Question Number	Scheme	Notes	Marks
1(a)	$y = \ln(5+3x) \Longrightarrow \frac{dy}{dx} = \frac{3}{5+3x}$	Correct first derivative	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{5+3x} \Longrightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{9}{(5+3)^2}$	$\frac{d^3 y}{dx^3} \Rightarrow \frac{d^3 y}{dx^3} = \frac{54}{(5+3x)^3}$	
	M1: Continues the process of differentiat	ing and reaches $\frac{d^3 y}{dx^3} = \frac{k}{(5+3x)^3}$ oe	M1 A1
	Note this may be achieved via the quotient	t rule e.g. $\frac{d^3 y}{dx^3} = \frac{-9 \times -2 \times 3(5+3x)}{(5+3x)^4}$	
	A1: Correct simplified third derivative. A	llow e.g. $\frac{54}{(5+3x)^3}$ or $54(5+3x)^{-3}$.	
			(3)
(b)	$y_0 = \ln 5, y'_0 = \frac{3}{5}, y''_0 =$ $\Rightarrow \ln (5+3x) \approx \ln 5 + \frac{3}{5}x -$ Attempts all values at $x = 0$ and ap Evidence for attempting the values can The form of the expansion must be correct in Note that this is "Hence" and so do not allo	$-\frac{9}{25}, y_0''' = \frac{54}{125}$ $\frac{9}{25}\frac{x^2}{2!} + \frac{54}{125}\frac{x^3}{3!} + \dots$ oplies Maclaurin's theorem. The betaken from at least 2 terms. The betaken	M1
	$\ln(5+3x) \approx \ln 5 + \frac{3}{5}x - \frac{3}{5}$ Correct expansion. The "ln(5-	$\frac{9}{50}x^{2} + \frac{9}{125}x^{3} + \dots + 3x) =$ " is not required.	A1
			(2)
(c)	$\ln(5-3x) \approx \ln 5 - \frac{3}{5}x - \frac{3}$	$\frac{9}{50}x^2 - \frac{9}{125}x^3 + \dots$ btained "from scratch" changed on the coefficients of the odd ct form e.g. a polynomial in ascending fx.	B1ft
			(1)
(d)	$\ln \frac{(5+3x)}{(5-3x)} = \ln (5+3x)$ $\ln 5 + \frac{3}{5}x - \frac{9}{50}x^2 + \frac{9}{125}x^3 + \dots - (\ln 5x)$ Subtracts <u>their</u> 2 different series to obtain a powers of	$x) - \ln(5 - 3x)$ $5 - \frac{3}{5}x - \frac{9}{50}x^2 - \frac{9}{125}x^3 + \dots$ at least 2 non-zero terms in ascending fx.	M1
	$=\frac{6}{5}x + \frac{18}{125}x$ Correct terms. Allow e.g. 0+	$\frac{x^{3} + \dots}{5} x + 0x^{2} + \frac{18}{125}x^{3} + \dots$	A1

Allow both marks to score in (d) provided the correct series have been obtained in	
(b) and (c) by any means.	
	(2)
	Total 8

Question Number	Scheme	Notes	Marks
2(a)	$\frac{1}{(2n-1)(2n+1)(2n+3)} = \frac{A}{2n-1} + \frac{B}{2n+1} + \frac{C}{2n+3}$ $\Rightarrow A = \dots, B = \dots, C = \dots$ Correct partial fraction attempt to obtain values for A, B and C		M1
	$\frac{1}{8(2n-1)} - \frac{1}{4(2n+1)} + \frac{1}{8(2n+3)}$ or e.g. $\frac{\frac{1}{8}}{(2n-1)} - \frac{1}{6}$ Correct partial fraction This mark is not for the correct values of	$\frac{1}{10} \text{ or e.g } \frac{1}{16n-8} - \frac{1}{8n+4} + \frac{1}{16n+24} - \frac{\frac{1}{4}}{\frac{1}{(2n+1)}} + \frac{\frac{1}{8}}{\frac{1}{(2n+3)}}$ ons. (May be seen in (b)) of <i>A</i> , <i>B</i> and <i>C</i> , it is for the correct fractions.	A1 (2)
(b)	This mark is not for the correct values of <i>A</i> , <i>B</i> and <i>C</i> , it is for the correct fractions. $\frac{1}{8} \sum_{r=1}^{n} \left(\frac{1}{2r-1} - \frac{2}{2r+1} + \frac{1}{2r+3} \right) = \frac{1}{8} \left(\frac{1}{1} - \frac{2}{3} + \frac{1}{5} \right)$ $\frac{1}{8} \left(\frac{1}{1} - \frac{2}{3} + \frac{1}{5} \right)$ $\frac{1}{8} \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{5} \right)$ $\frac{1}{8} \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{5} \right)$ $\frac{1}{8} \left(\frac{1}{2} - \frac{2}{2} + \frac{1}{5} \right)$ $\frac{1}{2n-3} - \frac{2}{2n-1} + \frac{1}{2n+1}$ $\frac{1}{2n-1} - \frac{2}{2n+1} + \frac{1}{2n+3} \right)$ Uses the method of differences to find sufficient terms to establish cancelling. E.g. 3 rows at the start and 2 rows at the end or vice versa		M1
	$= \frac{1}{8} \left(1 - \frac{1}{3} - \frac{1}{2n+1} + \frac{1}{2n+3} \right) $ or e.g. = Identifies the correct non-cance	$= \frac{1}{8} \left(1 - \frac{2}{3} + \frac{1}{3} + \frac{1}{2n+1} - \frac{2}{2n+1} + \frac{1}{2n+3} \right)$ elling terms. May be unsimplified.	A1
	$= \frac{1}{8} \left(\frac{2(2n+1)(2n+3)}{3(2n+1)} \right)$ Attempts to combine terms into one fr constant term and at least 2 different a numerator when co	$\frac{-3(2n+3)+3(2n+1)}{1)(2n+3)} = \dots$ raction. There must have been at least one algebraic terms with at least 3 terms in the ombining the fractions.	dM1

$=\frac{n(n+2)}{3(2n+1)(2n+3)}$	Cao	A1
		(4)
		Total 6

Question Number	Scheme	Notes	Marks
3(a)	$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + xy = 2y^2$	$y = \frac{1}{z}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{z^2}\frac{\mathrm{d}z}{\mathrm{d}x}$	Correct differentiation	B1
	$-\frac{x^2}{z^2}\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{x}{z} = \frac{2}{z^2}$	Substitutes into the given differential equation	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{z}{x} = -\frac{2}{x^2} *$	Achieves the printed answer with no errors. Allow this to be written down following a correct substitution i.e. with no intermediate step.	A1*
			(3)
(a) Way 2	$y = \frac{1}{z} \Longrightarrow zy = 1 \Longrightarrow y \frac{dz}{dx} + z \frac{dy}{dx} = 0$	Correct differentiation	B1
	$-\frac{y}{z}x^2\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{x}{z} = \frac{2}{z^2}$	Substitutes into the given differential equation	M1
	$\frac{\mathrm{d}z}{\mathrm{d}x} - \frac{z}{x} = -\frac{2}{x^2} *$	Achieves the printed answer with no errors. Allow this to be written down following a correct substitution i.e. with no intermediate step.	A1*
(a) Way 3	$y = \frac{1}{z} \Longrightarrow z = \frac{1}{y} \Longrightarrow \frac{dz}{dx} = -\frac{1}{y^2} \frac{dy}{dx}$	Correct differentiation	B1
	$-\frac{1}{y^2}\frac{dy}{dx} - \frac{1}{xy} = -\frac{2}{x^2}$	Substitutes into differential equation (II)	M1
	$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + xy = 2y^2$	Obtains differential equation (I) with no errors. Allow this to be written down following a correct substitution i.e. with no intermediate step.	A1*
(b)	$I = e^{-\int \frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x}$	Correct integrating factor of $\frac{1}{x}$	B1
	$\frac{z}{x} = -\int \frac{2}{x^3} \mathrm{d}x$	For $Iz = -\int \frac{2I}{x^2} dx$. Condone the "dx" missing.	M1
	$\frac{z}{x} = \frac{1}{x^2} + c$	Correct equation including constant	A1
	$z = \frac{1}{x} + cx$	Correct equation in the required form	A1
			(4)
(c)	$\frac{1}{y} = \frac{1}{x} + cx \Longrightarrow -\frac{8}{3} = \frac{1}{3} + 3c \Longrightarrow c = -1$	Reverses the substitution and uses the given conditions to find their constant	M1

$\frac{1}{y} = \frac{1}{x} - x \Longrightarrow y = \frac{x}{1 - x^2}$	Correct equation for y in terms of x. Allow any correct equivalents e.g. $y = \frac{1}{x^{-1} - x}, \ y = \frac{1}{\frac{1}{x} - x}$	A1
		(2)
		Total 9

Question Number	Scheme	Notes	Marks
4(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 - x \Longrightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2y\frac{\mathrm{d}y}{\mathrm{d}x} - 1$	Correct expression for $\frac{d^2 y}{dx^2}$	B1
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 2y\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + $	$-2\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2$	
	M1 : Applies the product rule to obtain $\frac{d^3y}{dx^3}$	$= Ay \frac{d^2 y}{dx^2} + \dots \text{ or } \frac{d^3 y}{dx^3} = \dots + B\left(\frac{dy}{dx}\right)^2$	M1 A1
	where is no A1: Correct expression. Ap	on-zero ply isw if necessary.	
	$\frac{d^3 y}{dx^3} = 2y\frac{d^2 y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 \Longrightarrow \frac{d^4 y}{dx^4} = 2$	$2y\frac{d^3y}{dx^3} + 2\frac{dy}{dx}\frac{d^2y}{dx^2} + 4\frac{dy}{dx}\frac{d^2y}{dx^2}$	
	$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = 2y\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + $	$6\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$	A1
	Correct expression for $\frac{d^4y}{dx^4}$ or c	correct values for A and B.	
	Note:		
	If e.g. $\frac{d^2 y}{dx^2} = 2y \frac{dy}{dx}$ is obtained, allow recov	very in (a) so B0M1A1A1 is possible.	
			(4)
(b)	$(y)_{-1} = 1, (y')_{-1} = 2, (y'')_{-1} = 3, (y'')_{-1} = 3$	$(y''')_{-1} = 14, (y''')_{-1} = 64$	2.61
	Attempts the values up to at least the 3rd Condone slips provided the intention is cle	derivative using $x = -1$ and $y = 1$ ear. May be implied by their values.	MI
	$(y=)1+2(x+1)+\frac{3(x+1)^2}{2}+\frac{14}{2}$	$\frac{(x+1)^3}{31} + \frac{64(x+1)^4}{41} + \dots$	
	Correct application of the Taylor	series in powers of $(x + 1)$	M1
	If the expansion is just written down with no	formula quoted then it must be correct	
	for their values. E.g. $y = -1 + \dots$ with no evid	dence $y = f(-1)$ was meant scores M0	
	$(y=)1+2(x+1)+\frac{3(x+1)^2}{2}+\frac{7}{2}$	$\frac{(x+1)^3}{3} + \frac{8(x+1)^4}{3} + \dots$	A1
	Correct simplified expansion. T	The " $y =$ " is not required.	
			(3) Total 7
			I Utal /

<u>Question 5</u> <u>General Guidance</u>

B1: This mark is for sight of -8 seen as part of their working. It may be seen as e.g. embedded in an inequality, as part of their solution if they consider for example x > -8, x < -8 or -8 is seen in a sketch etc.

Do not allow for just e.g. x + 8 > 0,

M1: Any valid attempt to find at least one critical value other than x = -8 (see below). Condone use of e.g. "=", ">", "<" etc as part of their working.

Note these usually come in pairs as $3, -\frac{19}{3}$ or 3, -13

M1: A valid attempt to find all critical values.

Condone use of e.g. "=", ">", "<" etc as part of their working.

- A1: Any 2 critical values other than x = -8. May be seen embedded in an inequality or on a sketch.
- A1: 2 correct regions
- A1: All correct with no extra regions

Question Number	Scheme	Notes	Marks
5	(x=)-8	This cv stated or used	B1
	For cv's 3, $-\frac{19}{3}$	OR For cv's 3, -13	
	Examples: $x^2 - 9 = (x+8)(6-2x) \Rightarrow x = \dots$	Examples: $x^2 - 9 = -(x+8)(6-2x) \Longrightarrow x = \dots$	
	or $(x^2-9)(x+8) = (x+8)^2(6-2x) \Longrightarrow x =$	or $-(x^2-9)(x+8) = (x+8)^2(6-2x) \Longrightarrow x =$	M1
	$\frac{x^2-9}{(x+8)} - (6-2x) = 0 \Longrightarrow x = \dots >$	$\frac{x^2 - 9}{-(x+8)} - (6 - 2x) = 0 \Longrightarrow x =>$	
	NB leads to $3x^2 + 10x - 57 = 0$	NB leads to $x^2 + 10x - 39 = 0$	
	For cv's 3, $-\frac{19}{3}$ A	ND For cv's $3, -13$	
	Examples: $x^2 - 9 = (x+8)(6-2x) \Longrightarrow x = \dots$ or	Examples: $x^2 - 9 = -(x+8)(6-2x) \Longrightarrow x = \dots$	
	$(x^2-9)(x+8) = (x+8)^2(6-2x) \Longrightarrow x =$ or	$-(x^{2}-9)(x+8) = (x+8)^{2}(6-2x) \Longrightarrow x =$ or	M1
	$\frac{x^2-9}{(x+8)} - (6-2x) = 0 \Longrightarrow x = \dots >$	$\frac{x^2-9}{-(x+8)}-(6-2x)=0 \Longrightarrow x=>$	
	NB leads to $3x^2 + 10x - 57 = 0$	NB leads to $x^2 + 10x - 39 = 0$	
	Any two of: $x = -13, -\frac{19}{3}, 3$	For any two of these cv's. May be seen embedded in their inequalities. Depends on at least one previous M mark.	A1
	-13 < x < -8, -8	$x < x < -\frac{19}{3}, x > 3$	
	A1: Any 2 of th	ese inequalities.	
	Note that $-13 < x < -\frac{19}{3}, x \neq -8$ w	rould count as 2 correct inequalities.	A1 A1
	Also condone $-13 < x < -\frac{19}{3}$,	x > 3 as 2 correct inequalities.	
	Depends on at least o A1: All correct and no other regions	ne previous M mark. s. Depends on all previous marks.	
	Allow equivalent notation for the ine	equalities e.g. for $-13 < x < -8$ allow	
	x > -13 and $x < -8$, $x > -13$, $x < -8$, $-8 > -13$	> $x > -13, (-13, -8), \{x : x > -13 \cap x < -8\}$	
	But not $x > -$	-13 or x < -8	
	Note that $-13 < x < -\frac{19}{3}$, x	$\neq -8, x > 3$ is fully correct.	
			(6)
			Total 6

Note that it is possible to find all the cv's by squaring both sides of the equation:

(x=)-8	This cv stated or used	B1
$\frac{\left(x^2-9\right)^2}{\left(x+8\right)^2} \Longrightarrow (6-2x)^2 \Longrightarrow x^4 - 18x^2 + 81 = (36-24x+4x^2)(x^2+16x+64)$ $\Longrightarrow 3x^4 + 40x^3 - 74x^2 - 960x + 2223 = 0 \Longrightarrow x = \dots$ M2 Requires a complete attempt to square both sides, multiply up to obtain a quartic equation and an attempt to solve to find at least 1 critical value other than $x = -8$		M1M1
Any two of: $x = -13, -\frac{19}{3}, 3$	For any two of these cv's. May be seen embedded in their inequalities. Depends on both previous M marks.	A1
$-13 < x < -8, -8 < x < -\frac{19}{3}, x > 3$ A1: Any 2 of these inequalities. Note that $-13 < x < -\frac{19}{3}, x \neq -8$ would count as 2 correct inequalities. Also condone $-13 < x < -\frac{19}{3}, x > 3$ as 2 correct inequalities. Depends on at least one previous M mark.		A1 A1
Allow equivalent notation for the ine x > -13 and $x < -8$, $x > -13$, $x < -8$, $-8But not x > -8Note that -13 < x < -\frac{19}{3}, x < -\frac{19}{3}$	equalities e.g. for $-13 < x < -8$ allow > $x > -13, (-13, -8), \{x : x > -13 \cap x < -8\}$ -13 or $x < -8$ $x \neq -8, x > 3$ is fully correct.	

Question Number	Scheme	Notes	Marks
6(a)	Im	A straight line anywhere that is not vertical or horizontal which does not pass through the origin. It may be solid or dotted. Clear "V" shapes score M0.	M1
		A straight line in the correct position. Must have a positive gradient and lie in quadrants 1, 3 and 4. Ignore any intercepts correct or incorrect. If there are other lines that are clearly "construction" lines e.g. a line from 2i to 3 they can be ignored. The line may be solid or dotted. However, if there are clearly several lines then score A0.	A1
			(2)

<u>Part (b)</u>

The approaches below are the ones that have been seen most often.

Apply the mark scheme to the overall method the candidate has chosen.

There may be several attempts:

- If none are crossed out, mark all attempts and score the best single complete attempt
- If some attempts are crossed out, mark the uncrossed out work
- If everything is crossed out, mark all the work and score the best single complete attempt

Note that the question does not specify the variables the candidates should work in so they may use: e.g. z = x + iy and w = u + iv or w = x + iy and z = u + iv or any other letters so please check the work carefully.

Note that the M marks are all dependent on each other.

(b)		Attempts to make z the subject.	
Way 1	$w = \frac{iz}{z - 2i} \Longrightarrow z = \frac{2wi}{w - i}$	Must obtain the form $\frac{awi}{bw+ci}$, a, b, c	M1
		real and non-zero.	
	$z = \frac{2(u+iv)i}{v}$ or e.c.	$x = z = \frac{2(x + iy)i}{1 + iy}$	
	u + iv - i	x + iy - i	
	$z = \frac{2(u+iv)i}{v} \times \frac{u-(v)}{v}$	-1)i or equivalent	
	$u^2 - u + (v-1)i^2 u - (v$	-1)i	dM1
	Introduces $w = u + iv$ or e.g. $w = x + iy$ and	d attempts to multiply numerator and	
	denominator by the complex conjugate of would be sufficient e.g. no expan	the denominator. The above statement asion is needed for this mark.	
	$-2u = 2u^2 + 2v(v-1)$	$-2x$ $2x^2 + 2y(y-1)$.	
	$z = \frac{1}{u^2 + (v-1)^2} + \frac{1}{u^2 + (v-1)^2}$ for e.g	$z = \frac{1}{x^2 + (y-1)^2} + \frac{1}{x^2 + (y-1)^2} $	
	or		A 1
	$z = \frac{-2uv + 2u(v-1) + (2u^2 + 2v(v-1))i}{2}$ or e.g	$g \cdot z = \frac{-2xy + 2x(y-1) + (2x^2 + 2y(y-1))i}{2}$	AI
	$u^2 + (v-1)^2$	$x^{2} + (y-1)^{2}$	
	Correct expression for z in terms of their v identified May be embedded a	variables with real and imaginary parts	
		$\begin{pmatrix} 3 & 5 \\ \end{pmatrix}$	
	$ z-21 = z-3 \Longrightarrow y-1 = \frac{1}{2} \left(x - \frac{1}{2} \right)$	$\int \left(y = \frac{1}{2}x - \frac{1}{4}, \ 6x - 4y = 5 \right)$	
	$\Rightarrow \frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2} - 1 = \frac{2u^2}{2}$	$\frac{3}{2} \left(\frac{-2u}{u^2 + (v-1)^2} - \frac{3}{2} \right)$	
	Attempts the Cartesian equation of the lo	cus of z and substitutes for x and y or $1 + (y + 1) = 1$	
	Condone slips with the locus of z but must h	be a linear equation in any form but with	
	a non-zero con	stant term.	ddM1
	or		
	$ z-2i = z-3 \Rightarrow \left \frac{-2u}{u^2 + (v-1)^2} + \frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2} \right $	$ \mathbf{i} - 2\mathbf{i} = \frac{-2u}{u^2 + (v-1)^2} + \frac{2u^2 + 2v(v-1)}{u^2 + (v-1)^2}\mathbf{i} - 3$	
	$\Rightarrow \left(\frac{-2u}{2+(u-1)^2}\right)^2 + \left(\frac{2u^2 + 2v(v-1)}{2+(u-1)^2} - 2\right)^2 =$	$= \left(\frac{-2u}{2+(u-1)^2} - 3\right)^2 + \left(\frac{2u^2 + 2v(v-1)}{2+(u-1)^2}\right)^2$	
	$\begin{pmatrix} u^2 + (v-1) \end{pmatrix} \begin{pmatrix} u^2 + (v-1) \end{pmatrix}$	$\begin{pmatrix} u^2 + (v-1) \end{pmatrix} \begin{pmatrix} u^2 + (v-1) \end{pmatrix}$	
	Substitutes their z into the locus of z and ap equation in u and v (or their variables). Not	e that here, further progress is unlikely.	
	$13u^2 + 13v^2 + 12u - 18v + 5 = 0 \Longrightarrow$	$u^{2} + v^{2} + \frac{12}{13}u - \frac{18}{13}v + \frac{9}{13} = \frac{4}{13}$	
	$\Rightarrow \left(u + \frac{6}{13}\right)^2 + \left(1\right)^2$	$\left(v - \frac{9}{13}\right)^2 = \frac{4}{13}$	1111/1
	Attempts to complete the square on their each the same coe	quation in u and v where u^2 and v^2 have efficient.	dddM1
	Award for e.g. $u^2 + v^2 + \alpha u + \beta v + .$	$\dots = \left(u + \frac{\alpha}{2}\right)^2 + \left(v + \frac{\beta}{2}\right)^2 + \dots = \dots$	
			1

FP2_2023_01_MS

	Attempts using the form $u^2 + v^2 + 2$	2gu + 2fv + c = 0 send to review.	
	$\left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = \frac{2}{\sqrt{13}}$	Correct equation in the required form	A1
			Total 8
(b) Way 2	$w = \frac{iz}{z - 2i} \Longrightarrow z = \frac{2wi}{w - i}$	Attempts to make z the subject. Must obtain the form $\frac{awi}{bw+ci}$, a, b, c real and non-zero	M1
	$ z-2i = z-3 \Rightarrow \left \frac{2w}{w-i}\right = \frac{ z-3 }{ w-i } = \frac{ z-3 }{ w-i }$ Introduces z in terms of w into the given	$\frac{ \mathbf{i} - 2\mathbf{i} }{ \mathbf{i} ^2} = \frac{ 2w\mathbf{i} - 3 }{ w - \mathbf{i} ^2}$ $= \frac{ 2w\mathbf{i} - 3w + 3\mathbf{i} }{ w - \mathbf{i} ^2}$ locus and attempts to combine terms	d M1
	$\left \frac{-2}{w-i}\right = \left \frac{2wi - 3w + 3i}{w-i}\right \Rightarrow$ Correct equation with	-2 = 2wi - 3w + 3i fractions removed	A1
	$ 2(u+iv)i-3(u+iv)+3i = 2 \Longrightarrow ($ Introduces e.g. $w = u + iv$ and a	$(3u+2v)^{2} + (3v-2u-3)^{2} = 4$ upplies Pythagoras correctly	dd M1
	$13u^{2} + 13v^{2} + 12u - 18v + 9 = 4 \Rightarrow u^{2} + v^{2} + \frac{12}{13}u - \frac{18}{13}v + \frac{9}{13} = \frac{4}{13}$ $\Rightarrow \left(u + \frac{6}{13}\right)^{2} + \left(v - \frac{9}{13}\right)^{2} = \frac{4}{13}$ Attempts to complete the square on their equation in <i>u</i> and <i>v</i> where <i>u</i> ² and <i>v</i> ² have the same coefficient. Award for e.g. $u^{2} + v^{2} + \alpha u + \beta v + = \left(u + \frac{\alpha}{2}\right)^{2} + \left(v + \frac{\beta}{2}\right)^{2} + =$ Attempts using the form $u^{2} + v^{2} + 2gu + 2fv + c = 0$ send to review.		ddd M1
	$\left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = \frac{2}{\sqrt{13}}$	Correct equation in the required form	A1
			Total 8

(b)		Attempts to make z the subject.	
Way 3	$w = \frac{iz}{z - 2i} \Longrightarrow z = \frac{2wi}{w - i}$	Must obtain the form $\frac{awi}{bw+ci}$, a, b, c	M1
		real and non-zero.	
	$ z-2\mathbf{i} = z-3 \Longrightarrow \left \frac{2w}{w-1}\right $	$\frac{\mathbf{i}}{\mathbf{i}} - 2\mathbf{i} = \frac{2w\mathbf{i}}{w - \mathbf{i}} - 3$	
	$\Rightarrow \left \frac{2wi - 2wi - 2}{w - i} \right =$	$= \left \frac{2wi - 3w + 3i}{w - i} \right $	d M1
	Introduces z and attempts to combine terms		
	$\left \frac{-2}{w-i}\right = \left \frac{2wi - 3w + 3i}{w-i}\right \Longrightarrow$	-2 = 2wi - 3w + 3i	A1
	Correct equation with	fractions removed	
	$ w(2i-3)+3i = (2i-3)(w+\frac{3i}{2i-3}) = 2i-3 w+\frac{6-9i}{13} = 2$		dd M1
	Attempts to isolate <i>w</i> and rationalise denominator of other term		
	$\sqrt{13} \left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = 2 \Longrightarrow$	$\left w - \left(-\frac{6}{13} + \frac{9}{13}i \right) \right = \frac{2}{\sqrt{13}}$	dddM1A1
	M1: Completes the process by	y dividing by their $ 2i-3 $	
	A1: Correct equation in	n the required form	
			(6)

Question Number	Scheme	Notes	Marks
7(a)	Condone use of e.g. $C + iS$ for $\cos x + i \sin x$ if the intention is clear.		
	$(\cos 5x \equiv) \operatorname{Re}(\cos x + i \sin x)^5 \equiv \cos^5 x + \binom{5}{2} \cos^3 x (i \sin x)^2 + \binom{5}{4} \cos x (i \sin x)^4$ Identifies the correct terms of the binomial expansion of $(\cos x + i \sin x)^5$ They may expand $(\cos x + i \sin x)^5$ completely but there must be an attempt to extract the real terms which must have the correct binomial coefficients combined with the		M1
	$(\cos 5x \equiv)\cos^5 x - 10\cos^3 x \sin^2 x + 5\cos x \sin^4 x$ Correct simplified expression. Condone use of a different variable e.g. θ .		
	$\equiv \cos x \left(\cos^4 x - 10 \cos^2 x \right)$	$x\sin^2 x + 5\sin^4 x$	
	$\equiv \cos x \left(\left(1 - \sin^2 x \right)^2 - 10 \left(1 - \sin^2 x \right)^2 \right)^2$	$\sin^2 x \bigg) \sin^2 x + 5 \sin^4 x \bigg)$	M1
	Applies $\cos^2 x = 1 - \sin^2 x$ to obtain an expression in terms of sin x inside the bracket. Condone use of a different variable e.g. θ .		
	$\equiv \cos x \left(16\sin^4 x - 12\sin^2 x + 1 \right)$	Correct expression. Must be in terms of x now. The " $\cos 5x =$ " is not required.	A1
			(4)
(b)	Allow use of a different variable in (b) e.g. x for <u>all</u> marks.		
	$\cos 5\theta = \sin 2\theta \sin \theta - \cos \theta$		
	$\Rightarrow \cos\theta (16\sin^2\theta - 12\sin^2\theta + 1) = 2\sin^2\theta \cos\theta - \cos\theta$		
	$\Rightarrow \cos\theta \left(16\sin^4\theta - 14\sin^2\theta + 2\right) = 0$		
	Uses the result from part (a) with $\sin 2\theta = 2\sin \theta \cos \theta$ and collects terms $16\sin^4 \theta - 14\sin^2 \theta + 2 = 0$ $\Rightarrow \sin^2 \theta = \frac{7 \pm \sqrt{17}}{16} \Rightarrow \sin \theta =$ Solves for $\sin^2 \theta$ by any method including calculator and takes square root to obtain at least one value for $\sin \theta$. Depends on the first mark. May be implied by their values of $\sin \theta$ or θ . NB $\frac{7 \pm \sqrt{17}}{16} = 0.69519, 0.17980$ $\sin \theta = \sqrt{\frac{7 \pm \sqrt{17}}{16}} \Rightarrow \theta =$		
	NB $\sqrt{\frac{7 \pm \sqrt{17}}{16}} = 0.833783, 0.424035$		ddM1
	A full method to reach at least one value for θ . Depends on the previous mark. May be implied by their values of θ		
	$(\theta =)0.986, 0.438$	Correct values and no others in range. Allow awrt these values.	A1
			(4)
			Total 8

Note that it is possible to do 7(b) by changing to $\cos \theta$ e.g.

$$\cos\theta \left(16\sin^4\theta - 12\sin^2\theta + 1\right) = \cos\theta \left(16\left(1 - \cos^2\theta\right)^2 - 12\left(1 - \cos^2\theta\right) + 1\right)$$
$$\cos\theta \left(16\left(1 - \cos^2\theta\right)^2 - 12\left(1 - \cos^2\theta\right) + 1\right) = 2\sin^2\theta\cos\theta - \cos\theta$$
$$16\cos^4\theta - 18\cos^2\theta + 4 = 0$$
$$\cos^2\theta = \frac{9 \pm \sqrt{17}}{16} \Rightarrow \cos\theta = \sqrt{\frac{9 \pm \sqrt{17}}{16}}$$
$$(\theta =)0.986, \ 0.438$$

This is acceptable as they used part (a) and can be scored as:

M1: Uses part (a) with $\sin^2 \theta = 1 - \cos^2 \theta$ and $\sin 2\theta = 2\sin \theta \cos \theta$ and collects terms.

dM1: Solves for $\cos^2 \theta$ by any method including calculator and takes square root to obtain at least one value for $\cos \theta$. Depends on the first mark. May be implied by their values of $\cos \theta$ or θ .

NB
$$\frac{9 \pm \sqrt{17}}{16} = 0.82019..., 0.30480...$$

dM1: A full method to reach at least one value for θ . Depends on the previous mark. May be implied by their values of θ

NB
$$\sqrt{\frac{9 \pm \sqrt{17}}{16}} = 0.905645..., 0.552092...$$

A1:
$$(\theta =)$$
 0.986, 0.438

Question Number	Scheme	Notes	Marks
8(a)	$y = r \sin \theta = (1 - \sin \theta) \sin \theta = \sin \theta - \sin^2 \theta$ $\Rightarrow \frac{dy}{dt} = \cos \theta - 2 \sin \theta \cos \theta$	Differentiates $(1 - \sin \theta) \sin \theta$ to achieve $\pm \cos \theta \pm k \sin \theta \cos \theta$ or	M1
	$d\theta$ or e.g.	equivalent. Use of $y = r \cos \theta$ or $x = r \cos \theta$ scores M0	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}\theta} = \cos\theta - \sin 2\theta$	Correct derivative in any form.	A1
	$\cos\theta - 2\sin\theta\cos\theta = 0 \Longrightarrow \cos\theta (1 - 2\sin\theta)$	$n\theta$) = 0 \Rightarrow sin $\theta = \frac{1}{2} \Rightarrow \theta =$	dM1
	Solves to find a value for θ . Determined by θ .	epends on the first M.	
	$\left(\frac{1}{2},\frac{\pi}{6}\right)$		
	Correct coordinates and no others. Isw if nece	essary e.g. if written as $\left(\frac{\pi}{6}, \frac{1}{2}\right)$ after	A1
	correct values seen or implied award A	A1. Allow e.g. $\theta = \frac{\pi}{6}, r = \frac{1}{2}$.	
	The value of <i>r</i> must be seen in (a) – i.e	. do not allow recovery in (b).	
(b)			(4)
Way 1	Note that the $\frac{1}{2}$ in $\frac{1}{2}$ $\int r^2 d\theta$ is not re-	equired for the first 4 marks	
	$\int (1-\sin\theta)^2 d\theta = \int (1-2\sin\theta + \sin^2\theta) d\theta$	Attempts $\left(\frac{1}{2}\right)\int r^2 d\theta$ and applies	M1
	$= \int \left(1 - 2\sin\theta + \frac{1}{2} - \frac{1}{2}\cos 2\theta \right) \mathrm{d}\theta$	$\sin^2\theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$	
	$\int (1-\sin\theta)^2 \mathrm{d}\theta = \frac{3}{2}\theta + 2\cos\theta$	$\cos\theta - \frac{1}{4}\sin 2\theta(+c)$	
	Correct integration. Condone	mixed variables e.g.	A1
	$\int (1-\sin\theta)^2 d\theta = \frac{3}{2}x + 2\cos\theta$	$\cos\theta - \frac{1}{4}\sin 2\theta(+c)$	
	$\left(\frac{1}{2}\right)\left[\frac{3}{2}\theta + 2\cos\theta - \frac{1}{4}\sin 2\theta\right]_{0}^{\frac{\pi}{6}} = \left(\frac{1}{2}\right)\left[\left(\frac{\pi}{4} + \frac{1}{2}\right)\left(\frac{\pi}{4}\right)\right]_{0}^{\frac{\pi}{6}} = \left(\frac{1}{2}\right)\left[\left(\frac{\pi}{4} + \frac{1}{2}\right)\left(\frac{\pi}{4}\right)\right]_{0}^{\frac{\pi}{6}} = \left(\frac{1}{2}\right)\left[\left(\frac{\pi}{4} + \frac{1}{2}\right)\left(\frac{\pi}{4}\right)\right]_{0}^{\frac{\pi}{6}} = \left(\frac{1}{2}\right)\left[\left(\frac{\pi}{4} + \frac{1}{2}\right)\left(\frac{\pi}{4}\right)\right]_{0}^{\frac{\pi}{6}} = \left(\frac{\pi}{4}\right)\left[\left(\frac{\pi}{4} + \frac{1}{2}\right)\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4} + \frac{\pi}{4}\right)\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4} + \frac{\pi}{4}\right)\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4} + \frac{\pi}{4}\right)\left(\frac{\pi}{4}\right)\left(\frac{\pi}{4} + \frac{\pi}{4}\right)\left(\frac{\pi}{4} + $	$+\sqrt{3} - \frac{\sqrt{3}}{8} - (2) \left[\left(= \frac{\pi}{8} + \frac{7\sqrt{3}}{16} - 1 \right) \right]$	
	Applies the limits of 0 and their $\frac{\pi}{6}$ to their i	integration. The $\frac{1}{2}$ is not required.	M1
	For the integration look for at leas	st $\pm \int \sin\theta \mathrm{d}\theta \to \pm \cos\theta$	
	Triangle: $\frac{1}{2} \times \frac{1}{2} \sin \frac{\pi}{6} \times \frac{1}{2}$	$\frac{\pi}{2}\cos\frac{\pi}{6}\left(=\frac{\sqrt{3}}{32}\right)$	M1
	Uses a correct strategy for the	e area of the triangle	
	Area of $R = \frac{\pi}{8} + \frac{7\sqrt{3}}{16} - 1 + \frac{\sqrt{3}}{32}$	Fully correct method for the required area. Depends on all previous method marks.	dM1

$\frac{1}{32}\left(4\pi+15\sqrt{3}-32\right)$	Сао	A1
		(6)
		Total 10

Note that the
$$\frac{1}{2}$$
 in $\frac{1}{2}\int r^2 d\theta$ is not required for the first 3 marks(b)
Way 2 $\int (1-\sin\theta)^2 d\theta = \int (1-2\sin\theta+\sin^2\theta) d\theta$ Attempts $\left(\frac{1}{2}\right)\int r^2 d\theta$ and applies
 $\sin^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2}\cos 2\theta$.M1 $=\int \left(1-2\sin\theta+\frac{1}{2}-\frac{1}{2}\cos 2\theta\right) d\theta$ $\sin^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2}\cos 2\theta$.M1 $\int (1-\sin\theta)^2 d\theta = \frac{3}{2}\theta+2\cos\theta-\frac{1}{4}\sin 2\theta(+c)$
Correct integration. Condone mixed variables e.g.
 $\left(1-\sin\theta\right)^2 d\theta = \frac{3}{2}x+2\cos\theta-\frac{1}{4}\sin 2\theta(+c)$ A1 $\left(\frac{1}{2}\right)\left[\frac{3}{2}\theta+2\cos\theta-\frac{1}{4}\sin 2\theta\right]_0^{\frac{\pi}{2}} = \left(\frac{1}{2}\right)\left[\left(\frac{3\pi}{4}+0-\theta\right)-(2)\right]\left(=\frac{3\pi}{8}-1\right)$
Evidence of use of **both** limits 0 and $\frac{\pi}{2}$ to their integration. The $\frac{1}{2}$ is not required.M1Triangle - "Segment":
 $\frac{1}{2}\times\frac{1}{2}\sin\frac{\pi}{6}\times\frac{1}{2}\cos\frac{\pi}{6}-\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(1-\sin\theta)^2 d\theta$
 $\frac{\sqrt{3}}{32}-\frac{1}{2}\left[\frac{3}{2}\theta+2\cos\theta-\frac{1}{4}\sin 2\theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left(=\frac{15\sqrt{3}}{32}-\frac{\pi}{4}\right)$
Uses a fully correct strategy for the area above the curve between O and P .
Requires a correct method for the triangle as in Way 1 and a correct method for the
"segment" using **both** theriver $\frac{\pi}{6}$ and $\frac{\pi}{2}$.M1 $\frac{1}{32}(4\pi+15\sqrt{3}-32)$ CaoA1

Question Number	Scheme	Notes	Marks
9(a)(i)	$x = t^{\frac{1}{2}} \Longrightarrow \frac{dx}{dy} = \frac{1}{2}t^{-\frac{1}{2}}\frac{dt}{dy} \Longrightarrow \frac{dy}{dx} = \dots \text{ or } t =$ Applies the chain rule and proceed	$= x^{2} \Rightarrow \frac{dt}{dx} = 2x \Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \dots$ eds to an expression for $\frac{dy}{dx}$	M1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2t^{\frac{1}{2}} \frac{\mathrm{d}y}{\mathrm{d}t}$	Any correct expression for $\frac{dy}{dx}$ in terms of <i>y</i> and <i>t</i>	A1
(a)(ii)	$\frac{dy}{dx} = 2t^{\frac{1}{2}}\frac{dy}{dt} \Rightarrow \frac{d^2y}{dx^2} = \frac{dy}{dt}t^{-\frac{1}{2}}\frac{dt}{dx} + 2t^{\frac{1}{2}}\frac{d^2y}{dt^2}\frac{dt}{dx}$ dM1 : Uses the product rule to differentiate an equation of the form $\frac{dy}{dx} = kt^{\frac{1}{2}}\frac{dy}{dt}$ or		
	equivalent e.g. $\frac{dy}{dx} =$ $\frac{d^2y}{dx^2} = \alpha t^{-\frac{1}{2}} \frac{dy}{dt} \frac{dt}{dx} + \text{ or } \frac{dz}{dt}$ <u>or equivalent expressions</u> A1: <u>Any</u> correct expr	$kx \frac{dy}{dt} \text{ to obtain}$ $\frac{t^2 y}{tx^2} = \dots + \beta t^{\frac{1}{2}} \frac{d^2 y}{dt^2} \frac{dt}{dx}$ where \dots is non-zero ression for $\frac{d^2 y}{dt^2}$	d M1A1
	$\frac{dy}{dt}t^{-\frac{1}{2}}\frac{dt}{dx} + 2t^{\frac{1}{2}}\frac{d^{2}y}{dt^{2}}\frac{dt}{dx} = \frac{dy}{dt}$ $\frac{d^{2}y}{dx^{2}} = 2\frac{dy}{dt} +$ Correct expression in	$\frac{dt}{t^{-\frac{1}{2}} \times 2t^{\frac{1}{2}} + 2t^{\frac{1}{2}} \frac{d^2 y}{dt^2} \frac{dt}{dx}}$ $4t \frac{d^2 y}{dt^2}$ terms of y and t	A1
(b)	$x\frac{d^{2}y}{dx^{2}} - (6x^{2} + 1)\frac{dy}{dx} + 9x^{3}y = x^{5} \Rightarrow t^{\frac{1}{2}} \left(2\frac{dy}{dt}\right)$ Substitutes their expressions from p	$+4t\frac{d^{2}y}{dt^{2}} - (6t+1)2t^{\frac{1}{2}}\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}}$ part (a) and replaces x with $t^{\frac{1}{2}}$	(5) M1
	$2t^{\frac{1}{2}}\frac{dy}{dt} + 4t^{\frac{3}{2}}\frac{d^{2}y}{dt^{2}} - 12t^{\frac{3}{2}}\frac{dy}{dt}$ $\Rightarrow 4\frac{d^{2}y}{dt^{2}} - 12\frac{dy}{dt}$ Obtains the given answer with no errors and intermediate line after substitut Must follow full marks in (a)	$-2t^{\frac{1}{2}}\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}}$ $\frac{1}{2} + 9y = t^{*}$ sufficient working shown – at least one at one to but check working. apart from SC below.	A1*
			(2)

Special case in (a) and (b) for those who do not have (a) in terms of y and t only:

$$t = x^{2} \Rightarrow \frac{dt}{dx} = 2x \Rightarrow \frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \dots \text{ Scores M1. } \dots = 2x\frac{dy}{dt} \text{ scores A0 in (a)(i)}$$

$$\frac{dy}{dx} = 2x\frac{dy}{dt} \Rightarrow \frac{d^{2}y}{dx^{2}} = 2\frac{dy}{dt} + 2x\frac{d^{2}y}{dt^{2}}\frac{dt}{dx} = 2\frac{dy}{dt} + 4x^{2}\frac{d^{2}y}{dt^{2}} \text{ Scores dM1A1A0 in (a)(ii)}$$

$$x\frac{d^{2}y}{dx^{2}} - (6x^{2}+1)\frac{dy}{dx} + 9x^{3}y = x^{5} \Rightarrow t^{\frac{1}{2}} \left(2\frac{dy}{dt} + 4x^{2}\frac{d^{2}y}{dt^{2}}\right) - (6t+1)2x\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}}$$

$$\Rightarrow t^{\frac{1}{2}} \left(2\frac{dy}{dt} + 4t\frac{d^{2}y}{dt^{2}}\right) - (6t+1)2t^{\frac{1}{2}}\frac{dy}{dt} + 9t^{\frac{3}{2}}y = t^{\frac{5}{2}} \Rightarrow 4\frac{d^{2}y}{dt^{2}} - 12\frac{dy}{dt} + 9y = t^{*} \text{ Scores M1A1 in (b)}$$

Mark (c) and (d) together

(c)	2	Attempts to solve $4m^2 - 12m + 9 = 0$	
	$4m^2 - 12m + 9 = 0 \Longrightarrow m = \frac{3}{2}$	Apply general guidance for solving a	M1
	2	3TQ if necessary.	
		Correct CF. No need for " $y =$ "	
	3,	Condone $(y=)e^{\frac{3}{2}x}(Ax+B)$ here but	
	$(y=)e^{2^{t}}(At+B)$	must be in terms of t in the GS. Allow	Al
		equivalents for the $\frac{3}{2}$.	
	$(y=)at+b \Rightarrow \frac{dy}{dt} = a \Rightarrow \frac{d^2y}{dt^2} = 0$		
	$\Rightarrow -12a + 9(at+b) = t$		2.61
	Starts with the correct PI form and different	iates to obtain $\frac{dy}{dt} = a$ and $\frac{d^2y}{dt^2} = 0$ and	MI
	substitutes. NB starting with a PI of $y = at$ is M0		
	$9a = 1 \Longrightarrow a = \dots$	Complete method to find <i>a</i> and <i>b</i> by	47.54
	$9b-12a = 0 \Longrightarrow b = \dots$	comparing coefficients. Depends on the previous method mark.	dM1
	$y = e^{\frac{3}{2}t} \left(At + B\right) + \frac{1}{9}t + \frac{4}{27}$	Correct GS including " $y =$ " and must be in terms of t (no x 's). Allow equivalent exact fractions for the constants.	A1
			(5)
(d)	$y = e^{\frac{3}{2}x^2} \left(Ax^2 + B\right) + \frac{1}{9}x^2 + \frac{4}{27}$ Correct equation including "y =" (follow through their answer to (c)).		
	Allow equivalent exact fractions for the constants. For the ft, the answer to (c) must		B1ft
	be in terms of t and the answer to (d) should be the same as (c) with t replaced with r^2 . If there is no final answer to (a) you can award P1ft if the equation is correct in		
	x . If there is no final answer to (c) you can award bitt if the equation is correct in terms of x if it follows the previous work.		
			(1)
			Total 13