Question	Scheme	Marks
1(a)	$r=\sqrt{(-4)^{2}+(-4 \sqrt{3})^{2}}=\ldots$	M1
	$\tan \theta=\frac{-4 \sqrt{3}}{-4} \Rightarrow \theta=\tan ^{-1}(\sqrt{3}) \pm \pi$	M1
	$8\left(\cos \left(-\frac{2 \pi}{3}\right)+\mathrm{i} \sin \left(-\frac{2 \pi}{3}\right)\right)$	A1
		(3)
(b)	$z=r \mathrm{e}^{\mathrm{i} \theta} \Rightarrow\left(r \mathrm{e}^{\mathrm{i} \theta}\right)^{3}=-4-4 \sqrt{3} \Rightarrow r^{3}\left(\mathrm{e}^{3 \mathrm{i} \theta}\right)=8 \mathrm{e}^{-}$	
	$\Rightarrow r=\sqrt[3]{8}=2$	M1
	$3 \theta=-\frac{2 \pi}{3}(+2 k \pi) \Rightarrow \theta=-\frac{2 \pi}{9}+\left(\frac{2 k \pi}{3}\right)$	M1
	So $z=2 \mathrm{e}^{-\frac{8 \pi_{\mathrm{i}}}{9} \mathrm{i}}, 2 \mathrm{e}^{-\frac{2 \pi}{9} \mathrm{i}}, 2 \mathrm{e}^{\frac{4 \pi}{9} \mathrm{i}}$	$\begin{gathered} \text { A1ft } \\ \text { A1 } \end{gathered}$
		(4)
(7 marks)		
Notes:		
(a) M1: For a correct attempt at the modulus, implied by a correct modulus if no method seen and allow recovery if correct answer follows a minor slip in notation. M1: For an attempt to find a value of θ in the correct quadrant. Accept $\tan ^{-1}(\sqrt{3}) \pm \pi$ or $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \pm \pi$ May be implied by sight of an of $-\frac{2}{3} \pi, \frac{4}{3} \pi,-\frac{5}{6} \pi, \frac{7}{6} \pi$. A1: cao as in scheme, no other solution. (b) M1: Applies De Moivre's Theorem and proceeds to find a value for r ie $(\text { their } 8)^{\frac{1}{3}}$ M1: Proceeds to find at least one value for θ - ie their argument/3. A1ft: At least two roots correct for their r and θ. (Must come from correct method, watch for correct roots coming from an incorrect angle due to errors.) A1: All three correct roots and no others. Accept e.g $2 \mathrm{e}^{\mathrm{i}-\frac{8 \pi}{9}}$ as a slip in notation, so allow marks.		

Question	Scheme	Marks
2	$2 m^{2}-5 m-3=0 \Rightarrow(2 m+1)(m-3)=0 \Rightarrow m=\ldots$	M1
	So C.F. is $\left(y_{\text {CF }}=\right) A \mathrm{e}^{-\frac{1}{2} x}+B \mathrm{e}^{3 x}$	A1
	P.I. is $y_{P I}=a x \mathrm{e}^{3 x}$	B1
	$\begin{aligned} & \frac{\mathrm{d} y_{P I}}{\mathrm{~d} x}=3 a x \mathrm{e}^{3 x}+a \mathrm{e}^{3 x}, \frac{\mathrm{~d}^{2} y_{P I}}{\mathrm{~d} x^{2}}=9 a x \mathrm{e}^{3 x}+3 a \mathrm{e}^{3 x}+3 a \mathrm{e}^{3 x} \\ & \Rightarrow 2(9 a x+6 a) \mathrm{e}^{3 x}-5(3 a x+a) \mathrm{e}^{3 x}-3 a x \mathrm{e}^{3 x}=2 \mathrm{e}^{3 x} \Rightarrow a=\ldots \end{aligned}$	M1
	$a=\frac{2}{7}$	A1
	General solution is $y=A \mathrm{e}^{-\frac{1}{2} x}+B \mathrm{e}^{3 x}+\frac{2}{7} x \mathrm{e}^{3 x}$	B1ft
		(6)
(6 marks)		
Notes:		
M1: Forms and solves the auxiliary equation. A1: Correct complementary function (no need for $y=\ldots$) B1: Correct form for the particular integral. Accept any PI that includes $a x \mathrm{e}^{3 x}$, so e.g. $(a x+b) \mathrm{e}^{3 x}$ is fine. M1: Attempts to differentiate their PI twice and substitutes into the left hand side of the equation. The derivatives must be changed functions. There is no need to reach a value for the unknown(s) but their PI must contain an unknown constant. A1: Correct value of a (and any other coefficients as zero). Must have had a suitable PI B1 ft: For $y=$ their CF + their PI. Must include the $y=$. The PI must be a function of x that matches their initial choice of PI, with their constants substituted.		

Question	Scheme	Marks
3(a)	Meet when $x^{2}-8 x=\frac{4 x}{4-x} \Rightarrow\left(x^{2}-8 x\right)(4-x)=4 x \Rightarrow x\left(4 x-32-x^{2}+8 x-4\right)=0$	M1
	(so $x=0$ or) $x^{2}-12 x+36=0$	A1
	$\Rightarrow x(x-6)^{2}=0 \Rightarrow x=\ldots$	M1
	Meet at (6,-12)	A1
	e.g. touch at (6,-12) as repeated root.	B1
		(5)
Alt	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}-8 x\right)=2 x-8 \text { and } \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{4 x}{4-x}\right)=\frac{4(4-x)-4 x(-1)}{(4-x)^{2}}=\frac{16}{(4-x)^{2}}$	M1A1
	$2 x-8=\frac{16}{(4-x)^{2}} \Rightarrow(x-4)^{3}=8 \Rightarrow x=\ldots$	M1
	Meet at ($6,-12$)	A1
	e.g. $6^{2}-6 \times 9=-12$ and $\frac{4 \times 6}{4-6}=-12$, so curves meet at tangent at $(6,-12)$	B1
		(5)
(b)	$x^{2}-8 x=\frac{4 x}{4+x} \Rightarrow x(x-8)(4+x)-4 x=0 \Rightarrow x\left(x^{2}-4 x-36\right)=0 \Rightarrow x=. .$	M1
	$x=(0), 2 \pm 2 \sqrt{10} \Rightarrow$ critical value is $(0$ and) $2-2 \sqrt{10}$	A1
	Other C.V.'s are $0, \pm 4$	B1
	E.g. extremes are $x<2-2 \sqrt{10}$ and $x>6$ or any two suitable ranges.	M1
	Solution is $x<2-2 \sqrt{10},-4<x<0,4<x<6, x>6$	A1A1
		(6)
(11 marks)		

Notes:

(a)

M1: Attempts to find intersection by setting equations equal and cross multiplies and factorises the x out or cancels.
A1: Correct quadratic reached. May be implied by solutions of 0,6 seen from the cubic (by calculator)
M1: Solves the quadratic to find roots.
A1: Obtains the correct point where the curves meet.
B1: Correct reason given for why the curves touch. Accepted "repeated root" as reason. As a minimum, accept " $(x-6)^{2}=0$ therefore touches". Alternatively, accept discriminant $=0$ shown with conclusion, or may find gradient at both points and show equal, with conclusion.
Alt:
M1: Attempts derivatives of both curves
A1: Both derivatives correct.
M1: Sets derivatives equal and solves to find x value where gradients agree.
A1: Obtains the correct point where the curves meet.
B1: Correct value checked in both curves with conclusion that they meet at a tangent or equivalent working as per main scheme.
(b)

M1: Attempts to find the intersection of the other branch of $\frac{4 x}{4-|x|}$ with $x^{2}-8 x$. Allow for any attempt at solving $\frac{4 x}{4+x}=x^{2}-8 x$ that reaches a value for x
A1: Correct value of $2-2 \sqrt{10}$ identified. (No need to see the second root rejected for this mark.)
B1: Both 0 and ± 4 identified as critical values for the ranges needed at some stage in working.
M1: Forms at least two suitable ranges from their critical values (allow if e.g. \leqslant is used instead of $<$). Likely to be the extreme ranges, so look for $x<$ their $2-2 \sqrt{10}$ and $x>$ their 6 . However, allow if this latter is included as part of the range $x>4$ for this mark.
A1: At least two correct ranges.
A1: Fully correct answer as in scheme.

Question	Scheme	Marks
4(a)		M1
		A1
		B1
		(3)
(b)	$\left(\frac{1}{2}\right) \int r^{2} \mathrm{~d} \theta=\left(\frac{1}{2}\right) \int\left(\underline{\left.16-12 \cos 6 \theta+\frac{9}{4} \cos ^{2} 6 \theta\right) \mathrm{d} \theta}\right.$	M1
	$=\frac{1}{2} \int_{0}^{2 \pi}\left(16-12 \cos 6 \theta+\underline{\frac{9}{8}(1+\cos 12 \theta)}\right) \mathrm{d} \theta$	M1
	$=\frac{1}{2}\left[16 \theta-2 \sin 6 \theta+\frac{9}{8}\left(\theta+\frac{1}{12} \sin 12 \theta\right)\right]_{0}^{2 \pi}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\begin{gathered} A_{\text {outer }}=\frac{1}{2} \int_{0}^{2 \pi} r^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{0}^{2 \pi}\left(16-12 \cos 6 \theta+\frac{9}{4} \cos ^{2} 6 \theta\right) \mathrm{d} \theta \\ \quad=\frac{1}{2}\left(32 \pi-0+\frac{9}{8}(2 \pi+0)-(0)\right) \end{gathered}$	dM1
	So Area required is $\frac{1}{2}\left(32 \pi+\frac{9 \pi}{4}\right)-\pi\left(1^{2}\right)=\ldots$	B1
	$=\frac{129}{8} \pi$	A1
		(7)
(10 marks)		
Notes:		
(a) M1: Allow for any closed loop that oscillates, though may not have the correct number of "petals" but require at least 4 . Need not have correct places of maximum radius. A1: Fully correct sketch, 6 "petals" in the right places, with maximum radius between the 5 and 6 radius lines, minimum between the 2 and 3 radius lines. B1: For a circle of radius 1 and centre O drawn. (b) M1: Attempts to square r as part of an integral for the outer curve, achieving a 3 term quadratic in $\cos 6 \theta$ M1: Applies the double angle formula to the $\cos ^{2}$ term from their expansion (not dependent on the first M , but must have a $\cos ^{2}$ term). Accept $\cos ^{2} 6 \theta \rightarrow \frac{1}{2}(\pm 1 \pm \cos 12 \theta)$ M1: Attempts to integrate, achieving the form $\alpha \theta+\beta \sin 6 \theta+\gamma \sin 12 \theta$ where $\alpha, \beta, \gamma \neq 0$		

A1: Correct integration - limits and the $\frac{1}{2}$ not needed. Look for $16 \theta-2 \sin 6 \theta+\frac{9}{8}\left(\theta+\frac{1}{12} \sin 12 \theta\right)$ oe.
dM1: Depends on at least two of the previous M's being scored. For a correct overall strategy for the area contained in the outer loop, with an attempt at the r^{2} (should be 3 term expansion). Correct appropriate limits and the $\frac{1}{2}$ should be present or implied by working, but note variations on the scheme are possible, e.g. $2 \times \frac{1}{2} \int_{0}^{\pi} r^{2} \mathrm{~d} \theta$, in which the $2 \times \frac{1}{2}$ may be implied rather than seen.
B1: Subtracts correct area of π for inner circle
A1: cso. Check carefully the integration was correct as the sin terms disappear with the limits.

Question	Scheme	Marks
5(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}(4+\ln x)^{-\frac{1}{2}} \times \frac{1}{x}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\begin{aligned} & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2} \frac{0-\left(\sqrt{4+\ln x}+x \times \frac{1}{2}(4+\ln x)^{-\frac{1}{2}} \times \frac{1}{x}\right)}{x^{2}(4+\ln x)} \text { or } \\ & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{4 x}(4+\ln x)^{-\frac{3}{2}} \times \frac{1}{x}-\frac{1}{x^{2}} \times \frac{1}{2}(4+\ln x)^{-\frac{1}{2}} \text { oe } \end{aligned}$	M1
	$=\frac{\ldots}{4 x^{2}(4+\ln x)^{\frac{3}{2}}}=-\frac{9+2 \ln x}{4 x^{2}(4+\ln x)^{\frac{3}{2}}} *$	$\begin{gathered} \text { M1 } \\ \text { A1* } \end{gathered}$
		(5)
Alt(a)	$y^{2}=4+\ln x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\Rightarrow 2 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}=-\frac{1}{x^{2}}$	M1
	$\Rightarrow \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{2 y x^{2}}-\frac{2}{8 x^{2} y^{3}}=\frac{-2 y^{2}-1}{4 x^{2} y^{3}}$	M1
	$=-\frac{9+2 \ln x}{4 x^{2}(4+\ln x)^{\frac{3}{2}}} *$	A1*
		(5)
(b)	$y_{x=1}=2,\left.\frac{\mathrm{~d} y}{\mathrm{~d} x}\right\|_{x=1}=\frac{1}{4},\left.\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right\|_{x=1}=-\frac{9}{32}$	M1
	So $y=2+\frac{1}{4}(x-1)-\frac{1}{2!} \times \frac{9}{32}(x-1)^{2}+\ldots$	M1
	$=2+\frac{1}{4}(x-1)-\frac{9}{64}(x-1)^{2}+\ldots$	A1
		(3)
(8 marks)		

Notes:

(a)

M1: Attempts the derivative of y using the chain rule, look for $\frac{K}{x}(4+\ln x)^{-\frac{1}{2}}$ oe
A1: Correct derivative.
M1: Attempts the second derivative of y using the product or quotient rule and chain rule. Look for the correct form for their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for the answer up to slips in coefficients.
M1: Attempts to simplify to get correct denominator. Must be correct work for their second derivative, but may have been errors in differentiating.
A1*: For a correct unsimplified second derivative, with no errors before reaching the given answer.
Note it is a given answer so needs a suitable intermediate line with at least the formation of the correct common denominator between two fractions before reaching the answer.

Alt:

M1: Squares and uses implicit differentiation to achieve $\alpha y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\beta}{x}$
A1: Correct derivative.
M1: Differentiates again using implicit differentiation and product rule. Look for $\gamma y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\delta\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=\frac{v}{x^{2}}$
M1: Makes $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ the subject and forms single fraction with denominator $k x^{2} y^{3}$
A1*: Obtains the correct second derivative, with no errors seen in working.
(b)

M1: Evaluates $y, \frac{\mathrm{~d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at $x=1$, if substitution is not seen, accept stated values for all three following attempts at the first and second derivatives as an attempt to find these.
M1: Applies Taylor's theorem with their values.
A1: Correct expression (don't be concerned if the $y=$ is missing.)

5(b) Alt | $y=\sqrt{4+\ln (1+(x-1))}=\sqrt{4+\left((x-1)-\frac{(x-1)^{2}}{2}+\ldots\right)}$ | M1 | |
| :--- | :--- | :--- |
| | $=4^{\frac{1}{2}}+\frac{1}{2} \times 4^{-\frac{1}{2}} \times\left((x-1)-\frac{(x-1)^{2}}{2}\right)+\frac{\frac{1}{2} \times-\frac{1}{2}}{2!} \times 4^{-\frac{3}{2}} \times((x-1)-\ldots)^{2}+\ldots$ | M1 |
| | $=2+\frac{1}{4}(x-1)-\frac{1}{8}(x-1)^{2}-\frac{1}{64}(x-1)^{2}+\ldots=2+\frac{1}{4}(x-1)-\frac{9}{64}(x-1)^{2}+\ldots$ | A1 |

Notes:

M1: Writes the x as $1+(x-1)$ and attempts to expand using the Maclaurin series for $\ln (1+x)$ with correct expansion of $\ln (1+(x-1))$.
M1: Attempts a binomial expansion using their \ln expansion. Alternatively, may gain this before the first M if they expand using \ln 's, e.g. $4^{\frac{1}{2}}+\frac{1}{2} 4^{-\frac{1}{2}} \ln x+\frac{\frac{1}{2} \times \frac{-1}{2}}{2!}(\ln x)^{2}$

A1: Fully correct expression (don't be concerned if the $y=$ is missing.)

6(a)
Let $x=\arctan A$ and $y=\arctan B$ then $\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$
Or $\tan (\arctan A-\arctan B)=\frac{\tan \arctan A-\tan \arctan B}{1+\tan \arctan A \tan \arctan B}$

$$
\tan (x-y)=\frac{A-B}{1+A B} \Rightarrow x-y=\arctan \left(\frac{A-B}{1+A B}\right)
$$

So $\arctan A-\arctan B=x-y=\arctan \left(\frac{A-B}{1+A B}\right)$ *
(b)

$$
\begin{aligned}
& A=r+2, B=r \Rightarrow\left(\frac{A-B}{1+A B}=\right) \frac{r+2-r}{1+(r+2) r}=\frac{2}{\ldots} \\
& =\frac{2}{r^{2}+2 r+1}=\frac{2}{(1+r)^{2}} *
\end{aligned}
$$

(c)

$$
\begin{array}{r|r|}
\sum_{r=1}^{n} \arctan \left(\frac{2}{(1+r)^{2}}\right)=\sum_{r=1}^{n}(\arctan (r+2)-\arctan (r))=\ldots & \text { M1 } \\
=(\overline{\arctan } 2-\arctan 1)+(\overline{\arctan 4-\arctan 2)+(\overline{\arctan } 2-\overline{\arctan } 3)+\ldots} \\
+(\arctan (n+1)-\overline{\arctan (n-1)})+(\arctan (n+2)-\overline{\arctan n}) & \mathbf{A 1} \\
\hline=\arctan (n+2)+\arctan (n+1)-\arctan 2-\arctan 1 & \text { M1 } \\
\hline=\arctan (n+2)+\arctan (n+1)-\arctan 2-\frac{\pi}{4} & \text { A1 }
\end{array}
$$

(d)

As $n \rightarrow \infty, \arctan n \rightarrow \frac{\pi}{2}$
So $\sum_{r=1}^{\infty} \arctan \left(\frac{2}{(1+r)^{2}}\right)=\frac{\pi}{2}+\frac{\pi}{2}-\arctan 2-\frac{\pi}{4}=\frac{3 \pi}{4}-\arctan 2$

Notes:

(a)

B1: For any correct statement or use of the compound angle formula with consistent variables of x and y or $\arctan A$ and $\arctan B$. Can be either way round (may be working in reverse).
M1: Attempts to apply tan or arctan on an appropriate identity with either x and y or $\arctan A$ and $\arctan B$. Should have $\frac{\tan x \pm \tan y}{1 \pm \tan x \tan y}$ (oe with arctans or A 's and $B ' s$) as part of the identity, and allow if they change between x, y and arctan's during the step.
A1*: Must have scored the B and M marks. Replaces $\tan x$ and $\tan y$ by A and B respectively if appropriate with fully correct work leading to the given result and conclusion made and no erroneous statements.
Note: for working in reverse e.g.
Let $x=\arctan A$ and $y=\arctan B$ then
$\arctan A-\arctan B=\arctan \left(\frac{A-B}{1+A B}\right) \Leftrightarrow x-y=\arctan \left(\frac{A-B}{1+A B}\right) \Leftrightarrow \tan (x-y)=\frac{A-B}{1+A B} \quad$ Scores M1
$\Leftrightarrow \tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y} \quad$ Scores B1 - but enter as the first mark.
Which is the correct identity for $\tan (x-y)$ hence the result is true.
Score A1
The conclusion here must include reference to the identity being true, e.g. with a tick, or statement, before deducing the final result.
(b)

M1: Substitutes in $A=r+2$ and $B=r$ and simplifies the numerator to 2 (may be implied)
$\mathbf{A 1 *}$: Expands the denominator (must be seen) and then factorises to the given result, no errors seen.
(c)

M1: Applies the result of (a) to the series - allow if they have a different A and B due to error.
A1: At least first three and final two brackets of terms correctly written out - must be clear enough to show cancelling.
M1: Extracts the non-cancelling terms.
A1: Correct result with no errors seen - must see the $\arctan 1$ before reaching $\frac{\pi}{4}$.
Note: Insufficient terms to gain the first A is not an error, so M1A0M1A1 is possible if e.g. only the first two terms are shown. Condone missing brackets on $\arctan n+1$ etc.
(d)

M1: Identifies the value arctan tends towards as n increase. Need not see limits, as long as the value is identified.
A1: Correct answer.

7(a)

$$
z=(0+) \mathrm{i} y \Rightarrow w=\frac{(1+\mathrm{i}) \mathrm{i} y+2(1-\mathrm{i})}{\mathrm{i} y-\mathrm{i}}=\frac{-y+2+\mathrm{i}(y-2)}{\mathrm{i}(y-1)}=\frac{y-2+\mathrm{i}(y-2)}{y-1}
$$

$$
\Rightarrow u=v \text { or } \operatorname{Im} w=\operatorname{Re} w
$$

(b)

$w=\frac{(1+\mathrm{i}) z+2(1-\mathrm{i})}{z-\mathrm{i}} \Rightarrow z=\frac{2(1-\mathrm{i})+\mathrm{i} w}{w-1-\mathrm{i}}=\frac{2-v+\mathrm{i}(u-2)}{u-1+\mathrm{i}(v-1)}$	M1
$\begin{aligned} & \frac{2-v+\mathrm{i}(u-2)}{u-1+\mathrm{i}(v-1)} \times \frac{u-1-\mathrm{i}(v-1)}{u-1-\mathrm{i}(v-1)} \\ & =\frac{(2-v)(u-1)+(u-2)(v-1)+\mathrm{i}((u-1)(u-2)-(2-v)(v-1))}{} \end{aligned}$	M1
$\operatorname{Im} z=0 \Rightarrow(u-1)(u-2)-(2-v)(v-1)=0$	
$\Rightarrow(u-1)(u-2)-(2-v)(v-1)=0 \Rightarrow u^{2}-3 u+2+v^{2}-3 v+2=0$	A1
$\Rightarrow\left(u-\frac{3}{2}\right)^{2}+\left(v-\frac{3}{2}\right)^{2}=\frac{1}{2}$	M1

Centre is $\frac{3}{2}+\frac{3}{2} \mathrm{i}$ and radius is $\frac{\sqrt{2}}{2}$

Notes:

(a)

M1: Correct method to find the equation of the image line - e.g. substitutes in $z=\mathrm{i} y$ and rearranges to Cartesian form. May use $x+\mathrm{i} y$ and later set $x=0$. Alternatively, may start as in (b) and then set
$(2-v)(u-1)+(u-2)(v-1)=0 \Rightarrow 2 u-v-u v-2+u v+2-2 v-u=0$ etc.
Another alternative is to find the image points of two points on the imaginary axis and to find the line from these.
A1: For $u=v$ oe equation. Accept $\operatorname{Im} w=\operatorname{Re} w$, or $x=y$ if they have set $w=x+\mathrm{i} y$.
(b)

Note: Accept work done in part (a) that is relevant to part (b) for credit if appropriate.
M1: Makes z the subject, substitutes $w=u+\mathrm{i} v$ into the equation.
M1: Multiplies the numerator by the complex conjugate of denominator and extracts the imaginary part and sets it equal to zero to form an equation in u and v. Do not be concerned about the denominator.
A1: Correct equation in u and v for the circle.
M1: Completes the square on their equation to extract centre and radius. Not dependent, so allow as long as a suitable equation in u and v has been reached.
A1: Correct centre or correct radius. Accept either $\frac{3}{2}+\frac{3}{2} \mathrm{i}$ or $\left(\frac{3}{2}, \frac{3}{2}\right)$ for the centre.
A1: Correct centre and correct radius. As above. Accept equivalent forms (need not be simplified)
Allow the final two A marks if all that is wrong is an error in the denominator. (M1M0A0M1A1A1 is possible.)

Alt1	Real axis is $z=x(+0 \mathrm{i})$, so $\begin{aligned} & u+\mathrm{i} v=\frac{(1+\mathrm{i}) x+2(1-\mathrm{i})}{x-\mathrm{i}}=\frac{(1+\mathrm{i}) x+2(1-\mathrm{i})}{x-\mathrm{i}} \times \frac{x+\mathrm{i}}{x+\mathrm{i}}= \\ & \frac{(1+\mathrm{i}) x^{2}+2 x(1-\mathrm{i})+(\mathrm{i}-1) x+2(\mathrm{i}+1)}{x^{2}+1}=\frac{x^{2}+x+2+\mathrm{i}\left(x^{2}-x+2\right)}{x^{2}+1} \end{aligned}$	M1
	$\begin{aligned} & u=\frac{x^{2}+x+2}{x^{2}+1}=1+\frac{x+1}{x^{2}+1} ; v=\frac{x^{2}-x+2}{x^{2}+1}=1-\frac{x-1}{x^{2}+1} \Rightarrow u+v=2+\frac{2}{x^{2}+1} \\ & \Rightarrow(u-1)^{2}+(v-1)^{2}=\frac{(x+1)^{2}+(x-1)^{2}}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{2}+2}{\left(x^{2}+1\right)^{2}}=\frac{2}{x^{2}+1}=u+v-2 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$
	$\Rightarrow\left(u-\frac{3}{2}\right)^{2}+\left(v-\frac{3}{2}\right)^{2}=\frac{1}{2}$	M1
	Centre is $\frac{3}{2}+\frac{3}{2} \mathrm{i}$ and radius is $\frac{\sqrt{2}}{2}$	A1A1
		(6)

Notes

M1: Sets $z=x$ in the equation (or uses $x+\mathrm{i} y$ and later sets $y=0$) and multiplies by complex conjugate.
M1: Eliminates x from the equations (one suitable method is shown, others are possible).
A1: Correct equation in u and v for the circle.
M1: Completes the square on their equation to extract centre and radius
A1: Correct centre or correct radius. Accept either $\frac{3}{2}+\frac{3}{2} \mathrm{i}$ or $\left(\frac{3}{2}, \frac{3}{2}\right)$ for the centre.
A1: Correct centre and correct radius. As above.

\begin{tabular}{|c|c|c|}
\hline \[
\begin{gathered}
7(b) \\
\text { Alt } 2
\end{gathered}
\] \& \begin{tabular}{l}
Unlikely to be seen \\
As i and -i are inverse points of the line, so their images are inverse points of the circle.
\[
\mathrm{i} \rightarrow \infty,-\mathrm{i} \rightarrow \frac{-\mathrm{i}+1+2-2 \mathrm{i}}{-2 \mathrm{i}}=\frac{3}{2}+\frac{3}{2} \mathrm{i}
\] \\
Hence (as \(\infty\) is the other point) the centre is \(\frac{3}{2}+\frac{3}{2} \mathrm{i}\) \(0 \rightarrow \frac{2-2 \mathrm{i}}{-\mathrm{i}}=2+2 \mathrm{i} \quad\) So radius is \(\left|\frac{3}{2}+\frac{3}{2} \mathrm{i}-2-2 \mathrm{i}\right|=\ldots\)
\[
=\frac{\sqrt{2}}{2}
\]
\end{tabular} \& M1
M1
A1
M1
A1

A1

\hline (b) Alt 3 \& | M1: Attempt to find images of three different points on the real axis. |
| :--- |
| M1: Correct method to find centre from three points - e.g. intersection of two perpendicular bisectors. |
| A1: Correct equation for the centre. |
| M1: Uses centre and one point to find radius. |
| A1: Correct centre |
| A1: Correct radius | \&

\hline
\end{tabular}

Question		Scheme	Marks
8(a)	$\frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} x}-2$		B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y x(y-4 x)=2-8 x^{3} \rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}+2+2(v+2 x) x(v+2 x-4 x)=2-8 x^{3}$		
	$\rightarrow \frac{\mathrm{d} v}{\mathrm{~d} x}+2+2 x\left(v^{2}-4 x^{2}\right)=2-8 x^{3}$		M1
	$\rightarrow \frac{\mathrm{d} v}{\mathrm{~d} x}=-2 x v^{2} *$		A1*
			(4)
(b)	$\frac{1}{v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} x}=-2 x \Rightarrow \int v^{-2} \mathrm{~d} v=-2 \int x \mathrm{~d} x$		B1
	$\Rightarrow \frac{v^{-1}}{-1}=-2 \frac{x^{2}}{2}(+c)$		M1
	$\Rightarrow \frac{1}{v}=x^{2}+c$		A1
	$\Rightarrow v=\frac{1}{x^{2}+c}$		A1
			(4)
(c)	$y=2 x+\frac{1}{x^{2}+c}$		B1ft
			(1)
(d)	$-1=2 \times-1+\frac{1}{1+c} \Rightarrow c=\ldots$		M1
	$y=2 x+\frac{1}{x^{2}}$		A1
		Attempts the sketch for their equation, with at least one of - One branch correct - Vertical asymptote for their equation - Long term behaviour tends to infinity - Minimum in quadrant 1	M1
		Fully correct shape, two branches tending to infinity as x tends to infinity both directions, with minimum in first quadrant No need for oblique asymptote marked.	A1
		y-axis a vertical asymptote labelled	B1ft
			(5)
(14 marks)			
Notes:			
(a)			

B1: Correct differentiation of the given transformation. Allow any correct connecting derivative, e.g.
$\frac{\mathrm{d} y}{\mathrm{~d} v}=1+2 \frac{\mathrm{~d} x}{\mathrm{~d} v}$ or $\frac{\mathrm{d} v}{\mathrm{~d} y}=1-2 \frac{\mathrm{~d} x}{\mathrm{~d} y}$
M1: For a complete substitution into the equation (I).
M1: Applies difference of squares, or completely expands brackets of the left hand side. Alternatively, may rearrange and factorise to give $8 x^{2} y-2 x y^{2}-8 x^{3}=-2 x\left(y^{2}-4 x y+4 x^{2}\right)=-2 x(y-2 x)^{2}$ before substituting.
A1*: Reaches the given answer with no errors seen.
(b)

B1: Correct separation of the variables.
M1: Attempts the integration, usual rule, power increased by 1 on at least one term. No need for $+c$ for the method.
A1: Correct integration including the $+c$
A1: Correct expression for v.
(c)

B1: Follow through their answer to (b), so $y=2 x+$ their v from (b)
(d)

M1: Uses the point $(-1,-1)$ to find a value for the constant in their equation. Must have had a constant of integration in their equation to score this mark.
A1: Correct equation for y following a correct general solution. Withhold this mark for $y=2 x+\frac{1}{x^{2}}+c$ leading to the correct equation.
Note: the following three marks may be scored from a correct equation that arose from having no constant in
(b) or from $y=2 x+\frac{1}{x^{2}}+c$ (which gives the same equation).

M1: Attempts a sketch for their curve. See scheme. Look for at least one of the key features for their equation shown.
A1: Correct shape, two branches tending to infinity as x tends to infinity both directions with a minimum in first quadrant. Not a follow through mark, so must be the correct curve.
B1ft: Correct vertical asymptote at $x=0$. Need not be labelled if it is clearly the y-axis. Follow through their equation as long as there is at least one vertical asymptote (ie for a negative c they need a pair of asymptotes symmetric about the y-axis).

