

Question Number	Scheme ${ }^{\text {a }}$
2 (a)	$\begin{aligned} & \text { E.g. }(x+3)(x-5)=9 \Rightarrow x^{2}-2 x-24=0 \Rightarrow x=\ldots \\ & \text { OR }(x-5)(x+3)^{2}-9(x+3)=0 \Rightarrow(x+3)(x-6)(x+4)=0 \Rightarrow x=\ldots \\ & \text { OR } \frac{(x+3)(x-5)-9}{x+3}<0 \Rightarrow x^{2}-2 x-24=0 \Rightarrow x=\ldots \end{aligned}$
	CVs: 6, -4;-3
	OR: $x \in(-3,6) \cup(-\infty,-4)$ or any equivalent notation. ${ }^{\text {a }}$
(b)	$x<6, x \neq-3$ or any equivalent notation. $\quad \left\lvert\, \begin{aligned} & \text { B1ftB1 } \\ & \text { (2) }\end{aligned}\right.$
	[8]
	Notes
(a) A1 B1 dM1 A1 A1cso	For a correct algebraic method to find the intersection points of $y=x-5$ and $y=\frac{9}{x+3}$. May set these equal and form a quadratic and solve. May multiply through by $(x+3)^{2}$ and collect on one side or use any other valid method Eg work from $\frac{(x+3)(x+2)-12}{x+3}>0$ Answers only from a calculator score M0. Must reach at least a quadratic or cubic before answers given. Do not be concerned with the equality or inequality for this mark. For 6, -4 obtained via a valid algebraic method. for the CV -3 seen anywhere Obtaining (any) inequalities using all of their critical values and no other numbers. For at least one correct interval allowing for \ldots or „, used instead of $<$ and $>$ Both correct ranges and no extras. Use of \ldots or „ scores A0. May be written in set notation, and all work should have been correct so penalise if incorrect inequalities method was used at the start. Accept $x<-4$ and/or $-3<x<6$ with "and" or "or" For candidates who draw a sketch graph and follow with the cvs without any algebra shown only the B mark is available. Those who use some algebra after their graph may gain marks as earned (possibly all)
(b) B1ft B1	For the " $x<6$ " in some form with the possible exception of the CVs from (a). Allow x,, 6 if already penalised in (a). It is essentially for realising all the extra (valid) values less than -3 are solutions while retaining all their given solutions. If only the CVs themselves are excluded allow B1. Follow through their answer to (a). Fully correct answer. May give as intervals $x<-3,-3<x<6$

Question Number	Scheme	Marks
3	$w=\frac{z}{z+4 \mathrm{i}}$	
	$w(z+4 \mathrm{i})=z \Rightarrow z(1-w)=4 \mathrm{i} w \quad$ or $\quad z=\frac{4 \mathrm{i} w}{1-w}$ oe	M1A1
	$\|z\|=3 \quad\left\|\frac{4 \mathrm{i} w}{1-w}\right\|=3$	dM1
	$\|4 \mathrm{i} w\|=3\|1-w\|$	
	$w=u+\mathrm{i} v \quad 16\left(u^{2}+v^{2}\right)=9\left((1-u)^{2}+v^{2}\right)$	ddM1A1
	$16 u^{2}+16 v^{2}=9\left(1-2 u+u^{2}+v^{2}\right)$	
	$7 u^{2}+7 v^{2}+18 u-9=0$	
	$\left(u+\frac{9}{7}\right)^{2}+v^{2}=\frac{144}{49}$	dddM1
	Centre $\left(-\frac{9}{7}, 0\right) \quad$ Radius $\frac{12}{7}$	A1A1
	Notes	
$\begin{aligned} & \text { (a) } \\ & \text { M1 } \end{aligned}$	re-arrange to $z=\ldots$ or an expression $z(\alpha w+\beta)=\gamma w+\delta$ correct result dep (on first M1) using $\|z\|=3$ with their previous result dep (on both previous M marks) use $w=u+\mathrm{i} v$ (or $w=x+\mathrm{i} y$ or any other pair of letters) and attempts the squares of the moduli. The i's must be dealt with correctly, but allow e.g. $3^{2} \rightarrow 3$ for a correct equation quadratic in u and v after squaring (including squaring coefficients). dep (on all previous M marks) re-arrange to the completed square form of the equation of a circle (same coeffs for the squared terms) or implied by a correct centre or radius following a correct equation with terms gathered. either correct and exact. both correct and exact. Note: Allow recovery for the last three A's if all that is incorrect in is the wrong sign in their expression for z, ie $z=\frac{-4 \mathrm{i} w}{1-w}$ If you see alternative methods, e.g. via Apollonian approaches or attempts to use $z=x+\mathrm{i} y$ in the original equation, that you feel are worthy of credit please use Review to consult your team leader.	
$\begin{gathered} \text { A1 } \\ \text { dM1 } \\ \text { ddM1 } \end{gathered}$		
$\begin{gathered} \begin{array}{c} \text { A1 } \\ \text { dddM1 } \end{array} \\ \\ \hline \text { A1 } \\ \text { A1 } \end{gathered}$		
$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$		

Question Number	Scheme	Marks
5.(a)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{2}{y}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+2$	
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ seen	B1
	$\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-\frac{4}{y}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{2}{y^{2}}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{3}$	M1A1A1
		(4)
ALT:	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} \rightarrow 2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \text { seen } \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)+y \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}+4\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ & \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=\frac{1}{y}\left(-5 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2\right) \frac{\mathrm{d} y}{\mathrm{~d} x} \end{aligned}$	B1 M1 $\underline{A 1}$ A1 (4)
(b)	At $x=0 \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2}\left(-2 \times(1)^{2}+4\right)=1$	B1
	$\frac{\mathrm{d}^{3} y}{\mathrm{~d} \mathrm{x}^{3}}=\frac{1}{2}(-5 \times 1+2) \times 1=\frac{-3}{2}$	M1
	$(y=) 2+x+(1) \frac{x^{2}}{2!}+\left(\frac{-3}{2}\right) \frac{x^{3}}{3!}+\ldots$	M1
	$y=2+x+\frac{1}{2} x^{2}-\frac{1}{4} x^{3}+\ldots$	A1 (4)
		[8]
	Notes	
(a)		
B1	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ seen in the differentiation	
M1	Divide equation by y and differentiate wrt x chain and product rules	rrect
A1	Either RHS term correct. Need not be simplified.	
A1 ALT	Both RHS terms correct. Need not be simplified.	
B1	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} \rightarrow 2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ correct differentiation of middle term.	
M1	Differentiate before dividing. Product rule must be used.	
A1	Correct differentiation of $y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ and $-2 y$	
A1	Rearrange to a correct expression for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ (need not be simplified)	

(b)	Notes
B1	Correct value for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. May be implied by the term in their expansion.
M1	Use their expression from (a) to obtain a value for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ their value follows from their expression in (a).) Taylor's series formed using their values for the derivatives, accept $2!$ or 2 and 3! or 6 Correct series, must start $y=\ldots$, or allow $\mathrm{f}(x)=\ldots$ as longs $y=\mathrm{f}(x)$ has been defined in the question. M1
Must come from a correct expression for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$	

Question Number	Scheme	Marks
6 (a)	$\begin{aligned} & \frac{\mathrm{d}(r \sin \theta)}{\mathrm{d} \theta}=4 a \cos \theta+4 a \cos ^{2} \theta-4 a \sin ^{2} \theta \text { or } \quad 4 a \cos \theta+4 a \cos 2 \theta \text { oe } \\ & \text { (Or allow } \frac{\mathrm{d}(r \cos \theta)}{\mathrm{d} \theta}=-4 a \sin \theta-8 a \cos \theta \sin \theta \text { or }-4 a \sin \theta-4 a \sin 2 \theta \text {) } \end{aligned}$	M1
	E.g. $4 a \cos \theta+4 a \cos ^{2} \theta-4 a \sin ^{2} \theta=0 \Rightarrow \cos \theta+\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)=0$	M1
	$2 \cos ^{2} \theta+\cos \theta-1=0$ terms in any order	A1
	$(2 \cos \theta-1)(\cos \theta+1)=0 \Rightarrow \cos \theta=\ldots$	ddM1
	$\left(\cos \theta=\frac{1}{2} \Rightarrow\right) \theta=\frac{\pi}{3} \quad(\theta=\pi \quad$ need not be seen $)$	A1
	$r=4 a \times \frac{3}{2}=6 a$	A1 (6)
(b)	Area $=\frac{1}{2} \int r^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 16 a^{2}(1+\cos \theta)^{2} \mathrm{~d} \theta$	
	$=\frac{16 a^{2}}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(1+2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta$	M1
	$=8 a^{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left(1+2 \cos \theta+\frac{1}{2}(\cos 2 \theta+1)\right) \mathrm{d} \theta$	M1
	$=8 a^{2}\left[\theta+2 \sin \theta+\frac{1}{2}\left(\frac{1}{2} \sin 2 \theta+\theta\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$	dM1A1
	$8 a^{2}\left[\frac{\pi}{3}+\sqrt{3}+\frac{1}{4} \times \frac{\sqrt{3}}{2}+\frac{\pi}{6}-\left(\frac{\pi}{6}+1+\frac{1}{4} \times \frac{\sqrt{3}}{2}+\frac{\pi}{12}\right)\right]$	A1
	$8 a^{2}\left[\frac{\pi}{4}+\sqrt{3}-1\right]$	
	Area $R=8 a^{2}\left[\frac{\pi}{4}+\sqrt{3}-1\right]-6 a^{2}\left(1+\frac{\sqrt{3}}{2}\right)=a^{2}(2 \pi+5 \sqrt{3}-14)$	M1A1 (7)
		[13]
	Notes	
$\begin{gathered} \text { (a) } \\ \text { M1 } \\ \\ \\ \text { M1 } \\ \text { A1 } \\ \text { ddM1 } \\ \text { A1 } \end{gathered}$	Attempt the differentiation of $r \sin \theta$ using product rule or $\sin 2 \theta=2 \sin \theta \cos \theta$ OR for this mark only allow differentiation of $r \cos \theta$, inc use of product rule, chain rule or $\cos ^{2} \theta=\frac{1}{2}(1 \pm \cos 2 \theta)$ Allow errors in coefficients as long as the form is correct. Sets their derivative of $r \sin \theta$ equal to zero and achieves a quadratic expression in $\cos \theta$ Correct 3 term quadratic in $\cos \theta$ (any multiple, including a) Dep on both M marks. Solve their quadratic (usual rules) giving one or two roots Correct quadratic solved to give $\theta=\frac{\pi}{3}$	

Question Number	Scheme	Marks
7(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x} \text { or } \frac{\mathrm{d} v}{\mathrm{~d} x}=x^{-1} \frac{\mathrm{~d} y}{\mathrm{~d} x}-x^{-2} y(\text { oe })$	M1A1
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d} v}{\mathrm{~d} x}+\frac{\mathrm{d} v}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}$ or $\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=-x^{-2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{-1} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x^{-3} y-x^{-2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ (oe)	dM1A1
	$3\left(2 \frac{\mathrm{~d} v}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} v}{\mathrm{dx} x^{2}}\right)-\frac{6}{x}\left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right)+\frac{6 x v}{x^{2}}+3 x v=x^{2} \quad($ oe in reverse)	ddM1
	$3 x \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} v}{\mathrm{~d} x}-6 \frac{\mathrm{~d} v}{\mathrm{~d} x}-\frac{6}{x} v+\frac{6 v}{x}+3 x v=x^{2}$	
	$3 \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+3 v=x \quad *$	A1 * (6)
(b)	$3 \lambda^{2}+3=0$ so $\lambda= \pm \mathrm{i}$	M1
	$(v=) A \mathrm{e}^{\mathrm{ix}}+B \mathrm{e}^{-\mathrm{i} x} \quad$ or $\quad(v=) C \cos x+D \sin x$	A1
	P.I: Try $(v=) k x(+l)$	B1
	$\frac{\mathrm{d} v}{\mathrm{~d} x}=k \quad \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}=0$	
	$3 \times 0+3(k x(+l))=x$	M1
	$k=\frac{1}{3} \quad(l=0)$	
	$v=A \mathrm{e}^{\mathrm{ix}}+B \mathrm{e}^{-\mathrm{ix}}+\frac{1}{3} x$ or $v=C \cos x+D \sin x+\frac{1}{3} x$	A1
	$y=x\left(A \mathrm{e}^{\mathrm{ix}}+B \mathrm{e}^{-\mathrm{ix}}+\frac{1}{3} x\right)$ or $y=x\left(C \cos x+D \sin x+\frac{1}{3} x\right)$	B1ft (6)
		[12]
	Notes	
(a) M1	Attempt to find a relevant first derivative from $y=x v$ e.g to get $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} v}{\mathrm{~d} x}$ - product or quotient rule must be used. Methods via $\frac{\mathrm{d} . .}{\mathrm{d} v}$ would require a chain rule to reach a relevant derivative. Correct derivative Attempt to differentiate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} v}{\mathrm{~d} x}$ to obtain an expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ or $\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}$ - product rule must be used. Depends on the previous M mark Correct expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ or $\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}$	
A1 dM1 A1		

	Notes
ddM1	Depends on both previous M marks. Substitute their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and $y=x v$ in the original
	equation to obtain a differential equation in v and x. Alternatively substitute their $\frac{\mathrm{d} v}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}$ and
	$v=\frac{y}{x}$ into equation (II) to obtain a differential equation in y and x
A1*	Obtain the given equation/original equation with no errors in the working. There must be at least one step shown between the initial substitution and the result
(b)	Forms correct AE and attempts to solve (accept $3 m^{2}+3(=0)$ leading to any value(s)).
M1	Correct CF.
A1	Suitable form for PI (ie one that include $k x)$
M1	Differentiate their PI twice and substitute their derivatives in the equation $3 \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}+3 v=x$
A1	Obtain the correct result (either form). Must be $v=\ldots$
B1ft	Reverse the substitution. Follow through their previous line. Must be $y=.$.

Question Number	Scheme	Marks
8 (a)	$(\cos \theta+\mathrm{i} \sin \theta)^{5}=\cos 5 \theta+\mathrm{i} \sin 5 \theta$	B1
	$\begin{aligned} & =\cos ^{5} \theta+5 \cos ^{4}(\mathrm{i} \sin \theta)+\frac{5 \times 4}{2!} \cos ^{3} \theta(\mathrm{i} \sin \theta)^{2} \\ & +\frac{5 \times 4 \times 3}{3!} \cos ^{2} \theta(\mathrm{i} \sin \theta)^{3}+\frac{5 \times 4 \times 3 \times 2}{4!} \cos \theta(\mathrm{i} \sin \theta)^{4}+(\mathrm{i} \sin \theta)^{5} \end{aligned}$	M1
	$=\cos ^{5} \theta+5 \mathrm{i} \cos ^{4} \theta \sin \theta-10 \cos ^{3} \theta \sin ^{2} \theta-10 \mathrm{i} \cos ^{2} \theta \sin ^{3} \theta+5 \cos \theta \sin ^{4} \theta+\mathrm{i} \sin ^{5} \theta$	A1
	$\begin{aligned} & \sin 5 \theta=5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta \\ & =5\left(1-\sin ^{2} \theta\right)^{2} \sin \theta-10\left(1-\sin ^{2} \theta\right) \sin ^{3} \theta+\sin ^{5} \theta \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ & =5\left(1-2 \sin ^{2} \theta+\sin ^{4} \theta\right) \sin \theta-10\left(1-\sin ^{2} \theta\right) \sin ^{3} \theta+\sin ^{5} \theta \end{aligned}$	M1
	$\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta \quad *$	A1* (5)
	Alternative: Using " $z-\frac{1}{z}$ " $\quad z^{5}-\frac{1}{z^{5}}=2 i \sin 5 \theta$ oe	B1
	Binomial expansion of $\left(z-\frac{1}{z}\right)^{5}$	M1
	$32 \sin ^{5} \theta=2 \sin 5 \theta-10 \sin 3 \theta+20 \sin \theta$	A1
	Uses double angle formulae etc to obtain $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$ and then use it in their expansion	M1
	$\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta \quad *$	A1* (5)
(b)	Let $x=\sin \theta \quad 16 x^{5}-20 x^{3}+5 x=-\frac{1}{5} \Rightarrow \sin 5 \theta=\ldots$	M1A1
	$\Rightarrow \theta=\frac{1}{5} \sin ^{-1}\left(\pm \frac{1}{5}\right)=38.306$ (or $-2.307,69.692 .110 .306,141.693,182.306$)	dM1
	(or in radians $-0.0402 \ldots 0.6685 \ldots, 1.216 \ldots, 1.925 \ldots, 2.473 \ldots$)	
	Two of (awrt) $x=\sin \theta=-0.963,-0.555,-0.040,0.620,0.938$	A1
	All of (awrt) $x=\sin \theta=-0.963,-0.555,-0.040,0.620,0.938$	A1 (5)
(c)	$\int_{0}^{\frac{\pi}{4}}\left(4 \sin ^{5} \theta-5 \sin ^{3} \theta-6 \sin \theta\right) \mathrm{d} \theta=\left(\int_{0}^{\frac{\pi}{4}} \frac{1}{4}(\sin 5 \theta-5 \sin \theta)-6 \sin \theta\right) \mathrm{d} \theta$	M1
	$=\left[\frac{1}{4}\left(-\frac{1}{5} \cos 5 \theta+5 \cos \theta\right)+6 \cos \theta\right]_{0}^{\frac{\pi}{4}}\left(=\left[-\frac{1}{20} \cos 5 \theta+\frac{29}{4} \cos \theta\right]_{0}^{\frac{\pi}{4}}\right)$	A1
	$\frac{1}{4}\left[-\frac{1}{5} \cos \frac{5 \pi}{4}+5 \cos \frac{\pi}{4}-\left(-\frac{1}{5}+5\right)\right]+6 \cos \frac{\pi}{4}-6$	
	$=\frac{1}{4}\left[\frac{1}{5} \times \frac{1}{\text { Ö } 2}+\frac{5}{\mathrm{O} 2}-4 \frac{4}{5}\right]+\frac{6}{\sqrt{2}}-6$	dM1
	$=\frac{73 \sqrt{2}}{20}-\frac{36}{5}$ oe	A1 (4)
		[14]
	Notes	

(a)

B1 Applies de Moivre correctly. Need not see full statement, but must be correctly applied.
Use binomial theorem to expand $(\cos \theta+\mathrm{i} \sin \theta)^{5}$ May only show imaginary parts - ignore errors in real parts. Binomial coefficients must be evaluated.
A1 Simplify coefficients to obtain a simplified result with all imaginary terms correct Equate imaginary parts and obtain an expression for $\sin 5 \theta$ in terms of powers of $\sin \theta$ No $\cos \theta$ now
A1* Correct given result obtained from fully correct working with at least one intermediate line wit the $\left(1-\sin ^{2} \theta\right)^{2}$ expanded. Must see both sides of answer (may be split across lines). A 0 if equating of imaginary terms is not clearly implied.
(b)

Note Answers only with no working score no marks as the "hence" has not been used. But if the first M1A1 gained then dM1 may be implied by a correct answer.
M1 Use substitution $x=\sin \theta$ and attempts to use the result from (a) to obtain a value for $\sin 5 \theta$
A1
Correct value for $\sin 5 \theta$
Proceeds to apply arcsin and divide by 5 to obtain at least one value for θ. Note for $\sin 5 \theta=\frac{1}{5}$ the values you may see are the negatives of the true answers. FYI: $(5 \theta=-11.53 \ldots, 191.53 \ldots, 348.46 \ldots, 551.53 \ldots, 708.46 \ldots, 911.53 \ldots)$ (Or in radians $-0.201 \ldots$ 3.3428..., 6.0819..., 9.6260..., 12.365..., 15.909...)

A1 Proceeds to take \sin and achieve at least 2 different correct values for x or $\sin \theta$
A1
For all 5 values of x or $\sin \theta$ awrt 3 d.p. (allow 0.62 and -0.04)
(c)

M1
A1

Use previous work to change the integrand into a function that can be integrated Correct result after integrating. Any limits shown can be ignored Substitute given limits, subtracts and uses exact numerical values for trig functions Final answer correct (oe provided in the given form)

