{3}kn \int_{0}^{k} x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n \int_{0}^{k} x^{n}(k-x)^{\frac{1}{2}}(dx)$ $\frac{2}{3}knI_{n-1} - \frac{2}{3}nI_{n} \text{ provided the split was}$ seen. Requires both previous M marks. $\Rightarrow \left(1 + \frac{2}{3}n\right)I_{n} = \frac{2}{3}knI_{n-1} \text{ or } \Rightarrow \frac{3 + 2n}{3}I_{n} = \frac{2}{3}knI_{n-1}$ $\Rightarrow I_{n} = \frac{2kn}{3 + 2n}I_{n-1} *$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_{n} \text{ allowing e.g., } I_{n} + \frac{2}{3}I_{n} =$ Allow minor variations in given answer e.g., $I_{n} = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^{n}(k-x)^{\frac{3}{2}}\right]_{0}^{k}$ A1*				other terms.	
$\frac{2}{3} n(kI_{n-1} - I_n) \text{ or } \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_n \text{ or} \\ \frac{2}{3} kn \int_0^k x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3} n \int_0^k x^n (k-x)^{\frac{1}{2}} (dx) \\ \frac{2}{3} kn \int_0^k x^{n-1} (k-x)^{\frac{1}{2}} (dx) - \frac{2}{3} n \int_0^k x^n (k-x)^{\frac{1}{2}} (dx) \\ \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_n \text{ provided the split was} \\ \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_n \text{ provided the split was} \\ \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_n \text{ provided the split was} \\ \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_n \text{ provided the split was} \\ \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_n \text{ provided the split was} \\ \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_n \text{ provided the split was} \\ \frac{2}{3} knI_{n-1} - \frac{2}{3} nI_n \text{ provided the split was} \\ \frac{2}{3} knI_{n-1} + \frac{2}{3} nI_n = \frac{2kn}{3} I_n = \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_{n-1} + \frac{2}{3} knI_{n-1} + \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_n = \frac{2kn}{3} I_n = \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_{n-1} + \frac{2}{3} I_n = \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_n = \frac{2}{3} knI_{n-1} + \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_n = \frac{2}{3} knI_{n-1} + \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_n = \frac{2}{3} knI_{n-1} + \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_n = \frac{2}{3} knI_{n-1} + \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_n = \frac{2}{3} knI_{n-1} + \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_n = \frac{2}{3} knI_{n-1} + \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_{n-1} \\ \frac{2}{3} knI_{n-1} \\$		$\frac{2}{3}n \int \left(kx^{n-1} (k-x)^{\frac{1}{2}} - x^n (k-x)^{\frac{1}{2}} \right) dx$	Т	This mark is not available until the	
$ \Rightarrow \frac{3}{3}n(kI_{n-1}-I_n) \text{ or } \frac{3}{3}knI_{n-1} - \frac{3}{3}nI_n \text{ or } \frac{3}{3}knI_{n-1} - \frac{3}{3}nI_n \text{ or } \frac{3}{3}knI_{n-1} - \frac{2}{3}nI_n \text{ provided the split was} $ $ \frac{2}{3}kn\int_0^k x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n\int_0^k x^n(k-x)^{\frac{1}{2}}(dx) $ Allow if actual integrals are used for both I_n and/or I_{n-1} and allow going straight to $\frac{2}{3}knI_{n-1} - \frac{2}{3}nI_n$ provided the split was seen. Requires both previous M marks. $ \Rightarrow \left(1 + \frac{2}{3}n\right)I_n = \frac{2}{3}knI_{n-1} \text{ or } \Rightarrow \frac{3+2n}{3}I_n = \frac{2}{3}knI_{n-1} \\ \Rightarrow I_n = \frac{2kn}{3+2n}I_{n-1}^{*} $ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_n$ allowing e.g., $I_n + \frac{2}{3}I_n = \dots$ Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$		$ \Rightarrow \frac{2}{3}n(kI_{n-1}-I_n) \text{ or } \frac{2}{3}knI_{n-1} - \frac{2}{3}nI_n \text{ or} $ $ = \frac{2}{3}n(kI_{n-1}-I_n) \text{ or } \frac{2}{3}knI_{n-1} - \frac{2}{3}nI_n \text{ or} $ $ = \frac{2}{3}kn\int_0^k x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n\int_0^k x^n(k-x)^{\frac{1}{2}}(dx) $ $ = \frac{2}{3}knI_{n-1} - \frac{2}{3}nI_n \text{ provided the split was} $			ddM1
$\frac{\frac{2}{3}kn\int_{0}^{k}x^{n-1}(k-x)^{\frac{1}{2}}(dx) - \frac{2}{3}n\int_{0}^{k}x^{n}(k-x)^{\frac{1}{2}}(dx)}{\sum_{n=1}^{2}knI_{n-1} - \frac{2}{3}nI_{n} \text{ provided the split was seen.}}$ Requires both previous M marks. $\Rightarrow \left(1 + \frac{2}{3}n\right)I_{n} = \frac{2}{3}knI_{n-1} \text{ or } \Rightarrow \frac{3+2n}{3}I_{n} = \frac{2}{3}knI_{n-1}$ $\Rightarrow I_{n} = \frac{2kn}{3+2n}I_{n-1} *$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_{n}$ allowing e.g., $I_{n} + \frac{2}{3}I_{n} =$ Allow minor variations in given answer e.g., $I_{n} = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^{n}(k-x)^{\frac{3}{2}}\right]_{0}^{k}$ must be replaced by "0" or better					
$\frac{1}{3} \frac{kn}{6} \int_{0}^{X} \frac{(k-x)^{2} (dx)^{2} - \frac{1}{3}n}{6} \int_{0}^{X} \frac{(k-x)^{2} (dx)}{(k-x)^{2} (dx)} = \frac{2}{3} kn I_{n-1} - \frac{2}{3} n I_{n} \text{ provided the split was seen.} \\ \frac{2}{3} kn I_{n-1} - \frac{2}{3} n I_{n} \text{ previous } \mathbf{M} \text{ marks.} \\ \Rightarrow \left(1 + \frac{2}{3}n\right) I_{n} = \frac{2}{3} kn I_{n-1} \text{ or } \Rightarrow \frac{3+2n}{3} I_{n} = \frac{2}{3} kn I_{n-1} \\ \Rightarrow I_{n} = \frac{2kn}{3+2n} I_{n-1} * \\ \text{Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS = f(n) I_{n} allowing e.g., I_{n} + \frac{2}{3} I_{n} = \\ \text{Allow minor variations in given answer e.g., } I_{n} = \frac{2nkI_{n-1}}{2n+3} \\ \text{Condone missing 'dx's and allow if limits only seen once but } \left[-\frac{2}{3}x^{n}(k-x)^{\frac{3}{2}}\right]_{0}^{k} \\ \text{must be replaced by "0" or better} $					
$\Rightarrow \left(1 + \frac{2}{3}n\right)I_n = \frac{2}{3}knI_{n-1} \text{ or } \Rightarrow \frac{3+2n}{3}I_n = \frac{2}{3}knI_{n-1}$ $\Rightarrow I_n = \frac{2kn}{3+2n}I_{n-1} *$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_n \text{ allowing e.g., } I_n + \frac{2}{3}I_n = \dots$ Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$ must be replaced by "0" or better					
Requires both previous M marks. $\Rightarrow (1 + \frac{2}{3}n)I_n = \frac{2}{3}knI_{n-1}$ or $\Rightarrow \frac{3+2n}{3}I_n = \frac{2}{3}knI_{n-1}$ $\Rightarrow I_n = \frac{2kn}{3+2n}I_{n-1}^*$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_n$ allowing e.g., $I_n + \frac{2}{3}I_n =$ Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$ must be replaced by "0" or better			3	o seen.	
$\Rightarrow \left(1 + \frac{2}{3}n\right)I_n = \frac{2}{3}knI_{n-1} \text{ or } \Rightarrow \frac{3+2n}{3}I_n = \frac{2}{3}knI_{n-1}$ $\Rightarrow I_n = \frac{2kn}{3+2n}I_{n-1}*$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_n \text{ allowing e.g., } I_n + \frac{2}{3}I_n = \dots$ Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$ must be replaced by "0" or better		Requires both previous M marks.			
$\Rightarrow I_n = \frac{2kn}{3+2n} I_{n-1} *$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n) I_n$ allowing e.g., $I_n + \frac{2}{3} I_n =$ Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$ must be replaced by "0" or better		$\Rightarrow \left(1 + \frac{2}{3}n\right)I_n = \frac{2}{3}knI_{n-1} \text{ or } \Rightarrow \frac{3+2n}{3}I_n = \frac{2}{3}knI_{n-1}$			
Reaches given answer with no mathematical errors seen. Allow poor bracketing if it is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_n$ allowing e.g., $I_n + \frac{2}{3}I_n =$ Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$ must be replaced by "0" or better		$\Rightarrow I_n = \frac{2kn}{2kn} I_{n-1}^*$			
is recovered. There must be at least one non-trivial intermediate line where the LHS $= f(n)I_n \text{ allowing e.g., } I_n + \frac{2}{3}I_n = \dots$ Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$ must be replaced by "0" or better (5)		$3+2n^{-1}$ Reaches given answer with no mathematical errors seen. Allow poor bracketing if it			
$= f(n)I_n \text{ allowing e.g., } I_n + \frac{2}{3}I_n = \dots$ Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$ must be replaced by "0" or better (5)		is recovered. There must be at least one non-trivial intermediate line where the LHS			
Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$ Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$ must be replaced by "0" or better		= f(n) I_n allowing e.g., $I_n + \frac{2}{3}I_n =$			A1*
Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$ must be replaced by "0" or better		Allow minor variations in given answer e.g., $I_n = \frac{2nkI_{n-1}}{2n+3}$			
must be replaced by "0" or better		Condone missing 'dx's and allow if limits only seen once but $\left[-\frac{2}{3}x^n(k-x)^{\frac{3}{2}}\right]_0^k$			
		must be replaced	l by "	0" or better	

Question	Scheme/Notes	Marks
Number	Scheme/10005	IVIAI KS
8(a)	$I_{n} = \int_{0}^{k} x^{n} (k-x)^{\frac{1}{2}} dx = \int_{0}^{k} x^{n} (k-x) (k-x)^{-\frac{1}{2}} dx = \int_{0}^{k} kx^{n} (k-x)^{-\frac{1}{2}} dx - \int_{0}^{k} x^{n+1} (k-x)^{-\frac{1}{2}} dx$	
Alt	$= \left[-2kx^{n} \left(k-x\right)^{\frac{1}{2}} \right]_{0}^{k} + \int_{0}^{k} 2knx^{n-1} \left(k-x\right)^{\frac{1}{2}} dx + \left[2x^{n+1} \left(k-x\right)^{\frac{1}{2}} \right]_{0}^{k} - \int_{0}^{k} 2\left(n+1\right)x^{n} \left(k-x\right)^{\frac{1}{2}} dx$	
Split		
first	$\Rightarrow 0 + 2knI_{n-1} + 0 - 2(n+1)I_n \Rightarrow (3+2n)I_n = 2knI_{n-1} \Rightarrow I_n = \frac{2kn}{3+2n}I_{n-1} *$	
	For attempts like this award the first 2 method marks together for applying the split,	
	expanding and applying parts to achieve a correct form. The first accuracy mark can	
	be awarded for a correct expression (limits not required on either part and 'dx's may	
	be missing). As main scheme for the following two marks (note that in this case the	
	first and third terms must both be replaced by "0" or better).	
	There is no mark for just applying the split.	(5)

Question Number	Scheme	Notes	Marks		
8(b)	$\mathbf{8(b)} \qquad \int_{0}^{k} x^{2} (k-x)^{\frac{1}{2}} dx = \frac{9\sqrt{3}}{280} \qquad I_{n} = \frac{2kn}{3+2n} I_{n-1}$ Attempts I_{2} in terms of I_{0} or $I_{2} = \frac{4k}{7} I_{1} = \frac{4k}{7} \left(\frac{2k}{5} I_{0}\right)$ or $I_{2} = \frac{4k}{7} I_{1}, I_{1} = \frac{2k}{5} I_{0}$ Accept with their I_{0} substituted if I_{0} attempted first. Allow $I_{0} = 1$ to be used (i.e., I_{0} lost) See note below if only see I_{2} in terms of I_{1}				
	$I_{0} = \int_{0}^{k} (k-x)^{\frac{1}{2}} dx = \left[-\frac{2}{3} (k-x)^{\frac{3}{2}} \right]_{0}^{k} \qquad I_{0} = \dots (k-x)^{\frac{3}{2}}$ Limits do not have to be seen or applied				
	$I_{2} = \frac{6k}{35} \times \frac{2}{3}k^{2} \Rightarrow \frac{10}{105}k^{2} = \frac{9\sqrt{3}}{280} \Rightarrow k = \dots$ Solves an equation of the form $\frac{a}{b}k^{\frac{c}{2}} = \frac{9\sqrt{3}}{280}$ where $a, b \in \mathbb{Z}^{+}, \frac{a}{b} \notin \mathbb{Z}$, $c = 5$ or 7 and where the LHS is their I_{2} . No processing or working requirements just look for a <u>value or numerical expression</u> for k from an appropriate equation. May see $k = e^{\frac{2}{7}\ln\left(\frac{27\sqrt{3}}{128}\right)}$ or other logarithmic work. Requires both previous M marks . Note that $\frac{16}{105}k^{\frac{5}{2}} = \frac{9\sqrt{3}}{280} \Rightarrow k = \sqrt[5]{\frac{2187}{16384}}$ or 0.668				
	$k^{\frac{7}{2}} = \frac{27\sqrt{3}}{128} \Longrightarrow k^{7} = \frac{2187}{16384} \Longrightarrow k = \frac{3}{4}$ Correct exact <u>value</u> for k from a correct equation. Not $\sqrt[7]{\frac{2187}{16384}}$ nor $\pm \frac{3}{4}$				
	Note that if I_2 is only found in terms of I_1 then award the first two marks together when a correct form for I_1 is achieved i.e., $x(k-x)^{\frac{3}{2}} +(k-x)^{\frac{5}{2}}$ or $(x+k)(k-x)^{\frac{3}{2}}$ Using parts: $I_1 = \left[-\frac{2}{3}x(k-x)^{\frac{3}{2}} - \frac{4}{15}(k-x)^{\frac{5}{2}}\right]_0^k = \frac{4}{15}k^{\frac{5}{2}}$ Using substitution: $u = k - x \implies I_1 = \int_0^k x(k-x)^{\frac{1}{2}} dx = \left[-\frac{2}{15}(3x+2k)(k-x)^{\frac{3}{2}}\right]_0^k = \frac{4}{15}k^{\frac{5}{2}}$ There are no marks if the reduction formula is not used including direct attempts at I_2 or if $k = \frac{3}{4}$ is arrived at by purely solving the integral equation on a calculator				
			Total 9		

Question Number	Scheme	Notes	 Marks
9	May use i , j , k notation		
9(a)	$\mathbf{n} = \begin{pmatrix} 3\\0\\1 \end{pmatrix} \times \begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \dots \begin{cases} 2\\-5\\-6 \end{pmatrix} \end{cases}$	Calculates the vector product of two vectors in \prod_1 (two components correct)	M1
	$ \begin{pmatrix} 5 \\ 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ -6 \end{pmatrix} = \dots \{-5\} $	Calculates the scalar product of a point in the plane and their normal. Not dependent but must follow an attempt at a vector product which could be poor, e.g., $3i + 2k$. Value must be correct if there is no indication of a correct method to evaluate the scalar product.	M1
	$\mathbf{r} \cdot \begin{pmatrix} 2 \\ -5 \\ -6 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ -6 \end{pmatrix} \Rightarrow 2x - 5y - 6z = -5$	Any correct Cartesian equation, e.g., -2x+5y+6z=5 2x-5y-6z+5=0	A1
			(3)
Alt Sim eqns	x = 5 + 3s + t $y = 3 - 2t \implies \text{e.g., } y + z = 3 + s$ z = s + 2t	Forms simultaneous equations in x , y , z , s and t and obtains an equation that eliminates at least one of s and t	M1
- 4	$x = 5 + 3(y + z - 3) + \frac{1}{2}z - \frac{1}{2}(y + z - 3)$ $x = \frac{5}{2}y + 3z - \frac{5}{2}$	M1: Proceeds to an equation in <i>x</i> , <i>y</i> and <i>z</i> only A1: Any correct equation with terms collected	M1 A1
			(3)

Question Number	Scheme	Notes	Marks
9(b) Way 1	2x-5y-6z = -5, 5x-2y+3z = 1 $\Rightarrow \text{ e.g., } 12x-9y = -3$	Uses both plane equations to eliminate one variable. May see $21y+36z=27, \ 21x+27z=15$	M1
	e.g., $4x - 3y = -1 \Rightarrow x =$ $3z = 1 - \frac{5(3y - 1)}{4} + 2y = \frac{4 - 15y + 5}{4}$ Expresses one variable in terms of the other variables in terms of the other one (double und variable equal to a parameter to find the other parameter in terms of the other $y = \lambda, x = f(\lambda), z = g(\lambda) \{\Rightarrow \\ y = \lambda, \lambda = f(x), \lambda = g(z) \{\Rightarrow \\ See examples below. Requesed}$	$=\frac{3y-1}{4} \Rightarrow y = \frac{4x+1}{3}$ $\frac{y+8y}{12} \Rightarrow z = \frac{9-7y}{12} \Rightarrow y = \frac{12z-9}{-7}$ Two (single underlining) or expresses two erlining). This work may be seen by setting a r variables in terms of the parameter (or the other two variables) e.g., $x = \frac{-1+3\lambda}{4}, y = \lambda, z = \frac{9-7\lambda}{12}$ $x = \frac{4x+1}{3}, y = \lambda, \lambda = \frac{12z-9}{-7}$ uires previous M mark.	dM1
	e.g., $\frac{4x+1}{3} = y = \frac{12z-9}{-7} \Rightarrow \frac{x+\frac{1}{4}}{\frac{3}{4}} = \frac{y-0}{1} = \frac{z-\frac{3}{4}}{-\frac{7}{12}}$ or e.g., $x = \frac{-1+3\lambda}{4}$, $y = \lambda$, $z = \frac{9-7\lambda}{12} \Rightarrow$ $\Rightarrow \mathbf{r} = \begin{pmatrix} -\frac{1}{4} \\ 0 \\ \frac{3}{4} \end{pmatrix} + \lambda \begin{pmatrix} \frac{3}{4} \\ 1 \\ -\frac{7}{12} \end{pmatrix}$ or e.g. $\mathbf{r} = \begin{pmatrix} -\frac{1}{4} \\ 0 \\ \frac{3}{4} \end{pmatrix} + \lambda \begin{pmatrix} 9 \\ 12 \\ -7 \end{pmatrix}$	ddM1: Correct method to form RHS of vector equation. Allow slips but must not be a clearly incorrect method (e.g., point and direction confused, all non-zero point coordinates the wrong sign, no attempt seen or implied to obtain single coefficients for the variables in the numerator where necessary). Allow this mark if the point is later changed by multiplication e.g., $(-\frac{1}{4}, 0, \frac{3}{4})$ becomes $(-1, 0, 3)$ Condone missing $\mathbf{r} =$ Allow this mark if $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} (= 0)$ or $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$ are appropriately used. Requires both previous M marks. A1: Any correct equation (with any parameter). Do not condone e.g., $l =$ Do not isw if the point is changed by multiplication.	ddM1 A1
examples	$x = \frac{3y-1}{4} = \frac{5-9z}{7} \Rightarrow \frac{x-0}{1} = \frac{y-\frac{1}{3}}{\frac{4}{3}} = \frac{z-\frac{5}{9}}{-\frac{7}{9}} \text{ or } x = \frac{5-7x}{9} = \frac{9-7y}{12} = z \Rightarrow \frac{x-\frac{5}{7}}{-\frac{9}{7}} = \frac{y-\frac{9}{7}}{-\frac{12}{7}} = \frac{z-0}{1} \text{ or } x = \frac{1}{2}$	$=\lambda, \ y = \frac{4\lambda + 1}{3}, \ z = \frac{5 - 7\lambda}{9} \Rightarrow \mathbf{r} = \begin{pmatrix} 0\\ \frac{1}{3}\\ \frac{5}{9} \end{pmatrix} + \lambda \begin{pmatrix} 1\\ \frac{4}{3}\\ -\frac{7}{9} \end{pmatrix}$ $= \frac{5 - 9\lambda}{7}, \ y = \frac{12z - 9}{-7}, \ z = \lambda \Rightarrow \mathbf{r} = \begin{pmatrix} \frac{5}{7}\\ \frac{9}{7}\\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -\frac{9}{7}\\ -\frac{12}{7}\\ 1 \end{pmatrix}$	(4)

Question Number	Scheme	Notes	Marks	
9(b)	Work may be minimal if they obtain a correct point. But do not accept just sight of an incorrect point without some evidence of an			
Way 2	appropriate method to obtain it.			
	$2x - 5y - 6z = -5, \qquad 5x - 2y + 3z = 1$	Assigns a value to one variable to obtain		
Finds	Let $y = 0 \Longrightarrow 2x - 6z = -5$, $5x + 3z = 1$	two equations in the other variables or	M1	
point	or \Rightarrow e.g., $12x - 9y = -3$	eliminates one variable as in Way 1.		
takes		Solves or assigns a value to one variable to		
vector	$\Rightarrow 12x = -3 \Rightarrow x = -\frac{1}{4}, y = 0, z = \frac{3}{4}$	There is no need to check a point that arises		
product	May see $(0, \frac{1}{2}, \frac{5}{2})$ or $(\frac{5}{2}, \frac{9}{2}, 0)$	from no working provided it is clear that the	dM1	
of	previous M mark has been scored.			
normals		Requires previous M mark.		
	Note that a point could be obtained via substit	tuting the given form of Π_1 into Π_2 and expanding		
	(NIT) and then finding values of s and t that s	Calculates vector product of normals (two		
	components correct) and forms RHS of vector			
	equation (allowing for copying slips but must			
	$\begin{pmatrix} 2 \\ -27 \end{pmatrix}$ $\begin{pmatrix} -27 \\ -\frac{1}{4} \end{pmatrix}$ $\begin{pmatrix} -27 \\ -27 \end{pmatrix}$ not confuse point and direction). Allow this mark if the point is later changed by			
	$\begin{vmatrix} -5 \\ \times \end{vmatrix} -2 \begin{vmatrix} -36 \\ \Rightarrow \end{vmatrix} = \begin{vmatrix} -36 \\ +\lambda \end{vmatrix} -36 \end{vmatrix}$ multiplication.		ddM1	
	$\begin{pmatrix} -6 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 21 \end{pmatrix} \begin{pmatrix} \frac{3}{4} \end{pmatrix} \begin{pmatrix} 21 \end{pmatrix}$	Condone missing $\mathbf{r} = \dots$		
		Allow this mark if $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} (= 0)$ or		
	$\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$ are appropriately used.			
	Requires both previous M marks.			
	Any correct equation in this form (with any			
	$\begin{pmatrix} -\frac{1}{4} \end{pmatrix}$ $\begin{pmatrix} -27 \end{pmatrix}$ $\begin{pmatrix} -\frac{1}{4} \end{pmatrix}$ $\begin{pmatrix} -9 \end{pmatrix}$	Do not is if the point is changed by		
	\Rightarrow r = 0 + λ -36 or e.g., r = 0 + λ -12	multiplication.	A1	
	$\left(\begin{array}{c} \frac{3}{4} \right) \left(\begin{array}{c} 21 \right) \left(\begin{array}{c} \frac{3}{4} \right) \left(\begin{array}{c} 7 \right)$	Correct points will have the form		
		$\left(rac{3lpha-1}{4}, lpha, rac{9-7lpha}{12} ight)$		
Way 3	Finding 2 points on the line and subtract for d	irection e.g., Finds $\left(-\frac{1}{4}, 0, \frac{3}{4}\right)$ (M1dM1 as Way 2)		
2 noints	Then finds $\left(0, \frac{1}{3}, \frac{5}{9}\right) \Rightarrow$ direction = $\left(\frac{1}{4}, \frac{1}{3}, -\frac{7}{36}\right) \Rightarrow$ forms RHS of vector equation (ddM1)			
2 points	Then A1 for a correct equation			
			(4)	
	Correct points	/positions include:		
	$\begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} -\frac{1}{4} \end{pmatrix} \begin{pmatrix} \frac{5}{7} \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	$\begin{pmatrix} \frac{1}{2} \end{pmatrix} \begin{pmatrix} -\frac{4}{7} \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$		
	$\left \begin{array}{c c} \frac{1}{3} \end{array} \right 0 \left \begin{array}{c c} \frac{9}{7} \end{array} \right \frac{5}{3}$	$\begin{vmatrix} 1 \\ -\frac{3}{7} \end{vmatrix}$ $\begin{vmatrix} -1 \\ 3 \end{vmatrix}$		
	$\left(\begin{array}{c} \left(\frac{5}{9}\right) \\ \left(\frac{3}{4}\right) \\ \left(0\right) \\ \left(-\frac{2}{9}\right) \\ \left(\frac{3}{4}\right) \\ \left(\frac{3}{4}\right) \\ \left(\frac{5}{9}\right) $	$\int \left(\frac{1}{6}\right) \left(1\right) \left(\frac{4}{3}\right) \left(-1\right)$		

Question Number	Scheme		Notes	Marks
9(c)	Note that use of their line from part (b) must be seen to score any marks in (c)			
	$\mathbf{r} = \begin{pmatrix} -\frac{1}{4} \\ 0 \\ \frac{3}{4} \end{pmatrix} + \lambda \begin{pmatrix} 9 \\ 12 \\ -7 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} + 9\lambda \\ 12\lambda \\ \frac{3}{4} - 7\lambda \end{pmatrix}$ $4\left(-\frac{1}{4} + 9\lambda\right) - 3\left(12\lambda\right) - \left(\frac{3}{4} - 7\lambda\right) = 0 \Longrightarrow 7\lambda = \frac{7}{4}$	$\Rightarrow \lambda = \frac{1}{4}$	Substitutes the parametric form of their line (allow slips but must not clearly confuse position and direction) from (b) into Π_3 and solves for λ The "=0" could be implied by a solution.	M1
	$\Rightarrow \left(9\left(\frac{1}{4}\right) - \frac{1}{4}, 12\left(\frac{1}{4}\right), -7\left(\frac{1}{4}\right) + \frac{3}{4}\right) = \dots$ Substitutes their λ into their line and obtains a point/position vector with values for all coordinates/components. If there is no working at least two coordinates/components should be consistent with their equation or parametric form. Isw if the point/position is altered by multiplication. Requires previous M mark.			dM1
	(2, 3, -1)		Correct point. No others. Allow $x =, y =, z =$ and condone as a position vector. Do not isw.	A1
				(3)
T				Total 10
PAPER TOTA				