

Question Number	Scheme Notes	Marks
2(a)	(i) $z=6-6 \sqrt{3} \mathrm{i} \Rightarrow\|z\|=\sqrt{6^{2}+(6 \sqrt{3})^{2}}=12 \quad+12$ only. Accept if just stated	B1
	(ii) e.g., $\arg z=-\arctan \frac{6 \sqrt{3}}{6}$ Attempts an expression for a relevant angle. Look for $\pm \arctan \left(\pm \frac{6 \sqrt{3}}{6}\right)$ or e.g., $\pm \tan ^{-1}\left(\pm \frac{1}{\sqrt{3}}\right)$ If \arctan is not seen allow e.g., $\tan \alpha=\frac{6 \sqrt{3}}{6} \Rightarrow \alpha=\frac{\pi}{3}$ with α correct for their $\tan \alpha$ If using \sin or \cos the hypotenuse must be their 12	M1
	$\arg z$ or \arg or argument $($ of $z)=-\frac{\pi}{3} *$ A correct proof with no incorrect work/statements. LHS required. Allow " $\theta=$ " if consistent, e.g., $\theta=-\frac{\pi}{3}$ cannot follow $" \tan \theta=+\sqrt{3} "$	A1*
(ii) Way 2	$z=12\left(\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i}\right)=12\left(\cos \left(-\frac{\pi}{3}\right)+\mathrm{i} \sin \left(-\frac{\pi}{3}\right)\right) \text { or } 12 \mathrm{e}^{-\frac{-5 \mathrm{i}}{3}} \text { or } \cos \theta=\frac{1}{2} \operatorname{or} \sin \theta=-\frac{\sqrt{3}}{2}[\mathrm{M} 1] \Rightarrow \arg z=-\frac{\pi}{3}\left[\mathrm{Al}^{*}\right]$ M1: Factorises out 12 and writes in trig or \exp form or identifies $\cos \theta=\frac{1}{2}$ and $\sin \theta=-\frac{\sqrt{3}}{2}$ A1: Acceptable statement with all work correct	
(ii) Way 3	$z=12\left(\cos \left(-\frac{\pi}{3}\right)+\mathrm{i} \sin \left(-\frac{\pi}{3}\right)\right) \text { or } 12 \mathrm{e}^{-\frac{\pi}{3} \mathrm{i}} \text { or } 12\left(\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i}\right)=6-6 \sqrt{3} \mathrm{i}[\mathrm{M} 1] \Rightarrow \arg z=-\frac{\pi}{3}\left[\mathrm{Al}^{*}\right]$ M1: Assumes result, writes correctly for their 12 and attempts $a+\mathrm{i} b$ form A1: Obtains $6-6 \sqrt{3} \mathrm{i}$ and makes acceptable statement with all work correct	
		(3)
(b)	$z=" 12 "\left(\cos \left(-\frac{\pi}{3}\right)+\mathrm{i} \sin \left(-\frac{\pi}{3}\right)\right) \text { or "12" } e^{-\frac{\pi_{i}}{3}}[\text { no missing "i"" unless recovered }]$ Correct trig or exp. form with their 12. Could be implied by their z^{4} in trig or exp. form e.g., $\left(" 12 " e^{-\frac{\pi}{3} \mathrm{i}}\right)^{4}$ Allow equivalent values of θ e.g. $\frac{5 \pi}{3}$ and use of e.g., $\sin \left(-\frac{\pi}{3}\right)=-\sin \left(\frac{\pi}{3}\right)$. Condone poor bracketing. Allow this mark if $+2 k \pi,-2 k \pi, \pm 2 k \pi$ appears with argument	M1
	$z^{4}=20736\left(\cos \left(-\frac{4 \pi}{3}\right)+\mathrm{i} \sin \left(-\frac{4 \pi}{3}\right)\right) \text { or } 20736\left(\cos -\frac{4 \pi}{3}+\mathrm{i} \sin -\frac{4 \pi}{3}\right) \text { or } 20736 e^{-\frac{4 \pi}{3} \mathrm{i}}$ Correct z^{4} in any form. 12^{4} evaluated and arg. of $-\frac{4 \pi}{3}\left(\right.$ not just $4 \times-\frac{\pi}{3}$) or $\frac{2 \pi}{3}$ only although may use e.g., $\sin \left(-\frac{4 \pi}{3}\right)=-\sin \left(\frac{4 \pi}{3}\right)$. No " k "s. Condone an "unclosed" bracket. Only accept $-10368+10368 \sqrt{3}$ i or $20736\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)$ provided evidence of de Moivre.	A1
		(2)

Question Number	Scheme Notes	Marks
2(c)	$w=z^{\frac{1}{2}}=(\pm) \sqrt{" 12 "}\left(\cos \left(\frac{-\frac{\pi}{3}}{2}\right)+\mathrm{i} \sin \left(\frac{-\frac{\pi}{3}}{2}\right)\right) \text { or e.g., }(\pm) " 2 \sqrt{3} e^{-\frac{\pi}{6}} e^{\mathrm{i}}$ [no missing "i i " unless recovered] Correct use of de Moivre's theorem with $-\frac{\pi}{3}$ and their 12 to attempt one square root. Allow work with argument of $\frac{5 \pi}{3}$ for $-\frac{\pi}{3}$ and use of e.g., $\sin \left(-\frac{\pi}{6}\right)=-\sin \left(\frac{\pi}{6}\right)$. Condone poor bracketing. M0 if z^{4} used for z. Allow this mark if $+2 k \pi,-2 k \pi, \pm 2 k \pi$ appears with argument	M1
	$w=3-\sqrt{3} \mathrm{i},-3+\sqrt{3} \mathrm{i} \text { oe }$ A1ft: One correct exact root in $a+\mathrm{i} b$ or $c(a+\mathrm{i} b)$ form (a, b, c may be unsimplified but not numerical trig expressions) ft their 12 only i.e. $(\pm) \sqrt{112 "}\left(\frac{\sqrt{3}}{2}-\frac{1}{2} \mathrm{i}\right)$ A1: Both exact roots (no others) correct in $a+\mathrm{i} b$ form $-a$ and b may be unsimplified (but not numerical trig expressions) e.g. accept $a=(\pm) \sqrt{12} \frac{\sqrt{3}}{2},(\pm) \frac{\sqrt{36}}{2} \quad b=(\mp) \frac{\sqrt{12}}{2},(\mp) \frac{2 \sqrt{3}}{2}$ Accept $\pm(3-\sqrt{3} i)$ but just $\pm 3-\sqrt{3} i$ is A1 A0. Just $\pm \sqrt{3}(\sqrt{3}-i)$ is A1 A0	$\begin{gathered} \text { A1ft } \\ \text { A1 } \end{gathered}$
	Note: $w^{2}=r^{2}(\cos 2 \theta+i \sin 2 \theta)=z \Rightarrow r, \theta, w=\ldots$ is an acceptable approach	(3)
Alt	$\begin{gathered} w^{2}=z \Rightarrow(a+\mathrm{i} b)^{2}=a^{2}-b^{2}+2 a b \mathrm{i}=6-6 \sqrt{3} \mathrm{i} \Rightarrow a^{2}-b^{2}=6,2 a b=-6 \sqrt{3} \\ b=-\frac{3 \sqrt{3}}{a} \Rightarrow a^{2}-\frac{27}{a^{2}}=6 \Rightarrow a^{4}-6 a^{2}-27=\left(a^{2}-9\right)\left(a^{2}+3\right)=0 \Rightarrow a^{2}=9, a= \pm 3, b=\mp \sqrt{3} \end{gathered}$ M1: From a correct starting point, expands and equates real and imaginary parts to form two equations in a and b and obtains at least one value for both a and b $w=3-\sqrt{3} i,-3+\sqrt{3} i$ A1: One correct exact root in $a+\mathrm{i} b$ or $c(a+\mathrm{i} b)$ form (a, b, c may be unsimplified) A1: Both exact roots (no others) correct in $a+\mathrm{i} b$ form $-a$ and b may be unsimplified	

Question Number	Scheme Notes	Marks
3(a)	$\frac{r}{\sqrt{r(r+1)}+\sqrt{r(r-1)}} \times \frac{\sqrt{r(r+1)}-\sqrt{r(r-1)}}{\sqrt{r(r+1)}-\sqrt{r(r-1)}}$ A correct multiplier to rationalise the denominator seen or implied by correct work	M1
	$=\frac{r(\sqrt{r(r+1)}-\sqrt{r(r-1)})}{r(r+1)-r(r-1)}=\frac{\sqrt{r(r+1)}-\sqrt{r(r-1)}}{2} \text { or } A=\frac{1}{2}$ Correct expression or correct value for A. Condone poor notation if intention clear. There must be (minimal) correct supporting working.	A1
	Alternative: $A=\frac{r}{(\sqrt{r(r+1)}+\sqrt{r(r-1)})(\sqrt{r(r+1)}-\sqrt{r(r-1)})}=\frac{r}{r(r+1)-r(r-1)} \text { or } \frac{r}{r^{2}+r-r^{2}+r} \text { or } \frac{r}{2 r} \Rightarrow A=\frac{1}{2}$ M1: Correctly makes A the subject A1: Correct completion with one intermediate fraction	
		(2)
(b)	$\sum_{r=1}^{n} \frac{r}{\sqrt{r(r+1)}+\sqrt{r(r-1)}=" \frac{1}{2} n\left(\begin{array}{c} \sqrt{1 \times 2}-\sqrt{1 \times 0}(=\sqrt{2}(-0)) \\ +\sqrt{2 \times 3}-\sqrt{2 \times 1}(=\sqrt{6}-\sqrt{2})+\ldots \\ \ldots+\sqrt{(n-1)(n-1+1)}-\sqrt{(n-1)(n-1-1)}(=\sqrt{n(n-1)}-\sqrt{(n-1)(n-2)}) \\ +\sqrt{n(n+1)}-\sqrt{n(n-1)} \end{array}\right.}$ M1: Applies the method of differences for $r=1$ and $r=n$ in the given expression with or without their A and obtains one correct row of these 2 . M1: Applies the method of differences for $r=1, r=n$ and either $r=2$ or $r=n-1$ in the given expression with/without their A and obtains 2 correct rows of these 4 . When considering how many rows are correct, if A has been clearly applied to any term then assess all rows as if A has been applied throughout. Condone missing bracket if their A is applied to a row e.g., " $\frac{1}{2} \times \sqrt{6}-\sqrt{2}$ " if it is recovered but e.g., $\frac{\sqrt{6}}{2}-\sqrt{2}$ is an incorrect row. Ignore a row for $r=0$. Condone equivalent work with r or e.g., k used for n. Both marks can be implied by a correct final expression with or without their \boldsymbol{A} provided there are at least any two correct rows of differences $\text { i.e., " } \frac{1}{2} \text { " }(\sqrt{n(n+1)}-0) \text { or } \sqrt{n(n+1)}-0$ Note: row 3 is $" \frac{1}{2}$ " $(\sqrt{12}($ or $2 \sqrt{3})-\sqrt{6})$, row 4 is " $\frac{1}{2}$ " $(\sqrt{20}($ or $2 \sqrt{5})-\sqrt{12}($ or $2 \sqrt{3})$) If $\frac{1}{2}$ is fully applied the rows are: $\begin{aligned} & \frac{\sqrt{2}}{2}, \frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2}, \frac{\sqrt{12}}{2}(\operatorname{or} \sqrt{3})-\frac{\sqrt{6}}{2}, \frac{\sqrt{20}}{2}(\operatorname{or} \sqrt{5})-\frac{\sqrt{12}}{2}(\operatorname{or} \sqrt{3}), \ldots \\ & \ldots, \frac{\sqrt{(n-2)(n-1)}}{2}-\frac{\sqrt{(n-2)(n-3)}}{2}, \frac{\sqrt{n(n-1)}}{2}-\frac{\sqrt{(n-1)(n-2)}}{2}, \frac{\sqrt{n(n+1)}}{2}-\frac{\sqrt{n(n-1)}}{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
	Correct expression in terms of n. No incorrect terms seen in differences work even $=\frac{1}{2} \sqrt{n(n+1)} \text { oe e.g., } \frac{\sqrt{n^{2}+n}}{2}$ if cancelled but condone the occasional poor bracket. There should be no " 0 " so e.g., $\frac{1}{2}(\sqrt{n(n+1)}-0) \text { is A0 }$ Does not require marks in (a)	A1
		(3)

Question Number	Scheme	Notes	Marks
$\mathbf{3 (c)}$	$\sum r=\frac{1}{2} n(n+1)$ e.g., sight of $k \times \ldots=\sqrt{\frac{1}{2} n(n+1)}$	States or uses the correct summation formula for integers	M1
	$\frac{k}{2} \sqrt{n(n+1)}=\sqrt{\frac{1}{2} n(n+1)} \Rightarrow \frac{k}{2}=\sqrt{\frac{1}{2}} \Rightarrow k=\sqrt{2}$	$\sqrt{2}$ only (Not $\pm) \cdot k=\sqrt{2}$ must not come from a clearly incorrect equation.	A1
(2)			

Question Number	Scheme Notes	Marks
4(a)	$y=\tan \left(\frac{3 x}{2}\right) \Rightarrow y^{\prime}=\frac{3}{2} \sec ^{2}\left(\frac{3 x}{2}\right) \quad \begin{gathered}\text { Any correct first derivative. } \\ \text { Not implied by } y^{\prime}\left(\frac{\pi}{6}\right)=3\end{gathered}$	B1
	$\begin{gathered} \Rightarrow y^{\prime \prime}=2 \times \frac{3}{2} \sec \left(\frac{3 x}{2}\right) \times \sec \left(\frac{3 x}{2}\right) \tan \left(\frac{3 x}{2}\right) \times \frac{3}{2} \\ {\left[=\frac{9}{2} \sec ^{2}\left(\frac{3 x}{2}\right) \tan \left(\frac{3 x}{2}\right)\right]} \end{gathered}$ Attempts the second derivative achieving $k \sec ^{2}\left(\frac{3 x}{2}\right) \tan \left(\frac{3 x}{2}\right)$ or unsimplified equivalent. Not implied by $y^{\prime \prime}\left(\frac{\pi}{6}\right)=9$	M1
	$\begin{gathered} \Rightarrow y^{\prime \prime \prime}=\frac{9}{2} \sec ^{2}\left(\frac{3 x}{2}\right) \sec ^{2}\left(\frac{3 x}{2}\right) \times \frac{3}{2}+\frac{9}{2} \tan \left(\frac{3 x}{2}\right) \times 2 \times \frac{3}{2} \sec ^{2}\left(\frac{3 x}{2}\right) \tan \left(\frac{3 x}{2}\right) \\ {\left[=\frac{27}{4} \sec ^{4}\left(\frac{3 x}{2}\right)+\frac{27}{2} \sec ^{2}\left(\frac{3 x}{2}\right) \tan ^{2}\left(\frac{3 x}{2}\right)\right]} \end{gathered}$ dM1: Attempts third derivative using the product rule, achieving $P \sec ^{4}\left(\frac{3 x}{2}\right)+Q \sec ^{2}\left(\frac{3 x}{2}\right) \tan ^{2}\left(\frac{3 x}{2}\right)$ or unsimplified equivalent. Requires previous M mark. A1: Correct differentiation. Accept unsimplified. Not implied by $y^{\prime \prime \prime}\left(\frac{\pi}{6}\right)=54$	$\begin{gathered} \text { dM1 } \\ \text { A1 } \end{gathered}$
	If $\sec ^{2}\left(\frac{3 x}{2}\right)=\tan ^{2}\left(\frac{3 x}{2}\right)+1$ is used the identity must be used correctly and to score M marks expressions of consistent form should be achieved. Note that replacing $\sec ^{2}\left(\frac{3 x}{2}\right)$ in $y^{\prime \prime} \Rightarrow y^{\prime \prime \prime}=\frac{27}{4} \sec ^{2}\left(\frac{3 x}{2}\right)+\frac{81}{4} \sec ^{2}\left(\frac{3 x}{2}\right) \tan ^{2}\left(\frac{3 x}{2}\right)$	
	$y\left(\frac{\pi}{6}\right)=1, y^{\prime}\left(\frac{\pi}{6}\right)=3, y^{\prime \prime}\left(\frac{\pi}{6}\right)=9, y^{\prime \prime \prime}\left(\frac{\pi}{6}\right)=54$ Attempts values (but allow numerical trig expressions) for y and their 3 derivatives at $\frac{\pi}{6}$ - accept stated values or insertion into a series of the correct form	M1
	$(y=) 1+3\left(x-\frac{\pi}{6}\right)+\frac{9}{2!}\left(x-\frac{\pi}{6}\right)^{2}+\frac{54}{3!}\left(x-\frac{\pi}{6}\right)^{3}+\ldots$ Applies Taylor's correctly about $\frac{\pi}{6}$ with their values/numerical trig expressions. If values are not seen separately the work should imply a correct formula but allow a recognisable attempt at the series following the correct general formula stated. Requires previous M mark.	dM1
	$(y=) 1+3\left(x-\frac{\pi}{6}\right)+\frac{9}{2}\left(x-\frac{\pi}{6}\right)^{2}+9\left(x-\frac{\pi}{6}\right)^{3}+\ldots .$Correct expression with coeffs. in simplest form. " $y=\ldots$ "... not required. Requires all previous marks. Score A0 if cear cevidence of use of any wrong derivative expression.	A1
If e.g. $y^{\prime \prime \prime}\left(\frac{\pi}{6}\right)$ is found by calculator but $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ were seen award 1100110 max		(7)
	Note: With responses that work in sin and cos throughout, to score M marks there must be no loss of form when differentiating (sign and coefficient errors only, also allowing sign errors with product/quotient formulae). Any use of identities must be correct. E.g: $\begin{gathered} y=\tan \left(\frac{3 x}{2}\right)=\frac{\sin \left(\frac{3 x}{2}\right)}{\cos \left(\frac{3 x}{2}\right)} \Rightarrow y^{\prime}=\frac{\frac{3}{2} \cos ^{2}\left(\frac{3 x}{2}\right)+\frac{3}{2} \sin ^{2}\left(\frac{3 x}{2}\right)}{\cos ^{2}\left(\frac{3 x}{2}\right)} \\ y^{\prime \prime}=\frac{\frac{9}{2} \cos ^{3}\left(\frac{3 x}{2}\right) \sin \left(\frac{3 x}{2}\right)+\frac{9}{2} \cos \left(\frac{3 x}{2}\right) \sin ^{3}\left(\frac{3 x}{2}\right)}{\cos ^{4}\left(\frac{3 x}{2}\right)} \text { or } \frac{\frac{9}{2} \cos \left(\frac{3 x}{2}\right) \sin \left(\frac{3 x}{2}\right)}{\cos ^{4}\left(\frac{3 x}{2}\right)} \text { or } \frac{9 \sin \left(\frac{3 x}{2}\right)}{2 \cos ^{3}\left(\frac{3 x}{2}\right)} \\ y^{\prime \prime \prime}=\frac{\frac{27}{4} \cos ^{8}\left(\frac{3 x}{2}\right)+27 \cos ^{6}\left(\frac{3 x}{2}\right) \sin ^{2}\left(\frac{3 x}{2}\right)+\frac{81}{4} \cos ^{4}\left(\frac{3 x}{2}\right) \sin ^{4}\left(\frac{3 x}{2}\right)}{\cos ^{8}\left(\frac{3 x}{2}\right)}=\frac{27}{4}+27 \tan ^{2}\left(\frac{3 x}{2}\right)+\frac{81}{4} \tan ^{4}\left(\frac{3 x}{2}\right) \end{gathered}$	

Question Number	Scheme	Notes	Marks
4(b)	$\begin{gathered} \left\{y\left(\frac{\pi}{4}\right)=\right\} 1+3\left(\frac{\pi}{4}-\frac{\pi}{6}\right)+\frac{9}{2}\left(\frac{\pi}{4}-\frac{\pi}{6}\right)^{2}+9\left(\frac{\pi}{4}-\frac{\pi}{6}\right)^{3} \\ \text { or } 1+3\left(\frac{\pi}{12}\right)+\frac{9}{2}\left(\frac{\pi}{12}\right)^{2}+9\left(\frac{\pi}{12}\right)^{3} \end{gathered}$ Substitutes $\frac{\pi}{4}$ into their expression for y of the correct form with at least the first three terms (series about $\frac{\pi}{6}$). Must have values (not unevaluated trig expressions). If only a decimal value is given then it must be the correct awrt 2.26 to score M1 (2.255314325). If there is no working they must obtain an expression with at least $a+b \pi+c \pi^{2}$ and correct exact $\mathrm{ft} a, b$ and c for their series or $1+\frac{\pi}{4}+c \pi^{2}$ with correct exact $\mathrm{ft} c$		M1
	$=1+\frac{\pi}{4}+\frac{\pi^{2}}{32}+\frac{\pi^{3}}{192}$ or $1+\frac{1}{4} \pi+\frac{1}{32} \pi^{2}+\frac{1}{192} \pi^{3}$	Correct answer or values for A (32) and B (192). Can be awarded if full marks were not scored in (a).	A1
			(2)
Total 9			

Question Number	Scheme	Notes	Marks
5	$r^{2}=100 \cos ^{2} \theta+20 \cos \theta \tan \theta+\tan ^{2} \theta$	Any correct expression for r^{2}	B1
	$\left\{\frac{1}{2}\right\} \int_{0}^{\frac{\pi}{3}} r^{2} \mathrm{~d} \theta=\left\{\frac{1}{2}\right\} \int_{0}^{\frac{\pi}{3}}\left(100 \cos ^{2} \theta+20 \sin \theta+\tan ^{2} \theta\right)\{\mathrm{d} \theta\}$	Attempts formula for the area with their r^{2} which may not be expanded Condone missing $\frac{1}{2}$ and limits not required	M1
	$=\frac{1}{2} \int_{0}^{\frac{\pi}{3}}(50(1+\cos 2 \theta)+20 \sin \theta+\mathrm{s}$ M1: Uses $\cos ^{2} \theta= \pm \frac{1}{2} \pm \frac{1}{2} \cos 2 \theta$ or $\tan ^{2} \theta$ M1: Uses both $\cos ^{2} \theta= \pm \frac{1}{2} \pm \frac{1}{2} \cos 2 \theta$ and $\tan ^{2}$ Both M marks can be scored without the Condone mixed variable A1: Correct integral following $\cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos 2 \theta$ $\cos \theta \tan \theta$ must be written as $\sin \theta$ (implied if app The $\frac{1}{2}$ is required (it may be seen later) but limits/ $\mathrm{d} \theta$ variables if subsequent work rec	$\begin{aligned} & \left.\mathrm{ec}^{2} \theta-1\right)\{\mathrm{d} \theta\} \\ & = \pm \sec ^{2} \theta \pm 1 \text { in their } r^{2} \\ & \theta= \pm \sec ^{2} \theta \pm 1 \text { in their } r^{2} \end{aligned}$ integral and the $\frac{1}{2}$. and $\tan ^{2} \theta=\sec ^{2} \theta-1$. The ropriately integrated later). are not needed. Allow mixed overs this.	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$
	$=\frac{1}{2}[49 \theta+25 \sin 2 \theta-20 \cos \theta+\tan \theta]_{0}^{\frac{\pi}{3}} \text { or }\left[\frac{49}{2} \theta+\frac{2}{}\right.$ M1: Achieves three of the following fou $k \rightarrow k \theta$ (at least once), $\cos 2 \theta \rightarrow \ldots \sin 2 \theta, \sin \theta$ Ignore other terms if 3 of the above are satisfied. No mixed variables. A1: Correct integration including the $\frac{1}{2}$ (may be see May be unsimplified e.g., 49θ seen as $50 \theta-\theta$. subsequent work recovers	$\left.\frac{25}{2} \sin 2 \theta-10 \cos \theta+\frac{1}{2} \tan \theta\right]_{0}^{\frac{\pi}{3}}$ integrated forms: $\rightarrow \ldots \cos \theta, \sec ^{2} \theta \rightarrow \ldots \tan \theta$. or limits required. Condone later). Limits not required. Allow mixed variables if his.	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\begin{array}{r} =\frac{1}{2}\left(\frac{49 \pi}{3}+25 \sin \frac{2 \pi}{3}-20 \cos \frac{\pi}{3}+\tan \frac{\pi}{3}-\right. \\ \left\{=\frac{1}{2}\left(\frac{49 \pi}{3}+\frac{25 \sqrt{3}}{2}-10+\sqrt{3}+20\right) \text { or } \frac{49 \pi}{6}+\right. \end{array}$ Applies the correct limits to an expression of the for $(p, q, r, s \neq 0)$ Allow slips but there must be a clear must only subtract the value of their r, e.g. if $r=-$ $\ldots-(-20)$ or +20 . Allow mixed variables if the	$\left.\begin{array}{l} (0+0-20+0)) \\ -\frac{25 \sqrt{3}}{4}-5+\frac{\sqrt{3}}{2}+10 \end{array}\right\}$ $p \theta+q \sin 2 \theta+r \cos \theta+s \tan \theta$ attempt to substitute, and they 20 work must have or imply substitution recovers this.	M1
	$=\frac{1}{12}(98 \pi+81 \sqrt{3}+60)$	Correct answer or values for $a, b \& c$	A1
	Note that there are other viable routes through the integration e.g., use of integration by parts		(9)
			Total 9

Question Number	Scheme	Notes	Marks
6	$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+6 \frac{\mathrm{~d} x}{\mathrm{~d} t}+13 x=8 \mathrm{e}^{-3 t}$	$t \ldots 0$	
(a)	$\begin{aligned} m^{2}+6 m+13= & \Rightarrow m=\frac{-6 \pm \sqrt{36-52}}{2} \\ & \{=-3 \pm 2 \mathrm{i}\} \end{aligned}$	Forms correct auxiliary equation and obtains a correct numerical expression for at least one root by formula or uses CTS (apply usual CTS rule below). One correct root if no working	M1
	CTS rule : $m^{2}+6 m+13=0 \Rightarrow\left(m \pm \frac{6}{2}\right)$	$\pm q \pm 13=0, q \neq 0 \Rightarrow m=\ldots$	
	CF examples: $\begin{gathered} (x=) \mathrm{e}^{-3 t}(A \cos 2 t+B \sin 2 t) \\ \text { or }(x=) A \mathrm{e}^{-3 t} \cos (-2 t)+B \mathrm{e}^{-3 t} \sin (-2 t) \\ \text { or }(x=) P \mathrm{e}^{(-3+2 i) t}+Q \mathrm{e}^{(-3-2 \mathrm{i}) t} \\ \text { or }(x=) \mathrm{e}^{-3 t}\left(P \mathrm{e}^{2 i t}+Q \mathrm{e}^{-2 i t}\right) \end{gathered}$	Correct complementary function in any form, allow if the " $x=$ " is missing or wrong and accept for this mark if the CF is given fully in terms of x instead of t.	A1
	PI: $\{x=\} \lambda \mathrm{e}^{-3 t}$	Correct form for the particular integral selected. Must include $\lambda \mathrm{e}^{-3 t}$ but accept with any extra terms that correctly disappear when coefficients found. Accept " $\mathrm{PI}=$ ". If $\lambda \mathrm{e}^{p t}$ is used $p=-3$ must be seen later.	B1
	$\begin{gathered} \frac{\mathrm{d} x}{\mathrm{~d} t}=-3 \lambda \mathrm{e}^{-3 t} ; \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=9 \lambda \mathrm{e}^{-3 t} \\ \Rightarrow 9 \lambda \mathrm{e}^{-3 t}+6\left(-3 \lambda \mathrm{e}^{-3 t}\right)+13 \lambda \mathrm{e}^{-3 t}=8 \mathrm{e}^{-3 t} \end{gathered}$	Differentiates a PI of any form twice (provided it has at least one constant and is a function of t) and substitutes into the equation. Allow only sign/coefficient errors only in the differentiation. Their PI must lead to non-zero derivatives.	M1
	$\Rightarrow 9 \lambda-18 \lambda+13 \lambda=8 \Rightarrow \lambda=\ldots(2)$	Proceeds to find the value of the constant following use of a PI of the correct form. Any unnecessary extra terms in the PI must be found to be zero	dM1
	$x=" \mathrm{e}^{-3 t}(A \cos 2 t+B \sin 2 t)$ " $+2 \mathrm{e}^{-3 t}$	Correct general solution ft on their CF only - any CF provided it has at least one constant and is in terms of t. Must have $x=\ldots$ Do not allow if their CF is miscopied or mathematically changed	A1ft
	Work with a PI of the form $\lambda t \mathrm{e}^{-3 t}$ is B0M1dM0A0 max even if $2 \mathrm{e}^{-3 t}$ is obtained. Only condone incorrect variables if they are recovered but refer to the note for the first A1.		(6)

$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Question } \\ \text { Number }\end{array} & \text { Scheme } & \text { Notes } & \text { Marks } \\ \hline \text { W(a) } & z=\frac{z-3}{2 \mathrm{i}-z} \Rightarrow 2 \mathrm{i} w-w z=z-3 \Rightarrow z=\ldots\end{array} \quad \begin{array}{c}\text { Attempts to make } z \text { the } \\ \text { subject and obtains any } \\ \mathrm{f}(w)\end{array}\right) ~$ M1

| $2 u(u+1)-(3-2 v) v=(3-2 v)(u+1)+2 u v+3(u+1)^{2}+3 v^{2}$ |
| :---: | :---: |
| $\Rightarrow u^{2}+7 u+v^{2}+v+6=0$ |\quad| Expands and simplifies to |
| :---: |
| obtain an equation of a |
| circle with 4 or 5 real |
| unlike terms. |
| All previous Ms required. |

dddM1 unlike terms.
All previous Ms required.

Alternative for the above $\mathbf{3}$ marks (note this could be done by equating expressions for y)

$$
x+\mathrm{i} y=\frac{3+2 \mathrm{i} u-2 v}{u+\mathrm{i} v+1} \Rightarrow(x+\mathrm{i}(x+3))(u+1+\mathrm{i} v)=3+2 u \mathrm{i}-2 v
$$

M1: Applies $z=x+\mathrm{i} y$, uses $y=x+3$ and cross multiplies

$$
x(u+1)-v(x+3)+(x+3)(u+1) \mathrm{i}+x v \mathrm{i}=3-2 v+2 u \mathrm{i}
$$

$$
\Rightarrow u x+x-v x-3 v=3-2 v, \quad u x+x+3 u+3+x v=2 u
$$

$$
\Rightarrow x=\frac{3+v}{u+1-v}, \quad x=\frac{-u-3}{u+1+v}
$$

M1: Equates real and imaginary parts and makes x the subject twice
$(3+v)(u+1+v)=-(u+3)(u+1-v) \Rightarrow 3 u+3+3 v+u v+v+v^{2}=-u^{2}-u+u v-3 u-3+3 v$

$$
\Rightarrow u^{2}+v^{2}+7 u+v+6=0
$$

M1: Equates expressions for x to obtain a circle equation with 4 or 5 real unlike terms
$\Rightarrow\left(u+\frac{7}{2}\right)^{2}+\left(v+\frac{1}{2}\right)^{2}=\frac{49}{4}+\frac{1}{4}-6=\frac{13}{2} \Rightarrow$ centre: $\left(-\frac{7}{2},-\frac{1}{2}\right)$ radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$
M1: Extracts the centre and/or radius from their circle equation, however obtained, with 4 or 5 real unlike terms. Circle equation must not be in terms of z or w. They must get one correct coordinate (but condone wrong sign) or the correct radius for their circle.
May use $u^{2}+v^{2}+2 g u+2 f v+c=0 \Rightarrow$ centre $:(-g,-f)$, radius $=\sqrt{g^{2}+f^{2}-c}$
A1: For a correct centre or radius from a correct circle equation
A1: For correct centre and radius from a correct circle equation
Centre as coordinates, $x / u=\ldots, y / v=\ldots$ or as $-\frac{7}{2}-\frac{1}{2} \mathrm{i}$ and $\operatorname{allow}\left(-\frac{7}{2},-\frac{1}{2} \mathrm{i}\right)$
Allow exact equivalents for coordinates/radius

Question Number	Scheme	Notes	Marks
Way 2	$w=\frac{z-3}{2 \mathrm{i}-z}=\frac{x+\mathrm{i} y-3}{2 i-x-\mathrm{i} y}=\frac{x-3+\mathrm{i}(x+3)}{2 \mathrm{i}-x-\mathrm{i}(x+3)}$ [Note that it is possible to replace x with $y-3$]	M1: Uses $z=x+\mathrm{i} y$ and $y=x+3$ in the given transformation A1: Correct expression for w in terms of x	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\frac{x-3+\mathrm{i}(x+3)}{-x-\mathrm{i}(x+1)}=u+\mathrm{i} v \Rightarrow x-3+\mathrm{i}(x+3)=-x u+v(x+1)-\mathrm{i} u(x+1)-\mathrm{i} v x$	Applies $w=u+\mathrm{i} v$ and multiplies	M1
	$\begin{array}{cl} x-3=-u x+v x+v, & x+3=-u x-u-v x \\ x=\frac{3+v}{1+u-v}, & x=\frac{-3-u}{1+u+v} \end{array}$	Equates real and imaginary parts and makes x the subject twice	M1
	$\begin{gathered} 3+3 u+3 v+v+u v+v^{2}=-3-3 u+3 v-u-u^{2}+u v \\ \Rightarrow u^{2}+v^{2}+7 u+v+6=0 \end{gathered}$	Equates expressions for x to obtain a circle equation with 4 or 5 real unlike terms. All previous Ms required.	dddM1
	$\Rightarrow\left(u+\frac{7}{2}\right)^{2}+\left(v+\frac{1}{2}\right)^{2}=\frac{49}{4}+\frac{1}{4}-6=\frac{13}{2} \Rightarrow \text { centre: }$ M1: Applies a correct process to extract the centre a equation, however obtained, with 4 or 5 real unlike ter (but condone wrong sign) or radius correct May use $u^{2}+v^{2}+2 g u+2 f v+c=0 \Rightarrow$ centre $:(-g,-$ A1: For correct centre or radius from a corre A1: For correct centre and radius from a corr Centre as coordinates, $x / u=\ldots, y / v=\ldots$ or as $-\frac{7}{2}-\frac{1}{2} \mathrm{i}$	$\left.\frac{7}{2},-\frac{1}{2}\right)$ radius: $\frac{\sqrt{26}}{2}$ or $\sqrt{\frac{13}{2}}$ ad/or radius from a circle ms. One correct coordinate for their circle. $f)$, radius $=\sqrt{g^{2}+f^{2}-c}$ ct circle equation ect circle equation and allow $\left(-\frac{7}{2},-\frac{1}{2} \mathrm{i}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$
Way 3	e.g., 3 points on line are $(0,3),(1,4)$ and $(2,5)$ or $z_{1}=3 \mathrm{i}, z_{2}=1+4 \mathrm{i}, z_{3}=2+5 \mathrm{i}$	Attempts three points/complex numbers on $y=x+3$ with 2 correct	M1
	$w=\frac{z-3}{2 \mathrm{i}-z} \Rightarrow w_{1}=\frac{3 \mathrm{i}-3}{-\mathrm{i}} \quad w_{2}=\frac{-2+4 \mathrm{i}}{-1-2 \mathrm{i}} \quad w_{3}=\frac{-1+5 \mathrm{i}}{-2-3 \mathrm{i}}$	Correct transformed complex numbers	A1
	$w_{1}=\frac{3 \mathrm{i}-3}{-\mathrm{i}} \times \frac{\mathrm{i}}{\mathrm{i}} \quad w_{2}=\frac{-2+4 \mathrm{i}}{-1-2 \mathrm{i}} \times \frac{-1+2 \mathrm{i}}{-1+2 \mathrm{i}} \quad w_{3}=$ At least two correct multipliers to remove " i " from denom $(-1,2)$ used). Requires 2 correct points/comple	$\frac{-1+5 i}{-2-3 i} \times \frac{-2+3 i}{-2+3 i}$ nator seen or implied (one if numbers on line	M1
	$w_{1}=-3-3 \mathrm{i} \quad w_{2}=-\frac{6}{5}-\frac{8}{5} i \quad w_{3}=-1-\mathrm{i} \quad$ n	Two correct complex umbers in $a+\mathrm{i} b$ form or as points	M1
	$\text { e.g., } \begin{array}{r} 6 g+6 f-c=18 \\ x^{2}+y^{2}+2 g x+2 f y+c=0 \Rightarrow \frac{12}{5} g+\frac{16}{5} f-c=0 \\ 2 g+2 f-c=0 \end{array}$	Uses a correct general equation of a circle to form ree simultaneous equations. All previous Ms required.	dddM1
	$\Rightarrow g=\frac{7}{2}, f=\frac{1}{2}, c=6 \Rightarrow \text { centre }(-g,-f):\left(-\frac{7}{2},-\frac{1}{2}\right) \text { radius }=\sqrt{g^{2}+f^{2}-c}=\frac{\sqrt{26}}{2} \text { or } \sqrt{\frac{13}{2}}$ M1: Solves and obtains at least one correct coordinate (but condone wrong sign) or radius for their constants A1: Correct centre or radius from correct work A1: Correct centre and radius from correct work		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$

Question Number	Scheme	Notes	Marks
$\mathbf{8 (a)}$	Allow "single fraction" to be implied by sum/difference of fractions with same denominator or a product of fractions. No further fractions in numerator/denominator.		

Question Number	Scheme	Notes	Marks
$\mathbf{8 (b)}$	Examples:		M1

$$
\begin{gathered}
y^{2}=w \sin 2 x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} w}{\mathrm{~d} x} \sin 2 x+2 w \cos 2 x \\
\text { or } y=w^{\frac{1}{2}}(\sin 2 x)^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} w^{\frac{1}{2}}(\sin 2 x)^{-\frac{1}{2}}(2 \cos 2 x)+\frac{1}{2} w^{-\frac{1}{2}} \frac{\mathrm{~d} w}{\mathrm{~d} x}(\sin 2 x)^{\frac{1}{2}} \\
\text { or } w=\frac{y^{2}}{\sin 2 x} \Rightarrow \frac{\mathrm{~d} w}{\mathrm{~d} x}=\frac{2 y \sin 2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2} \cdot 2 \cos 2 x}{\sin ^{2} 2 x} \\
\text { or } w=y^{2} \operatorname{cosec} 2 x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} \operatorname{cosec} 2 x-2 y^{2} \operatorname{cosec} 2 x \cot 2 x
\end{gathered}
$$

M1: Attempts the differentiation of the given substitution using the product/quotient and chain rules and obtains an equation in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d} w}{\mathrm{~d} x}$ of the correct form (sign/coefficient errors only and allow sign errors with quotient/product rule).
This mark is not available for work in $\frac{\mathrm{d} y}{\mathrm{~d} w}$ or $\frac{\mathrm{d} w}{\mathrm{~d} y}$ unless appropriate work follows to achieve an equation in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d} w}{\mathrm{~d} x}$ of the correct form.

A1: Correct differentiation
$y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2} \tan x=\sin x \rightarrow$ e.g., $\frac{1}{2}\left(\frac{\mathrm{~d} w}{\mathrm{~d} x} \sin 2 x+2 w \cos 2 x\right)+w \sin 2 x \tan x=\sin x$
A recognisable attempt to eliminate y from the original equation to obtain an
equation involving $\frac{\mathrm{d} w}{\mathrm{~d} x}, w$ and x only. Not dependent.
$\Rightarrow \frac{\mathrm{d} w}{\mathrm{~d} x}+2 w(\cot 2 x+\tan x)=\frac{2 \sin x}{\sin 2 x}$
$\Rightarrow \frac{\mathrm{d} w}{\mathrm{~d} x}+2 w \operatorname{cosec} 2 x=\sec x$ *
Fully correct work leading to the given equation with $2 w(\cot 2 x+\tan x)$ or e.g., $2 w \cot 2 x+2 w \tan x$ clearly replaced by $2 w \operatorname{cosec} 2 x$ but allow $\cot 2 x$ written as

$$
\frac{1}{\tan 2 x} \text { or } \frac{\cos 2 x}{\sin 2 x} \text { and/or } \tan x \text { written as } \frac{\sin x}{\cos x}
$$

If the result in (a) is not clearly used there must be full equivalent work. Allow use of "csc $2 x$ "

Question Number	Scheme	Notes	Marks

8(c)	$\frac{\mathrm{d} w}{\mathrm{~d} x}+2 w \operatorname{cosec} 2 x=\sec x \Rightarrow \mathrm{IF}=\mathrm{e}^{2 \int \operatorname{cosec} 2 \mathrm{xdx}}=\tan x$M1: $\mathrm{e}^{2 \int \operatorname{cosec} 2 x(\mathrm{dx})}$ condoning omission of one or both "2"s	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	Correctly applies their integrating factor to the $\Rightarrow w^{\prime \prime} \tan x "=\int " \tan x " \sec x\{\mathrm{~d} x\}$ equation, i.e.,	M1
	$\Rightarrow w \tan x=\sec x(+c) \quad$Correct equation oe with or without constant.	A1
	Using IF $=\frac{1}{\operatorname{cosec} 2 x+\cot 2 x} \Rightarrow$ RHS of $\int \frac{\sec x}{\operatorname{cosec} 2 x+\cot 2 x} \mathrm{~d} x$ which is likely to need rewriting as $\int \tan x \sec x \mathrm{~d} x$ Note that IBP on $\sec x \tan x$ by writing it as $\sec ^{2} x \sin x$ can lead to $\sin x \tan x+\cos x(+c)$ Use Review for any attempts at integration you are unsure about.	
	$\begin{aligned} & \text { e.g., } y^{2}=w \sin 2 x \text { and } w \tan x=\sec x+c \Rightarrow \frac{y^{2}}{\sin 2 x} \tan x=\sec x+c \\ & \Rightarrow y^{2}=\ldots \quad\left\{\frac{\sin 2 x}{\tan x}(\sec x+c)\right\} \end{aligned}$ Substitutes for w correctly and reaches $y^{2}=\ldots$ Their $y^{2}=\ldots$ must be consistent with their equation in w and x that immediately followed their integration. This mark requires both previous M marks and an attempt at integration that includes a " $+c$ " A further example is: $w=\operatorname{cosec} x+\frac{c}{\tan x} \Rightarrow y^{2}=\operatorname{cosec} x \sin 2 x+\frac{c \sin 2 x}{\tan x}$	ddM1
	$\left\{\begin{array}{c} \left\{\text { e.g., } y^{2}=\frac{2 \sin x \cos ^{2} x}{\sin x}\left(\frac{1}{\cos x}+c\right) \Rightarrow\right\} \\ y^{2}=2 \cos x+A \cos ^{2} x \end{array}\right.$ Any correct $y^{2}=\ldots$ equation with RHS fully in terms of $\cos x$. E.g. accept $y^{2}=2 \cos x+2 c \cos ^{2} x \quad y^{2}=\cos x(2+A \cos x) \quad y^{2}=2 \cos ^{2} x\left(\frac{1}{\cos x}+c\right)$ Ignore any inconsistencies with the constant e.g., $2 c$ later written as c	A1
		(6)
		Total 13

