

Question Number	Scheme	Marks
4 (a)	$\begin{aligned} & \|18 \sqrt{3}-18 \mathrm{i}\|=18 \sqrt{(3+1)}=36 \\ & \tan \theta=\frac{-18}{18 \sqrt{3}} \quad \theta=-\frac{\pi}{6}, \quad 18 \sqrt{3}-18 \mathrm{i}=36\left(\cos \left(-\frac{\pi}{6}\right)+\mathrm{i} \sin \left(-\frac{\pi}{6}\right)\right) \end{aligned}$	B1 M1,A1cao (3)
(b)	$\begin{aligned} z^{4} & =36\left(\cos -\frac{\pi}{6}+\mathrm{i} \sin -\frac{\pi}{6}\right)=36\left(\cos \left(2 k \pi-\frac{\pi}{6}\right)+\mathrm{i} \sin \left(2 k \pi-\frac{\pi}{6}\right)\right) \\ z & =\sqrt{6}\left(\cos \left(\frac{12 k \pi-\pi}{24}\right)+\mathrm{i} \sin \left(\frac{12 k \pi-\pi}{24}\right)\right) \end{aligned}$	M1 M1
	$k=0 \quad z_{0}=\sqrt{6}\left(\cos \left(\frac{-\pi}{24}\right)+\mathrm{i} \sin \left(\frac{-\pi}{24}\right)\right)=\sqrt{6} \mathrm{e}^{\mathrm{i}\left(-\frac{\pi}{24}\right)}$	B1
	$k=1 \quad z_{1}=\sqrt{6}\left(\cos \left(\frac{11 \pi}{24}\right)+\mathrm{i} \sin \left(\frac{11 \pi}{24}\right)\right)=\sqrt{6} \mathrm{e}^{\mathrm{i} \frac{11 \pi}{24}}$	A1ft
	$k=2 \quad z_{2}=\sqrt{6}\left(\cos \left(\frac{23 \pi}{24}\right)+\mathrm{i} \sin \left(\frac{23 \pi}{24}\right)\right)=\sqrt{6} \mathrm{e}^{\mathrm{i} \frac{23 \pi}{24}}$	
	$k=-1 \quad z_{3}=\sqrt{6}\left(\cos \left(-\frac{13 \pi}{24}\right)+\mathrm{i} \sin \left(-\frac{13 \pi}{24}\right)\right)=\sqrt{6} \mathrm{e}^{\mathrm{i}\left(-\frac{13 \pi}{24}\right)}$	A1ft (5)
(a)		
B1	Correct modulus	
M1	Attempt argument using $\tan \theta=\frac{ \pm 18}{18 \sqrt{3}}$ or other valid method. Can be implied by $\theta= \pm \frac{\pi}{6}$	
A1cao (b)	Correct answer in the required form.	
M1	Valid method for generating at least 2 roots, rotation through $\frac{\pi}{2}$ accepted	
M1	Apply de Moivre or use the rotation method	
B1	Any one correct root	
A1ft	Second root in required form	
A1ft	All 4 roots in the required form	
NB	Follow through their $\sqrt[4]{36}$ but 36 not acceptable. Argument in degrees - M1M1B1A0A0 (ie treat as mis-read) Incorrect argument: B0A1ftA1ft available Answers in $r(\cos \theta+\mathrm{i} \sin \theta)$ form - deduct final A marks	

Question Number	Scheme Marks
6.	$\begin{array}{l\|l} \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{(x \cot x+2)}{x} y=\frac{4 \sin x}{x^{2}} & \text { B1 } \\ \mathrm{IF}=\mathrm{e}^{\int \frac{(x \cot x+2)}{x} \mathrm{~d} x} \\ =\mathrm{e}^{(\ln \sin x+2 \ln x)} \\ =x^{2} \sin x & \mathrm{M} 1 \\ \frac{\mathrm{~d}}{\mathrm{~d} x}(\text { their } \mathrm{IF} \times y)=\text { their IF } \times "^{\frac{4 \sin x}{x^{2}}} \\ y x^{2} \sin x=\int 4 \sin ^{2} x \mathrm{~d} x=4 \int \frac{1-\cos 2 x}{2} \mathrm{~d} x=4\left(\frac{x}{2}-\frac{1}{4} \sin 2 x\right) & (+C) \\ \text { A1 } \\ y=\frac{2 x-\sin 2 x+C}{x^{2} \sin x} \text { dM1A1 } \\ \text { oe } & \text { A1cao } \end{array}$
B1 M1 A1 A1 M1 dM1 A1 A1	Divide through by x^{2} Attempt an IF of the form $\mathrm{e}^{\int \frac{k(x \cot x+2)}{x} \mathrm{dx}}$ $(\ln \sin x+2 \ln x)$ Correct IF Multiply through by their IF and write LHS in form shown - can be implied by next line. Allow if IF is seen instead of their function provided an IF has been attempted. Allow use of their RHS Attempt to integrate $\sin ^{2} x$, including using $\sin ^{2} x=\frac{1}{2}(1 \pm \cos 2 x) \quad \cos 2 x \rightarrow k \sin 2 x$ depends on previous M mark Correct integration, constant not needed Include the constant and treat it correctly. Must have $y=\ldots$

Question Number	Scheme Marks
$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { dM1 } \\ \text { A1*cso } \end{gathered}$	$\frac{\mathrm{d} x}{\mathrm{~d} u}=\mathrm{e}^{u}$ oe as shown seen explicitly or used Obtaining $\frac{\mathrm{d} y}{\mathrm{~d} u}$ using chain rule here or seen later Obtaining $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}$ using product rule (penalise lack of chain rule by the A mark) Correct expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}$ any equivalent form Substituting in the equation to eliminate x (u and y only). Depends on the $2^{\text {nd }} \mathrm{M}$ mark Obtaining the given result from completely correct work
	ALTERNATIVE 2: $\begin{aligned} & u=\ln x \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} u} \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\frac{1}{x} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}} \times \frac{\mathrm{d} u}{\mathrm{~d} x}=-\frac{1}{x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\frac{1}{x^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}} \\ & x^{2}\left(-\frac{1}{x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} u}+\frac{1}{x^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}\right)+3 x \times \frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} u}-8 y=4 u \end{aligned}$ $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} u}-8 y=4 u$
	Notes as for main scheme

There are also other solutions which will appear, either starting from equation II and obtaining equation I , or mixing letters x, y and u until the final stage.
Mark as follows:
B1 as shown in schemes above
M1 obtaining a first derivative with chain rule
M1 obtaining a second derivative with product rule
A1 correct second derivative with 2 or 3 variables present
dM1 Either substitute in equation I or substitute in equation II according to method chosen and obtain an equation with only y and u (following sub in eqn I) or with only x and y (following sub in eqn II)
A1cso Obtaining the required result from completely correct work

Question Number	Scheme Marks
(b)	$\begin{aligned} & m^{2}+2 m-8=0 \\ & (m+4)(m-2)=0, \quad m=-4,2 \\ & \mathrm{CF}=A \mathrm{e}^{-4 u}+B \mathrm{e}^{2 u} \end{aligned}$ PI: try $y=a u+b \quad\left(\right.$ or $y=c u^{2}+a u+b \quad$ different derivatives, $c=$ 0) $\begin{align*} & \frac{\mathrm{d} y}{\mathrm{~d} u}=a \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} u^{2}}=0 \\ & 0+2 a-8(a u+b)=4 u \\ & a=-\frac{1}{2} \quad b=-\frac{1}{8} \\ & \therefore y=A \mathrm{e}^{-4 u}+B \mathrm{e}^{2 u}-\frac{1}{2} u-\frac{1}{8} \tag{7}\\ & y=A x^{-4}+B x^{2}-\frac{1}{2} \ln x-\frac{1}{8} \tag{1} \end{align*}$
(b) M1 A1 A1 M1 dM1 A1 B1ft (c) B1	Writing down the correct aux equation and solving to $m=\ldots$ (usual rules) Correct solution ($m=-4,2$) Correct CF - can use any (single) variable Using an appropriate PI and finding $\frac{\mathrm{d} y}{\mathrm{~d} u}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} u^{2}}$ Use of $y=\lambda u$ scores M0 Substitute in the equation to obtain values for the unknowns. Depends on the second M1 Correct unknowns two or three (with $c=0$) A complete solution, follow through their CF and a non-zero PI. Must have $y=\mathrm{a}$ function of u Allow recovery of incorrect variables. Reverse the substitution to obtain a correct expression for y in terms of x No ft here x^{-4} or $\mathrm{e}^{-4 \ln x}$ and x^{2} or $\mathrm{e}^{2 \ln x}$ allowed. Must start $y=\ldots$

