Pearson Edexcel IAL Further Mathematics Further Mathematics 1 Past Paper Collection (from 2020) www.CasperYC.club/wfm01 Last updated: July 1, 2024 | Paper Name | Page | Paper Name | Page | Paper Name | Page | |-------------|------|-------------|------|-------------|------| | FP1 2020 01 | 1 | | | FP1 2020 10 | 29 | | FP1 2021 01 | 61 | FP1 2021 06 | 93 | FP1 2021 10 | 125 | | FP1 2022 01 | 161 | FP1 2022 06 | 197 | | | | FP1 2023 01 | 233 | FP1 2023 06 | 265 | | | | FP1 2024 01 | 297 | FP1 2024 06 | 329 | | | | Please check the examination details | below | before ente | ering your can | didate information | | |---|---------|-------------|-------------------|--------------------|------| | Candidate surname | | | Other names | 5 | | | Pearson Edexcel International Advanced Level | Centre | Number | | Candidate Numbe | r | | Tuesday 14 Jan | nu | ary | 202 | 0 | | | Afternoon (Time: 1 hour 30 minute: | s) | Paper R | eference V | /FM01/01 | | | Mathematics International Advanced Further Pure Mathemati | | , | y/Advar | iced Level | | | You must have:
Mathematical Formulae and Statist | tical T | ābles (Blu | ue), calcula | tor Total Ma | arks | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. # Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 9 questions in this question paper. The total mark for this paper is 75. - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. #### Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. Leave blank | $\mathbf{A} = \begin{pmatrix} p & -5 \\ -2 & p+3 \end{pmatrix}$ | | |--|-----| | (a) Determine the values of the constant p for which \mathbf{A} is singular. | (3) | | Given that $p = 3$ | | | (b) determine \mathbf{A}^{-1} | (3) | uestion 1 continued | | |---------------------|--| Leave | | |-------|--| | blank | | | Given that $x = -\frac{1}{3}$ is a | root of the equation | | | |------------------------------------|-------------------------------|------------------------------------|----------------| | J | $3x^3 + kx^2 + 33x + 13 = 0$ | $k \in \mathbb{R}$ | | | determine | | | | | (a) the value of k , | | | (2) | | (b) the other 2 roots of | of the equation in the form a | a + ib, where a and b are real | d numbers. (4) | uestion 2 continued | | |---------------------|--| Leave blank | $\sum_{r=1}^{n} r^2 (2r+3) = \frac{n}{2} (n+1)(n^2+3n+1)$ | (4) | |--|-----| | 25 | , , | | (b) Hence calculate the value of $\sum_{r=10}^{25} r^2 (2r + 3)$ | (2) | | r=10 | (2) | uestion 3 continued | | |---------------------|--| Leave blank | 4. | $z_1 = p + 5i,$ | $z_2 = 9 + 8i$ | and | $z_3 = \frac{z_1}{z_2}$ | |----|-----------------|----------------|-----|-------------------------| |----|-----------------|----------------|-----|-------------------------| where p is a real constant. (a) Determine z_3 in the form x + iy, where x and y are in terms of p (3) (b) Determine the exact value of the modulus of z_2 **(1)** Given that the argument of z_1 is $\frac{\pi}{3}$ (c) (i) determine the exact value of p (ii) determine the exact value of the modulus of z_3 (3) | nestion 4 continued | | |---------------------|--| Leave | 5. | $f(x) = x^4 - 12x^{\frac{3}{2}} + 7 \qquad x \geqslant 0$ | |----|---| | (| a) Show that the equation $f(x) = 0$ has a root, α , in the interval [2, 3]. (2) | | (| Taking 2.5 as a first approximation to α, apply the Newton-Raphson procedure once to f(x) to find a second approximation to α, giving your answer to 2 decimal places. (4) | | (| c) Show that your answer to (b) gives α correct to 2 decimal places. (2) | Question 5 continued | P | |----------------------|---| Q | | $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$ | | |--|-----------------| | The transformation represented by A maps the point $R(3p-13, p-4)$, constant, onto the point $R'(7, -2)$ | where p is a | | (a) Determine the value of p | (3) | | The point S has coordinates $(0, 7)$ | | | Given that O is the origin, | | | (b) determine the area of triangle <i>ORS</i> | (2) | | The transformation represented by A maps the triangle ORS onto the triangle | le <i>OR'S'</i> | | (c) Hence, using your answer to part (b), determine the area of triangle <i>OR</i> | 2'S' (2) | Question 6 continued | l t | blanl | |----------------------|-----|-------| Question 6 continued | Leave
blank | |----------------------|----------------| | Question o continued | Question 6 continued | | |----------------------|--| Leave blank - 7. The equation $3x^2 + px 5 = 0$, where p is a constant, has roots α and β . - (a) Determine the value of - (i) $\alpha\beta$ (ii) $$\left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$$ - (b) Obtain an expression, in terms of p, for - (i) $\alpha + \beta$ (ii) $$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$$ (3) Given that $$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = 2\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$$ (c) determine the value of p. (1) (d) Using the value of p found in part (c), obtain a quadratic equation, with integer | coefficients, that has roots $\left(\alpha + \frac{1}{\beta}\right)$ | $\left(\frac{1}{\beta}\right)$ and $\left(\beta + \frac{1}{\alpha}\right)$ | (2) | |--|--|-----| | | | | | Question 7 continued | I | Leave
blank | |----------------------|---|----------------| | Question / continued | Question 7 continued | blan | |----------------------|------| Question 7 continued | | |----------------------|-----------------| (Total 9 marks) | Leave blank | 8. | A rectangular hyperbola, H , has Cartesian equation $xy = 16$ | blank | |----
--|-------| | | The point $P\left(4t, \frac{4}{t}\right)$, $t \neq 0$, lies on H . | | | | (a) Use calculus to show that an equation of the normal to H at P is | | | | $ty - t^3x = 4 - 4t^4 (5)$ | | | | The point A on H has parameter $t = 2$ | | | | The normal to H at A meets H again at the point B . | | | | (b) Determine the exact value of the length of AB. (6) | | | | The tangent to H at A meets the y -axis at the point C . | | | | (c) Determine the exact area of triangle <i>ABC</i> . (3) | Question 8 continued | blanl | |----------------------|-------| Question 8 continued | Leave
blank | |----------------------|----------------| | Question o continued | estion 8 continued | | |--------------------|--| $) = 7^{n}(3n+1) - 1$ | | | |--|---|--| | $\in \mathbb{Z}^+$, f(n) is a multiple of 9 | | (6) | | and have | | (0) | | ned by | | | | $u_1 = 2 \qquad u_2 = 6$ | | | | $3u_{n+1} - 2u_n \qquad n \in \mathbb{Z}^+$ | | | | $\in \mathbb{Z}^{+}$ | | | | $u_n = 2(2^n - 1)$ | | (6) | I | | | | | | | \mathbb{Z}^+ , $f(n)$ is a multiple of 9 ned by $u_1 = 2$ $u_2 = 6$ $3u_{n+1} - 2u_n$ $n \in \mathbb{Z}^+$ \mathbb{Z}^+ | \mathbb{Z}^+ , $f(n)$ is a multiple of 9 ned by $u_1 = 2$ $u_2 = 6$ $3u_{n+1} - 2u_n$ $n \in \mathbb{Z}^+$ \mathbb{Z}^+ | | Question 9 continued | Leave
blank | |----------------------|----------------| | Question 9 continued | Question 9 continued | Leave
blank | |----------------------|----------------| | Question 9 continued | Question 9 continued | Leave
blank | |----------------------|----------------| | Question 9 continued | Please check the examination details below | before entering your candidate information | |---|--| | Candidate surname | Other names | | Pearson Edexcel International Advanced Level | e Number Candidate Number | | Wednesday 21 (| October 2020 | | Afternoon (Time: 1 hour 30 minutes) | Paper Reference WFM01/01 | | Mathematics International Advanced Sul Further Pure Mathematics I | , | | You must have:
Mathematical Formulae and Statistical | Tables (Blue), calculator | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. # Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 8 questions in this question paper. The total mark for this paper is 75. - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. #### Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. Leave | | $f(x) = x^3 - \frac{10\sqrt{x} - 4x}{x^2} \qquad x > 0$ | | |-----|--|--| | (a) | Show that the equation $f(x) = 0$ has a root α in the interval [1.4, 1.5] (2) | | | (b) | Determine $f'(x)$. (3) | | | (c) | Using $x_0 = 1.4$ as a first approximation to α , apply the Newton-Raphson procedure once to $f(x)$ to calculate a second approximation to α , giving your answer to 3 decimal places. | uestion 1 continued | | |---------------------|--| Leave | 2. | The quadratic equation | b | |----|--|---| | | $5x^2 - 2x + 3 = 0$ | | | | has roots α and β . | | | | Without solving the equation, | | | | (a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (1) | | | | (b) determine, giving each answer as a simplified fraction, the value of | | | | (i) $\alpha^2 + \beta^2$ | | | | (ii) $\alpha^3 + \beta^3$ | | | | (c) determine a quadratic equation that has roots | | | | $(\alpha + \beta^2)$ and $(\beta + \alpha^2)$ | | | | giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers. (4) | Question 2 continued | Leave | |----------------------|-------| | Question 2 continued | Question 2 continued | Leave | |----------------------|-------| | Question 2 continued | Question 2 continued | | |----------------------|-----------------| (Total 9 marks) | Leave | 3. | $f(z) = z^4 + az^3 + bz^2 + cz + d$ | bla | |----|---|-----| | | where a , b , c and d are integers. | | | | The complex numbers $3 + i$ and $-1 - 2i$ are roots of the equation $f(z) = 0$ | | | | (a) Write down the other roots of this equation. (2) | | | | (b) Show all the roots of the equation $f(z) = 0$ on a single Argand diagram. (2) | | | | (c) Determine the values of a, b, c and d. (5) | Question 3 continued | Leave
blank | |----------------------|----------------| | Question 5 continued | Question 3 continued | Leave
blank | |----------------------|----------------| | Question 5 continued | uestion 3 continued | | |---------------------|--| Leave | | |-------|--| | blank | | | | | | n | n | | | |----|-----|-----------------------------|-------------------------------|---|---------|------| | 4. | (a) | Use the standard results in |
$\sum_{r=1}^{\infty} r^2$ | _ | to show | that | | | | | | | | | $$\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3} n(4n^2 - 1)$$ for all positive integers n. **(5)** | (b) | Hence | find | the | exact | value | of | the | sum | of | the | squares | of | the | odd | numbers | |-----|--------|-------|-----|-------|-------|----|-----|-----|----|-----|---------|----|-----|-----|---------| | |
betwee | n 200 | and | 500 | | | | | | | | | | | | **(4)** |
 | |------| | | |
 |
 | | | |
 | | | | | | | |
 |
 | | | | | | | | | | | | | | | | Question 4 continued | Leave | |----------------------|-------| | Question 4 continued | 1 | | Question 4 continued | Leave | |----------------------|-------| | Question 4 continued | 1 | | stion 4 continued | | |-------------------|--| Leave | |-------| | blank | 5. The rectangular hyperbola H has equation xy = 64 The point $P\left(8p, \frac{8}{p}\right)$, where $p \neq 0$, lies on H. (a) Use calculus to show that the normal to H at P has equation $$p^3x - py = 8(p^4 - 1)$$ (5) The normal to H at P meets H again at the point Q. (b) Determine, in terms of p, the coordinates of Q, giving your answers in simplest form. | Question 5 continued | Leave
blank | |----------------------|----------------| | Question 5 continued | Question 5 continued | Leave
blank | |----------------------|----------------| | Question 5 continued | estion 5 continued | | |--------------------|--| Leave blank | 6 | (i) | A _ (| 1 | 0) | |----|-----|-------------------|---|----| | 6. | (1) | $\mathbf{A}=igg($ | 0 | 3) | (a) Describe fully the single transformation represented by the matrix ${\bf A}.$ **(2)** The matrix **B** represents a rotation of 45° clockwise about the origin. (b) Write down the matrix ${\bf B}$, giving each element of the matrix in exact form. **(1)** The transformation represented by matrix A followed by the transformation represented by matrix B is represented by the matrix C. (c) Determine C. **(2)** **(5)** (ii) The trapezium T has vertices at the points (-2, 0), (-2, k), (5, 8) and (5, 0), where k is a positive constant. Trapezium T is transformed onto the trapezium T' by the matrix $$\begin{pmatrix} 5 & 1 \\ -2 & 3 \end{pmatrix}$$ Given that the area of trapezium T' is 510 square units, calculate the exact value of k. | Question 6 continued | Leave
blank | |----------------------|----------------| | Question o continued | Question 6 continued | Leave
blank | |----------------------|----------------| | Question o continued | estion 6 continued | | |--------------------|--| Leave | | |-------|--| | hlank | | | . The parabola C has equation $y^2 = 4ax$, where a is a positive constant. | | |--|----| | The line <i>l</i> with equation $3x - 4y + 48 = 0$ is a tangent to <i>C</i> at the point <i>P</i> . | | | (a) Show that $a = 9$ | 4) | | (b) Hence determine the coordinates of <i>P</i> . (2) | 2) | | Given that the point S is the focus of C and that the line l crosses the directrix of C at the point A , | ne | | (c) determine the exact area of triangle <i>PSA</i> . (4 | 4) | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | Question 7 continued | I | Leave
blank | |----------------------|---|----------------| | Question / continued | Question 7 continued | I | Leave
blank | |----------------------|---|----------------| | Question / continued | Question 7 continued | b | |----------------------|------------------| (Total 10 marks) | | Leave | | |-------|--| | blank | | | 8. (i) Prove by induction that, for $n \in \mathbb{Z}$ | 8. | (i) | Prove | by | induction | that, | for <i>n</i> | \in | \mathbb{Z} | |---|----|-----|-------|----|-----------|-------|--------------|-------|--------------| |---|----|-----|-------|----|-----------|-------|--------------|-------|--------------| $$\sum_{r=1}^{n} \frac{2r^2 - 1}{r^2(r+1)^2} = \frac{n^2}{(n+1)^2}$$ **(6)** | (ii) Prove by induction that, for | $r n \in \mathbb{Z}^+$ | |-----------------------------------|----------------------------------| | | $f(n) = 12^n + 2 \times 5^{n-1}$ | | is divisible by 7 | (6) | | | (6) | Question 8 continued | Leave
blank | |----------------------|----------------| | Question o continued | Question 8 continued | Leave
blank | |----------------------|----------------| | Question o continued | Question 8 continued | blan | |----------------------|------| Question 8 continued | Leave
blank | |-------------------------------|----------------| Q8 | | (Total 12 marks) | | | TOTAL FOR PAPER: 75 MARKS END | | | Please check the examination deta | ils below before e | ntering your ca | ndidate information | |--|--------------------|----------------------|---------------------| | Candidate surname | | Other name | es | | Pearson Edexcel International Advanced Level | Centre Numb | er | Candidate Number | | Friday 8 Janu | ary 20 |)21 | | | Afternoon (Time: 1 hour 30 minus | tes) Pape | r Reference \ | WFM01/01 | | Mathematics | | | | | International Advanced Further Pure Mathema | | ary/Adva | nced Level | | You must have:
Mathematical Formulae and Stat | istical Tables | Lilac), calcul | ator Total Marks | Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## **Instructions** - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided - there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 9 questions in this question paper. The total mark for this paper is 75. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any
working underneath. Leave | . (8 | Show that the equation $4x - 2\sin x - 1 = 0$, where x is in radians, has a root of interval [0.2, 0.6] | α in the | |------|--|----------| | | L / J | (2) | | (ł | b) Starting with the interval [0.2, 0.6], use interval bisection twice to find an interval 0.1 in which α lies. | erval of | | | | (3) | Question 1 continued | bl | |----------------------|----| Q1 | | Leave | | |-------|--| | blank | | | 2. | Given that | $x = \frac{3}{8} + \frac{\sqrt{71}}{8}i$ | is a root of the equation | |----|------------|--|---------------------------| |----|------------|--|---------------------------| $$4x^3 - 19x^2 + px + q = 0$$ | (2) | write down | the other | complex re | oot of the | equation | |-----|------------|-----------|------------|------------|-----------| | (a) | write down | me omer | complex re | oot of the | equation. | **(1)** Given that x = 4 is also a root of the equation, | (b) find the value of p and the value of | |--| |--| **(4)** | Question 2 continued | | Lea
blar | |----------------------|-----------------|-------------| Q2 | | | (Total 5 marks) | | | Leave | | |-------|--| | blank | | | 3. The matrix \mathbf{M} is defined by | blar | |---|------| | $\mathbf{M} = \begin{pmatrix} k+5 & -2 \\ -3 & k \end{pmatrix}$ | | | (a) Determine the values of k for which \mathbf{M} is singular. | (2) | | Given that M is non-singular, | | | (b) find \mathbf{M}^{-1} in terms of k . | (2) | Question 3 continued | | Lea
blai | |----------------------|-----------------|-------------| Q3 | | | (Total 4 marks) | | | Leave | | |-------|--| | hlank | | | 4. The equation $2x^2 + 3$ | $5x + 7 = 0$ has roots α and β | l t | |----------------------------|--|-----| | Without solving the | equation | | | (a) determine the ex | xact value of $\alpha^3 + \beta^3$ | (3) | | (b) form a quadration | c equation, with integer coefficients, which has roots | | | | $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$ | | | | | (5) | Overtion A continued | Leave
blank | |----------------------|----------------| | Question 4 continued | Overtion A continued | Leave
blank | |----------------------|----------------| | Question 4 continued | bl | |----| Q4 | | Leave | | |-------|--| | blank | | | 5. | (a) | Using the formulae for | $\sum_{n=1}^{\infty} r$ | and | $\sum^{n} r^{2},$ | show that | |----|-----|------------------------|-------------------------|-----|-------------------|-----------| | | | | r=1 | | r=1 | | $$\sum_{r=1}^{n} (r+1)(r+5) = \frac{n}{6}(n+7)(2n+7)$$ for all positive integers n. **(5)** (b) Hence show that $$\sum_{r=n+1}^{2n} (r+1)(r+5) = \frac{7n}{6}(n+1)(an+b)$$ where a and b are integers to be determined. **(2)** | Overtion 5 continued | Leave
blank | |----------------------|----------------| | Question 5 continued | 1 | | Overtion 5 continued | Leave
blank | |----------------------|----------------| | Question 5 continued | 1 | | Question 5 continued | | bla | |----------------------|-----------------|-----| (Total 7 marks) | Q5 | | 6. | The complex number z is defined by | blank | |----|---|-------| | | $z = -\lambda + 3i$ where λ is a positive real constant | | | | Given that the modulus of z is 5 | | | | | | | | (a) write down the value of λ | | | | (b) determine the argument of z, giving your answer in radians to one decimal place. (2) | | | | In part (c) you must show detailed reasoning. | | | | Solutions relying on calculator technology are not acceptable. | | | | (c) Express in the form $a + ib$ where a and b are real, | | | | $(i) \frac{z+3i}{2-4i}$ | | | | (ii) z^2 | | | | (5) | | | | (d) Show on a single Argand diagram the points <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> that represent the complex numbers | | | | $z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$ | | | | 2, 2, 4; and 2 | | | | $2-41 \tag{3}$ | | | | (3) | | | | | | | | (3) | | | | (3) | | | | (3) | | | | (3) | | | | (3) | | | | (3) | | | | (3) | | | | (3) | | | | (3) | | | | (3) | | | | (3) | | | | Leave
blank | |----------------------|----------------| | Question 6 continued | Leave
blank | |----------------------|----------------| | Question 6 continued | Question 6 continued | | Leave
blank | |----------------------|------------------|----------------| Q6 | | | (Total 11 marks) | | Leave blank | 7. ' | The | matrix | \mathbf{A} | is | defined | by | |-------------|-----|--------|--------------|----|---------|----| |-------------|-----|--------|--------------|----|---------|----| $$\mathbf{A} = \begin{pmatrix} 4 & -5 \\ -3 & 2 \end{pmatrix}$$ The transformation represented by A maps triangle T onto triangle T' Given that the area of triangle T is 23 cm² (a) determine the area of triangle T' **(2)** The point P has coordinates (3p + 2, 2p - 1) where p is a constant. The transformation represented by A maps P onto the point P' with coordinates (17, -18) (b) Determine the value of p. **(2)** Given that $$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$ (c) describe fully the single geometrical transformation represented by matrix ${\bf B}$ (2) The transformation represented by matrix $\bf A$ followed by the transformation represented by matrix $\bf C$ is equivalent to the transformation represented by matrix $\bf B$ | / 1\ | D . | | |------|-----------|---| | (d) | Determine | C | | | | | **(3)** | Question 7 continued | Leave
blank | |----------------------|----------------| | Question / continued | Question 7 continued | Leave
blank | |----------------------|----------------| | Question / continued | Question 7 continued | b | |----------------------|----| Q' | Leave blank | The parabola P has parametric equations $x = 10t^2$, $y = 20t$ The hyperbola H intersects the parabola P at the point A (a) Use algebra to determine the coordinates of A (3) The point B with coordinates $(10, 20)$ lies on P (b) Find an equation for the normal to P at B Give your answer in the form $ax + by + c = 0$, where a , b and c are integers to be |
---| | (a) Use algebra to determine the coordinates of A (3) The point B with coordinates (10,20) lies on P (b) Find an equation for the normal to P at B Give your answer in the form ax + by + c = 0, where a, b and c are integers to be | | (3) The point B with coordinates (10,20) lies on P (b) Find an equation for the normal to P at B Give your answer in the form ax + by + c = 0, where a, b and c are integers to be | | (b) Find an equation for the normal to P at B
Give your answer in the form $ax + by + c = 0$, where a , b and c are integers to be | | Give your answer in the form $ax + by + c = 0$, where a, b and c are integers to be | | | | determined. (5) | | (c) Use algebra to determine, in simplest form, the exact coordinates of the points where this normal intersects the hyperbola <i>H</i> | | (6) | Leave
blank | |----------------------|----------------| | Question 8 continued | Leave
blank | |----------------------|----------------| | Question 8 continued | Question 8 continued | | Lea
blar | |----------------------|------------------|-------------| Q | | | (Total 14 marks) | | | Leave | | |-------|--| | blank | | | 9. | (i) | A sequence of numbers u_1 , u_2 , u_3 , | is defined by | |----|-----|---|---------------| | - | (1) | n_1, n_2, n_3, \dots | is defined by | $$u_{n+1} = \frac{1}{3}(2u_n - 1) \qquad u_1 = 1$$ Prove by induction that, for $n \in \mathbb{Z}^+$ | $u_n = 3\left(\frac{2}{3}\right)^n - 1$ | (6) | |---|-----| | (ii) $f(n) = 2^{n+2} + 3^{2n+1}$ | | | Prove by induction that, for $n \in \mathbb{Z}^+$, $f(n)$ is a multiple of 7 | (6) | Overstion 0 continued | Leave
blank | |-----------------------|----------------| | Question 9 continued | 1 | | Overstion 0 continued | Leave
blank | |-----------------------|----------------| | Question 9 continued | 1 | | Overstion 0 continued | Leave
blank | |-----------------------|----------------| | Question 9 continued | 1 | | | Leave
blank | |---------------------------|----------------| | Question 9 continued | Q9 | | (Total 12 marks) | | | TOTAL FOR PAPER: 75 MARKS | | | Please check the examination deta | ils below before ento | ering your candidate information | |--|-----------------------|----------------------------------| | Candidate surname | | Other names | | Pearson Edexcel International Advanced Level | Centre Number | Candidate Number | | Time 1 hour 30 minutes | Paper
reference | WFM01/01 | | Mathematics | | | | International Advance
Further Pure Mathema | | y/Advanced Level | | | | | | You must have:
Mathematical Formulae and Stat | istical Tables (Ye | ellow), calculator | Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions and ensure that your answers to parts of questions are clearly labelled - Answer the questions in the spaces provided - there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 8 questions in this question paper. The total mark for this paper is 75. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. - Good luck with your examination | Leave | | |-------|--| | hlank | | | 1. | (i) | $f(x) = x^3 + 4x - 6$ | Dialik | |----|------|---|--------| | | | (a) Show that the equation $f(x) = 0$ has a root α in the interval [1, 1.5] (2) | | | | | (b) Taking 1.5 as a first approximation, apply the Newton Raphson process twice to $f(x)$ to obtain an approximate value of α . Give your answer to 3 decimal places. Show your working clearly. | | | | | (4) | | | | (ii) | $g(x) = 4x^2 + x - \tan x$ | | | | | where <i>x</i> is measured in radians. | | | | | The equation $g(x) = 0$ has a single root β in the interval [1.4, 1.5] | | | | | Use linear interpolation on the values at the end points of this interval to obtain an approximation to β . Give your answer to 3 decimal places. | | | | | (4) | Question 1 continued | blar | |----------------------|------| estion 1 continued | | | |--|--------------------|--|--| Question 1 continued | | |----------------------|------------------| (Total 10 marks) | Leave blank | 2. | The cor | nnlex | numbers | 7 7 | and 7 | are | given | hv | |----|---------|-------|---------|--------|--------|-------|-------|----| | ⊿. | THE COL | npiex | Humbers | 41, 42 | anu 2, | 3 are | given | υy | $$z_1 = 2 - i$$ $z_2 = p - i$ $z_3 = p + i$ where p is a real number. (a) Find $\frac{z_2 z_3}{z_1}$ in the form a + bi where a and b are real. Give your answer in its simplest form in terms of p. (3) Given that $\left| \frac{z_2 z_3}{z_1} \right| = 2\sqrt{5}$ (b) find the possible values of p. **(4)** |
 | |------|
 |
 |
 | | | | Question 2 continued | blan | |----------------------|------| Question 2 continued | blar | |----------------------|------| Question 2 continued | Leave
blank | |----------------------|----------------| | | _ | | | _ | | | _ | | | - | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | - | | | - | | | _ | | | _ | | | - | | | - | | | Q2 | | (Total 7 marks) | | | | | 021_00_9 | |----|--|------------| | | | Lea
bla | | 3. | The triangle T has vertices $A(2,1)$, $B(2,3)$ and $C(0,1)$. | | | | The triangle T' is the image of T
under the transformation represented by the matrix | | | | $\mathbf{P} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ | | | | (a) Find the coordinates of the vertices of T' | (2) | | | (b) Describe fully the transformation represented by P | (2) | | | The 2×2 matrix Q represents a reflection in the <i>x</i> -axis and the 2×2 matrix R represent rotation through 90° anticlockwise about the origin. | ats a | | | (c) Write down the matrix \mathbf{Q} and the matrix \mathbf{R} | (2) | | | (d) Find the matrix RQ | (2) | | | (e) Give a full geometrical description of the single transformation represented by answer to part (d). | the | | | | (2) | | | | | | | | | | Question 3 continued | blar | |----------------------|------| Question 3 continued | Leave
blank | |----------------------|----------------| Question 3 continued | Leave
blank | |----------------------|----------------| Q3 | | (Total 10 mar | ·ks) | | | Leave
blank | |--|----------------| | 4. A rectangular hyperbola H has equation $xy = 25$ | | | The point $P\left(5t, \frac{5}{t}\right)$, $t \neq 0$, is a general point on H . | | | (a) Show that the equation of the tangent to H at P is $t^2y + x = 10t$ (4) | | | The distinct points Q and R lie on H . The tangent to H at the point Q and the tangent to H at the point R meet at the point $(15,-5)$. | | | (b) Find the coordinates of the points Q and R . (4) | Question 4 continued | blan | |----------------------|------| Question 4 continued | | |----------------------|--| Question 4 continued | | Le
bla | |----------------------|-----------------|-----------| Q |)4 | | | (Total 8 marks) | ا" ع | Leave | 5. | $f(x) = (9x^2 + d)(x^2 - 8x + (10d + 1))$ | bla | |----|--|-----| | W | where d is a positive constant. | | | | a) Find the four roots of $f(x)$ giving your answers in terms of d . (3) | | | C | Given $d = 4$ | | | (1 | b) Express these four roots in the form $a + ib$, where $a, b \in \mathbb{R}$. (2) | | | ((| c) Show these four roots on a single Argand diagram. (2) | Question 5 continued | Leave
blank | |----------------------|----------------| Question 5 continued | blan | |----------------------|------| Question 5 continued | | Leave
blank | |----------------------|-----------------|----------------| (T) () 7 - () | Q5 | | | (Total 7 marks) | | | Leave | | |-------|--| | blank | | | The point $P(2p^2,4p)$ and the point $Q(2q^2,4q)$, where $p,q\neq 0$, $p\neq q$, are points on C . (a) Show that an equation of the normal to C at P is $y+px=2p^3+4p$ (5) (b) Write down an equation of the normal to C at Q (1) The normal to C at P and the normal to C at Q meet at the point N (c) Show that N has coordinates $\left(2(p^2+pq+q^2+2),-2pq(p+q)\right)$ (5) The line ON , where O is the origin, is perpendicular to the line PQ (d) Find the value of $(p+q)^2-3pq$ (5) | 6. | The parabola C has Cartesian equation $y^2 = 8x$ | |--|----|---| | $y + px = 2p^3 + 4p$ (5) (b) Write down an equation of the normal to C at Q (1) The normal to C at P and the normal to C at Q meet at the point N (c) Show that N has coordinates $\left(2(p^2 + pq + q^2 + 2), -2pq(p+q)\right)$ (5) The line ON , where O is the origin, is perpendicular to the line PQ (d) Find the value of $(p+q)^2 - 3pq$ | | The point $P(2p^2, 4p)$ and the point $Q(2q^2, 4q)$, where $p, q \neq 0, p \neq q$, are points on C . | | (5) (b) Write down an equation of the normal to C at Q (1) The normal to C at P and the normal to C at Q meet at the point N (c) Show that N has coordinates (2(p² + pq + q² + 2), -2pq(p + q)) (5) The line ON, where O is the origin, is perpendicular to the line PQ (d) Find the value of (p + q)² - 3pq | | (a) Show that an equation of the normal to C at P is | | (b) Write down an equation of the normal to C at Q (1) The normal to C at P and the normal to C at Q meet at the point N (c) Show that N has coordinates $\left(2(p^2+pq+q^2+2),-2pq(p+q)\right)$ (5) The line ON , where O is the origin, is perpendicular to the line PQ (d) Find the value of $(p+q)^2-3pq$ | | | | (c) Show that N has coordinates $\left(2(p^2+pq+q^2+2),-2pq(p+q)\right)$ (5) The line ON , where O is the origin, is perpendicular to the line PQ (d) Find the value of $(p+q)^2-3pq$ | | (b) Write down an equation of the normal to C at Q | | $\left(2(p^2+pq+q^2+2),-2pq(p+q)\right)$ (5) The line <i>ON</i> , where <i>O</i> is the origin, is perpendicular to the line <i>PQ</i> (d) Find the value of $(p+q)^2-3pq$ | | The normal to C at P and the normal to C at Q meet at the point N | | The line <i>ON</i> , where <i>O</i> is the origin, is perpendicular to the line <i>PQ</i> (d) Find the value of $(p + q)^2 - 3pq$ | | (c) Show that N has coordinates | | (d) Find the value of $(p+q)^2 - 3pq$ | | | | | | The line ON , where O is the origin, is perpendicular to the line PQ | | | | | | | | | | | | | | | | | | Question 6 continued | blaı | |----------------------|------| Question 6 continued | blar | |----------------------|------| Question 6 continued | | Leave
blank | |----------------------|-----------|----------------| Q6 | | (Total 1 | l6 marks) | | Leave blank | 7. | (a) | Prove | bv | induction | that for | n | \in | \mathbb{N} | |----|-----|-------|----------|-------------|-----------|---|-------|--------------| | | (4) | 110,0 | \sim_J | 11144611011 | tilet IOI | | _ | _ , | $$\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1)$$ **(5)** (b) Hence show that $$\sum_{r=1}^{n} (r^2 + 2) = \frac{n}{6} (an^2 + bn + c)$$ where a, b and c are integers to be found. **(4)** (c) Using your answers to part (b), find the value of $$\sum_{r=10}^{25} (r^2 + 2)$$ **(2)** | - | - | |---|---| Question 7 continued | blar | |----------------------|------| uestion 7 continued | | | |---------------------|--|--| Question 7 continued | Leave
blank | |----------------------|----------------| | | _ | | | _ | | | _ | | | - | | | - | | | - | | | _ | | | - | | | - | | | _ | | | - | | | - | | | _ | | | _ | | | - | | | - | | | - | | | - | | | - | | | _ | | | Q7 | | (Total 11 marks | | | Prove by induction that $4^{n+2} + 5^{2n+1}$ is divisible by 21 for all positive integers n . | (6) | |---|-----|
 | Question 8 continued | blar | |----------------------|------| Question 8 continued | Leave
blank | |---------------------------|----------------| | Question o continueu | _ | | | - | | | _ | | | - | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | - | | | - | | | _ | | | - | | | _ | | | - | | | _ | | | _ | | | _ | | | - | | | Q8 | | (Total 6 marks |) [] | | TOTAL FOR PAPER: 75 MARKS | S | | END | | | Please check the examination details below before entering your candidate information | | | | |--|--------------------|-------------------|--| | Candidate surname | | Other names | | | Centre Number Candidate No | umber | | | | Pearson Edexcel Inter | nation | al Advanced Level | | | Time 1 hour 30 minutes | Paper
reference | WFM01/01 | | | Mathematics International Advanced Subsidiary/Advanced Level Further Pure Mathematics F1 | | | | | You must have:
Mathematical Formulae and Statistica | al Tables (Yel | llow), calculator | | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use black ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 9 questions in this question paper. The total mark for this paper is 75. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each guestion. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. | | 111_2021_10 | |---|-------------| | $\mathbf{A} = \begin{pmatrix} 3 & a \\ -2 & -2 \end{pmatrix}$ | | | where a is a non-zero constant and $a \neq 3$ | | | (a) Determine A^{-1} giving your answer in terms of a . | (2) | | Given that $\mathbf{A} + \mathbf{A}^{-1} = \mathbf{I}$ where \mathbf{I} is the 2 × 2 identity matrix, | | | (b) determine the value of a. | (3) | Question 1 continued | | |----------------------|--| Leave blank | $f(x) = 7\sqrt{x} - \frac{1}{2}x^3 - \frac{5}{3x}$ | $\frac{1}{x}$ $x > 0$ | |--|-----------------------| |--|-----------------------| (a) Show that the equation f(x) = 0 has a root, α , in the interval [2.8, 2.9] **(2)** - (b) (i) Find f'(x). - (ii) Hence, using $x_0 = 2.8$ as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to calculate a second approximation to α , giving your answer to 3 decimal places. **(4)** (c) Use linear interpolation once on the interval [2.8, 2.9] to find another approximation to α . Give your answer to 3 decimal places. **(3)** |
 | |------| | | | | |
 | Question 2 continued | bla | |----------------------|-----| Overetion 2 continued | Leave
blank | |-----------------------|----------------| | Question 2 continued | uestion 2 continued | | |---------------------|--| Leave blank | 3. | The | quadratic | eo | mation | |----|------|-----------|----|--------| | J. | 1110 | quadratic | CC | Juanon | $$2x^2 - 5x + 7 = 0$$ has roots α and β Without solving the equation, - (a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (1) - (b) determine, giving each answer as a simplified fraction, the value of - (i) $\alpha^2 + \beta^2$ - (ii) $\alpha^3 + \beta^3$ (4) - (c) find a quadratic equation that has roots $$\frac{1}{\alpha^2 + \beta}$$ and $\frac{1}{\beta^2 + \alpha}$ giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined. |
 | | |------|--| **(4)** | Overtion 2 continued | Leave
blank | |----------------------|----------------| | Question 3 continued | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | _ | | | | | | _ | | Overtion 2 continued | Leave
blank | |----------------------|----------------| | Question 3 continued | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | | | | | | | _ | | | | | | _ | | uestion 3 continued | | |---------------------|--| Leave | 4. | $f(z) = 2z^3 - z^2 + az + b$ | blank | |----|---|-------| | | where a and b are integers. | | | | The complex number $-1 - 3i$ is a root of the equation $f(z) = 0$ | | | | (a) Write down another complex root of this equation. (1 |) | | | (b) Determine the value of a and the value of b . (4 |) | | | (c) Show all the roots of the equation $f(z) = 0$ on a single Argand diagram. (2) |) | | | | - | | | | - | | | | - | | | | - | | | | - | | | | - | | | | - | | | | - | | | | - | | | | - | | | | _ | | | | _ | | Question 4 continued | Leave | |----------------------|-------| | Question 4 continued | Question 4 continued | Leave | |----------------------|-------| | Question 4 continued | Question 4 continued | | |----------------------|--| Leave blank | | | | n | n | n | | | | | | | |----|-----|------------------------------|--------------|------------|--------------|------|------|--------|-------|-----|----------| | 5. | (a) | Use the standard results for | $\sum r^3$, | $\sum r^2$ | and $\sum I$ | r to | show | that 1 | for a | all | positive | | | | | r=1 | r=1 | r=1 | | | | | | | | | | integers n, | | | | | | | | | | $$\sum_{r=1}^{n} r(r-1)(r-3) = \frac{1}{12} n(n+1)(n-1)(3n-10)$$ (5) (b) Hence show that $$\sum_{r=n+1}^{2n+1} r(r-1)(r-3) = \frac{1}{12}n(n+1)(an^2 + bn + c)$$ | where a, b and c are integers to be determined. | | |---|----| | | (3 | |
 | |------| Question 5 continued | Leave | |----------------------|-------| Question 5 continued | Leave
blank | |----------------------|----------------| | Question 5 continued | Question 5 continued | | |----------------------|--| The curve <i>H</i> has equation | |---|---| | | $xy = a^2$ $x > 0$ | | | where a is a positive constant. | | | The line with equation
$y = kx$, where k is a positive constant, intersects H at the point P | | | (a) Use calculus to determine, in terms of a and k , an equation for the tangent to H at P (4) | | | The tangent to H at P meets the x -axis at the point A and meets the y -axis at the point B | | | (b) Determine the coordinates of A and the coordinates of B , giving your answers in terms of a and k | | | (2) | | | (c) Hence show that the area of triangle AOB , where O is the origin, is independent of k (2) | | _ | | | _ | _ | _ | | | _ | | | Overtion 6 continued | Leave
blank | |----------------------|----------------| | Question 6 continued | Overtion 6 continued | Leave
blank | |----------------------|----------------| | Question 6 continued | _ | |--|---| _ | 7 | In nart (i) | the elements of | feach matrix | should be evn | ressed in evact i | numerical form. | |---|-------------|-----------------|--------------|---------------|-------------------|-----------------| (i) (a) Write down the 2×2 matrix that represents a rotation of 210° anticlockwise about the origin. **(1)** (b) Write down the 2×2 matrix that represents a stretch parallel to the y-axis with scale factor 5 **(1)** The transformation T is a rotation of 210° anticlockwise about the origin followed by a stretch parallel to the y-axis with scale factor 5 (c) Determine the 2×2 matrix that represents T **(2)** (ii) $$\mathbf{M} = \begin{pmatrix} k & k+3 \\ -5 & 1-k \end{pmatrix} \quad \text{where } k \text{ is a constant}$$ (a) Find det M, giving your answer in simplest form in terms of k. **(2)** A closed shape R is transformed to a closed shape R' by the transformation represented by the matrix M. Given that the area of R is 2 square units and that the area of R' is 16k square units, (b) determine the possible values of k. (3) | Question 7 continued | Leave | |----------------------|-------| | Question / continued | Question 7 continued | blank | |----------------------|-------| 1 | | uestion 7 continued | | |---------------------|--| 8. | The parabola C has equation $y^2 = 20x$ | blank | |----|--|-------| | | The point P on C has coordinates $(5p^2, 10p)$ where p is a non-zero constant. | | | | (a) Use calculus to show that the tangent to C at P has equation | | | | $py - x = 5p^2 \tag{3}$ | | | | The tangent to C at P meets the y -axis at the point A . | | | | (b) Write down the coordinates of A . (1) | | | | The point S is the focus of C . | | | | (c) Write down the coordinates of S. (1) | | | | The straight line l_1 passes through A and S . | | | | The straight line l_2 passes through O and P , where O is the origin. | | | | Given that l_1 and l_2 intersect at the point B , | | | | (d) show that the coordinates of B satisfy the equation | | | | $2x^2 + y^2 = 10x (5)$ | Question 8 continued | Leave | |----------------------|-------| | Question o continueu | Question 8 continued | Leave | |----------------------|-------| | Question o continued | Overtion 9 continued | Leave
blank | |----------------------|----------------| | Question 8 continued |
 | | | Q8 | | (Total 10 ma | rks) | | | | | Leave
blank | |----|------|--|----------------| | 9. | (i) | A sequence of numbers is defined by | | | | | $u_1 = 0$ $u_2 = -6$ | | | | | $u_{n+2} = 5u_{n+1} - 6u_n \qquad n \geqslant 1$ | | | | | Prove by induction that, for $n \in \mathbb{Z}^+$ | | | | | $u_n = 3 \times 2^n - 2 \times 3^n \tag{5}$ | | | | (ii) | Prove by induction that, for all positive integers n , | | | | | $f(n) = 3^{3n-2} + 2^{4n-1}$ | | | | | is divisible by 11 | | | | | (5) | Question 9 continued | Leave | |----------------------|-------| | Question 5 continued | 1 | | Question 9 continued | Leave | |----------------------|-------| | Question 5 continued | 1 | | | Leave
blank | |----------------------|----------------| | Question 9 continued | Question 9 continued | Leav
blan | | |---------------------------|--------------|---| | | - | | | | Q9 |) | | (Total 10 marks) | | | | TOTAL FOR PAPER: 75 MARKS | 3 | _ | | Please check the examination details below before entering your candidate information | | | |---|--------------------------------|--| | Candidate surname | Other names | | | Centre Number Candidate N | umber | | | Pearson Edexcel Inter | national Advanced Level | | | Time 1 hour 30 minutes | Paper reference WFM01/01 | | | Mathematics | | | | International Advanced Su | • | | | Further Pure Mathematics | 5 F 1 | | | You must have:
Mathematical Formulae and Statistica | al Tables (Yellow), calculator | | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 9 questions in this question paper. The total mark for this paper is 75. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each guestion. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. Leave | $\mathbf{M} = \begin{pmatrix} 3x & 7 \\ 4x + 1 & 2 - x \end{pmatrix}$ | | |--|--------------------| | Find the range of values of x for which the determinant of the matrix \mathbf{M} | I is positive. (5) | Question 1 continued | | |----------------------|--| 2. | The complex numbers z_1 and z_2 are given by | | blank | |----|---|-----|-------| | | $z_1 = 3 + 5i$ and $z_2 = -2 + 6i$ | | | | | (a) Show
z_1 and z_2 on a single Argand diagram. | (2) | | | | (b) Without using your calculator and showing all stages of your working, | | | | | (i) determine the value of $ z_1 $ | (1) | | | | (ii) express $\frac{z_1}{z_2}$ in the form $a + bi$, where a and b are fully simplified fractions. | (3) | | | | (c) Hence determine the value of $\arg \frac{z_1}{z_2}$ | | | | | Give your answer in radians to 2 decimal places. | | | | | | (2) | _ | | | | | | | | | | _ | | | | | | | | | | Overetion 2 continued | Leave
blank | |-----------------------|----------------| | Question 2 continued | Question 2 continued | Leave
blank | |----------------------|----------------| | Question 2 continued | uestion 2 continued | | |---------------------|--| Leave | | |-------|--| | hlank | | | 3. | The parabola C has equation $y^2 = 18x$ | | blank | |----|--|-----|-------| | | The point S is the focus of C | | | | | (a) Write down the coordinates of S | (1) | | | | The point P , with $y > 0$, lies on C | | | | | The shortest distance from P to the directrix of C is 9 units. | | | | | (b) Determine the exact perimeter of the triangle <i>OPS</i> , where <i>O</i> is the origin. | | | | | Give your answer in simplest form. | (4) | Question 3 continued | Leave | |----------------------|-------| Question 3 continued | blan | |----------------------|------| 4. | The | equation | |----|-----|----------| |----|-----|----------| $$x^4 + Ax^3 + Bx^2 + Cx + 225 = 0$$ where A, B and C are real constants, has - a complex root 4 + 3i - a repeated positive real root - (a) Write down the other complex root of this equation. **(1)** (b) Hence determine a quadratic factor of $x^4 + Ax^3 + Bx^2 + Cx + 225$ **(2)** (c) Deduce the real root of the equation. **(2)** (d) Hence determine the value of each of the constants A, B and C **(3)** | Question 4 continued | Leave | |----------------------|-------| | Question 4 continued | Question 4 continued | Leave | |----------------------|-------| | Question 4 continued | Question 4 continued | | |----------------------|--| 5. $$\mathbf{P} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$ The matrix **P** represents the transformation U (a) Give a full description of U as a single geometrical transformation. **(2)** The transformation V, represented by the 2×2 matrix **Q**, is a reflection in the line y = -x (b) Write down the matrix \mathbf{Q} **(1)** The transformation U followed by the transformation V is represented by the matrix \mathbf{R} (c) Determine the matrix **R** **(2)** The transformation W is represented by the matrix $3\mathbf{R}$ The transformation W maps a triangle T to a triangle T' The transformation W' maps the triangle T' back to the original triangle T (d) Determine the matrix that represents W' **(3)** | Question 5 continued | Leave | |----------------------|-------| Question 5 continued | Leave
blank | |----------------------|----------------| | Question 5 continued | uestion 5 continued | | |---------------------|--| Leave blank | 6. | The | quadratic | ec | uation | |-----|-----|--------------|----|--------| | ~ • | | 0 0,00001010 | | 0,000 | $$Ax^2 + 5x - 12 = 0$$ where A is a constant, has roots α and β - (a) Write down an expression in terms of A for - (i) $\alpha + \beta$ - (ii) $\alpha\beta$ **(2)** The equation $$4x^2 - 5x + B = 0$$ where *B* is a constant, has roots $\alpha - \frac{3}{\beta}$ and $\beta - \frac{3}{\alpha}$ (b) Determine the value of A (3) (c) Determine the value of B **(3)** | |
 | |------|------|
 | Overtion 6 continued | Leave
blank | |----------------------|----------------| | Question 6 continued | Overtion 6 continued | Leave
blank | |----------------------|----------------| | Question 6 continued | Question 6 continued | | Leav
blan | |----------------------|-----------------|--------------| . | | | | Q6 | | | (Total 8 marks) | | Leave blank | 7. | In this question you must show all stages of your working. | | |----|---|--| | | Solutions relying entirely on calculator technology are not acceptable. | | | | The rectangular hyperbola H has equation $xy = 36$ | | | | The point $P(4, 9)$ lies on H | | | | (a) Show, using calculus, that the normal to H at P has equation | | | | 4x - 9y + 65 = 0 (4) | | | | The normal to H at P crosses H again at the point Q | | | | (b) Determine an equation for the tangent to H at Q , giving your answer in the form $y = mx + c$ where m and c are rational constants. | | | | (5) | Question 7 continued | Leave
blank | |----------------------|----------------| | Question / continued | Question 7 continued | Leave
blank | |----------------------|----------------| | Question / continued | Question 7 continued | Le
bl | |----------------------|---------------| Q7 | | (T | otal 9 marks) | Leave blank 8. $$f(x) = 2x^{-\frac{2}{3}} + \frac{1}{2}x - \frac{1}{3x - 5} - \frac{5}{2} \qquad x \neq \frac{5}{3}$$ The table below shows values of f(x) for some values of x, with values of f(x) given to 4 decimal places where appropriate. | x | 1 | 2 | 3 | 4 | 5 | |------|-----|---|---------|---|--------| | f(x) | 0.5 | | -0.2885 | | 0.5834 | | (a) | Complete the table g | giving the values to 4 decimal places. | | |-----|----------------------|--|--| | | | | | **(2)** The equation f(x) = 0 has exactly one positive root, α . Using the values in the completed table and explaining your reasoning, (b) determine an interval of width one that contains α . **(2)** (c) Hence use interval bisection twice to obtain an interval of width 0.25 that contains α . (3) Given also that the equation f(x) = 0 has a negative root, β , in the interval [-1, -0.5]
(d) use linear interpolation once on this interval to find an approximation for β . Give your answer to 3 significant figures. **(3)** |
 |
 | |------|------| | | | | | | | | | | | | |
 |
 | Question 8 continued | Leave | |----------------------|-------| Question 8 continued | Leave | |----------------------|-------| | Question o continueu | Overtion 9 continued | Leave
blank | |----------------------|----------------| | Question 8 continued |
 | | | Q8 | | (Total 10 ma | rks) | Leave blank | | 9. | (a) | Prove | by | induction | that, | for | n | \in | \mathbb{N} | |--|----|-----|-------|----|-----------|-------|-----|---|-------|--------------| |--|----|-----|-------|----|-----------|-------|-----|---|-------|--------------| $$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2 \tag{5}$$ (b) Using the standard summation formulae, show that $$\sum_{r=1}^{n} r(r+1)(r-1) = \frac{1}{4} n(n+A)(n+B)(n+C)$$ where A, B and C are constants to be determined. **(4)** (c) Determine the value of n for which $$3\sum_{r=1}^{n} r(r+1)(r-1) = 17\sum_{r=n}^{2n} r^{2}$$ (5) | · · · · · · · · · · · · · · · · · · · | |---------------------------------------| Question 9 continued | Leave | |----------------------|-------| | Question 5 continued | 1 | | Question 9 continued | Leave | |----------------------|-------| | Question 5 continued | 1 | | Question 9 continued | Leave | |----------------------|-------| | Question 5 continued | 1 | | Question 9 continued | | Leave
blank | |----------------------|---|----------------| 00 | | | | Q9 | | т | (Total 14 marks) OTAL FOR PAPER: 75 MARKS | | | END | UIAL FUR FAPER: /3 MARKS | | | Please check the examination details below before entering your candidate information | | | | | |---|--------------------|-------------------|--|--| | Candidate surname | | Other names | | | | Centre Number Candidate Nu | umber | | | | | Pearson Edexcel International Advanced Level | | | | | | Time 1 hour 30 minutes | Paper
reference | WFM01/01 | | | | Mathematics | | | | | | International Advanced Subsidiary/Advanced Level | | | | | | Further Pure Mathematics F1 | | | | | | You must have:
Mathematical Formulae and Statistica | al Tables (Ye | llow), calculator | | | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 9 questions in this question paper. The total mark for this paper is 75. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. | 1. | | $z_1 = 3 + 3i$ | $z_2 = p + qi$ | $p, q \in \mathbb{R}$ | | |----|-------------------------------------|-------------------|---------------------|-----------------------|-----| | | Given that $ z_1 z_2 = 15\sqrt{2}$ | | | | | | | (a) determine $ z_2 $ | | | | (2) | | | Given also that $p = -4$ | | | | | | | (b) determine the possible | values of q | | | (2) | | | (c) Show z_1 and the possible | e positions for a | z_2 on the same A | rgand diagram. | (2) | Question 1 continued | | |----------------------|--| Question 1 continued | | | |----------------------|--|--| Question 1 continued | | | |----------------------|------------------|--| (Total for Questic | on 1 is 6 marks) | | | (Total for Questi | on a marks) | | | 2. | $f(x) = 10 - 2x - \frac{1}{2\sqrt{x}} - \frac{1}{x^3} \qquad x > 0$ | | |----|---|-----| | | (a) Show that the equation $f(x) = 0$ has a root α in the interval [0.4, 0.5] | (2) | | | (b) Determine $f'(x)$. | (3) | | | (c) Using $x_0 = 0.5$ as a first approximation to α , apply the Newton-Raphson procedure once to $f(x)$ to find a second approximation to α , giving your answer to 3 decimal places. | (2) | | | The equation $f(x) = 0$ has another root β in the interval [4.8, 4.9] | | | | (d) Use linear interpolation once on the interval [4.8, 4.9] to find an approximation to β , giving your answer to 3 decimal places. | (2) | Question 2 continued | | | |----------------------|--|--| Question 2 continued | |----------------------| Question 2 continued | | | |----------------------|------------------------------|--| (Tota | l for Question 2 is 9 marks) | | | 3. | $\mathbf{M} = \begin{pmatrix} k & k \\ 3 & 5 \end{pmatrix} \qquad \text{where } k \text{ is a non-zero constant}$ | | |----|--|-----| | | (a) Determine \mathbf{M}^{-1} , giving your answer in simplest form in terms of k . Hence, given that $\mathbf{N}^{-1} = \begin{pmatrix} k & k \\ 4 & -1 \end{pmatrix}$ | (2) | | | (b) determine $(\mathbf{M}\mathbf{N})^{-1}$, giving your answer in simplest form in terms of k . | (2) | | | | | | | | | | |
| Question 3 continued | | | |----------------------|------------------------------|--| (Tota | l for Question 3 is 4 marks) | | | (2000) | , | | | 4. | $f(z) = 2z^4 - 19z^3 + Az^2 + Bz - 156$ | | |----|---|-----| | | where A and B are constants. | | | | The complex number $5 - i$ is a root of the equation $f(z) = 0$ | | | | (a) Write down another complex root of this equation. | | | | | (1) | | | (b) Solve the equation $f(z) = 0$ completely. | (5) | | | (c) Determine the value of A and the value of B. | | | | (c) Determine the value of it and the value of D. | (2) | Question 4 continued | | | |----------------------|--|--| Question 4 continued | | | |----------------------|--|--| Question 4 continued | | |----------------------|----------------------------| (Total fo | r Question 4 is 8 marks) | | (Iotai Io. | Z WODOLOGI I ID O MINI IND | | 5. | The quadratic equation | | |----|---|-----| | | $2x^2 - 3x + 5 = 0$ | | | | has roots α and β | | | | Without solving the equation, | | | | (a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ | (1) | | | (b) determine the value of | | | | (i) $\alpha^2 + \beta^2$ | | | | (ii) $\alpha^3 + \beta^3$ | | | | | (4) | | | (c) find a quadratic equation which has roots | | | | $(\alpha^3 - \beta)$ and $(\beta^3 - \alpha)$ | | | | giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined. | | | | | (5) | Question 5 continued | | | | | |----------------------|--|--|--|--| Question 5 continued | | | | | |----------------------|--|--|--|--| Question 5 continued | | | | |----------------------|------------------------------------|--|--| (To | tal for Question 5 is 10 marks) | | | | (10 | THE TOTAL VIOLENTIAL TO THE HIRING | | | | 6. | The parabola C has equation $y^2 = 36x$ | | |----|---|-----| | | The point $P(9t^2, 18t)$, where $t \neq 0$, lies on C | | | | (a) Use calculus to show that the normal to C at P has equation | | | | $y + tx = 9t^3 + 18t$ | (4) | | | (b) Hence find the equations of the two normals to C which pass through the point (54, 0), giving your answers in the form $y = px + q$ where p and q are constants to be determined. | (4) | | | Given that | | | | • the normals found in part (b) intersect the directrix of C at the points A and B | | | | • the point <i>F</i> is the focus of <i>C</i> | | | | (c) determine the area of triangle <i>AFB</i> | (3) | Question 6 continued | |----------------------| Question 6 continued | | |----------------------|--| Question 6 continued | | |----------------------|-------------------------| /TES 4 3 P | Ougstion (!- 11 ! ·) | | (Total for | Question 6 is 11 marks) | | 7 | A - | $\left(-\frac{\sqrt{3}}{2}\right)$ | $-\frac{1}{2}$ | |-----------|---------------------------|--|-----------------------| | 7. | $\mathbf{A} = \mathbf{A}$ | $\begin{pmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}$ | $-\frac{\sqrt{3}}{2}$ | (a) Determine the matrix A^2 - **(1)** - (b) Describe fully the single geometrical transformation represented by the matrix \mathbf{A}^2 - **(2)** - (c) Hence determine the smallest positive integer value of n for which $\mathbf{A}^n = \mathbf{I}$ - **(1)** The matrix **B** represents a stretch scale factor 4 parallel to the x-axis. (d) Write down the matrix **B** **(1)** The transformation represented by matrix ${\bf A}$ followed by the transformation represented by matrix ${\bf B}$ is represented by the matrix ${\bf C}$ (e) Determine the matrix C **(2)** The parallelogram P is transformed onto the parallelogram P' by the matrix \mathbb{C} (f) Given that the area of parallelogram P' is 20 square units, determine the area of parallelogram P **(2)** www.CasperYC.club/ial | Question 7 continued | |----------------------| Question 7 continued | | |----------------------|--| Question 7 continued | | | | |-----------------------|---------------|--|--| (Total for Question 7 | 7 is 9 marks) | | | | (Total for Question / | is / mulikaj | | | | 8. | (a) Use the standard results for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r$ to show that for all positive integers n | | |----|---|-----| | | $\sum_{r=0}^{n} (r+1)(r+2) = \frac{1}{3}(n+1)(n+2)(n+3)$ | (5) | | | (b) Hence determine the value of | | | | $10 \times 11 + 11 \times 12 + 12 \times 13 + + 100 \times 101$ | (3) | Question 8 continued | | |----------------------|--| Question 8 continued | | |----------------------|--|
 | Question 8 continued | | | | |-----------------------------------|--|--|--| (Total for Question 8 is 8 marks) | | | | | (Total for Question 6 is 6 marks) | | | | | 9. | (i) A sequence of numbers is defined by | | |----|--|-----| | | $u_1 = 3$ | | | | $u_{n+1} = 2u_n - 2^{n+1}$ $n \geqslant 1$ | | | | Prove by induction that, for $n \in \mathbb{N}$ | | | | $u_n = 5 \times 2^{n-1} - n \times 2^n$ | (=) | | | (ii) Prove by induction that, for $n \in \mathbb{N}$ | (5) | | | $f(n) = 5^{n+2} - 4n - 9$ | | | | is divisible by 16 | | | | | (5) | Question 9 continued | | | | |----------------------|--|--|--| Question 9 continued | | | | |----------------------|--|--|--| Question 9 continued | | | | |----------------------|--|--|--| Question 9 continued | | | | |----------------------|------------|------------------------------------|--| (Total for Question 9 is 10 marks) | | | | | | | | | | TOTAL FOR PAPER: 75 MARKS | | | | END | | | | Please check the examination details below before entering your candidate information | | | | |---|-----------------|-----------------|-------------| | Candidate surname | | Other names | | | Centre Number Candidate Nu | umber | | | | Pearson Edexcel Internati | onal Adv | vanced Lev | ⁄el | | Time 1 hour 30 minutes | Paper reference | WFM | 01/01 | | Mathematics International Advanced Subsidiary/ Advanced Level Further Pure Mathematics F1 | | | | | You must have:
Mathematical Formulae and Statistics | Tables (Yello | ow), calculator | Total Marks | Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided - there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 9 questions in this question paper. The total mark for this paper is 75. - The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each guestion. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. | 1. | Given that $\mathbf{A} = \begin{pmatrix} 2 & -1 & 3 \\ -2 & 3 & 0 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 1 & k \\ 0 & -3 \\ 2k & 2 \end{pmatrix}$ | | |----|--|-----| | | where k is a non-zero constant, | | | | | | | | (a) determine the matrix AB | (2) | | | (b) determine the value of k for which $det(\mathbf{AB}) = 0$ | | | | (b) determine the value of k for which det(AB) = 0 | (3) | Question 1 continued | | | | |----------------------|----------------------------------|--|--| Total for Question 1 is 5 marks) | | | | 2. | In this question you must show all stages of your working. | | | |----|---|-----|--| | | Solutions relying entirely on calculator technology are not acceptable. | | | | | Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that for all positive integers n | | | | | $\sum_{r=1}^{n} (7r-5)^{2} = \frac{n}{6} (7n+1) (An+B)$ | | | | | where A and B are integers to be determined. | (6) | Question 2 continued | | | | |----------------------|---------------------------------|--|--| (T | otal for Question 2 is 6 marks) | | | | 3. | In this question you must show all stages of your working. | | |----|--|-----| | | Solutions relying entirely on calculator technology are not acceptable. | | | | $f(z) = 4z^3 + pz^2 - 24z + 108$ | | | | where p is a constant. | | | | Given that -3 is a root of the equation $f(z) = 0$ | | | | (a) determine the value of p | (2) | | | (b) using algebra, solve $f(z) = 0$ completely, giving the roots in simplest form, | (4) | | | (c) determine the modulus of the complex roots of $f(z) = 0$ | (2) | | | (d) show the roots of $f(z) = 0$ on a single Argand diagram. | (2) | Question 3 continued | |----------------------| Question 3 continued | |----------------------| Question 3 continued | | | |------------------------------------|--|--| (Total for Question 3 is 10 marks) | | | | 4 | | |----|--| | 4. | | $$f(x) = 1 - \frac{1}{8x^4} + \frac{2}{7\sqrt{x^7}} \qquad x > 0$$ The equation f(x) = 0 has a single root, α , that lies in the interval [0.15, 0.25] - (a) (i) Determine f'(x) - (ii) Explain why 0.25 cannot be used as an initial approximation for α in the Newton-Raphson process. - (iii) Taking 0.15 as a first approximation to α apply the Newton-Raphson process once to f(x) to obtain a second approximation to α Give your answer to 3 decimal places. **(5)** (b) Use linear interpolation once on the interval [0.15, 0.25] to find another approximation to α Give your answer to 3 decimal places. **(3)** | Question 4 continued | |----------------------| Question 4 continued | |----------------------| Question 4 continued | | | |-----------------------------------|--|--| (Total for Question 4 is 8 marks) | | | | (Total for Question 4 is 6 marks) | | | | 5. | The quadratic equation | | |----|--|-----| | | $4x^2 + 3x + k = 0$ | | | | where k is an
integer, has roots α and β | | | | (a) Write down, in terms of k where appropriate, the value of $\alpha + \beta$ and the value of $\alpha\beta$ | (2) | | | (b) Determine, in simplest form in terms of k , the value of $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$ | (4) | | | (c) Determine a quadratic equation which has roots | | | | $\frac{\alpha}{\beta^2}$ and $\frac{\beta}{\alpha^2}$ | | | | giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integer | | | | values in terms of k | (3) | Question 5 continued | |----------------------| Question 5 continued | |----------------------| Question 5 continued | | | |---------------------------------|----|--| (Total for Question 5 is 9 mark | s) | | | (2000 101 Yanning 10) IIIIII | -, | | | 6. | In this question you must show all stages of your working. | | |----|---|-----| | | Solutions relying entirely on calculator technology are not acceptable. | | | | The rectangular hyperbola H has equation $xy = 20$ | | | | The point $P\left(2t\sqrt{a}, \frac{2\sqrt{a}}{t}\right)$, $t \neq 0$, where a is a constant, is a general point on H | | | | (a) State the value of a | (1) | | | (b) Show that the normal to H at the point P has equation | | | | $ty - t^3x - 2\sqrt{5}\left(1 - t^4\right) = 0$ | (4) | | | The points A and B lie on H | | | | The point A has parameter $t = c$ and the point B has parameter $t = -\frac{1}{2c}$, where c is a constant. | | | | The normal to H at A meets H again at B | | | | (c) Determine the possible values of c | (4) | Question 6 continued | | | |----------------------|--|--| Question 6 continued | |----------------------| Question 6 continued | | |---------------------------------|-----| (Total for Question 6 is 9 mark | (s) | | (20m 101 Question 0 10 5 mar) | -~/ | | 7 | (:) | |---|-----| | / | (1) | | | (1) | $$\mathbf{P} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$ The matrix ${\bf P}$ represents a geometrical transformation U (a) Describe U fully as a single geometrical transformation. **(2)** The transformation V, represented by the 2×2 matrix \mathbf{Q} , is a rotation through 240° anticlockwise about the origin followed by an enlargement about (0, 0) with scale factor 6 (b) Determine the matrix \mathbf{Q} , giving each entry in exact numerical form. **(2)** Given that U followed by V is the transformation T, which is represented by the matrix \mathbf{R} (c) determine the matrix \mathbf{R} **(2)** (ii) The transformation W is represented by the matrix $$\begin{pmatrix} -2 & 2\sqrt{3} \\ 2\sqrt{3} & 2 \end{pmatrix}$$ Show that there is a real number λ for which W maps the point $(\lambda, 1)$ onto the point $(4\lambda, 4)$, giving the exact value of λ **(5)** | Question 7 continued | |----------------------| Question 7 continued | |----------------------| Question 7 continued | | |------------------------------------|---| | | - | | | _ | | | _ | | | - | | | _ | | | _ | | | _ | | | - | | | _ | | | _ | | | _ | | | - | | | _ | | | _ | | | - | | | _ | | | _ | | | - | | | - | | | _ | | | _ | | (Total for Question 7 is 11 marks) | - | | (Total for Question / Is 11 marks) | - | | 8. | A parabola C has equation $y^2 = 4ax$ where a is a positive constant. | | |----|--|-----| | | The point <i>S</i> is the focus of <i>C</i> | | | | The line l_1 with equation $y = k$ where k is a positive constant, intersects C at the point P | | | | (a) Show that | | | | $PS = \frac{k^2 + 4a^2}{4a}$ | (3) | | | The line l_2 passes through P and intersects the directrix of C on the x -axis. | | | | The line l_2 intersects the y-axis at the point A | | | | (b) Show that the y coordinate of A is $\frac{4a^2k}{k^2 + 4a^2}$ | (3) | | | The line l_1 intersects the directrix of C at the point B | | | | Given that the areas of triangles BPA and OSP , where O is the origin, satisfy the ratio | | | | area BPA : area $OSP = 4k^2$: 1 | | | | (c) determine the exact value of a | (5) | Question 8 continued | |----------------------| Question 8 continued | |----------------------| Question 8 continued | | |------------------------------------|---| | | _ | | | | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | | _ | | (Total for Question 8 is 11 marks) | _ | | (Total for Question 6 is 11 marks) | _ | | 9. Prove l | by induction that for all po | ositive integers n | | |------------|------------------------------|--|-----| | | | $\sum_{r=1}^{n} \log \left(2r-1\right) = \log \left(\frac{(2n)!}{2^{n} n!}\right)$ | (6) | Question 9 continued | |----------------------| Question 9 continued | | | | |----------------------|-----------------------------------|--|--| (Total for Question 9 is 6 marks) | | | | | | | | | | TOTAL FOR PAPER IS 75 MARKS | | | | Please check the examination details below before entering your candidate information | | | | |--|---------------------------|--|--| | Candidate surname | Other names | | | | Centre Number Candidate Numb Pearson Edexcel Interna | | | | | Tuesday 30 May 2023 | | | | | | oper WFM01/01 | | | | Mathematics International Advanced Subsidiary/Advanced Level Further Pure Mathematics F1 | | | | | You must have:
Mathematical Formulae and Statistical Tak | oles (Yellow), calculator | | | Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use black ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 9 questions in this question paper. The total mark for this paper is 75. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. | 1. | Use the standard results for | $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n | | |----|-------------------------------------|---|-----| | | | $\sum_{r=1}^{n} r^{2} (r+2) = \frac{1}{12} n(n+1) (an^{2} + bn + c)$ | | | | where a , b and c are integer | rs to be determined. | (4) | Question 1 continued | | | | |-------------------------------|------|--|--|
 | (Total for Question 1 is 4 ma | rks) | | | | | | | | | 2. | In this question you must show all stages of your working. | | |----|---|-----| | | Solutions relying on calculator technology are not acceptable. | | | | Given that $x = 2 + 3i$ is a root of the equation | | | | $2x^4 - 8x^3 + 29x^2 - 12x + 39 = 0$ | | | | (a) write down another complex root of this equation. | (1) | | | (b) Use algebra to determine the other 2 roots of the equation. | (4) | | | (c) Show all 4 roots on a single Argand diagram. | (2) | Question 2 continued | | | | |----------------------|--|--|--| Question 2 continued | | | | |----------------------|--|--|--| Question 2 continued | | | | |----------------------|---|--|--| (T | otal for Question 2 is 7 marks) | | | | (1 | Comment of the same th | | | | 3. | The rectangular hyperbola H has Cartesian equation $xy = 9$ | | |----|--|-----| | | The point <i>P</i> with coordinates $\left(3t, \frac{3}{t}\right)$, where $t \neq 0$, lies on <i>H</i> | | | | (a) Use calculus to determine an equation for the normal to H at the point P | | | | Give your answer in the form $ty - t^3x = f(t)$ | (4) | | | Given that $t = 2$ | | | | (b) determine the coordinates of the point where the normal meets H again. | | | | Give your answer in simplest form. | (3) | Question 3 continued | | | | |----------------------|-------------------------------|--|--| (Tot | al for Question 3 is 7 marks) | | | | · | | | | | 4. | (i) | $\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -3 & k \end{pmatrix} \qquad \text{where } k \text{ is a constant}$ | | |----|------|---|-----| | | | The transformation represented by A transforms triangle T to triangle T' | | | | | The area of triangle T' is three times the area of triangle T | | | | | Determine the possible values of k | | | | | (2.5.1) | (4) | | | (ii) | $\mathbf{B} = \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix}$ and $\mathbf{BC} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$ where a is a constant | | | | | Determine, in terms of a , the matrix \mathbf{C} | | | | | | (4) | Question 4 continued | | | | |----------------------|--|--|--| Question 4 continued | | | |----------------------|--|--| Question 4 continued | | | |----------------------|-----------------------------------|--| (Total for Question 4 is 8 marks) | | | 5. | $f(x) = x^2 - 6x + 3$ | | |----|--|-----| | | The equation $f(x) = 0$ has roots α and β | | | | Without solving the equation, | | | | (a) determine the value of | | | | $(\alpha^2+1)(\beta^2+1)$ | (4) | | | (b) find a quadratic equation which has roots | | | | $\frac{\alpha}{(\alpha^2+1)}$ and $\frac{\beta}{(\beta^2+1)}$ | | | | giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined. | | | | | (6) | Question 5 continued | | | | |----------------------|--|--|--| Question 5 continued | | | | |----------------------|--|--|--| Question 5 continued | | | |----------------------|----------------------------------|--| (T | otal for Question 5 is 10 marks) | | | <u>.</u> | | | | 6. | In this question you must show all stages of your working. | | |----|---|-----| | | Solutions relying entirely on calculator technology are not acceptable. | | | | $z_1 = 3 + 2i$ $z_2 = 2 + 3i$ $z_3 = a + bi$ $a,b \in \mathbb{R}$ | | | | (a) Determine the exact value of $ z_1 + z_2 $ | (2) | | | Given that $w = \frac{z_2 z_3}{z_1}$ | (2) | | | (b) determine w in terms of a and b , giving your answer in the form $x + iy$, where $x, y \in
\mathbb{R}$ | | | | Given also that $w = \frac{4}{13} + \frac{58}{13}i$ | (4) | | | (c) determine the value of a and the value of b | (2) | | | (d) determine arg w, giving your answer in radians to 4 significant figures. | (2) | | | (a) acternatic arg w, giving your answer in radians to 4 significant rigures. | (2) | Question 6 continued | | | | |----------------------|--|--|--| Question 6 continued | | | | |----------------------|--|--|--| Question 6 continued | | | |----------------------|-----------------------------------|--| Total for Question 6 is 10 marks) | | | | | | | • | $f(x) = x^{\frac{3}{2}} + x - 3$ | | |---|---|------------| | | (a) Show that the equation $f(x) = 0$ has a root, α , in the interval [1, 2] | | | | | (2) | | | (b) Starting with the interval [1, 2], use interval bisection twice to show that α lies in the interval [1.25, 1.5] | | | | | (3) | | | (c) (i) Determine $f'(x)$ | | | | (ii) Using 1.375 as a first approximation for α , apply the Newton-Raphson process once to $f(x)$ to determine a second approximation for α , giving your answer to 3 decimal places. | | | | o wooman process | (3) | | | (d) Use linear interpolation once on the interval [1.25, 1.5] to obtain a different | | | | approximation for α , giving your answer to 3 decimal places. | (3) | _ | _ | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | _ | _ | | | | | | | | | | | | - | | | | Question 7 continued | | | |----------------------|--|--| Question 7 continued | | | |----------------------|--|--| Question 7 continued | | | |----------------------|------------------------------------|--| (Total for Question 7 is 11 marks) | | | | | | | 8. | The point $P(2p^2, 4p)$ lies on the parabola with equation $y^2 = 8x$ | | |----|---|-----| | | (a) Show that the point $Q\left(\frac{2}{p^2}, \frac{-4}{p}\right)$, where $p \neq 0$, lies on the parabola. | | | | (b) Show that the chord PQ passes through the focus of the parabola. | (1) | | | | (4) | | | The tangent to the parabola at <i>P</i> and the tangent to the parabola at <i>Q</i> meet at the point <i>R</i> (c) Determine, in simplest form, the coordinates of <i>R</i> | (0) | | | | (8) | Question 8 continued | | | |----------------------|--|--| Question 8 continued | | | |----------------------|--|--| Question 8 continued | | | |----------------------|-----------------------|--| (Total for Que | estion 8 is 13 marks) | | | 9. | Prove, by induction, that for $n \in \mathbb{Z}$, $n \ge 2$ | | | | |----|--|-----|--|--| | | $4^{n} + 6n - 10$ | | | | | | is divisible by 18 | (5) | Question 9 continued | | | |----------------------|--|--| Question 9 continued | | | |----------------------|-----------------------------------|--| (Total for Question 9 is 5 marks) | | | | TOTAL FOR PAPER IS 75 MARKS | | | Please check the examination details below before entering your candidate information | | | | |---|--------------------|--|--| | Candidate surname | Other names | | | | Centre Number Candidate Number Pearson Edexcel International Advanced Level | | | | | Friday 12 January 2024 | | | | | Morning (Time: 1 hour 30 minutes) Paper reference | wFM01/01 | | | | Mathematics | | | | | International Advanced Subsidiary/ Advanced Level Further Pure Mathematics F1 | | | | | You must have:
Mathematical Formulae and Statistical Tables (Ye | ellow), calculator | | | Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use black ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## **Information** - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 10 questions in this question paper. The total mark for this paper is 75. - The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. | 1. | | |---|-----| | $\mathbf{M} = \begin{pmatrix} 2k+1 & k \\ k+7 & k+4 \end{pmatrix} \text{ where } k \text{ is a constant}$ | | | (a) Show that \mathbf{M} is non-singular for all real values of k . | (3) | | (b) Determine \mathbf{M}^{-1} in terms of k . | (2) | Question 1 continued | | | |-----------------------------------|---|--| | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | (Total for Question 1 is 5 marks) | _ | | | | _ | | | 2. | | |--|-----| | $f(z) = 2z^3 + pz^2 + qz - 41$ | | | where p and q are integers. | | | The complex number $5 - 4i$ is a root of the equation $f(z) = 0$ | | | (a) Write down another complex root of this equation. | (1) | | (b) Solve the equation $f(z) = 0$ completely. | (1) | | (b) Solve the
equation $\Gamma(z) = 0$ completely. | (4) | | (c) Determine the value of p and the value of q . | (2) | | When plotted on an Argand diagram, the points representing the roots of the equation $f(z) = 0$ form the vertices of a triangle. | | | (d) Determine the area of this triangle. | (2) | Question 2 continued | |----------------------| Question 2 continued | | | |----------------------|--|--| Question 2 continued | |-----------------------------------| (Total for Question 2 is 9 marks) | | 3. | The hyperbola <i>H</i> has equation $xy = c^2$ where <i>c</i> is a positive constant. | | |----|---|-----| | | The point $P\left(ct, \frac{c}{t}\right)$, where $t > 0$, lies on H . | | | | The tangent to H at P meets the x -axis at the point A and meets the y -axis at the point B . | | | | (a) Determine, in terms of c and t , | | | | (i) the coordinates of A , | | | | (ii) the coordinates of B . | (4) | | | Given that the area of triangle AOB , where O is the origin, is 90 square units, | | | | (b) determine the value of c, giving your answer as a simplified surd. | | | | (c) and c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | (2) | Question 3 continued | | |----------------------|-----------------------------------| (Total for Question 3 is 6 marks) | | 4. | $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ | | |----|--|-----| | | (a) Describe the single geometrical transformation represented by the matrix \mathbf{A} . | (2) | | | The matrix B represents a rotation of 210° anticlockwise about centre (0, 0). | | | | (b) Write down the matrix \mathbf{B} , giving each element in exact form. | (1) | | | The transformation represented by matrix $\bf A$ followed by the transformation represented by matrix $\bf B$ is represented by the matrix $\bf C$. | | | | (c) Find C. | (2) | | | The hexagon H is transformed onto the hexagon H' by the matrix \mathbb{C} . | | | | (d) Given that the area of hexagon H is 5 square units, determine the area of hexagon H' | (2) | Question 4 continued | | |----------------------|-----------------------------------| (Total for Question 4 is 7 marks) | | has roots α and β Without solving the equation, (a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (b) determine the value of $\alpha^2 + \beta^2$ (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined. (6) | | |---|--| | Without solving the equation, (a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (b) determine the value of $\alpha^2 + \beta^2$ (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined. | | | (a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (1) (b) determine the value of $\alpha^2 + \beta^2$ (2) (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined. | | | (b) determine the value of $\alpha^2 + \beta^2$ (2) (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined. | | | (b) determine the value of $\alpha^2 + \beta^2$ (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined. | | | (c) find a quadratic equation which has roots $\left(\alpha-\frac{1}{\beta^2}\right) \text{ and } \left(\beta-\frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2+qx+r=0$ where p,q and r are integers to be determined. | | | $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined. | | | giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined. | | | be determined. | Question 5 continued | | | |----------------------|--|--| Question 5 continued | | | |----------------------|--|--| Question 5 continued | | | |--------------------------|----------|--| 0 1 \ | | | (Total for Question 5 is | y marks) | | | 6. | (i) | | | |----|------|---|-----| | | | $f(x) = x - 4 - \cos\left(5\sqrt{x}\right) \qquad x > 0$ | | | | (| a) Show that the equation $f(x) = 0$ has a root α in the interval [2.5, 3.5] | (2) | | | (| b) Use linear interpolation once on the interval [2.5, 3.5] to find an approximation to α , giving your answer to 2 decimal places. | (2) | | | (ii) | | (2) | | | | $g(x) = \frac{1}{10}x^2 - \frac{1}{2x^2} + x - 11$ $x > 0$ | | | | (| a) Determine $g'(x)$. | (2) | | | , | The equation $g(x) = 0$ has a root β in the interval [6, 7] | | | | (| b) Using $x_0 = 6$ as a first approximation to β , apply the Newton-Raphson procedur once to $g(x)$ to find a second approximation to β , giving your answer to 3 decimal places. | e | | | | 3 decimal places. | (2) | Question 6 continued | |----------------------| Question 6 continued | |----------------------| Question 6 continued | | |----------------------------|--------| (Total for Question 6 is 8 | marks) | | | | | 7. | The parabola C has equation $y^2 = \frac{4}{3}x$ | | |----|---|-----| | | The point $P\left(\frac{1}{3}t^2, \frac{2}{3}t\right)$, where $t \neq 0$, lies on C . | | | | (a) Use calculus to show that the normal to <i>C</i> at <i>P</i> has equation | | | | $3tx + 3y = t^3 + 2t$ | (3) | | | The normal to C at the point where $t = 9$ meets C again at the point Q . | | | | (b) Determine the exact coordinates of Q . | (4) |
| | | | | | | | | _ | |-----------------------------------|---| (Total for Question 7 is 7 marks) | | | 8. | (a) Use the standard results for summations to show that, for all positive integers n , | | | |----|---|--|-----| | | | $\sum_{r=1}^{n} r (2r^2 - 3r - 1) = \frac{1}{2} n (n+1)^2 (n-2)$ | (4) | | | (b) | Hence show that, for all positive integers n , | | | | | $\sum_{r=n}^{2n} r(2r^2 - 3r - 1) = \frac{1}{2}n(n-1)(an+b)(cn+d)$ | | | | | where a , b , c and d are integers to be determined. | (4) | _ | Question 8 continued | |----------------------| Question 8 continued | |----------------------| Question 8 continued | | |----------------------|-----------------------------------| (Total for Question 8 is 8 marks) | | 9. | Given that | | |----|---|-----| | | $\frac{3z-1}{2} = \frac{\lambda + 5i}{\lambda - 4i}$ | | | | where λ is a real constant, | | | | (a) determine z, giving your answer in the form $x + yi$, where x and y are real and in terms of λ . | | | | terms of λ . | (4) | | | Given also that $\arg z = \frac{\pi}{4}$ | | | | (b) find the possible values of λ . | (2) | Question 9 continued | |-----------------------------------| (Total for Question 9 is 6 marks) | | 10. (i) Prove by induction that for $n \in \mathbb{Z}^+$ | | |--|-----| | $ \begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}^n = 3^{n-1} \begin{pmatrix} 2n+3 & -n \\ 4n & 3-2n \end{pmatrix} $ | (5) | | (ii) Prove by induction that for $n \in \mathbb{Z}^+$ | | | $f(n) = 8^{2n+1} + 6^{2n-1}$ | | | is divisible by 7 | (5) | | | (3) | Question 10 continued | | | |-----------------------|--|--| Question 10 continued | | | |-----------------------|--|--| Question 10 continued | | | |-----------------------|--|--| Question 10 continued | | | |-----------------------|-------------------------------------|--| (Total for Question 10 is 10 marks) | | | | TOTAL FOR PAPER IS 75 MARKS | | | Please check the examination details below before entering your candidate information | | | |---|--------------------------|--| | Candidate surname | Other names | | | Centre Number Candidate Number Pearson Edexcel International Advanced Level | | | | Thursday 23 May 2024 | | | | Morning (Time: 1 hour 30 minutes) | Paper reference WFM01/01 | | | Mathematics International Advanced Subsidiary/ Advanced Level Further Pure Mathematics F1 | | | | You must have:
Mathematical Formulae and Statistical | Total Marks | | Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer all questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Inexact answers should be given to three significant figures unless otherwise stated. ## Information - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - There are 9 questions in this question paper. The total mark for this paper is 75. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - If you change your mind about an answer, cross it out and put your new answer and any working underneath. | 1. (i) The matrix A is defined by | | |---|-----| | $\mathbf{A} = \begin{pmatrix} 3k & 4k - 1 \\ 2 & 6 \end{pmatrix}$ | | | where k is a constant. | | | (a) Determine the value of k for which \mathbf{A} is singular. | (2) | | Given that A is non-singular, | | | (b) determine A^{-1} in terms of k , giving your answer in simplest form. | (2) | | (ii) The matrix \mathbf{B} is defined by | | | $\mathbf{B} = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$ | | | where p and q are integers. | | | State the value of p and the value of q when \mathbf{B} represents | | | (a) an enlargement about the origin with scale factor -2 | | | | | | (b) a reflection in the y-axis. | (2) | | (b) a reflection in the <i>y</i> -axis. | (2) | | (b) a reflection in the y-axis. | (2) | | (b) a reflection in the y-axis. | (2) | | (b) a reflection in the y-axis. | (2) | | (b) a reflection in the <i>y</i> -axis. | (2) | | (b) a reflection in the <i>y</i> -axis. | (2) | | (b) a reflection in the <i>y</i> -axis. | (2) | | (b) a reflection in the <i>y</i> -axis. | (2) | | (b) a reflection in the y-axis. | (2) | | (b) a reflection in the y-axis. | (2) | | (b) a reflection in the y-axis. | (2) | | (b) a reflection in the <i>y</i> —axis. | (2) | | Question 1 continued | | | |-----------------------------------|--|--| (Total for Question 1 is 6 marks) | | | | (1000 100 | | | | 2. | In this question you must show all stages of your working. | | | |----|---|-----|--| | | Solutions relying entirely on calculator technology are not acceptable. | | | | | $f(z) = z^3 - 13z^2 + 59z + p \qquad p \in \mathbb{Z}$ | | | | | Given that $z = 3$ is a root of the equation $f(z) = 0$ | | | | | (a) show that $p = -87$ | (2) | | | | (b) Use algebra to determine the other roots of $f(z) = 0$, giving your answers in simplest form. | (4) | | | | On an Argand diagram | | | | | • the root $z = 3$ is represented by the point P | | | | | • the other roots of $f(z) = 0$ are represented by the points Q and R | | | | | • the number $z = -9$ is represented by the point S | | | | | (c) Show on a single Argand diagram the positions of P , Q , R and S | (1) | | | | (d) Determine the perimeter of the quadrilateral <i>PQSR</i> , giving your answer as a simplified surd. | | | | | | (2) | Question 2 continued | | | |----------------------|--|--| Question 2 continued | | | |----------------------|--|--| | | | | | | | | | | | | | | | | | |
| Question 2 continued | | |----------------------|--------------------------------| (Tat | al for Question 2 is 9 marks) | | (100 | ui ioi Question 2 is / mai ks) | | 3. | $f(x) = x^3 - 5\sqrt{x} - 4x + 7 \qquad x \geqslant 0$ | | |----|--|-----| | | The equation $f(x) = 0$ has a root α in the interval [0.25, 1] | | | | (a) Use linear interpolation once on the interval [0.25, 1] to determine an approximation to α , giving your answer to 3 decimal places. | | | | | (3) | | | The equation $f(x) = 0$ has another root β in the interval [1.5, 2.5] | | | | (b) Determine $f'(x)$ | (2) | | | (c) Hence, using $x_0 = 1.75$ as a first approximation to β , apply the Newton–Raphson process once to $f(x)$ to determine a second approximation to β , giving your answer to 3 decimal places. | | | | • | (2) | Question 3 continued | |-----------------------------------| (Total for Question 3 is 7 marks) | | , | | 4. | In this question you must show all stages of your working. | | |----|--|-----| | | Solutions relying entirely on calculator technology are not acceptable. | | | | The complex number z is defined by | | | | z = -3 + 4i | | | | (a) Determine $ z^2 - 3 $ | (3) | | | (b) Express $\frac{50}{z^*}$ in the form kz , where k is a positive integer. | | | | (c) Hence find the value of $\arg\left(\frac{50}{z^*}\right)$ | (3) | | | Give your answer in radians to 3 significant figures. | (2) | Question 4 continued | | |----------------------|--------------------------| (Total fo | r Question 4 is 8 marks) | | (Total To | Zaconon i is o marks) | | 5. | The equation $5x^2 - 4x + 2 = 0$ has roots $\frac{1}{p}$ and $\frac{1}{q}$ | | |----|--|-----| | | (a) Without solving the equation, | | | | (i) show that $pq = \frac{5}{2}$ | | | | (ii) determine the value of $p + q$ | (4) | | | (b) Hence, without finding the values of p and q , determine a quadratic equation with roots | | | | $\frac{p}{p^2+1}$ and $\frac{q}{q^2+1}$ | | | | giving your answer in the form $ax^2 + bx + c = 0$ where a, b and c are integers. | (5) | | | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | Question 5 continued | |----------------------| Question 5 continued | |----------------------| Question 5 continued | | |----------------------|-------------------------------| (Total | al for Question 5 is 9 marks) | | (100 | ar for Question 5 is 7 marks) | $$\begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^n = \begin{pmatrix} 1 & (2^n - 1)r \\ 0 & 2^n \end{pmatrix}$$ where r is a constant. **(4)** $$\mathbf{M} = \begin{pmatrix} 4 & 0 \\ 0 & 5 \end{pmatrix} \qquad \mathbf{N} = \begin{pmatrix} 1 & -2 \\ 0 & 2 \end{pmatrix}^4$$ The transformation represented by matrix M followed by the transformation represented by matrix \mathbf{N} is represented by the matrix \mathbf{B} - (b) (i) Determine **N** in the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c and d are integers. - (ii) Determine B **(3)** Hexagon S is transformed onto hexagon S' by matrix **B** | (c) | Given that the area of S' | is 720 square units, | determine the area of S | | |-----|---------------------------|----------------------|-------------------------|--| | | | | | | **(2)** |
 |
 | |------|------|
 | | | | | | | | |
 | Question 6 continued | |----------------------| Question 6 continued | |----------------------| Question 6 continued | | |----------------------|----------------------------------| (To | tal for Question 6 is 9 marks) | | (10 | war zoz Zuestavia o as / mur ms/ | | 7. | In this question use the standard results for summations. | | |----|---|-----| | | (a) Show that for all positive integers n | | | | $\sum_{r=1}^{n} (12r^2 + 2r - 3) = An^3 + Bn^2$ | | | | where A and B are integers to be determined. | (4) | | | (b) Hence determine the value of n for which | | | | $\sum_{r=1}^{2n} r^3 - \sum_{r=1}^{n} (12r^2 + 2r - 3) = 270$ | (4) | Question 7 continued | |-----------------------------------| (Total for Question 7 is 8 marks) | | | | 8. | Prove by induction that for $n \in \mathbb{Z}^+$ | | |----|--|-----| | | $f(n) = 7^{n-1} + 8^{2n+1}$ | | | | is divisible by 57 | (6) | _ | | | | _ | Question 8 continued | |-----------------------------------| (Total for Question 8 is 6 marks) | | | | 9. | The rectangular hyperbola H has equation $xy = c^2$ where c is a positive constant. | | |----|---|-----| | | The point $P\left(ct, \frac{c}{t}\right)$, where $t > 0$, lies on H | | | | (a) Use calculus to show that an equation of the normal to H at P is | | | | $t^3x - ty = c(t^4 - 1)$ | | | | | (4) | | | The parabola C has equation $y^2 = 6x$ | | | | The normal to H at the point with coordinates (8, 2) meets C at the point Q where $y > 0$ | | | | (b) Determine the exact coordinates of Q | (4) | | | Given that | | | | • the point <i>R</i> is the focus of <i>C</i> | | | | • the line <i>l</i> is the directrix of <i>C</i> | | | | • the line through Q and R meets l at the point S | | | | (c) determine the exact length of QS | (5) | Question 9 continued | |----------------------| Question 9 continued | |----------------------| Question 9 continued | |----------------------| Question 9 continued | | |----------------------|------------------------------------| (Total for Overtion 0 is 12 arks) | | | (Total for Question 9 is 13 marks) | | | TOTAL FOR PAPER IS 75 MARKS |