Question Number	Scheme	Marks
1(a)	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 3x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2\sin x$	M1M1
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -2\sin x - 3\frac{\mathrm{d}y}{\mathrm{d}x} - 3x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	A1 (3)
(b)	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = -3 \times 5 = -15$	B1 (1)
(c)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -3 \times 0 \times 5 + 2 = 2$	B1
	$y = 2 + 5x + x^2 - \frac{5}{2}x^3$	M1A1 (3) [7]
(a) M1	Accept the dashed notation throughout this question. Differentiate $3x \frac{dy}{dx}$ with respect to x. The product rule must be used for $x \frac{dy}{dx}$ one term correct	with at least
M1	Differentiate $\frac{d^2 y}{dx^2}$ and $2\cos x$. $\frac{d^2 y}{dx^2} \rightarrow \frac{d^3 y}{dx^3}$ $2\cos x \rightarrow \pm 2\sin x$	
A1	$\frac{d^3 y}{dx^3} = -3\left(x\frac{d^2 y}{dx^2} + \frac{dy}{dx}\right) - 2\sin x$. Give A0 if not rearranged to have $\frac{d^3 y}{dx^3} = \dots$	
(b) B1	$\frac{d^3y}{dx^3} = -15$ provided 3 terms in result in (a)	
(c) B1	$\frac{d^2 y}{dx^2} = 2$ can be implied by a correct x^2 term in the expansion	
M1	Use of a correct Taylor expansion with their values for $\frac{d^3y}{dx^3}$ and $\frac{d^2y}{dx^2}$ 2! or	r 2, 3! or 6·
A1	$y = 2 + 5x + x^2 - \frac{5}{2}x^3$ Must include $y =$ or $f(x) =$ provided $f(x)$ has been somewhere in the work.	defined to be <i>y</i>

Question Number	Scheme	Marks
2 (a)	3r+1 $-A$ B C	
	r(r-1)(r+1) r $r-1$ $r+1$	
	3r+1 1 2 1	
	$\frac{1}{r(r-1)(r+1)} = -\frac{1}{r} + \frac{1}{r-1} - \frac{1}{r+1}$	M1A1 (2)
(b)		
	$\frac{1}{1} - \frac{2}{2} - \frac{3}{3}$ 2 1 1	
	$2 1 1 \frac{1}{n-3} \frac{1}{n-2} \frac{1}{n-1}$	
	$\frac{1}{2} - \frac{1}{3} - \frac{1}{4}$ 2 1 1	
	$2 1 1 \frac{n-2}{n-1} \frac{n-1}{n}$	M1
	$\frac{1}{3} - \frac{1}{4} - \frac{1}{5}$ 2 1 1	
	2 1 1 $n-1$ $n-1$ $n-1$ $n+1$	
	-2 1 2 1 1 1	
	$-2-\frac{1}{2}+\frac{1}{2}-\frac{1}{n}-\frac{1}{n}-\frac{1}{n+1}$	dMIAI
	5 2 1 $5n(n+1)-4(n+1)-2n 5n^2-n-4$	M1, A1 cso
	$\frac{1}{2} - \frac{1}{n} - \frac{1}{n+1} - \frac{1}{2n(n+1)}, -\frac{1}{2n(n+1)}$	(5)
(c)	20 14	
	$\sum_{n=1}^{\infty} -\sum_{n=1}^{\infty}$	
	$5 \times 20^{2} - 20 - 4$ $5 \times 14^{2} - 14 - 4$	
	$=\frac{-2}{2\times 20\times 21} - \frac{-2}{2\times 14\times 15}$	M1
	13	
	$=\frac{1}{210}$	AI (2)
		[9]
(a)	Compared and the difference of the DE-	
	Correct PFs	
(b)		
(~)	Show sufficient terms at both ends (eg 3 at start and 2 at end) to demon	strate the
M1	cancelling. (This can be implied by correct work at the next line)	
	Must be using PFs of the correct form and start at $r = 2$ unless extra ter	ms are ignored
	at next stage. Can be split into $\sum \left(\frac{1}{r-1} - \frac{1}{r}\right) + \sum \left(\frac{1}{r-1} - \frac{1}{r+1}\right)$	
dM1	Extract the non-cancelled terms (min 4 correct terms but 5/2 counts as	3 correct)
	Depends on first M of (b)	
	Unite terms using the common denominator, numerator need not be sire	nnlified Must
M1	start with a min of 3 terms inc terms with denominators n and $(n + 1)$	npinicu. iviusi
A1cso	Correct answer from correct working $(n + 1)$	
(c)		
M1	Form and use the difference of the 2 summations shown using their res an earlier form seen in (b)	ult from (b) or
A1	Correct exact answer, as shown or equivalent	

Question Number	Scheme	Marks
3	$x^{2} + 3x + 10$	This sketch on its own scores no marks, but it may be seen in the work
	$\frac{x + 3x + 10}{x + 2} = 7 - x$ $x^{2} + 3x + 10 = 14 + 5x - x^{2}$ $x^{2} - x - 2 = 0 (x - 2)(x + 1) = 0$ $CVs 2, -1$ $\frac{-(x^{2} + 3x + 10)}{x + 2} = 7 - x$ $-x^{2} - 3x - 10 = 14 + 5x - x^{2}$ $8x = -24 CV - 3$	M1 dM1 A1A1 M1 A1
	$x < -3 \qquad -1 < x < 2$	dddM1A1A1 [9]
NB M1 dM1 A1 A1 M1 A1 dddM1 A1 A1	No algebra implies no marks Form a quadratic equation or inequality, no simplification needed Solve the 3TQ any valid method Depends on the first M mark. Either CV Both CVs Change the sign of LHS or RHS and obtain an equation (quadratic or lis simplification needed) Correct CV from solving the linear equation x < their smallest CV and x between their other 2 CVs All M marks a Either inequality correct Both inequalities correct "and" between the inequalities is acceptable. If \cap used, deduct an A m	inear, no ibove needed nark.

Question Number	Scheme	Marks
4		
(a)	$ 18\sqrt{3} - 18i = 18\sqrt{(3+1)} = 36$	B1
	$\tan \theta = \frac{-18}{18\sqrt{3}} \qquad \theta = -\frac{\pi}{6}, \qquad 18\sqrt{3} - 18i = 36\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$	M1,A1cao (3)
(b)	$z^{4} = 36\left(\cos-\frac{\pi}{6} + i\sin-\frac{\pi}{6}\right) = 36\left(\cos\left(2k\pi - \frac{\pi}{6}\right) + i\sin\left(2k\pi - \frac{\pi}{6}\right)\right)$	M1
	$z = \sqrt{6} \left(\cos\left(\frac{12k\pi - \pi}{24}\right) + i\sin\left(\frac{12k\pi - \pi}{24}\right) \right)$	M1
	$k = 0 \qquad z_0 = \sqrt{6} \left(\cos\left(\frac{-\pi}{24}\right) + i\sin\left(\frac{-\pi}{24}\right) \right) = \sqrt{6} e^{i\left(-\frac{\pi}{24}\right)}$	B1
	$k = 1 z_1 = \sqrt{6} \left(\cos\left(\frac{11\pi}{24}\right) + i\sin\left(\frac{11\pi}{24}\right) \right) = \sqrt{6} e^{i\frac{11\pi}{24}}$	A1ft
	$k = 2$ $z_2 = \sqrt{6} \left(\cos\left(\frac{23\pi}{24}\right) + i\sin\left(\frac{23\pi}{24}\right) \right) = \sqrt{6}e^{i\frac{23\pi}{24}}$	
	$k = -1 z_3 = \sqrt{6} \left(\cos\left(-\frac{13\pi}{24}\right) + i\sin\left(-\frac{13\pi}{24}\right) \right) = \sqrt{6} e^{i\left(-\frac{13\pi}{24}\right)}$	A1ft (5)
		[-]
(a) P1	Correct modulus	
DI	± 18	
M1	Attempt argument using $\tan \theta = \frac{1}{18\sqrt{3}}$ or other valid method. Can be in	mplied by
	$\theta = \pm \frac{\pi}{6}$	
Alcao	Correct answer in the required form.	
(b)		
M1	Valid method for generating at least 2 roots, rotation through $\frac{\pi}{2}$ accept	ted
M1	Apply de Moivre or use the rotation method	
B1	Any one correct root	
	Second root in required form	
Altt	Follow through their $\frac{4}{36}$ but 26 and execute 11	
NR	Argument in degrees – M1M1B1A0A0 (ie treat as mis-read)	
	Incorrect argument: B0A1ftA1ft available	
	Answers in $r(\cos\theta + i\sin\theta)$ form – deduct final A marks	

Question Number	Scheme	Marks
5	$w = \frac{z - 3i}{z + 2i}$	
	$w(z+2i) = z-3i$ $z = \frac{i(2w+3)}{1-w}$	M1
	$\left z\right = 1 \left \frac{i(2w+3)}{1-w}\right = 1$	dM1
	$\left i(2w+3)\right = \left 1-w\right $	
	$w = u + iv$ $(2u + 3)^{2} + 4v^{2} = (1 - u)^{2} + v^{2}$	ddM1
	$4u^2 + 12u + 9 + 4v^2 = 1 - 2u + u^2 + v^2$	
	$3u^2 + 3v^2 + 14u + 8 = 0$	dddM1
	$u^2 + v^2 + \frac{14}{3}u + \frac{8}{3} = 0$	A1
	$\left(u+\frac{7}{3}\right)^2 + v^2 = -\frac{8}{3} + \frac{49}{9} = \frac{25}{9}$	
(i)	Centre $\left(-\frac{7}{3},0\right)$	A1
(ii)	Radius $\frac{5}{3}$	A1 (7)
		[7]
(a) M1	re-arrange to $z = \dots$	
dM1	dep (on first M1) using $ z = 1$ with their previous result	
ddM1	dep (on both previous M marks) use $w = u + iv$ (or any other pair of le and find the moduli (or square of it)	etters inc (x, y))
dddM1	dep (on all previous M marks) re-arrange to the form of the equation of	f a circle (same
A1	coeffs for the squared terms) for a correct equation in u and v with coeffs of u^2 and v^2 both 1	
A1	Correct centre, must be in coordinate brackets. Completion of square n	eed not be
	shown.	
AI	Correct radius Centre and radius must come from a correct circle equation for the	e A marks

Question Number	Scheme	Marks
6.	$\frac{dy}{dx} + \frac{(x \cot x + 2)}{x} y = \frac{4 \sin x}{x^2}$ IF = $e^{\int \frac{(x \cot x + 2)}{x} dx}$ = $e^{(\ln \sin x + 2\ln x)}$	B1 M1 A1
	$= x^{2} \sin x$ $\frac{d}{dx} (\text{their IF} \times y) = \text{their IF} \times "\frac{4 \sin x}{x^{2}}"$ $yx^{2} \sin x = \int 4 \sin^{2} x dx = 4 \int \frac{1 - \cos 2x}{2} dx = 4 \left(\frac{x}{2} - \frac{1}{4} \sin 2x\right) (+C)$	AI M1 dM1A1
	$y = \frac{2x - \sin 2x + C}{x^2 \sin x} \text{oe}$	A1cao [8]
B1	Divide through by x^2	
M1	Attempt an IF of the form $e^{\int \frac{k(x \cot x + 2)}{x} dx}$	
A1	$\left(\ln\sin x + 2\ln x\right)$	
A1	Correct IF	
M1	Multiply through by their IF and write LHS in form shown – can be im line. Allow if IF is seen instead of their function provided an IF has bee Allow use of their RHS	plied by next en attempted.
dM1	Attempt to integrate $\sin^2 x$, including using $\sin^2 x = \frac{1}{2} (1 \pm \cos 2x) \cos^2 x$	$2x \to k \sin 2x$
A1	depends on previous M mark Correct integration, constant not needed	
A1	Include the constant and treat it correctly. Must have $y =$	

Question Number	Scheme	Marks
7 (a)	$r\sin\theta = 2a\sin\theta + 2a\sin\theta\cos\theta \text{OR} r\sin\theta = 2a\sin\theta + a\sin2\theta$ $\frac{d(r\sin\theta)}{d\theta} = 2a\cos\theta + 2a\cos^2\theta \qquad \qquad \frac{d(r\sin\theta)}{d\theta} = 2a\cos\theta + 2a\cos2\theta$ $-2a\sin^2\theta$ $2\cos^2\theta + \cos\theta - 1 = 0 \text{terms in any order}$ $(2\cos\theta - 1)(\cos\theta + 1) = 0$ $\cos\theta = \frac{1}{2} \theta = \frac{\pi}{3} (\theta = \pi \text{ need not be seen})$	B1 M1 A1 dM1A1
(b)	$r = 2a \times \frac{3}{2} = 3a$ Area $= \frac{1}{2} \int r^2 d\theta = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 4a^2 (1 + \cos\theta)^2 d\theta$ $= 2a^2 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (1 + 2\cos\theta + \cos^2\theta) d\theta$	A1 (6) M1
	$= 2a^{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(1 + 2\cos\theta + \frac{1}{2}(\cos 2\theta + 1)\right) d\theta$ $= 2a^{2}\left[\theta + 2\sin\theta + \frac{1}{2}\left(\frac{1}{2}\sin 2\theta + \theta\right)\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$	M1 dM1A1
	$= 2a^{2} \left[\frac{\pi}{3} + \sqrt{3} + \frac{1}{4} \times \frac{\sqrt{3}}{2} + \frac{\pi}{6} - \left(\frac{\pi}{6} + 1 + \frac{1}{4} \times \frac{\sqrt{3}}{2} + \frac{\pi}{12} \right) \right]$ = $2a^{2} \left(\frac{\pi}{4} + \sqrt{3} - 1 \right)$ Area of $\triangle OAB = \frac{1}{2} \times 3a \times \left(2 + \sqrt{3} \right) a \times \sin \frac{\pi}{6} \left(= \frac{3}{4}a^{2} \left(2 + \sqrt{3} \right) \right)$	NB: A1 on e-PEN
	Shaded area = $2a^2\left(\frac{\pi}{4} + \sqrt{3} - 1\right) - \frac{3}{4}a^2\left(2 + \sqrt{3}\right) = \frac{a^2}{4}\left(2\pi - 14 + 5\sqrt{3}\right)$	M1A1cao (7) [13]

Question Number	Scheme	Marks
(a) B1 M1 A1 dM1	Multiply <i>r</i> by $\sin \theta$ Award if not seen explicitly but a correct result following use of double is seen Differentiate $r \sin \theta$ or $r \cos \theta$ (using product rule or using double ang Correct derivative for $r \sin \theta$ Use $\sin^2 \theta + \cos^2 \theta = 1$ to form a 3TQ in $\cos \theta$ and attempt its solution	e angle formula le formula first) 1 by a valid
A1 A1	method Correct value for θ Correct r	
(b)		
M1	Use area $=\frac{1}{2}\int r^2 d\theta$ with $r = 2a + 2a\cos\theta$, no limits needed,	
M1	Use a double angle formula to obtain a function ready for integrating (Alt method uses integration by parts – may be seen)	
dM1	Attempt the integration $\cos 2\theta \rightarrow \frac{1}{k} \sin 2\theta \ k = \pm 2 \text{ or } \pm 1$	
A1	Correct integration,	
M1	Substitute the limits (need not be simplified). Limits $\frac{\pi}{6}$ and their θ from this is $> \frac{\pi}{6}$ NB: A1 on e-PEN	om (a) provided
M1 A1	Obtain the area of $\triangle OAB$ and subtract from their previous area Correct answer	

Question Number	Scheme	Marks
8 (a)	$x = e^{u}$ $\frac{dx}{du} = e^{u}$ or $\frac{du}{dx} = e^{-u}$ or $\frac{dx}{du} = x$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^{-u} \frac{\mathrm{d}y}{\mathrm{d}u}$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\mathrm{e}^{-u} \frac{\mathrm{d}u}{\mathrm{d}x} \frac{\mathrm{d}y}{\mathrm{d}u} + \mathrm{e}^{-u} \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^{-2u} \left(-\frac{\mathrm{d}y}{\mathrm{d}u} + \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} \right)$	M1A1
	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3x \frac{\mathrm{d}y}{\mathrm{d}x} - 8y = 4\ln x$	
	$e^{2u} \times e^{-2u} \left(-\frac{dy}{du} + \frac{d^2 y}{du^2} \right) + 3e^u \times e^{-u} \frac{dy}{du} - 8y = 4\ln\left(e^u\right)$	dM1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} + 2\frac{\mathrm{d}y}{\mathrm{d}u} - 8y = 4u \qquad \texttt{*}$	A1*cso (6)
B1	$\frac{\mathrm{d}x}{\mathrm{d}u} = \mathrm{e}^{u}$ oe as shown seen explicitly or used	I
M1	Obtaining $\frac{dy}{dx}$ using chain rule here or seen later	
M1	Obtaining $\frac{d^2y}{dx^2}$ using product rule (penalise lack of chain rule by the A	A mark)
A1	Correct expression for $\frac{d^2 y}{dx^2}$ any equivalent form	
dM1 A1*cso	Substituting in the equation to eliminate x (u and y only). Depends on the Obtaining the given result from completely correct work	he 2 nd M mark
	ALTERNATIVE 1	
	$x = e^{u} \frac{\mathrm{d}x}{\mathrm{d}u} = e^{u} = x$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}u} = x\frac{\mathrm{d}y}{\mathrm{d}x}$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} = 1 \frac{\mathrm{d}x}{\mathrm{d}u} \times \frac{\mathrm{d}y}{\mathrm{d}x} + x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \times \frac{\mathrm{d}x}{\mathrm{d}u} = x \frac{\mathrm{d}y}{\mathrm{d}x} + x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	M1A1
	$x^2 \frac{d^2 y}{dx^2} = \frac{d^2 y}{du^2} - \frac{dy}{du}$	
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} - \frac{\mathrm{d}y}{\mathrm{d}u}\right) + 3x \times \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}u} - 8y = 4\ln\left(\mathrm{e}^u\right)$	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}u^2} + 2\frac{\mathrm{d}y}{\mathrm{d}u} - 8y = 4u \qquad \texttt{*}$	dM1A1*cso (6)

Question Number	Scheme	Marks
B1	$\frac{\mathrm{d}x}{\mathrm{d}u} = \mathrm{e}^{u}$ oe as shown seen explicitly or used	
M1	Obtaining $\frac{dy}{du}$ using chain rule here or seen later	
M1	Obtaining $\frac{d^2 y}{du^2}$ using product rule (penalise lack of chain rule by the A	A mark)
A1	Correct expression for $\frac{d^2 y}{du^2}$ any equivalent form	
dM1 A1*cso	Substituting in the equation to eliminate x (u and y only). Depends on to Obtaining the given result from completely correct work	he 2 nd M mark
	ALTERNATIVE 2: $u = \ln x \frac{du}{dx} = \frac{1}{x}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{1}{x} \frac{dy}{du}$ $\frac{d^2 y}{dx^2} = -\frac{1}{x^2} \frac{dy}{du} + \frac{1}{x} \frac{d^2 y}{du^2} \times \frac{du}{dx} = -\frac{1}{x^2} \frac{dy}{du} + \frac{1}{x^2} \frac{d^2 y}{du^2}$ $x^2 \left(-\frac{1}{x^2} \frac{dy}{du} + \frac{1}{x^2} \frac{d^2 y}{du^2} \right) + 3x \times \frac{1}{x} \frac{dy}{du} - 8y = 4u$ $\frac{d^2 y}{du^2} + 2\frac{dy}{du} - 8y = 4u$	B1 M1 M1A1 M1A1*cso
	Notes as for main scheme	

There are also **other solutions** which will appear, either starting from equation II and obtaining equation I, or mixing letters x, y and u until the final stage. Mark as follows:

- **B1** as shown in schemes above
- M1 obtaining a first derivative with chain rule
- M1 obtaining a second derivative with product rule
- A1 correct second derivative with 2 or 3 variables present
- **dM1** Either substitute in equation I or substitute in equation II according to method chosen **and** obtain an equation with only y and u (following sub in eqn I) or with only x and y (following sub in eqn II)
- A1cso Obtaining the required result from completely correct work

Question Number	Scheme	Marks
(b)	$m^2 + 2m - 8 = 0$	
	(m+4)(m-2) = 0, m = -4, 2	M1A1
	$CF = Ae^{-4u} + Be^{2u}$	A1
	PI: try $y = au + b$ (or $y = cu^2 + au + b$ different derivatives, $c = 0$)	
	$\frac{\mathrm{d}y}{\mathrm{d}u} = a \frac{\mathrm{d}^2 y}{\mathrm{d}u^2} = 0$	M1
	0+2a-8(au+b)=4u	
	$a = -\frac{1}{2} b = -\frac{1}{8}$	dM1A1
	$\therefore y = Ae^{-4u} + Be^{2u} - \frac{1}{2}u - \frac{1}{8}u$	B1ft (7)
(c)	$y = Ax^{-4} + Bx^2 - \frac{1}{2}\ln x - \frac{1}{8}$	B1 (1)
	2 8	[14]
(b) M1	Writing down the correct aux equation and solving to $m = \dots$ (usual rule)	lles)
A1 A1	Correct solution $(m = -4, 2)$ Correct CF – can use any (single) variable	
M1	Using an appropriate PI and finding $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ Use of $y = \lambda u$ sc	ores M0
dM1	Substitute in the equation to obtain values for the unknowns. Depends on the second	
A1 B1ft	M1 Correct unknowns two or three (with $c = 0$) A complete solution, follow through their CF and a non-zero PI. Must function of u Allow recovery of incorrect variables.	have $y = a$
(c) B1	Reverse the substitution to obtain a correct expression for y in terms of x^{-4} or $e^{-4\ln x}$ and x^2 or $e^{2\ln x}$ allowed. Must start $y = \dots$	\hat{x} No ft here