January 2024 WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Schem	ne	Notes	Marks
1	$\frac{1}{x+2} > 2x+3$			
		x+2 Examples:		
	1-(
	$\frac{1 - (x+2)(2x+3)}{x+2} > 0 \Rightarrow 2x^2 + 7x + 5 = 0$ $x+2 > (2x+3)(x+2)^2$			
	$\Rightarrow (x+2)(2$	$(x^2 + 7x + 5) = 0$ or $2x^3 + 5$	$-11x^2 + 19x + 10 = 0$	
	$\frac{1}{x+2} = 2x$	$+3 \Rightarrow (2x+3)(x+2)-1$	$=2x^2 + 7x + 5 = 0$	M1
	condone incorrect inequa	lity signs but the first al	y a 3TQ or a 4TC. Allow slips and gebraic step should be otherwise $+3(x+2)=0$. The "= 0" can be	
	algebraically. Squaring		live intersections to be found llow M1 for obtaining a 5TQ +35 = 0)	
	e.g., $(2x+5)(x+1)=0 \Rightarrow$		m appropriate work and no extra	
	$x = -\frac{5}{2}, -1$	incorrect cvs. May	only be seen in the solution set. g a 3TQ etc. by calculator.	A1
	x = -2	solution set. This is the algebraic manipulat	tical value. May only be seen in e only mark available if there is no tion seen. Allow from any or no from $(2x+3)(x+2)=0$	B1
	$\Rightarrow x < -\frac{5}{2}$, -2 < x < -1 or e.g., (-6)	$\infty, -2.5$), $(-2, -1)$	
	M1 : For the regions $x < a$,	-2 < x < b with real cv	s $a < -2$ and $b > -2$ but condone	
	b < x < -2 as a notational slip for this mark.		B/1 A 1	
	Condone any non-strict inequality signs and poor notation for this mark. Not dependent but must follow an attempt at algebraic manipulation. A1: Correct solution set in any form. Do not isw if the correct inequalities are subsequently incorrectly amended. Allow all marks even if an incorrect inequality sign was seen earlier in the working.		M1 A1	
	5	Examples:	5	
	$-\frac{5}{2} > x \text{ or } -2 < x < -1 \text{ M1 A1}$ $x < -\frac{5}{2} \text{ and } -2 < x < -1 \text{ M1 A1}$			
	(Accept any word between the two correct regions) $x < -\frac{5}{2}$, $-1 < x < -2$ M1 A0 (notational slip)			
	$\left[(-\infty, -\frac{5}{2}) \cap (-2, -1) \text{ M1A0 (incorrect symbol - allow "and")} \left[-\infty, -\frac{5}{2} \right] \cup \left[-2, -1 \right] \text{ M1A0} \right]$			
		-2 < x x < -1 M0 A		
				(5)
				Total 5

Question			_01_MS	
Number	Scheme	Notes	Marks	
2(a)	(i) $z = 6 - 6\sqrt{3}i \Rightarrow z = \sqrt{6^2 + (6\sqrt{3})^2} = 12$	+12 only. Accept if just stated	B1	
	(ii) e.g., $\arg z = -\arctan \frac{6\sqrt{3}}{6}$			
	Attempts an expression for a relevant angle. Look for $\pm \arctan\left(\pm\frac{6\sqrt{3}}{6}\right)$ or e.g., $\pm \tan^{-1}\left(\pm\frac{1}{\sqrt{3}}\right)$			
	If arctan is not seen allow e.g., $\tan \alpha = \frac{6\sqrt{3}}{6} \Rightarrow \alpha = \frac{6\sqrt{3}}{6}$	3		
	If using sin or cos the hypotenuse			
	arg z or arg or $argument$ (of	$z = -\frac{\pi}{3}$		
	A correct proof with no incorrect work/statements	s. LHS required. Allow " θ =" if	A1*	
	consistent , e.g., $\theta = -\frac{\pi}{3}$ cannot follows:	ow " $\tan \theta = +\sqrt{3}$ "		
(**)	$z = 12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \text{ or } 12e^{-\frac{\pi}{3}i} \text{ or } \cos\theta = \frac{1}{2}\operatorname{orsin}\theta = -\frac{\sqrt{3}}{2}[M1] \Rightarrow \arg z = -\frac{\pi}{3}[A1^*]$			
(ii) Way 2	M1: Factorises out 12 and writes in trig or exp form or identifies $\cos \theta = \frac{1}{2}$ and $\sin \theta = -\frac{\sqrt{3}}{2}$ A1: Acceptable statement with all work correct			
	$z = 12\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) \text{ or } 12e^{-\frac{\pi}{3}i} \text{ or } 12\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 6 - 6\sqrt{3}i \text{ [M1]} \Rightarrow \arg z = -\frac{\pi}{3} \text{ [A1*]}$			
(ii)	M1: Assumes result, writes correctly for their			
Way 3	A1: Obtains $6-6\sqrt{3}i$ and makes acceptable st	-		
			(3)	
(b)	$z = "12" \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right) \text{ or } "12" e^{-\frac{\pi}{3}i} \text{ [n]}$	o missing "i" unless recovered]		
	Correct trig or exp. form with their 12. Could be implied	ed by their z^4 in trig or exp. form e.g.,	M1	
	$("12"e^{-\frac{\pi}{3}i})^4$ Allow equivalent values of θ e.g. $\frac{5\pi}{3}$	and use of e.g., $\sin(-\frac{\pi}{2}) = -\sin(\frac{\pi}{2})$.		
	Condone poor bracketing. Allow this mark if $+2k\pi$,			
	$z^{4} = 20736 \left(\cos \left(-\frac{4\pi}{3} \right) + i \sin \left(-\frac{4\pi}{3} \right) \right) \text{ or } 20736 \left(\cot \left(-\frac{4\pi}{3} \right) \right)$			
	Correct z^4 in any form. 12^4 evaluated and arg. of $-\frac{4\pi}{3}$,		
	may use e.g., $\sin\left(-\frac{4\pi}{3}\right) = -\sin\left(\frac{4\pi}{3}\right)$. No "k"s. Co		A1	
	Only accept $-10368 + 10368\sqrt{3}i$ or $20736\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$			
	\	, , , , , , , , , , , , , , , , , , ,	(2)	

		FFZ_2024	
Question Number	Scheme	Notes	Marks
2(c)	$w = z^{\frac{1}{2}} = \left(\pm\right)\sqrt{"12"}\left(\cos\left(\frac{-\frac{\pi}{3}}{2}\right) + i\sin\left(\frac{-\frac{\pi}{3}}{2}\right)\right) \text{ or e.g., } \left(\pm\right)"2\sqrt{3}"e^{-\frac{\pi}{6}i}$ [no missing "i" unless recovered] Correct use of de Moivre's theorem with $-\frac{\pi}{3}$ and their 12 to attempt one square root. Allow work with argument of $\frac{5\pi}{3}$ for $-\frac{\pi}{3}$ and use of e.g., $\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right)$. Condone poor bracketing. M0 if z^4 used for z. Allow this mark if $+2k\pi$, $-2k\pi$, $\pm 2k\pi$ appears with argument		M1
	$w = 3 - \sqrt{3}i, -3 + \sqrt{3}i \text{ oe}$ A1ft: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm) \sqrt{"12"} \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)$ A1: Both exact roots (no others) correct in $a + ib$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a = (\pm) \sqrt{12} \frac{\sqrt{3}}{2}, (\pm) \frac{\sqrt{36}}{2} b = (\mp) \frac{\sqrt{12}}{2}, (\mp) \frac{2\sqrt{3}}{2}$ Accept $\pm (3 - \sqrt{3}i)$ but just $\pm 3 - \sqrt{3}i$ is A1 A0. Just $\pm \sqrt{3} \left(\sqrt{3} - i\right)$ is A1 A0		A1ft A1
	Note: $w^2 = r^2 (\cos 2\theta + i \sin 2\theta) = z =$	$\Rightarrow r, \theta, w = \dots$ is an acceptable approach	(3)
Alt	$w^2 = z \Rightarrow (a + ib)^2 = a^2 - b^2 + 2abi = 6 - 6\sqrt{3}i \Rightarrow a^2 - b^2 = 6, \ 2ab = -6\sqrt{3}$ $b = -\frac{3\sqrt{3}}{a} \Rightarrow a^2 - \frac{27}{a^2} = 6 \Rightarrow a^4 - 6a^2 - 27 = (a^2 - 9)(a^2 + 3) = 0 \Rightarrow a^2 = 9, \ a = \pm 3, \ b = \mp \sqrt{3}$ M1: From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w = 3 - \sqrt{3}i, -3 + \sqrt{3}i$ A1: One correct exact root in $a + ib$ or $c(a + ib)$ form (a, b, c) may be unsimplified) A1: Both exact roots (no others) correct in $a + ib$ form $-a$ and b may be unsimplified		Total 9
			Total 8

Question Number	Scheme	Notes	Marks
3(a)	$\frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} \times \frac{\sqrt{r(r+1)} - \sqrt{r(r-1)}}{\sqrt{r(r+1)} - \sqrt{r(r-1)}}$ $= \frac{r(\sqrt{r(r+1)} - \sqrt{r(r-1)})}{r(r+1) - r(r-1)} = \frac{\sqrt{r(r-1)}}{r(r+1)}$	A correct multiplier to rationalise the denominator seen or implied by correct work	M1
	$= \frac{r\left(\sqrt{r(r+1)} - \sqrt{r(r-1)}\right)}{r(r+1) - r(r-1)} = \frac{\sqrt{r(r+1)}}{r(r+1)}$ Correct expression or correct value for A. There must be (minimal) contains	Condone poor notation if intention clear.	A1
	Alternative $A = \frac{r}{\left(\sqrt{r(r+1)} + \sqrt{r(r-1)}\right)\left(\sqrt{r(r+1)} - \sqrt{r(r-1)}\right)} = \frac{r}{M1: \text{ Correctly makes } A \text{ the subject A1: Correct}}$	$\frac{r}{r(r+1)-r(r-1)}$ or $\frac{r}{r^2+r-r^2+r}$ or $\frac{r}{2r} \Rightarrow A = \frac{1}{2}$	
(b)	((2)
(b)	$\sum_{r=1}^{n} \frac{r}{\sqrt{r(r+1)} + \sqrt{r(r-1)}} = \frac{1}{2} \frac{1}{2} \frac{r}{2} $		
	Note: row 3 is " $\frac{1}{2}$ "($\sqrt{12}$ (or $2\sqrt{3}$) - $\sqrt{6}$), ro If $\frac{1}{2}$ is fully applie $\frac{\sqrt{2}}{2}, \ \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}, \ \frac{\sqrt{12}}{2}$ (or $\sqrt{3}$) - $\frac{\sqrt{6}}{2}$, $\frac{\sqrt{(n-2)(n-1)}}{2} - \frac{\sqrt{(n-2)(n-3)}}{2}, \ \frac{\sqrt{n(n-1)}}{2}$	ed the rows are: $\frac{\sqrt{20}}{2} (\text{or } \sqrt{5}) - \frac{\sqrt{12}}{2} (\text{or } \sqrt{3}),$	
	$ \begin{array}{c c} & & \\ & \text{incor} \\ & & \text{if ca} \end{array} $	Correct expression in terms of n . No rect terms seen in differences work even neelled but condone the occasional poor acket. There should be no "0" so e.g., $\frac{1}{2} \left(\sqrt{n(n+1)} - 0 \right) \text{ is A0}$ Does not require marks in (a)	A1
			(3)

FP2_2024_01_MS

Question Number	Scheme	Notes	Marks
3(c)	$\sum r = \frac{1}{2} n(n+1) \text{ e.g., sight of } k \times = \sqrt{\frac{1}{2} n(n+1)}$	States or uses the correct summation formula for integers	M1
	$\frac{k}{2}\sqrt{n(n+1)} = \sqrt{\frac{1}{2}n(n+1)} \Rightarrow \frac{k}{2} = \sqrt{\frac{1}{2}} \Rightarrow k = \sqrt{2}$	$\sqrt{2}$ only (Not \pm). $k = \sqrt{2}$ must not come from a clearly incorrect equation.	A1
			(2)
		·	Total 7

Question Number	Scheme	Notes	Marks
4(a)	$y = \tan\left(\frac{3x}{2}\right) \Rightarrow y' = \frac{3}{2}\sec^2\left(\frac{3x}{2}\right)$	Any correct first derivative. Not implied by $y'(\frac{\pi}{6}) = 3$	B1
	$\Rightarrow y'' = 2 \times \frac{3}{2} \sec\left(\frac{3x}{2}\right) \times \sec\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right) \times \frac{3}{2}$ $\left[= \frac{9}{2} \sec^2\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right) \right]$	Attempts the second derivative achieving $k \sec^2\left(\frac{3x}{2}\right) \tan\left(\frac{3x}{2}\right)$ or unsimplified equivalent. Not implied by $y''\left(\frac{\pi}{6}\right) = 9$	M1
	$\Rightarrow y''' = \frac{9}{2}\sec^2\left(\frac{3x}{2}\right)\sec^2\left(\frac{3x}{2}\right) \times \frac{3}{2} + \frac{9}{2}\tan\left(\frac{3x}{2}\right) \times 2 \times \frac{3}{2}\sec^2\left(\frac{3x}{2}\right)$ $\left[= \frac{27}{4}\sec^4\left(\frac{3x}{2}\right) + \frac{27}{2}\sec^2\left(\frac{3x}{2}\right)\tan^2\left(\frac{3x}{2}\right)\right]$	or unsimplified equivalent. Requires	dM1 A1
	expressions of consistent	w must be used correctly and to score M marks form should be achieved. $u'' = \frac{27}{4} \sec^2 \left(\frac{3x}{2}\right) + \frac{81}{4} \sec^2 \left(\frac{3x}{2}\right) \tan^2 \left(\frac{3x}{2}\right)$	
	Attempts values (but allow numerical trig expre	$y''\left(\frac{\pi}{6}\right) = 9, y'''\left(\frac{\pi}{6}\right) = 54$ ssions) for y and their 3 derivatives at $\frac{\pi}{6}$ - accept to a series of the correct form	M1
	Applies Taylor's correctly about $\frac{\pi}{6}$ with their versions seen separately the work should imply a correct for	$\left(x - \frac{\pi}{6}\right)^2 + \frac{54}{3!}\left(x - \frac{\pi}{6}\right)^3 + \dots$ alues/numerical trig expressions. If values are not armula but allow a recognisable attempt at the series a stated. Requires previous M mark.	dM1
		Correct expression with coeffs. in simplest form. "y =" not required. Requires all previous marks. Score A0 if clear evidence of use of any wrong derivative expression.	A1
	If e.g. $y'''(\frac{\pi}{6})$ is found by calculator but $y'(x)$		(7)
	no loss of form when differentiating (sign a errors with product/quotient formulae). $y = \tan\left(\frac{3x}{2}\right) = \frac{\sin\left(\frac{3x}{2}\right)}{\cos\left(\frac{3x}{2}\right)} \Rightarrow y'' = \frac{\frac{9}{2}\cos^3\left(\frac{3x}{2}\right)\sin\left(\frac{3x}{2}\right) + \frac{9}{2}\cos\left(\frac{3x}{2}\right)\sin^3\left(\frac{3x}{2}\right)}{\cos^4\left(\frac{3x}{2}\right)}$	The sthroughout, to score M marks there must be and coefficient errors only, also allowing sign Any use of identities must be correct. E.g: $y' = \frac{\frac{3}{2}\cos^2\left(\frac{3x}{2}\right) + \frac{3}{2}\sin^2\left(\frac{3x}{2}\right)}{\cos^2\left(\frac{3x}{2}\right)}$ $\frac{\left(\frac{3x}{2}\right)}{\cos^4\left(\frac{3x}{2}\right)} \text{ or } \frac{\frac{9}{2}\cos\left(\frac{3x}{2}\right)\sin\left(\frac{3x}{2}\right)}{\cos^4\left(\frac{3x}{2}\right)} \text{ or } \frac{9\sin\left(\frac{3x}{2}\right)}{2\cos^3\left(\frac{3x}{2}\right)}$ $\frac{\left(\frac{3x}{2}\right)\sin^4\left(\frac{3x}{2}\right)}{2\cos^4\left(\frac{3x}{2}\right)} = \frac{27}{4} + 27\tan^2\left(\frac{3x}{2}\right) + \frac{81}{4}\tan^4\left(\frac{3x}{2}\right)$	

		_	
Question Number	Scheme	Notes	Marks
4(b)	$\left\{ y \left(\frac{\pi}{4} \right) = \right\} 1 + 3 \left(\frac{\pi}{4} - \frac{\pi}{6} \right) + \frac{9}{2} \left(\frac{\pi}{4} - \frac{\pi}{6} \right)^2 + 9 \left(\frac{\pi}{4} - \frac{\pi}{6} \right)^3$		
	or $1+3\left(\frac{\pi}{12}\right)+\frac{9}{2}\left(\frac{\pi}{12}\right)^2$	$+9\left(\frac{\pi}{12}\right)^3$	
	Substitutes $\frac{\pi}{4}$ into their expression for y of the	correct form with at least the first	M1
	three terms (series about $\frac{\pi}{6}$). Must have values	(not unevaluated trig expressions).	
	If only a decimal value is given then it must be (2.255314325		
	If there is no working they must obtain an expre	ession with at least $a + b\pi + c\pi^2$ and	
	correct exact ft a , b and c for their series or 1	$+\frac{\pi}{4} + c\pi^2$ with correct exact ft c	
	$=1+\frac{\pi}{4}+\frac{\pi^2}{32}+\frac{\pi^3}{192} \text{ or } 1+\frac{1}{4}\pi+\frac{1}{32}\pi^2+\frac{1}{192}\pi^3$	Correct answer or values for <i>A</i> (32) and <i>B</i> (192). Can be awarded if full marks were not scored in (a).	A1
		` ` ` ` ` `	(2)
			Total 9

Question Number	Scheme	Notes	Marks
5	$r^2 = 100\cos^2\theta + 20\cos\theta\tan\theta + \tan^2\theta$	Any correct expression for r^2	B1
	$\left\{\frac{1}{2}\right\} \int_0^{\frac{\pi}{3}} r^2 d\theta = \left\{\frac{1}{2}\right\} \int_0^{\frac{\pi}{3}} \left(100\cos^2\theta + 20\sin\theta + \tan^2\theta\right) \left\{d\theta\right\}$	Attempts formula for the area with their r^2 which may not be expanded Condone missing $\frac{1}{2}$ and limits not required	M1
	$= \frac{1}{2} \int_{0}^{\frac{\pi}{3}} \left(50 \left(1 + \cos 2\theta \right) + 20 \sin \theta + s \right)$ M1 : Uses $\cos^{2} \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ or $\tan^{2} \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^{2} \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^{2} \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^{2} \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ and $\tan^{2} \theta = \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ Both M marks can be scored without the Condone mixed variable A1: Correct integral following $\cos^{2} \theta = \frac{1}{2} + \frac{1}{2} \cos 2\theta$ $\cos \theta \tan \theta$ must be written as $\sin \theta$ (implied if approximately is required (it may be seen later) but limits/delease variables if subsequent work received.	$= \pm \sec^2 \theta \pm 1 \text{ in their } r^2$ $^2 \theta = \pm \sec^2 \theta \pm 1 \text{ in their } r^2$ integral and the $\frac{1}{2}$. es. $\theta \text{ and } \tan^2 \theta = \sec^2 \theta - 1. \text{ The}$ propriately integrated later). $\theta \text{ are not needed. Allow mixed}$	M1 M1 A1
	$= \frac{1}{2} \Big[49\theta + 25\sin 2\theta - 20\cos \theta + \tan \theta \Big]_0^{\frac{\pi}{3}} \text{ or } \Big[\frac{49}{2}\theta + \frac{29}{3}\theta + \frac{29}{3}\theta \Big]_0^{\frac{\pi}{3}} $ M1 : Achieves three of the following four $k \to k\theta$ (at least once), $\cos 2\theta \to \sin 2\theta$, $\sin \theta \to 1$ Ignore other terms if 3 of the above are satisfied. No mixed variables. A1 : Correct integration including the $\frac{1}{2}$ (may be seen May be unsimplified e.g., 49θ seen as $50\theta - \theta$ subsequent work recovers	ar integrated forms: $\rightarrow\cos\theta$, $\sec^2\theta \rightarrow\tan\theta$. $\frac{1}{2}$ or limits required. Condone en later). Limits not required. . Allow mixed variables if	M1 A1
	$= \frac{1}{2} \left(\frac{49\pi}{3} + 25\sin\frac{2\pi}{3} - 20\cos\frac{\pi}{3} + \tan\frac{\pi}{3} - 20\cos\frac{\pi}{3} + \tan\frac{\pi}{3} \right)$ $\begin{cases} = \frac{1}{2} \left(\frac{49\pi}{3} + \frac{25\sqrt{3}}{2} - 10 + \sqrt{3} + 20 \right) & \text{or } \frac{49\pi}{6} - 20\cos\frac{\pi}{3} + 20 \end{cases}$ Applies the correct limits to an expression of the form $(p,q,r,s\neq 0)$ Allow slips but there must be a clear must only subtract the value of their r , e.g. if $r = -\frac{1}{2}(-20)$ or $+20$. Allow mixed variables if the	$+\frac{25\sqrt{3}}{4} - 5 + \frac{\sqrt{3}}{2} + 10$ $\text{m } p\theta + q \sin 2\theta + r \cos \theta + s \tan \theta$ attempt to substitute, and they $20 \text{ work must have or imply}$	M1
	$= \frac{1}{12} \left(98\pi + 81\sqrt{3} + 60 \right)$ Note that there are other viable routes through the integration	a, b & c	(9) Total 9

Question Number	Scheme	Notes	Marks
6	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 6\frac{\mathrm{d}x}{\mathrm{d}t} + 13x = 8\mathrm{e}^{-3t}$	t0	
(a)	$m^{2} + 6m + 13 = 0 \Rightarrow m = \frac{-6 \pm \sqrt{36 - 52}}{2}$ $\left\{ = -3 \pm 2i \right\}$	Forms correct auxiliary equation and obtains a correct numerical expression for at least one root by formula or uses CTS (apply usual CTS rule below). One correct root if no working	M1
	CTS rule: $m^2 + 6m + 13 = 0 \Rightarrow \left(m \pm \frac{6}{2}\right)$		
	CF examples: $(x =) e^{-3t} \left(A \cos 2t + B \sin 2t \right)$ or $(x =) A e^{-3t} \cos \left(-2t \right) + B e^{-3t} \sin \left(-2t \right)$ or $(x =) P e^{(-3+2i)t} + Q e^{(-3-2i)t}$ or $(x =) e^{-3t} \left(P e^{2it} + Q e^{-2it} \right)$	Correct complementary function in any form, allow if the "x =" is missing or wrong and accept for this mark if the CF is given fully in terms of x instead of t.	A1
	$PI: \left\{ x = \right\} \lambda e^{-3t}$	Correct form for the particular integral selected. Must include λe^{-3t} but accept with any extra terms that correctly disappear when coefficients found. Accept "PI=". If λe^{pt} is used $p = -3$ must be seen later.	В1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -3\lambda \mathrm{e}^{-3t} \ ; \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 9\lambda \mathrm{e}^{-3t}$ $\Rightarrow 9\lambda \mathrm{e}^{-3t} + 6\left(-3\lambda \mathrm{e}^{-3t}\right) + 13\lambda \mathrm{e}^{-3t} = 8\mathrm{e}^{-3t}$	Differentiates a PI of any form twice (provided it has at least one constant and is a function of <i>t</i>) and substitutes into the equation. Allow only sign/coefficient errors only in the differentiation. Their PI must lead to non-zero derivatives.	M1
	$\Rightarrow 9\lambda - 18\lambda + 13\lambda = 8 \Rightarrow \lambda = \dots (2)$	Proceeds to find the value of the constant following use of a PI of the correct form. Any unnecessary extra terms in the PI must be found to be zero	dM1
	$x = "e^{-3t} \left(A\cos 2t + B\sin 2t \right) " + 2e^{-3t}$	Correct general solution ft on their CF only – any CF provided it has at least one constant and is in terms of t. Must have x = Do not allow if their CF is miscopied or mathematically changed	A1ft
	Work with a PI of the form $\lambda t e^{-3t}$ is B0M1dN Only condone incorrect variables if they are refirst A1.		(6)

Question Number	Scheme		Notes	Marks
6(b)	$\begin{array}{c} 2 \\ \rightarrow \frac{1}{2} - 4 + 2 & \left(\rightarrow 4 - \frac{3}{2} \right) \end{array}$	to find a linear constants. Allow	condition for x in their GS equation in one or two y for GS = CF or CF + PI may come from the +PI	M1
	$x = e^{-3t} \left(A \cos 2t \right)$	$+B\sin 2t$) $+2e^{-3}$	t	
	$\frac{dx}{dt} = e^{-3t} \left(-2A\sin 2t + 2B\cos 2t \right) - 3e^{-3t} \left(A\cos 2t + B\sin 2t \right) - 6e^{-3t}$ Uses the product rule to differentiate their real GS obtaining an expression in terms of t of the correct form for their GS (sign and coefficient errors only – so do not allow e.g., $e^{pt} \rightarrowe^{qt}$). Allow for GS = CF or CF + PI and does not have to include constants. If they work with a complex function e.g., $x = Pe^{(-3+2i)t} + Qe^{(-3-2i)t} + 2e^{-3t}$ progress is unlikely. This mark is not scored for work in (c)			M1
	$t = 0, \frac{dx}{dt} = \frac{1}{2} \Rightarrow \frac{1}{2} = 2B - 3A - 6 \Rightarrow B = (=1)$ Uses both initial conditions to find values for the 2 constants (no others) in their $GS = (CF \text{ with 2 constants}) + PI(\text{no constants}). \text{ One constant must be found to be non-zero.}$ Requires both previous M marks.		ddM1	
	Examples: $x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t \right) + 2e^{-3t}$ or $x = e^{-3t} \left(-\frac{3}{2} \cos 2t + \sin 2t + 2t \right)$ or $x = 2e^{-3t} - \frac{3}{2} e^{-3t} \cos 2t + e^{-3t} \sin 2t$	e^{-3t}	Correct particular solution in any form in terms of t . Must be $x =$ unless this was the only reason for final A0 in part (a) due to omission or e.g, " $y =$ " was used	A1
(a)		(-		(4)
(c)	$\frac{dx}{dt} = e^{-3t} \left(3\sin 2t + 2\cos 2t \right) - 3e$ Sets an expression for $\frac{dx}{dt} = 0$. Accept with	`	· ·	M1
$(3\sin 2t + 2\cos 2t) - 3\left(-\frac{3}{2}\cos 2t + \sin 2t\right) - 6 = 0$ Achieves an equation of the form $a\sin bt + c\cos bt + d = 0$ or equivalent with terms uncollected. One of a and c non-zero and b and d non-zero. Must follow a GS = CF + PI where two constants were found for the CF and one for the PI. Requires previous M mark.			6 = 0 $d = 0$ or equivalent with d and d non-zero. The found for the CF and	dM1
	$\cos 2t = \frac{12}{13} \Rightarrow t = 0.1973955598 \Rightarrow x \text{ or } a = 0.197395598 \Rightarrow x \text{ or } a = 0.197395598 \Rightarrow x \text{ or } a = 0.1973959999999999999999999999999999999999$	$\frac{1}{2}e^{-3(0.1973)}\left(4-3\times\frac{1}{2}e^{-3(0.1973)}\right)\left(4-3\times\frac{1}{2}e^{-3(0.1973)}\right)$ wing their PS. Accrevious M marks	$\left(\frac{12}{13} + 2\sin(2 \times 0.1973)\right) =$ es their positive (or made cept a pair of stated values.	ddM1
	x or a = 0.553(1164729.)	awrt 0.553	A1
				(4) Total 14

Question	Scheme	Notes	Marks
Number 7(a)		Attempts to make z the	
Way 1	$w = \frac{z - 3}{2i - z} \Rightarrow 2iw - wz = z - 3 \Rightarrow z = \dots$	subject and obtains any $f(w)$	M1
	$z = \frac{3 + 2iw}{w + 1}$ or $\frac{-3 - 2iw}{-w - 1}$	Any correct expression for z in terms of w	A1
	$=\frac{3+2iu-2v}{u+iv+1}\times\frac{u+1-iv}{u+1-iv}$		
	u+iv+1 u+1-iv Applies $w = u+iv$ and a correct multiplier for their z see result from their z. Denominator must have had a "w". No		M1
	$x + iy = \frac{3 + 2iu - 2v}{u + iv + 1} \times \frac{u + 1 - iv}{u + 1 - iv} = \frac{(3 - 2v)(u + 1) + 2uv + 2u(u + 1)}{(u + 1)^2 + v}$		
	$y = x + 3 \text{ oe } \Rightarrow \frac{2u(u+1) - (3-2v)v}{(u+1)^2 + v^2} = \frac{(3-2v)(u+1)^2 + v^2}{(u+1)^2 + v^2}$		
	Multiplies, extracts real and imaginary parts and uses them in t produce an equation in u and v only – no "i"s. Condone $y =$ slips with multiplier but denominator of z must h Note: Just $2u(u+1) - (3-2v)v = (3-2v)(u+1) + 2uv + 3$ in	he equation $y = x + 3$ (oe) to .i if recovered. Can follow ave had a "w"	M1
		Expands and simplifies to obtain an equation of a circle with 4 or 5 real unlike terms. All previous Ms required.	dddM1
	Alternative for the above 3 marks (note this could be done by equating expressions for y)		
	$x + iy = \frac{3 + 2iu - 2v}{u + iv + 1} \Longrightarrow \left(x + i\left(x + 3\right)\right)\left(u + 1 + iv\right)$		
	M1 : Applies $z = x + iy$, uses $y = x + 3$ and cross multiplies		
	x(u+1)-v(x+3)+(x+3)(u+1)i+xvi = 3-2v+2ui		
	$\Rightarrow ux + x - vx - 3v = 3 - 2v, ux + x + 3u + 3v = 3v + 3v + 3v + 3v + 3v + 3v + 3v$	3 + xv = 2u	
	$\Rightarrow x = \frac{3+v}{u+1-v}, x = \frac{-u-3}{u+1+v}$		
	u+1-v $u+1+vM1: Equates real and imaginary parts and makes x$	the subject twice	
	$(3+v)(u+1+v) = -(u+3)(u+1-v) \Rightarrow 3u+3+3v+uv+v+1$	$v^2 = -u^2 - u + uv - 3u - 3 + 3v$	
	$\Rightarrow u^2 + v^2 + 7u + v + 6 = 0$		
	M1: Equates expressions for x to obtain a circle equation wi		
	$\Rightarrow \left(u + \frac{7}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{7}{2}\right)^2$	$\left(-\frac{1}{2}\right)$ radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$	
	M1: Extracts the centre and/or radius from their circle equation or 5 real unlike terms. Circle equation must not be in terms of correct coordinate (but condone wrong sign) or the correct	f z or w . They must get one	M1
	May use $u^2 + v^2 + 2gu + 2fv + c = 0 \Rightarrow \text{centre} : (-g, -f)$		A1 A1
	A1: For a correct centre or radius from a correct A1: For correct centre and radius from a correct	t circle equation	AI
	7 1	-	
	Centre as coordinates, $x/u=$, $y/v=$ or as $-\frac{7}{2}-\frac{1}{2}$		
	Allow exact equivalents for coordinates	s/radius	(8)
			(0)

Question Number	Scheme	Notes	Marks
7(a) Way 2	$w = \frac{z-3}{2i-z} = \frac{x+iy-3}{2i-x-iy} = \frac{x-3+i(x+3)}{2i-x-i(x+3)}$ [Note that it is possible to replace x with y - 3]	M1: Uses $z = x + iy$ and $y = x + 3$ in the given transformation A1: Correct expression for w in terms of x	M1 A1
	$\frac{x-3+i(x+3)}{-x-i(x+1)} = u+iv \Rightarrow x-3+i(x+3) = -xu+v(x+1)-iu(x+1)-iv$	Applies $w = u + iv$ and multiplies	M1
	$x-3 = -ux + vx + v, x+3 = -ux - u - vx$ $x = \frac{3+v}{1+u-v}, x = \frac{-3-u}{1+u+v}$	Equates real and imaginary parts and makes <i>x</i> the subject twice	M 1
	$3+3u+3v+v+uv+v^{2} = -3-3u+3v-u-u^{2}+uv$ $\Rightarrow u^{2}+v^{2}+7u+v+6=0$	Equates expressions for x to obtain a circle equation with 4 or 5 real unlike terms. All previous Ms required.	dddM1
	$\Rightarrow \left(u + \frac{7}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{13}{2}\right)^2 + \left(v + \frac{1}{2}\right)^2 = \frac{49}{4} + \frac{1}{4} - 6 = \frac{13}{2} \Rightarrow \text{centre: } \left(-\frac{13}{2}\right)^2 + \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + $		
	M1: Applies a correct process to extract the centre a equation, however obtained, with 4 or 5 real unlike te (but condone wrong sign) or radius correct	rms. One correct coordinate	M1 A1
	May use $u^2 + v^2 + 2gu + 2fv + c = 0 \Rightarrow \text{centre} : (-g, -g)$,	A1
	A1: For correct centre or radius from a corr A1: For correct centre and radius from a corr	rect circle equation	
	Centre as coordinates, $x/u =, y/v =$ or as $-\frac{7}{2} - \frac{1}{2}i$	and allow $\left(-\frac{7}{2}, -\frac{1}{2}i\right)$ (8)	
Way 3	e.g., 3 points on line are $(0,3)$, $(1,4)$ and $(2,5)$ or $z_1 = 3i$, $z_2 = 1 + 4i$, $z_3 = 2 + 5i$	Attempts three points/complex numbers on $y = x + 3$ with 2 correct	M1
	$w = \frac{z - 3}{2i - z} \Rightarrow w_1 = \frac{3i - 3}{-i} w_2 = \frac{-2 + 4i}{-1 - 2i} w_3 = \frac{-1 + 5i}{-2 - 3i}$ $w_1 = \frac{3i - 3}{-i} \times \frac{i}{i} w_2 = \frac{-2 + 4i}{-1 - 2i} \times \frac{-1 + 2i}{-1 + 2i} w_3 = \frac{-2i + 2i}{-1 - 2i}$	Correct transformed complex numbers	A1
	$w_1 = \frac{3i-3}{-i} \times \frac{i}{i} w_2 = \frac{-2+4i}{-1-2i} \times \frac{-1+2i}{-1+2i} w_3 = -\frac{-2+4i}{-1+2i} \times \frac{-1+2i}{-1+2i}$ At least two correct multipliers to remove "i" from denon (-1, 2) used). Requires 2 correct points/comple	ninator seen or implied (one if	M1
	$w_1 = -3 - 3i$ $w_2 = -\frac{6}{5} - \frac{8}{5}i$ $w_3 = -1 - i$	Two correct complex numbers in $a + ib$ form or as points	M1
	2g + 2f - c = 0	Uses a correct general equation of a circle to form hree simultaneous equations. All previous Ms required.	dddM1
	$\Rightarrow g = \frac{7}{2}, f = \frac{1}{2}, c = 6 \Rightarrow \text{centre } (-g, -f) : \left(-\frac{7}{2}, -\frac{1}{2}\right) \text{ radiu}$ M1 : Solves and obtains at least one correct coordinate radius for their constants A1 : Correct centre or radius from co	(but condone wrong sign) or orrect work	M1 A1 A1
	A1: Correct centre and radius from co	orrect work (8)	

Question Number	Scheme	Notes	Marks
7(b) (i) & (ii)		M1: Any circle with the whole interior indicated. Ignore any inconsistencies with their stated centre, value for radius (which may have been negative) or circle equation. If shaded, consider the shaded area but if not allow any credible indication such as an "R" inside the circle unless they have clearly indicated a segment. A1: Correct circle drawn in the correct position with whole interior shaded. Entirely in quadrants 2 & 3 and centre if marked in Q3 (if not marked then more than half of the circle in Q3). Condone if it appears that the area above the x-axis is greater than the area below provided the centre is indicated in Q3. Must be shaded but does not require a label. Circumference may be dotted/dashed line. Ignore incorrect labelling of centre/axes/intersections but requires full marks in (a).	M1 (B1 on ePen) A1 (B1 on ePen)
			(2) Total 10

Question Number	Scheme	Notes	Marks
8(a)	Allow "single fraction" to be implied by sum/difference of fractions with same denominator or a product of fractions. No further fractions in numerator/denominator.		

$ \cos 2x \left\{ + \tan x \right\} = \frac{\cos 2x}{\sin 2x} \left\{ + \frac{\sin x}{\cos x} \right\} $ $ \cos 2x + 2 \sin^2 x \\ \cos 2x - 3 \cos^2 x \\ \cos 2x -$			FFZ_202-	
$\frac{2 \sin x \cos x}{2 \sin x \cos x} = \frac{2 \sin^2 x + 2 \sin^2 x}{2 \sin x \cos x}$ $\frac{\cos^2 x - 1 + 2 \sin^2 x}{2 \sin x \cos x} = \frac{\cos^2 x - \sin^2 x + 2 \sin^2 x}{\cos x}$ $\frac{2 \cos^2 x - 1 + 2 \sin^2 x}{\cos x} = \frac{\cos 2x + 1 - \cos 2x}{\sin 2x}$ $\cos (\cos 2x + 1 - \cos 2x)$ $\sin (2x) = \sin (2x)$ $\cos (\cos 2x + 1 - \cos 2x)$ $\sin (2x) = \sin (2x)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x + 1 - \cos 2x)$ $\sin (2x) = \sin (2x)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\sin x}{\cos x}) = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + \frac{\cos (2x - 1)}{\cos (2x - 1)} = \cos (2x - 1)$ $\cos (2x + $		$\cot 2x \left\{ +\tan x \right\} = \frac{\cos 2x}{\sin 2x} \left\{ +\frac{\sin x}{\cos x} \right\}$	Uses $\cot 2x = \frac{\cos 2x}{\sin 2x}$ or e.g., $\frac{\cos 2x}{2\sin x \cos x}$	M1
$\frac{e.g., \frac{1-2\sin^2x+2\sin^2x}{2\sin x\cos x} \text{ or } \frac{\cos^2x-\sin^2x+2\sin^2x}{2\sin x\cos x}}{\cos 2x+1+2\sin^2x} \text{ or } \frac{\cos 2x+1-\cos 2x}{\sin 2x} \text{ or } \frac{\cos 2x+1-\cos 2x}{\sin 2x} \Rightarrow \frac{\cos 2x+\sin x\sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x\cos x+\sin x\sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x\cos x+\sin x\sin 2x}{\sin 2x\cos x} \Rightarrow \frac{\cos 2x\cos x+\sin x\sin 2x}{\sin 2x\cos x} \Rightarrow \frac{\cos^2x-\cos^2x-\cos^2x-\cos^2x-\cos^2x}{\sin 2x\cos x} \Rightarrow \cos^2x-\cos^2x-\cos^2x-\cos^2x-\cos^2x-\cos^2x-\cos^2x-\cos^2x-$		$\frac{\cos 2x + 2\sin^2 x}{\cos x}$		
$\frac{\operatorname{e.g.}, \frac{-2 \sin x + 2 \sin x}{2 \sin x \cos x}}{\frac{2 \cos^2 x - 1 + 2 \sin^2 x}{\sin 2x}} \operatorname{cos} \frac{2 \cos^2 x - 1 + 2 \sin^2 x}{\sin 2x} \operatorname{cos} \frac{2 \cos^2 x - 1 + 2 \sin^2 x}{\sin 2x} \operatorname{cos} \frac{2 \cos^2 x + \tan x \sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \operatorname{cos} \frac{2 \cos x + \sin x \sin 2x}{\sin 2x} \operatorname{cos} \frac{2 \cos x + \sin x \sin 2x}{\sin 2x} \operatorname{cos} \frac{2 \cos x + \sin x \sin 2x}{\sin 2x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x - \cos x}{\sin 2x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x \cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x \cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x \cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x \cos x} \operatorname{cos} \frac{2 \cos x \cos x + \sin x \sin 2x}{\cos x \cos x} \operatorname{cos} \frac{1}{\sin 2x} \operatorname{cos} \frac{1}{\cos x} \operatorname{cos} \frac{1}{\cos x} \operatorname{cos} \frac{1}{\cos x} \operatorname{cos} \frac{1}{\cos x} \operatorname{cos} \frac{1}{\sin 2x} \operatorname{cos} \frac{1}{\cos x} \operatorname{cos} \frac{1}{\cos x} \operatorname{cos} \frac{1}{\sin 2x} \operatorname{cos} \frac{1}{\cos x} \operatorname{cos} \frac{1}{\cos x} \operatorname{cos} \frac{1}{\sin 2x} \operatorname{cos} \frac{1}{\cos x} $			_	
$\frac{2\cos^2 x - 1 + 2\sin^2 x}{\sin 2x} \text{ or } \frac{\cos 2x + 1 - \cos 2x}{\sin 2x}$ $OR \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x + \sin x \cos x}{\sin 2x} \Rightarrow \frac{\cos 2x + \sin x \cos x}{\sin 2x} \Rightarrow \frac{\cos 2x + \sin x \cos x}{\sin 2x} \Rightarrow \frac{\cos 2x + \sin x \sin 2x}{\sin 2x}$ $OR \frac{\cos 2x + \sin x \cos x}{\sin 2x \cos x} \Rightarrow \text{ e.g. } \frac{1 - 2\sin^2 x + 2\sin^2 x}{\sin 2x}$ $OR \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos x}{\sin 2x \cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\cos x}{\sin 2x \cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\cos x}{\sin 2x \cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\cos x}{\sin 2x \cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\cos x}{\sin 2x \cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\cos x}{\cos x} \Rightarrow \frac{\sin x}{\cos x} \Rightarrow \frac{\cos x}{\cos $		e.g., $\frac{1-2\sin^2 x + 2\sin^2 x}{2}$ or $\frac{\cos^2 x - \sin^2 x + 2\sin^2 x}{2}$		
$\frac{2 \cos x - 1 + 2 \sin x}{\sin 2x} \text{ or } \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos x}{\sin 2x \cos x} \text{ or } \frac{\cos^2 x - \sin^2 x \cos x + 2 \sin^2 x \cos x}{\sin 2x \cos x} \Rightarrow \frac{\cos^2 x - \sin^2 x \cos x + 2 \sin^2 x \cos x}{\sin 2x \cos x} \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ Alt $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \frac{1}{\sin 2x} = \frac{1 - \tan^2 x}{2 \tan x} \left\{ + \tan x \right\}$ $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \tan^2 x}{2 \cos^2 x \sin x}$ $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \cos x}{2 \cos^2 x \sin x}$ $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \cos x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \cos x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \cos x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \cos x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \cos x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{\cos^2 x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{\cos^2 x}{1 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\cos x} = \cot x \cos x \cot x$				
$ \begin{array}{c} \operatorname{OR} \frac{\cos 2x + \tan x \sin 2x}{\sin 2x} \Rightarrow \\ \frac{\cos 2x + \frac{\sin x}{\cos x} \times 2 \sin x \cos x}{\sin 2x} \Rightarrow \\ \frac{\cos 2x + \frac{\sin x}{\cos x} \times 2 \sin x \cos x}{\sin 2x} \Rightarrow \\ \frac{\cos 2x + \frac{\sin x}{\cos x} \times 2 \sin x \cos x}{\sin 2x} \Rightarrow \\ \frac{\cos x}{\sin 2x \cos x} \text{ or } \frac{\cos^2 x - \sin^2 x \cos x + 2 \sin^2 x \cos x}{\sin 2x \cos x} \\ = \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \\ \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \\ \text{c.g., } \frac{\tan^2 x + 1}{2 \tan x} \Rightarrow \frac{\left(\frac{\sin x}{\cos x}\right)^2 + 1}{2 \frac{\cos x}{\cos x}} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x} \\ \text{ or } \frac{\tan^2 x + 1}{2 \tan x} \left(\frac{\cos x}{\cos x}\right) \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x} \\ \text{ or } \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \\ \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \\ \text{ or } \frac{1}{\sin 2x} = \cos \cos 2x^* \\ \text$		$\frac{2\cos x - 1 + 2\sin x}{\cos 2x + 1 - \cos 2x}$		
$\frac{\cos 2x + \frac{\sin x}{\cos x} \times 2 \sin x \cos x}{\sin 2x} \Rightarrow \frac{\cos 2x + \frac{\sin x}{\cos x} \times 2 \sin x \cos x}{\sin 2x \cos x} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos x}{\sin 2x \cos x} \text{ or } \frac{\cos^2 x - \sin^2 x \cos x + 2 \sin^2 x \cos x}{\sin 2x \cos x} \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* \Rightarrow \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cos x \left(\sin^2 x + \cos^2 x \right) \Rightarrow \frac{1}{2 \sin x \cos x} $				A1
$\frac{\cos 2x + \frac{\sin x}{\cos x} \times 2 \sin x \cos x}{\sin 2x} \Rightarrow e.g., \frac{1 - 2\sin^2 x + 2\sin^2 x}{\sin 2x}$ $OR \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x}$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x = \cot x = \cot x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x = \cot x = \cot x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x = \cot x =$		OR $\frac{\cos 2x + \tan x \sin 2x}{\cos x}$ \Rightarrow	` '	
$\frac{\Rightarrow \frac{\cos 2x + \frac{\sin x}{\cos x}}{\sin 2x} \Rightarrow e.g., \frac{1 - 2\sin^2 x + 2\sin^2 x}{\sin 2x}}{\cos x \frac{\sin 2x}{\sin 2x \cos x}} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos x}{\sin 2x \cos x} \text{ or } \frac{\cos x}{\sin 2x \cos x} \text{ or } \frac{\cos x}{\sin 2x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \frac{1 - \tan^2 x}{2\tan x} + \tan x$ $= \frac{1 - \tan^2 x}{2\tan x} + \frac{(\frac{\sin x}{\cos x})^2 + 1}{2\cos x} \Rightarrow \frac{\cos x}{2\cos x} + \frac{(3)}{2\cos x}$ $= \frac{1 - \tan^2 x + 2\tan^2 x}{2\tan x} \Rightarrow \frac{(3)}{2\cos^2 x \sin x}$ $= \frac{1}{2\tan x} \frac{\sin^2 x + 1}{2\tan x} \times \frac{\cos x}{2\cos x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2\sin x \cos x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{\cos^2 x}{2\cos^2 x \sin x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{\cos^2 x}{2\cos^2 x \sin x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{\cos^2 x}{2\cos^2 x \sin x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{\cos x}{2\cos^2 x \sin x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{\cos x}{2\cos^2 x \sin x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{\cos x}{2\cos x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{\cos x}{2\cos x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{\cos x}{2\cos x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{\cos x}{2\cos x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \cos \cos 2x^*$ $= \frac{1}{2\cos x} \text{ or } \frac{1}{\cos x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \cos \cos 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x}$ $= 1$				`
$\frac{\operatorname{OR} \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x}}{\sin 2x \cos x} \Rightarrow \frac{\operatorname{cos} x}{\sin 2x \cos x} \operatorname{or} \frac{\cos^3 x - \sin^2 x \cos x + 2 \sin^2 x \cos x}{\sin 2x \cos x} = \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{2 \sin x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{2 \sin x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{2 \sin x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x} = \operatorname{cosec} 2x^*$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $= \frac{1}{2 \sin x \cos$		$\cos 2x + \frac{\sin x}{\cos x} \times 2\sin x \cos x$ $1 - 2\sin^2 x + 2\sin^2 x$		/
$\frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos 2x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{\cos x \cos x + \sin x \sin 2x}{\sin 2x \cos x} \Rightarrow \frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x} \Rightarrow \frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x} \Rightarrow \frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x} \Rightarrow \frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x} \Rightarrow \frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x} \Rightarrow \frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x} \Rightarrow \frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{2 \sin x$		$\Rightarrow \frac{\cos x}{\sin 2x} \Rightarrow \text{e.g.}, \frac{1 + 2\sin^2 x + 2\sin^2 x}{\sin 2x}$	" $\cos 2x + 1 - \cos 2x$ ". A	
$\frac{\cos x}{\sin 2x \cos x} \text{ or } \frac{\cos^3 x - \sin^2 x \cos x + 2\sin^2 x \cos x}{\sin 2x \cos x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{2\sin x} = \cot x \text{ or } \frac{1}{2\cos x$			qualifying fraction must be	
$\frac{\cos x}{\sin 2x \cos x} \text{ or } \frac{\cos^3 x - \sin^2 x \cos x + 2\sin^2 x \cos x}{\sin 2x \cos x}$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x \cos x} \text{ or } \frac{1}{2\sin x} = \cot x \text{ or } \frac{1}{2\cos x$		$OR \xrightarrow{\sin 2x \cos x} \Rightarrow$	seen before	
Sin $2x\cos x$ Sin $2x\cos x$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin 2x} = \cot x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{\sin x\cos x} = \cot x^*$ $= \frac{1}{2\sin x\cos x} \text{ or } \frac{1}{2\sin x\cos x} = \cot$		$\cos x \qquad \cos^3 x - \sin^2 x \cos x + 2\sin^2 x \cos x$	$\frac{1}{2}$ or $\frac{1}{2}$	
$= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ Fully correct proof with one of the two intermediate fractions seen. All notation correct - no mixed or mixed proposition of the two intermediate fractions seen. All notation correct - no mixed or mixed proposition of the two intermediate fractions seen. All notation correct - no mixed or mixed proposition of the two intermediate fractions seen. All notation correct - no mixed or mixed proposition of the two intermediate fractions seen. All notation correct - no mixed or mixed proposition of the two intermediate fractions seen. All notation correct - no mixed or mixed proposition of the two intermediate fractions seen. All notation correct - no mixed or mixed proposition of the two intermediate fractions seen. All notation correct or no mixed or mixed proposition or e.g. sin x^2 for this mark.		$\frac{1}{\sin 2r \cos r}$ or $\frac{\sin 2r \cos r}{\sin 2r \cos r}$		
$\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. sin x^2 for this mark. (3) Alt $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2\tan x} \left\{ + \tan x \right\} $ Uses $\cot 2x = \frac{1 - \tan^2 x}{2\tan x}$ M1 $\frac{1 - \tan^2 x + 2\tan^2 x}{2\tan x} \Rightarrow \frac{1 - \tan^2 x}{2\tan x} = \frac{1 - \tan^2 x}{2\tan x} $ Uses correct identities e.g., $\tan x = \frac{\sin x}{\cos x} \text{ oe}$ to obtain a correct single fraction in $\sin x$ and $\cos x$ but allow $\frac{\sec^2 x}{2\tan x} \text{ following use of } \sec^2 x = 1 + \tan^2 x$ A qualifying fraction must be seen before $\frac{1}{2\sin x \cos x} \text{ or } \frac{\cos x}{2\tan x} \text{ or } \frac{\cos x}{2\cos^2 x \sin x}$ A qualifying fraction must be seen before $\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.				
$= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x} \cos x \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\cos x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\cos x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\cos x} = \cot x \cos x$ $= \frac{1}{2 \sin x \cos x} $		1 1	, · · · · · · · · · · · · · · · · · · ·	
Alt $\cot x = \frac{1 - \tan^2 x}{2 \tan x}$ (3) Alt $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} \left\{ + \tan x \right\}$ Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$ Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$ Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$ Uses correct identities e.g., $\tan x = \frac{\sin x}{\cos x} \cos x$ to obtain a correct single fraction in $\sin x$ and $\cos x$ but allow $\frac{\sec^2 x}{2 \tan x}$ following use of $\cot x = \frac{\sin^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ A qualifying fraction must be seen before $\cot x = \frac{1}{2 \sin x \cos x} \cot x$ Condone poor notation. $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x}$ Uses correct identities e.g., $\tan x = \frac{\sin x}{\cos x} \cot x$ and $\cot x = \frac{\sin x}{\cos x} \cot x$ and $\cot x = \frac{\sin x}{\cos x} \cot x$ and $\cot x = \frac{\sin x}{\cos x} \cot x$ and $\cot x = \frac{\sin x}{\cos x} \cot x$ and $\cot x = \frac{\sin x}{2 \tan x} \cot x$ A qualifying fraction must be seen before $\cot x = \frac{1}{2 \sin x \cos x} \cot x$ Condone poor notation. Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.		$=\frac{1}{1}$ or $\frac{1}{1}$ = cosec $2x^*$		A1*
Alt $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} \left\{ + \tan x \right\} $ $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} \left\{ + \tan x \right\} $ $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} \left\{ + \tan x \right\} $ $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ - \tan^2 x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ - \tan^2 x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ - \tan^2 x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ - \tan^2 x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ - \tan^2 x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ - \tan^2 x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ - \tan^2 x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ - \tan^2 x \right\} = \frac{1 - \tan^2 x}{2 \tan x} $ $\cot 2x \left\{ - \tan^2 x \right\} = \frac{1 - \tan^2 x}{\cos x} $ $\cot 2x \left\{ - \frac{\sin x}{\cos x} \right\} = \frac{1}{1 \cot x} = \frac{\sin x}{\cos x} $ $\cot 2x \left\{ - \frac{\sin x}{\cos x} \right\} = \frac{1}{1 \cot x} = \frac{\sin x}{\cos x} $ $\cot 2x \left\{ - \frac{\sin x}{\cos x} \right\} = \frac{1}{1 \cot x} = \frac$		$2\sin x \cos x \qquad \sin 2x$		
Alt $\cot 2x \left\{ + \tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} \left\{ + \tan x \right\} \qquad \text{Uses } \cot 2x = \frac{1 - \tan^2 x}{2 \tan x} \qquad \text{M1}$ $\frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \tan^2 x + 2 \tan^2 x}{2 \tan x} \Rightarrow \frac{1 - \tan^2 x}{$				
$\frac{1-\tan^2 x + 2\tan^2 x}{2\tan x} \left\{ + \tan x \right\} \qquad \text{Uses } \cot 2x = \frac{1-\tan^2 x}{2\tan x} \qquad \mathbf{M1}$ $\frac{1-\tan^2 x + 2\tan^2 x}{2\tan x} \Rightarrow \qquad \text{Uses } \operatorname{correct} i \operatorname{identities e.g.}, \\ \tan x = \frac{\sin x}{\cos x} \operatorname{oe} \\ \operatorname{to obtain a correct single} \text{ fraction in } \sin x \operatorname{and } \cos x \operatorname{but} \\ \operatorname{or} \frac{\tan^2 x + 1}{2\tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2\sin x \cos x} $ $\operatorname{or} \frac{\sec^2 x}{2\tan x} \operatorname{or} \frac{\cos x}{2\cos^2 x \sin x}$ $\operatorname{or} \frac{\sec^2 x}{2\tan x} \operatorname{or} \frac{\cos x}{2\cos^2 x \sin x}$ $\operatorname{or} \frac{1}{2\sin x \cos x} \operatorname{or} \frac{1}{\sin 2x}$ $\operatorname{Condone poor notation.}$ Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.				(3)
$\frac{1-\tan^2 x + 2\tan^2 x}{2\tan x} \Rightarrow \frac{1-\tan^2 x + 2\tan^2 x}{2\tan x} \Rightarrow \frac{1}{2\tan x} \frac{\left(\frac{\sin x}{\cos x}\right)^2 + 1}{2\cos x} \Rightarrow \frac{\cos x\left(\sin^2 x + \cos^2 x\right)}{2\cos^2 x \sin x}$ or $\frac{\tan^2 x + 1}{2\tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2\sin x \cos x}$ or $\frac{\sec^2 x}{2\tan x}$ or $\frac{\cos x}{2\cos^2 x \sin x}$ or $\frac{\sec^2 x}{2\tan x}$ or $\frac{\cos x}{2\cos^2 x \sin x}$ $\frac{1}{2\sin x \cos x}$ or $\frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2\sin x \cos x}$ or $\frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2\sin x \cos x}$ $\frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{\sin 2x}$ $\frac{1}{2\sin x \cos x}$ $\frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{\sin 2x}$	Alt	$\cot 2x \left\{ +\tan x \right\} = \frac{1 - \tan^2 x}{2 \tan x} \left\{ +\tan x \right\}$	Uses $\cot 2x = \frac{1 - \tan^2 x}{2 \tan x}$	M1
$\frac{1-\tan^2 x + 2\tan^2 x}{2\tan x} \Rightarrow \frac{1-\tan^2 x + 2\tan^2 x}{2\tan x} \Rightarrow \frac{1}{2\tan x} \frac{\left(\frac{\sin x}{\cos x}\right)^2 + 1}{2\cos x} \Rightarrow \frac{\cos x\left(\sin^2 x + \cos^2 x\right)}{2\cos^2 x \sin x}$ or $\frac{\tan^2 x + 1}{2\tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2\sin x \cos x}$ or $\frac{\sec^2 x}{2\tan x}$ or $\frac{\cos x}{2\cos^2 x \sin x}$ or $\frac{\sec^2 x}{2\tan x}$ or $\frac{\cos x}{2\cos^2 x \sin x}$ $\frac{1}{2\sin x \cos x}$ or $\frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2\sin x \cos x}$ or $\frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2\sin x \cos x}$ $\frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{\sin 2x}$ $\frac{1}{2\sin x \cos x}$ $\frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{\sin 2x}$			Uses correct identities e.g.,	
$\frac{2 \tan x}{2 \tan x} \Rightarrow \frac{2 \tan x}{2 \tan x} \Rightarrow \frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{2 \cos^2 x \sin x}$ or $\frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{2 \cos^2 x \sin x}$ or $\frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\cos \frac{x}{2 \tan x} \Rightarrow \frac{\cos^2 x}{2 \tan x} \Rightarrow \frac{\cos^2 x}{2 \sin x \cos x}$ $\cos \frac{x}{2 \tan x} \Rightarrow \frac{\cos^2 x}{2 \tan x} \Rightarrow \frac{\cos x}{2 \sin x \cos x}$ $\cos \frac{x}{2 \tan x} \Rightarrow \frac{\cos^2 x}{2 \tan x} \Rightarrow \frac{\cos x}{2 \sin x \cos x}$ $\cos \frac{x}{2 \tan x} \Rightarrow \frac{\cos^2 x}{2 \tan x} \Rightarrow \frac{\cos x}{2 \tan x} \Rightarrow \frac{\cos^2 x}{2 \sin x \cos x} \Rightarrow \frac{\cos^2 x}{2 \sin x} \Rightarrow $		1 . 2 2 . 2		
e.g., $\frac{\tan^2 x + 1}{2 \tan x} \Rightarrow \frac{\left(\frac{\sin x}{\cos x}\right)^2 + 1}{2 \frac{\sin x}{\cos x}} \Rightarrow \frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{2 \cos^2 x \sin x}$ or $\frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ or $\frac{\sec^2 x}{2 \tan x}$ or $\frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{\cos^2 x}{2 \tan x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{\cos^2 x}{2 \tan x} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x}$ $\frac{1}{\sin 2x} \Rightarrow \frac{\cos x}{2 \sin x \cos x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x}$ $\frac{1}{\sin 2x} \Rightarrow \frac{\cos x}{2 \sin x \cos x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x}$ $\frac{1}{\sin 2x} \Rightarrow \frac{\cos x}{2 \sin x}$ $\frac{1}{2 \sin x \cos x} \Rightarrow \frac{1}{\sin 2x}$ $\frac{1}{\sin 2x} \Rightarrow \frac{\cos x}{2 \sin x}$ $\frac{1}{\sin 2x} \Rightarrow \frac{\cos x}{2 \sin x}$ $\frac{1}{\sin 2x} \Rightarrow \frac{\cos x}{2 \sin x}$ $\frac{1}{\sin 2x} \Rightarrow \frac{\cos x}{\cos x}$ $\frac{1}{\cos x} \Rightarrow \frac{1}{\cos x} \Rightarrow \frac{1}{\cos x}$ $\frac{1}{\cos x} \Rightarrow \frac{1}{\cos x}$		$\frac{1-\tan^2 x + 2\tan^2 x}{2}$ \Rightarrow	$\cos x$	
$e.g., \frac{\tan^2 x + 1}{2 \tan x} \Rightarrow \frac{\left(\frac{\sin x}{\cos x}\right)^2 + 1}{2 \frac{\sin x}{\cos x}} \Rightarrow \frac{\cos x \left(\sin^2 x + \cos^2 x\right)}{2 \cos^2 x \sin x}$ $or \frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $or \frac{\sec^2 x}{2 \tan x} \text{ or } \frac{\cos x}{2 \cos^2 x \sin x}$ $or \frac{\sec^2 x}{2 \tan x} \text{ or } \frac{\cos x}{2 \cos^2 x \sin x}$ $fraction in sin x and cos x but allow \frac{\sec^2 x}{2 \tan x} \text{ following use of sec} sec^2 x = 1 + \tan^2 x A qualifying fraction must be seen before \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} Condone poor notation. Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. sin x^2 for this mark.$		_ *************************************	to obtain a correct single	
or $\frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{\sec^2 x}{2 \tan x} \text{ or } \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x$		$\tan^2 x + 1$ $\left(\frac{\sin x}{\cos x}\right)^2 + 1$ $\cos x \left(\sin^2 x + \cos^2 x\right)$		
or $\frac{\tan^2 x + 1}{2 \tan x} \left\{ \times \frac{\cos x}{\cos x} \right\} \Rightarrow \frac{\sin^2 x + \cos^2 x}{2 \sin x \cos x}$ $\frac{\sec^2 x}{2 \tan x} \text{ or } \frac{\cos x}{2 \cos^2 x \sin x}$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x \cos x} = \cot x \cos x$ $\frac{1}{2 \sin x$		e.g., $\frac{1}{2 \tan x} \Rightarrow \frac{1}{2 \frac{\sin x}{\cos x}} \Rightarrow \frac{1}{2 \cos^2 x \sin x}$	allow $\frac{\sec^2 x}{\cos^2 x}$ following use of	
or $\frac{\sec^2 x}{2 \tan x}$ or $\frac{\cos x}{2 \cos^2 x \sin x}$ seen before $\frac{1}{2 \sin x \cos x}$ Condone poor notation. Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark. At quantying fraction must be seen before $\frac{1}{2 \sin x \cos x}$ or $\frac{1}{\sin 2x}$ Condone poor notation. Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.		2007	$2 \tan x$	`
or $\frac{\sec^2 x}{2 \tan x}$ or $\frac{\cos x}{2 \cos^2 x \sin x}$ seen before $\frac{1}{2 \sin x \cos x}$ Condone poor notation. Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark. At quantying fraction must be seen before $\frac{1}{2 \sin x \cos x}$ or $\frac{1}{\sin 2x}$ Condone poor notation. Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.		or $\frac{\tan^2 x + 1}{2\tan^2 x}$ $\times \frac{\cos x}{\cos x}$ $\Rightarrow \frac{\sin^2 x + \cos^2 x}{2\sin^2 x \cos x}$	$\sec^2 x = 1 + \tan^2 x$	ePen)
$\frac{2 \sin x \cos x}{\text{Condone poor notation.}}$ Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark. A1*		,	A qualifying fraction must be	
$\frac{2 \sin x \cos x}{\text{Condone poor notation.}}$ Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark. A1*		or $\frac{\sec^2 x}{\cos x}$ or $\frac{\cos x}{\cos x}$		
Condone poor notation. $ \frac{1}{2 \sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^* $ Condone poor notation. Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark. A1*		$2\tan x 2\cos^2 x \sin x$	$\frac{1}{2}$ or $\frac{1}{2}$	
Fully correct proof with one of the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark. A1*				
$\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ the two intermediate fractions seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.			_	
$\frac{1}{2\sin x \cos x} \text{ or } \frac{1}{\sin 2x} = \csc 2x^*$ seen. All notation correct – no mixed or missing arguments or e.g. $\sin x^2$ for this mark.		1 1		
e.g. $\sin x^2$ for this mark.		$\frac{1}{2}$ or $\frac{1}{2}$ = cosec 2x*		A1*
		$2\sin x \cos x \qquad \sin 2x$	mixed or missing arguments or	
(3)			e o sin r ² for this mark	
			c.g. sin x for this mark.	

Question Number	Scheme	Notes	Marks
8(b)	Examples:		M1 A1

$y^{2} = w\sin 2x \Rightarrow 2y \frac{dy}{dx} = \frac{dw}{dx} \sin 2x + 2w\cos 2x$ or $y = w^{\frac{1}{2}}(\sin 2x)^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2}w^{\frac{1}{2}}(\sin 2x)^{-\frac{1}{2}}(2\cos 2x) + \frac{1}{2}w^{-\frac{1}{2}}\frac{dw}{dx}(\sin 2x)^{\frac{1}{2}}$ or $w = \frac{y^{2}}{\sin 2x} \Rightarrow \frac{dw}{dx} = \frac{2y\sin 2x \frac{dy}{dx} - y^{2} \cdot 2\cos 2x}{\sin^{2} 2x}$ or $w = y^{2} \csc 2x \Rightarrow 2y \frac{dy}{dx} \csc 2x - 2y^{2} \csc 2x \cot 2x$ M1: Attempts the differentiation of the given substitution using the product/quotient and chain rules and obtains an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form (sign/coefficient errors only and allow sign errors with quotient/product rule). This mark is not available for work in $\frac{dy}{dy}$ or $\frac{dw}{dy}$ unless appropriate work follows to achieve an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form. A1: Correct differentiation $y \frac{dy}{dx} + y^{2} \tan x = \sin x \rightarrow e.g., \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w\cos 2x\right) + w\sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only . Not dependent. $\Rightarrow \frac{dw}{dx} + 2w(\cot 2x + \tan x) = \frac{2\sin x}{\sin 2x}$
or $w = \frac{y^2}{\sin 2x} \Rightarrow \frac{dw}{dx} = \frac{2y \sin 2x \frac{dy}{dx} - y^2.2 \cos 2x}{\sin^2 2x}$ or $w = y^2 \csc 2x \Rightarrow 2y \frac{dy}{dx} \csc 2x - 2y^2 \csc 2x \cot 2x$ M1: Attempts the differentiation of the given substitution using the product/quotient and chain rules and obtains an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form (sign/coefficient errors only and allow sign errors with quotient/product rule). This mark is not available for work in $\frac{dy}{dw}$ or $\frac{dw}{dy}$ unless appropriate work follows to achieve an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form. A1: Correct differentiation $y \frac{dy}{dx} + y^2 \tan x = \sin x \rightarrow \text{e.g.}, \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w \cos 2x\right) + w \sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only. Not dependent. $\Rightarrow \frac{dw}{dx} + 2w(\cot 2x + \tan x) = \frac{2 \sin x}{\sin 2x}$
or $w = y^2 \csc 2x \Rightarrow 2y \frac{dy}{dx} \csc 2x - 2y^2 \csc 2x \cot 2x$ M1: Attempts the differentiation of the given substitution using the product/quotient and chain rules and obtains an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form (sign/coefficient errors only and allow sign errors with quotient/product rule). This mark is not available for work in $\frac{dy}{dw}$ or $\frac{dw}{dy}$ unless appropriate work follows to achieve an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form. A1: Correct differentiation $y \frac{dy}{dx} + y^2 \tan x = \sin x \rightarrow \text{e.g.}, \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w \cos 2x\right) + w \sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only. Not dependent. $\Rightarrow \frac{dw}{dx} + 2w(\cot 2x + \tan x) = \frac{2 \sin x}{\sin 2x}$
M1: Attempts the differentiation of the given substitution using the product/quotient and chain rules and obtains an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form (sign/coefficient errors only and allow sign errors with quotient/product rule). This mark is not available for work in $\frac{dy}{dw}$ or $\frac{dw}{dy}$ unless appropriate work follows to achieve an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form. A1: Correct differentiation $y \frac{dy}{dx} + y^2 \tan x = \sin x \rightarrow \text{e.g.}, \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w \cos 2x \right) + w \sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only . Not dependent. $\Rightarrow \frac{dw}{dx} + 2w \left(\cot 2x + \tan x \right) = \frac{2 \sin x}{\sin 2x}$
M1: Attempts the differentiation of the given substitution using the product/quotient and chain rules and obtains an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form (sign/coefficient errors only and allow sign errors with quotient/product rule). This mark is not available for work in $\frac{dy}{dw}$ or $\frac{dw}{dy}$ unless appropriate work follows to achieve an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form. A1: Correct differentiation $y \frac{dy}{dx} + y^2 \tan x = \sin x \rightarrow \text{e.g.}, \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w \cos 2x \right) + w \sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only . Not dependent. $\Rightarrow \frac{dw}{dx} + 2w \left(\cot 2x + \tan x \right) = \frac{2 \sin x}{\sin 2x}$
correct form (sign/coefficient errors only and allow sign errors with quotient/product rule). This mark is not available for work in $\frac{dy}{dw}$ or $\frac{dw}{dy}$ unless appropriate work follows to achieve an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form. A1: Correct differentiation $y\frac{dy}{dx} + y^2 \tan x = \sin x \rightarrow \text{e.g.}, \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w \cos 2x\right) + w \sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only. Not dependent. $\Rightarrow \frac{dw}{dx} + 2w \left(\cot 2x + \tan x\right) = \frac{2 \sin x}{\sin 2x}$
This mark is not available for work in $\frac{dy}{dw}$ or $\frac{dw}{dy}$ unless appropriate work follows to achieve an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form. A1: Correct differentiation $y\frac{dy}{dx} + y^2 \tan x = \sin x \rightarrow \text{e.g.}, \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w \cos 2x\right) + w \sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only . Not dependent. $\Rightarrow \frac{dw}{dx} + 2w \left(\cot 2x + \tan x\right) = \frac{2\sin x}{\sin 2x}$
achieve an equation in $\frac{dy}{dx}$ and $\frac{dw}{dx}$ of the correct form. A1: Correct differentiation $y\frac{dy}{dx} + y^2 \tan x = \sin x \to \text{e.g.}, \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w \cos 2x \right) + w \sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only. Not dependent. $\Rightarrow \frac{dw}{dx} + 2w \left(\cot 2x + \tan x \right) = \frac{2 \sin x}{\sin 2x}$
A1: Correct differentiation $y \frac{dy}{dx} + y^2 \tan x = \sin x \rightarrow \text{e.g.}, \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w \cos 2x \right) + w \sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only. Not dependent. $\Rightarrow \frac{dw}{dx} + 2w \left(\cot 2x + \tan x \right) = \frac{2 \sin x}{\sin 2x}$
$y \frac{dy}{dx} + y^2 \tan x = \sin x \to e.g., \frac{1}{2} \left(\frac{dw}{dx} \sin 2x + 2w \cos 2x \right) + w \sin 2x \tan x = \sin x$ A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only. Not dependent. $\Rightarrow \frac{dw}{dx} + 2w \left(\cot 2x + \tan x \right) = \frac{2 \sin x}{\sin 2x}$
A recognisable attempt to eliminate y from the original equation to obtain an equation involving $\frac{dw}{dx}$, w and x only. Not dependent. $\Rightarrow \frac{dw}{dx} + 2w(\cot 2x + \tan x) = \frac{2\sin x}{\sin 2x}$
equation involving $\frac{dw}{dx}$, w and x only. Not dependent. $\Rightarrow \frac{dw}{dx} + 2w(\cot 2x + \tan x) = \frac{2\sin x}{\sin 2x}$
$\Rightarrow \frac{\mathrm{d}w}{\mathrm{d}x} + 2w(\cot 2x + \tan x) = \frac{2\sin x}{\sin 2x}$
dw
$\Rightarrow \frac{\mathrm{d}w}{\mathrm{d}x} + 2w\mathrm{cosec}\ 2x = \mathrm{sec}\ x \ *$
Fully correct work leading to the given equation with $2w(\cot 2x + \tan x)$ or e.g.,
$2w\cot 2x + 2w\tan x \text{ clearly replaced by } 2w\csc 2x \text{ but allow } \cot 2x \text{ written as}$
$\frac{1}{\tan 2x}$ or $\frac{\cos 2x}{\sin 2x}$ and/or $\tan x$ written as $\frac{\sin x}{\cos x}$
If the result in (a) is not clearly used there must be full equivalent work.
Allow use of "csc $2x$ "

Question	Scheme	Notes	Marks
Number			i

2(c)		_	
8(c)		M1 : $e^{2\int \cos e c 2x(dx)}$ condoning	
	$\frac{\mathrm{d}w}{\mathrm{d}x} + 2w\csc 2x = \sec x \Rightarrow \mathrm{IF} = \mathrm{e}^{2\int \csc 2x \mathrm{d}x} = \tan x$	omission of one or both	
		"2"s	M1
	or $e^{-\ln(\csc 2x + \cot 2x)} \Rightarrow \frac{1}{\csc 2x + \cot 2x}$ or $\frac{1}{\cot x}$ or $\tan x$	A1: $\tan x$ oe	A1
	$\csc 2x + \cot 2x \cot x$	Allow $k \tan x$ e.g., $e^{2c} \tan x$	
		Not just $e^{\ln(\tan x)}$	
		Correctly applies their	
		integrating factor to the	
	•	equation, i.e.,	
	$\Rightarrow w"\tan x" = \int "\tan x" \sec x \left\{ dx \right\}$	$\Rightarrow \text{IF} \times w = \left\{ \text{IF} \times \sec x \left\{ dx \right\} \right\}$	M1
	J	•	1,22
		Allow equivalents for $\sec x$.	
		Condone "y" used for "w"	
		for this mark.	
	$\Rightarrow w \tan x = \sec x (+c)$	Correct equation oe with or without constant.	A1
	Using IF = $\frac{1}{\csc 2x + \cot 2x}$ \Rightarrow RHS of $\int \frac{\sec x}{\csc 2x + \cot 2x} dx$ which is	likely to need rewriting as $\int \tan x \sec x dx$	
		IBP on $\sec x \tan x$ by writing it as $\sec^2 x \sin x$ can lead $\tan x + \cos x (+c)$	
	Use Review for any attempts at integration you are unsure about.		
	2		
	e.g., $y^2 = w \sin 2x$ and $w \tan x = \sec x + c \implies$	$\frac{1}{\sin 2x} \tan x = \sec x + c$	
	$\Rightarrow y^2 = \dots \left\{ \frac{\sin 2x}{\tan x} \left(\sec x + \frac{\sin 2x}{\tan x} \right) \right\}$	$\left\{ c\right\} $	
	Substitutes for w correctly and reac	thes $v^2 = \dots$	
	Their $y^2 = \dots$ must be consistent with their equation	-	ddM1
	followed their integration	= 1	uuivii
	This mark requires both previous M marks and	an attempt at integration	
	that includes a "+ c"		
	A further example is:		
	$w = \csc x + \frac{c}{\tan x} \Rightarrow y^2 = \csc x \sin x$	$12x + \frac{c\sin 2x}{\tan x}$	
	$\begin{cases} e.g., \ y^2 = \frac{2\sin x \cos^2 x}{\sin x} \left(\frac{1}{\cos x} + c \right) \end{cases}$	$)\Rightarrow$	
	$y^2 = 2\cos x + A\cos^2 x$,	
	Any correct $y^2 = \dots$ equation with RHS fully in te		A1
	$y^2 = 2\cos x + 2c\cos^2 x$ $y^2 = \cos x(2 + A\cos x)$	$y^2 = 2\cos^2 x \left(\frac{1}{\cos x} + c\right)$	
	Ignore any inconsistencies with the constant e.	g., 2c later written as c	
_			(6) T (112
			Total 13