Pearson Edexcel IAL Further Mathematics Further Mathematics 1

Past Paper Collection (from 2020)

www.CasperYC.club/wfm01

Last updated: July 1, 2024

Paper Name	Page	Paper Name	Page	Paper Name	Page
FP1 2020 01	1			FP1 2020 10	29
FP1 2021 01	61	FP1 2021 06	93	FP1 2021 10	125
FP1 2022 01	161	FP1 2022 06	197		
FP1 2023 01	233	FP1 2023 06	265		
FP1 2024 01	297	FP1 2024 06	329		

Please check the examination details	below	before ente	ering your can	didate information	
Candidate surname			Other names	5	
Pearson Edexcel International Advanced Level	Centre	Number		Candidate Numbe	r
Tuesday 14 Jan	nu	ary	202	0	
Afternoon (Time: 1 hour 30 minute:	s)	Paper R	eference V	/FM01/01	
Mathematics International Advanced Further Pure Mathemati		,	y/Advar	iced Level	
You must have: Mathematical Formulae and Statist	tical T	ābles (Blu	ue), calcula	tor Total Ma	arks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Leave blank

$\mathbf{A} = \begin{pmatrix} p & -5 \\ -2 & p+3 \end{pmatrix}$	
(a) Determine the values of the constant p for which \mathbf{A} is singular.	(3)
Given that $p = 3$	
(b) determine \mathbf{A}^{-1}	(3)

uestion 1 continued	

Leave	
blank	

Given that $x = -\frac{1}{3}$ is a	root of the equation		
J	$3x^3 + kx^2 + 33x + 13 = 0$	$k \in \mathbb{R}$	
determine			
(a) the value of k ,			(2)
(b) the other 2 roots of	of the equation in the form a	a + ib, where a and b are real	d numbers. (4)

uestion 2 continued	

Leave blank

$\sum_{r=1}^{n} r^2 (2r+3) = \frac{n}{2} (n+1)(n^2+3n+1)$	(4)
25	, ,
(b) Hence calculate the value of $\sum_{r=10}^{25} r^2 (2r + 3)$	(2)
r=10	(2)

uestion 3 continued	

Leave blank

4.	$z_1 = p + 5i,$	$z_2 = 9 + 8i$	and	$z_3 = \frac{z_1}{z_2}$
----	-----------------	----------------	-----	-------------------------

where p is a real constant.

(a) Determine z_3 in the form x + iy, where x and y are in terms of p

(3)

(b) Determine the exact value of the modulus of z_2

(1)

Given that the argument of z_1 is $\frac{\pi}{3}$

(c) (i) determine the exact value of p

(ii) determine the exact value of the modulus of z_3

(3)

nestion 4 continued	

Leave

5.	$f(x) = x^4 - 12x^{\frac{3}{2}} + 7 \qquad x \geqslant 0$
(a) Show that the equation $f(x) = 0$ has a root, α , in the interval [2, 3]. (2)
(Taking 2.5 as a first approximation to α, apply the Newton-Raphson procedure once to f(x) to find a second approximation to α, giving your answer to 2 decimal places. (4)
(c) Show that your answer to (b) gives α correct to 2 decimal places. (2)

Question 5 continued	P
	Q

$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$	
The transformation represented by A maps the point $R(3p-13, p-4)$, constant, onto the point $R'(7, -2)$	where p is a
(a) Determine the value of p	(3)
The point S has coordinates $(0, 7)$	
Given that O is the origin,	
(b) determine the area of triangle <i>ORS</i>	(2)
The transformation represented by A maps the triangle ORS onto the triangle	le <i>OR'S'</i>
(c) Hence, using your answer to part (b), determine the area of triangle <i>OR</i>	2'S' (2)

Question 6 continued	l t	blanl

Question 6 continued	Leave blank
Question o continued	

Question 6 continued	

Leave blank

- 7. The equation $3x^2 + px 5 = 0$, where p is a constant, has roots α and β .
 - (a) Determine the value of
 - (i) $\alpha\beta$

(ii)
$$\left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$$

- (b) Obtain an expression, in terms of p, for
 - (i) $\alpha + \beta$

(ii)
$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$$
 (3)

Given that

$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = 2\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$$

(c) determine the value of p.

(1) (d) Using the value of p found in part (c), obtain a quadratic equation, with integer

coefficients, that has roots $\left(\alpha + \frac{1}{\beta}\right)$	$\left(\frac{1}{\beta}\right)$ and $\left(\beta + \frac{1}{\alpha}\right)$	(2)

Question 7 continued	I	Leave blank
Question / continued		

Question 7 continued	blan

Question 7 continued	
	(Total 9 marks)

Leave blank

8.	A rectangular hyperbola, H , has Cartesian equation $xy = 16$	blank
	The point $P\left(4t, \frac{4}{t}\right)$, $t \neq 0$, lies on H .	
	(a) Use calculus to show that an equation of the normal to H at P is	
	$ty - t^3x = 4 - 4t^4 (5)$	
	The point A on H has parameter $t = 2$	
	The normal to H at A meets H again at the point B .	
	(b) Determine the exact value of the length of AB. (6)	
	The tangent to H at A meets the y -axis at the point C .	
	(c) Determine the exact area of triangle <i>ABC</i> . (3)	

Question 8 continued	blanl

Question 8 continued	Leave blank
Question o continued	

estion 8 continued	

$) = 7^{n}(3n+1) - 1$		
$\in \mathbb{Z}^+$, f(n) is a multiple of 9		(6)
and have		(0)
ned by		
$u_1 = 2 \qquad u_2 = 6$		
$3u_{n+1} - 2u_n \qquad n \in \mathbb{Z}^+$		
$\in \mathbb{Z}^{+}$		
$u_n = 2(2^n - 1)$		(6)
		I
	\mathbb{Z}^+ , $f(n)$ is a multiple of 9 ned by $u_1 = 2$ $u_2 = 6$ $3u_{n+1} - 2u_n$ $n \in \mathbb{Z}^+$ \mathbb{Z}^+	\mathbb{Z}^+ , $f(n)$ is a multiple of 9 ned by $u_1 = 2$ $u_2 = 6$ $3u_{n+1} - 2u_n$ $n \in \mathbb{Z}^+$ \mathbb{Z}^+

Question 9 continued	Leave blank
Question 9 continued	

Question 9 continued	Leave blank
Question 9 continued	

Question 9 continued	Leave blank
Question 9 continued	

Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Wednesday 21 (October 2020
Afternoon (Time: 1 hour 30 minutes)	Paper Reference WFM01/01
Mathematics International Advanced Sul Further Pure Mathematics I	,
You must have: Mathematical Formulae and Statistical	Tables (Blue), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Leave

	$f(x) = x^3 - \frac{10\sqrt{x} - 4x}{x^2} \qquad x > 0$	
(a)	Show that the equation $f(x) = 0$ has a root α in the interval [1.4, 1.5] (2)	
(b)	Determine $f'(x)$. (3)	
(c)	Using $x_0 = 1.4$ as a first approximation to α , apply the Newton-Raphson procedure once to $f(x)$ to calculate a second approximation to α , giving your answer to 3 decimal places.	

uestion 1 continued	

Leave

2.	The quadratic equation	b
	$5x^2 - 2x + 3 = 0$	
	has roots α and β .	
	Without solving the equation,	
	(a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (1)	
	(b) determine, giving each answer as a simplified fraction, the value of	
	(i) $\alpha^2 + \beta^2$	
	(ii) $\alpha^3 + \beta^3$	
	(c) determine a quadratic equation that has roots	
	$(\alpha + \beta^2)$ and $(\beta + \alpha^2)$	
	giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers. (4)	

Question 2 continued	Leave
Question 2 continued	

Question 2 continued	Leave
Question 2 continued	

Question 2 continued	
	(Total 9 marks)

Leave

3.	$f(z) = z^4 + az^3 + bz^2 + cz + d$	bla
	where a , b , c and d are integers.	
	The complex numbers $3 + i$ and $-1 - 2i$ are roots of the equation $f(z) = 0$	
	(a) Write down the other roots of this equation. (2)	
	(b) Show all the roots of the equation $f(z) = 0$ on a single Argand diagram. (2)	
	(c) Determine the values of a, b, c and d. (5)	

Question 3 continued	Leave blank
Question 5 continued	

Question 3 continued	Leave blank
Question 5 continued	

uestion 3 continued	

Leave	
blank	

			n	n		
4.	(a)	Use the standard results in	 $\sum_{r=1}^{\infty} r^2$	_	to show	that

$$\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3} n(4n^2 - 1)$$

for all positive integers n.

(5)

(b)	Hence	find	the	exact	value	of	the	sum	of	the	squares	of	the	odd	numbers
	betwee	n 200	and	500											

(4)

Question 4 continued	Leave
Question 4 continued	
	1

Question 4 continued	Leave
Question 4 continued	
	1

stion 4 continued	

Leave
blank

5. The rectangular hyperbola H has equation xy = 64

The point $P\left(8p, \frac{8}{p}\right)$, where $p \neq 0$, lies on H.

(a) Use calculus to show that the normal to H at P has equation

$$p^3x - py = 8(p^4 - 1)$$
(5)

The normal to H at P meets H again at the point Q.

(b) Determine, in terms of p, the coordinates of Q, giving your answers in simplest form.

Question 5 continued	Leave blank
Question 5 continued	

Question 5 continued	Leave blank
Question 5 continued	

estion 5 continued	

Leave blank

6	(i)	A _ (1	0)
6.	(1)	$\mathbf{A}=igg($	0	3)

(a) Describe fully the single transformation represented by the matrix ${\bf A}.$

(2)

The matrix **B** represents a rotation of 45° clockwise about the origin.

(b) Write down the matrix ${\bf B}$, giving each element of the matrix in exact form.

(1)

The transformation represented by matrix A followed by the transformation represented by matrix B is represented by the matrix C.

(c) Determine C.

(2)

(5)

(ii) The trapezium T has vertices at the points (-2, 0), (-2, k), (5, 8) and (5, 0), where k is a positive constant. Trapezium T is transformed onto the trapezium T' by the matrix

$$\begin{pmatrix} 5 & 1 \\ -2 & 3 \end{pmatrix}$$

Given that the area of trapezium T' is 510 square units, calculate the exact value of k.

Question 6 continued	Leave blank
Question o continued	

Question 6 continued	Leave blank
Question o continued	

estion 6 continued	

Leave	
hlank	

. The parabola C has equation $y^2 = 4ax$, where a is a positive constant.	
The line <i>l</i> with equation $3x - 4y + 48 = 0$ is a tangent to <i>C</i> at the point <i>P</i> .	
(a) Show that $a = 9$	4)
(b) Hence determine the coordinates of <i>P</i> . (2)	2)
Given that the point S is the focus of C and that the line l crosses the directrix of C at the point A ,	ne
(c) determine the exact area of triangle <i>PSA</i> . (4	4)
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Question 7 continued	I	Leave blank
Question / continued		

Question 7 continued	I	Leave blank
Question / continued		

Question 7 continued	b
	(Total 10 marks)

Leave	
blank	

8. (i) Prove by induction that, for $n \in \mathbb{Z}$	8.	(i)	Prove	by	induction	that,	for <i>n</i>	\in	\mathbb{Z}
---	----	-----	-------	----	-----------	-------	--------------	-------	--------------

$$\sum_{r=1}^{n} \frac{2r^2 - 1}{r^2(r+1)^2} = \frac{n^2}{(n+1)^2}$$

(6)

(ii) Prove by induction that, for	$r n \in \mathbb{Z}^+$
	$f(n) = 12^n + 2 \times 5^{n-1}$
is divisible by 7	(6)
	(6)

Question 8 continued	Leave blank
Question o continued	

Question 8 continued	Leave blank
Question o continued	

Question 8 continued	blan

Question 8 continued	Leave blank
	Q8
(Total 12 marks)	
TOTAL FOR PAPER: 75 MARKS END	

Please check the examination deta	ils below before e	ntering your ca	ndidate information
Candidate surname		Other name	es
Pearson Edexcel International Advanced Level	Centre Numb	er	Candidate Number
Friday 8 Janu	ary 20)21	
Afternoon (Time: 1 hour 30 minus	tes) Pape	r Reference \	WFM01/01
Mathematics			
International Advanced Further Pure Mathema		ary/Adva	nced Level
You must have: Mathematical Formulae and Stat	istical Tables	Lilac), calcul	ator Total Marks

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Leave

. (8	Show that the equation $4x - 2\sin x - 1 = 0$, where x is in radians, has a root of interval [0.2, 0.6]	α in the
	L / J	(2)
(ł	b) Starting with the interval [0.2, 0.6], use interval bisection twice to find an interval 0.1 in which α lies.	erval of
		(3)

Question 1 continued	bl
	Q1

Leave	
blank	

2.	Given that	$x = \frac{3}{8} + \frac{\sqrt{71}}{8}i$	is a root of the equation
----	------------	--	---------------------------

$$4x^3 - 19x^2 + px + q = 0$$

(2)	write down	the other	complex re	oot of the	equation
(a)	write down	me omer	complex re	oot of the	equation.

(1)

Given that x = 4 is also a root of the equation,

(b) find the value of p and the value of
--

(4)

Question 2 continued		Lea blar
		Q2
	(Total 5 marks)	

Leave	
blank	

3. The matrix \mathbf{M} is defined by	blar
$\mathbf{M} = \begin{pmatrix} k+5 & -2 \\ -3 & k \end{pmatrix}$	
(a) Determine the values of k for which \mathbf{M} is singular.	(2)
Given that M is non-singular,	
(b) find \mathbf{M}^{-1} in terms of k .	(2)

Question 3 continued		Lea blai
		Q3
	(Total 4 marks)	

Leave	
hlank	

4. The equation $2x^2 + 3$	$5x + 7 = 0$ has roots α and β	l t
Without solving the	equation	
(a) determine the ex	xact value of $\alpha^3 + \beta^3$	(3)
(b) form a quadration	c equation, with integer coefficients, which has roots	
	$\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$	
		(5)

Overtion A continued	Leave blank
Question 4 continued	

Overtion A continued	Leave blank
Question 4 continued	

bl
Q4

Leave	
blank	

5.	(a)	Using the formulae for	$\sum_{n=1}^{\infty} r$	and	$\sum^{n} r^{2},$	show that
			r=1		r=1	

$$\sum_{r=1}^{n} (r+1)(r+5) = \frac{n}{6}(n+7)(2n+7)$$

for all positive integers n.

(5)

(b) Hence show that

$$\sum_{r=n+1}^{2n} (r+1)(r+5) = \frac{7n}{6}(n+1)(an+b)$$

where a and b are integers to be determined.

(2)

Overtion 5 continued	Leave blank
Question 5 continued	
	1

Overtion 5 continued	Leave blank
Question 5 continued	
	1

Question 5 continued		bla
	(Total 7 marks)	Q5

6.	The complex number z is defined by	blank
	$z = -\lambda + 3i$ where λ is a positive real constant	
	Given that the modulus of z is 5	
	(a) write down the value of λ	
	(b) determine the argument of z, giving your answer in radians to one decimal place. (2)	
	In part (c) you must show detailed reasoning.	
	Solutions relying on calculator technology are not acceptable.	
	(c) Express in the form $a + ib$ where a and b are real,	
	$(i) \frac{z+3i}{2-4i}$	
	(ii) z^2	
	(5)	
	(d) Show on a single Argand diagram the points <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> that represent the complex numbers	
	$z, z^*, \frac{z+3i}{2-4i} \text{ and } z^2$	
	2, 2, 4; and 2	
	$2-41 \tag{3}$	
	(3)	
	(3)	
	(3)	
	(3)	
	(3)	
	(3)	
	(3)	
	(3)	
	(3)	
	(3)	
	(3)	
	(3)	

	Leave blank
Question 6 continued	

	Leave blank
Question 6 continued	

Question 6 continued		Leave blank
		Q6
	(Total 11 marks)	

Leave blank

7. '	The	matrix	\mathbf{A}	is	defined	by
-------------	-----	--------	--------------	----	---------	----

$$\mathbf{A} = \begin{pmatrix} 4 & -5 \\ -3 & 2 \end{pmatrix}$$

The transformation represented by A maps triangle T onto triangle T'

Given that the area of triangle T is 23 cm²

(a) determine the area of triangle T'

(2)

The point P has coordinates (3p + 2, 2p - 1) where p is a constant. The transformation represented by A maps P onto the point P' with coordinates (17, -18)

(b) Determine the value of p.

(2)

Given that

$$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(c) describe fully the single geometrical transformation represented by matrix ${\bf B}$ (2)

The transformation represented by matrix $\bf A$ followed by the transformation represented by matrix $\bf C$ is equivalent to the transformation represented by matrix $\bf B$

/ 1\	D .	
(d)	Determine	C

(3)

Question 7 continued	Leave blank
Question / continued	

Question 7 continued	Leave blank
Question / continued	

Question 7 continued	b
	Q'

Leave blank

The parabola P has parametric equations $x = 10t^2$, $y = 20t$ The hyperbola H intersects the parabola P at the point A (a) Use algebra to determine the coordinates of A (3) The point B with coordinates $(10, 20)$ lies on P (b) Find an equation for the normal to P at B Give your answer in the form $ax + by + c = 0$, where a , b and c are integers to be
 (a) Use algebra to determine the coordinates of A (3) The point B with coordinates (10,20) lies on P (b) Find an equation for the normal to P at B Give your answer in the form ax + by + c = 0, where a, b and c are integers to be
 (3) The point B with coordinates (10,20) lies on P (b) Find an equation for the normal to P at B Give your answer in the form ax + by + c = 0, where a, b and c are integers to be
(b) Find an equation for the normal to P at B Give your answer in the form $ax + by + c = 0$, where a , b and c are integers to be
Give your answer in the form $ax + by + c = 0$, where a, b and c are integers to be
determined. (5)
(c) Use algebra to determine, in simplest form, the exact coordinates of the points where this normal intersects the hyperbola <i>H</i>
(6)

	Leave blank
Question 8 continued	

	Leave blank
Question 8 continued	

Question 8 continued		Lea blar
		Q
	(Total 14 marks)	

Leave	
blank	

9.	(i)	A sequence of numbers u_1 , u_2 , u_3 ,	is defined by
-	(1)	n_1, n_2, n_3, \dots	is defined by

$$u_{n+1} = \frac{1}{3}(2u_n - 1) \qquad u_1 = 1$$

Prove by induction that, for $n \in \mathbb{Z}^+$

$u_n = 3\left(\frac{2}{3}\right)^n - 1$	(6)
(ii) $f(n) = 2^{n+2} + 3^{2n+1}$	
Prove by induction that, for $n \in \mathbb{Z}^+$, $f(n)$ is a multiple of 7	(6)

Overstion 0 continued	Leave blank
Question 9 continued	
	1

Overstion 0 continued	Leave blank
Question 9 continued	
	1

Overstion 0 continued	Leave blank
Question 9 continued	
	1

	Leave blank
Question 9 continued	
	Q9
(Total 12 marks)	
TOTAL FOR PAPER: 75 MARKS	

Please check the examination deta	ils below before ento	ering your candidate information
Candidate surname		Other names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Time 1 hour 30 minutes	Paper reference	WFM01/01
Mathematics		
International Advance Further Pure Mathema		y/Advanced Level
You must have: Mathematical Formulae and Stat	istical Tables (Ye	ellow), calculator

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.
- Good luck with your examination

Leave	
hlank	

1.	(i)	$f(x) = x^3 + 4x - 6$	Dialik
		(a) Show that the equation $f(x) = 0$ has a root α in the interval [1, 1.5] (2)	
		(b) Taking 1.5 as a first approximation, apply the Newton Raphson process twice to $f(x)$ to obtain an approximate value of α . Give your answer to 3 decimal places. Show your working clearly.	
		(4)	
	(ii)	$g(x) = 4x^2 + x - \tan x$	
		where <i>x</i> is measured in radians.	
		The equation $g(x) = 0$ has a single root β in the interval [1.4, 1.5]	
		Use linear interpolation on the values at the end points of this interval to obtain an approximation to β . Give your answer to 3 decimal places.	
		(4)	

Question 1 continued	blar

	estion 1 continued		

Question 1 continued	
	(Total 10 marks)

Leave blank

2.	The cor	nnlex	numbers	7 7	and 7	are	given	hv
⊿.	THE COL	npiex	Humbers	41, 42	anu 2,	3 are	given	υy

$$z_1 = 2 - i$$
 $z_2 = p - i$ $z_3 = p + i$

where p is a real number.

(a) Find $\frac{z_2 z_3}{z_1}$ in the form a + bi where a and b are real. Give your answer in its simplest form in terms of p.

(3)

Given that $\left| \frac{z_2 z_3}{z_1} \right| = 2\sqrt{5}$

(b) find the possible values of p.

(4)

Question 2 continued	blan

Question 2 continued	blar

Question 2 continued	Leave blank
	_
	_
	_
	-
	_
	_
	_
	_
	_
	_
	_
	-
	-
	_
	_
	-
	-
	Q2
(Total 7 marks)	

		021_00_9
		Lea bla
3.	The triangle T has vertices $A(2,1)$, $B(2,3)$ and $C(0,1)$.	
	The triangle T' is the image of T under the transformation represented by the matrix	
	$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	
	(a) Find the coordinates of the vertices of T'	(2)
	(b) Describe fully the transformation represented by P	(2)
	The 2×2 matrix Q represents a reflection in the <i>x</i> -axis and the 2×2 matrix R represent rotation through 90° anticlockwise about the origin.	ats a
	(c) Write down the matrix \mathbf{Q} and the matrix \mathbf{R}	(2)
	(d) Find the matrix RQ	(2)
	(e) Give a full geometrical description of the single transformation represented by answer to part (d).	the
		(2)

Question 3 continued	blar

Question 3 continued	Leave blank

Question 3 continued	Leave blank
	Q3
(Total 10 mar	·ks)

	Leave blank
4. A rectangular hyperbola H has equation $xy = 25$	
The point $P\left(5t, \frac{5}{t}\right)$, $t \neq 0$, is a general point on H .	
(a) Show that the equation of the tangent to H at P is $t^2y + x = 10t$ (4)	
The distinct points Q and R lie on H . The tangent to H at the point Q and the tangent to H at the point R meet at the point $(15,-5)$.	
(b) Find the coordinates of the points Q and R . (4)	

Question 4 continued	blan

Question 4 continued	

Question 4 continued		Le bla
	Q)4
	(Total 8 marks)	ا" ع

Leave

5.	$f(x) = (9x^2 + d)(x^2 - 8x + (10d + 1))$	bla
W	where d is a positive constant.	
	a) Find the four roots of $f(x)$ giving your answers in terms of d . (3)	
C	Given $d = 4$	
(1	b) Express these four roots in the form $a + ib$, where $a, b \in \mathbb{R}$. (2)	
((c) Show these four roots on a single Argand diagram. (2)	

Question 5 continued	Leave blank

Question 5 continued	blan

Question 5 continued		Leave blank
	(T) () 7 - ()	Q5
	(Total 7 marks)	

Leave	
blank	

The point $P(2p^2,4p)$ and the point $Q(2q^2,4q)$, where $p,q\neq 0$, $p\neq q$, are points on C . (a) Show that an equation of the normal to C at P is $y+px=2p^3+4p$ (5) (b) Write down an equation of the normal to C at Q (1) The normal to C at P and the normal to C at Q meet at the point N (c) Show that N has coordinates $\left(2(p^2+pq+q^2+2),-2pq(p+q)\right)$ (5) The line ON , where O is the origin, is perpendicular to the line PQ (d) Find the value of $(p+q)^2-3pq$ (5)	6.	The parabola C has Cartesian equation $y^2 = 8x$
$y + px = 2p^3 + 4p$ (5) (b) Write down an equation of the normal to C at Q (1) The normal to C at P and the normal to C at Q meet at the point N (c) Show that N has coordinates $\left(2(p^2 + pq + q^2 + 2), -2pq(p+q)\right)$ (5) The line ON , where O is the origin, is perpendicular to the line PQ (d) Find the value of $(p+q)^2 - 3pq$		The point $P(2p^2, 4p)$ and the point $Q(2q^2, 4q)$, where $p, q \neq 0, p \neq q$, are points on C .
 (5) (b) Write down an equation of the normal to C at Q (1) The normal to C at P and the normal to C at Q meet at the point N (c) Show that N has coordinates (2(p² + pq + q² + 2), -2pq(p + q)) (5) The line ON, where O is the origin, is perpendicular to the line PQ (d) Find the value of (p + q)² - 3pq 		(a) Show that an equation of the normal to C at P is
(b) Write down an equation of the normal to C at Q (1) The normal to C at P and the normal to C at Q meet at the point N (c) Show that N has coordinates $\left(2(p^2+pq+q^2+2),-2pq(p+q)\right)$ (5) The line ON , where O is the origin, is perpendicular to the line PQ (d) Find the value of $(p+q)^2-3pq$		
(c) Show that N has coordinates $\left(2(p^2+pq+q^2+2),-2pq(p+q)\right)$ (5) The line ON , where O is the origin, is perpendicular to the line PQ (d) Find the value of $(p+q)^2-3pq$		(b) Write down an equation of the normal to C at Q
$\left(2(p^2+pq+q^2+2),-2pq(p+q)\right)$ (5) The line <i>ON</i> , where <i>O</i> is the origin, is perpendicular to the line <i>PQ</i> (d) Find the value of $(p+q)^2-3pq$		The normal to C at P and the normal to C at Q meet at the point N
The line <i>ON</i> , where <i>O</i> is the origin, is perpendicular to the line <i>PQ</i> (d) Find the value of $(p + q)^2 - 3pq$		(c) Show that N has coordinates
(d) Find the value of $(p+q)^2 - 3pq$		
		The line ON , where O is the origin, is perpendicular to the line PQ

Question 6 continued	blaı

Question 6 continued	blar

Question 6 continued		Leave blank
		Q6
(Total 1	l6 marks)	

Leave blank

7.	(a)	Prove	bv	induction	that for	n	\in	\mathbb{N}
	(4)	110,0	\sim_J	11144611011	tilet IOI		_	_ ,

$$\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1)$$

(5)

(b) Hence show that

$$\sum_{r=1}^{n} (r^2 + 2) = \frac{n}{6} (an^2 + bn + c)$$

where a, b and c are integers to be found.

(4)

(c) Using your answers to part (b), find the value of

$$\sum_{r=10}^{25} (r^2 + 2)$$

(2)

-	-

Question 7 continued	blar

uestion 7 continued		

Question 7 continued	Leave blank
	_
	_
	_
	-
	-
	-
	_
	-
	-
	_
	-
	-
	_
	_
	-
	-
	-
	-
	-
	_
	Q7
(Total 11 marks	

Prove by induction that $4^{n+2} + 5^{2n+1}$ is divisible by 21 for all positive integers n .	(6)

Question 8 continued	blar

Question 8 continued	Leave blank
Question o continueu	_
	-
	_
	-
	_
	_
	_
	_
	_
	_
	_
	-
	-
	_
	-
	_
	-
	_
	_
	_
	-
	Q8
(Total 6 marks) []
TOTAL FOR PAPER: 75 MARKS	S
END	

Please check the examination details below before entering your candidate information			
Candidate surname		Other names	
Centre Number Candidate No	umber		
Pearson Edexcel Inter	nation	al Advanced Level	
Time 1 hour 30 minutes	Paper reference	WFM01/01	
Mathematics International Advanced Subsidiary/Advanced Level Further Pure Mathematics F1			
You must have: Mathematical Formulae and Statistica	al Tables (Yel	llow), calculator	

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

	111_2021_10
$\mathbf{A} = \begin{pmatrix} 3 & a \\ -2 & -2 \end{pmatrix}$	
where a is a non-zero constant and $a \neq 3$	
(a) Determine A^{-1} giving your answer in terms of a .	(2)
Given that $\mathbf{A} + \mathbf{A}^{-1} = \mathbf{I}$ where \mathbf{I} is the 2 × 2 identity matrix,	
(b) determine the value of a.	(3)

Question 1 continued	

Leave blank

$f(x) = 7\sqrt{x} - \frac{1}{2}x^3 - \frac{5}{3x}$	$\frac{1}{x}$ $x > 0$
--	-----------------------

(a) Show that the equation f(x) = 0 has a root, α , in the interval [2.8, 2.9]

(2)

- (b) (i) Find f'(x).
 - (ii) Hence, using $x_0 = 2.8$ as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to calculate a second approximation to α , giving your answer to 3 decimal places.

(4)

(c) Use linear interpolation once on the interval [2.8, 2.9] to find another approximation to α . Give your answer to 3 decimal places.

(3)

Question 2 continued	bla

Overetion 2 continued	Leave blank
Question 2 continued	

uestion 2 continued	

Leave blank

3.	The	quadratic	eo	mation
J.	1110	quadratic	CC	Juanon

$$2x^2 - 5x + 7 = 0$$

has roots α and β

Without solving the equation,

- (a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (1)
- (b) determine, giving each answer as a simplified fraction, the value of
 - (i) $\alpha^2 + \beta^2$
 - (ii) $\alpha^3 + \beta^3$ (4)
- (c) find a quadratic equation that has roots

$$\frac{1}{\alpha^2 + \beta}$$
 and $\frac{1}{\beta^2 + \alpha}$

giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined.

(4)

Overtion 2 continued	Leave blank
Question 3 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Overtion 2 continued	Leave blank
Question 3 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

uestion 3 continued	

Leave

4.	$f(z) = 2z^3 - z^2 + az + b$	blank
	where a and b are integers.	
	The complex number $-1 - 3i$ is a root of the equation $f(z) = 0$	
	(a) Write down another complex root of this equation. (1)
	(b) Determine the value of a and the value of b . (4)
	(c) Show all the roots of the equation $f(z) = 0$ on a single Argand diagram. (2))
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		_
		_

Question 4 continued	Leave
Question 4 continued	

Question 4 continued	Leave
Question 4 continued	

Question 4 continued	

Leave blank

			n	n	n						
5.	(a)	Use the standard results for	$\sum r^3$,	$\sum r^2$	and $\sum I$	r to	show	that 1	for a	all	positive
			r=1	r=1	r=1						
		integers n,									

$$\sum_{r=1}^{n} r(r-1)(r-3) = \frac{1}{12} n(n+1)(n-1)(3n-10)$$
(5)

(b) Hence show that

$$\sum_{r=n+1}^{2n+1} r(r-1)(r-3) = \frac{1}{12}n(n+1)(an^2 + bn + c)$$

where a, b and c are integers to be determined.	
	(3

Question 5 continued	Leave

Question 5 continued	Leave blank
Question 5 continued	

Question 5 continued	

	The curve <i>H</i> has equation
	$xy = a^2$ $x > 0$
	where a is a positive constant.
	The line with equation $y = kx$, where k is a positive constant, intersects H at the point P
	(a) Use calculus to determine, in terms of a and k , an equation for the tangent to H at P (4)
	The tangent to H at P meets the x -axis at the point A and meets the y -axis at the point B
	(b) Determine the coordinates of A and the coordinates of B , giving your answers in terms of a and k
	(2)
	(c) Hence show that the area of triangle AOB , where O is the origin, is independent of k (2)
_	
_	
_	
_	
_	

Overtion 6 continued	Leave blank
Question 6 continued	

Overtion 6 continued	Leave blank
Question 6 continued	

	_
	_

7	In nart (i)	the elements of	feach matrix	should be evn	ressed in evact i	numerical form.

(i) (a) Write down the 2×2 matrix that represents a rotation of 210° anticlockwise about the origin.

(1)

(b) Write down the 2×2 matrix that represents a stretch parallel to the y-axis with scale factor 5

(1)

The transformation T is a rotation of 210° anticlockwise about the origin followed by a stretch parallel to the y-axis with scale factor 5

(c) Determine the 2×2 matrix that represents T

(2)

(ii)

$$\mathbf{M} = \begin{pmatrix} k & k+3 \\ -5 & 1-k \end{pmatrix} \quad \text{where } k \text{ is a constant}$$

(a) Find det M, giving your answer in simplest form in terms of k.

(2)

A closed shape R is transformed to a closed shape R' by the transformation represented by the matrix M.

Given that the area of R is 2 square units and that the area of R' is 16k square units,

(b) determine the possible values of k.

(3)

Question 7 continued	Leave
Question / continued	

Question 7 continued	blank
	1

uestion 7 continued	

8.	The parabola C has equation $y^2 = 20x$	blank
	The point P on C has coordinates $(5p^2, 10p)$ where p is a non-zero constant.	
	(a) Use calculus to show that the tangent to C at P has equation	
	$py - x = 5p^2 \tag{3}$	
	The tangent to C at P meets the y -axis at the point A .	
	(b) Write down the coordinates of A . (1)	
	The point S is the focus of C .	
	(c) Write down the coordinates of S. (1)	
	The straight line l_1 passes through A and S .	
	The straight line l_2 passes through O and P , where O is the origin.	
	Given that l_1 and l_2 intersect at the point B ,	
	(d) show that the coordinates of B satisfy the equation	
	$2x^2 + y^2 = 10x (5)$	

Question 8 continued	Leave
Question o continueu	

Question 8 continued	Leave
Question o continued	

Overtion 9 continued	Leave blank
Question 8 continued	
	Q8
(Total 10 ma	rks)

			Leave blank
9.	(i)	A sequence of numbers is defined by	
		$u_1 = 0$ $u_2 = -6$	
		$u_{n+2} = 5u_{n+1} - 6u_n \qquad n \geqslant 1$	
		Prove by induction that, for $n \in \mathbb{Z}^+$	
		$u_n = 3 \times 2^n - 2 \times 3^n \tag{5}$	
	(ii)	Prove by induction that, for all positive integers n ,	
		$f(n) = 3^{3n-2} + 2^{4n-1}$	
		is divisible by 11	
		(5)	

Question 9 continued	Leave
Question 5 continued	
	1

Question 9 continued	Leave
Question 5 continued	
	1

	Leave blank
Question 9 continued	

Question 9 continued	Leav blan	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	Q9)
(Total 10 marks)		
TOTAL FOR PAPER: 75 MARKS	3	_

Please check the examination details below before entering your candidate information		
Candidate surname	Other names	
Centre Number Candidate N	umber	
Pearson Edexcel Inter	national Advanced Level	
Time 1 hour 30 minutes	Paper reference WFM01/01	
Mathematics		
International Advanced Su	•	
Further Pure Mathematics	5 F 1	
You must have: Mathematical Formulae and Statistica	al Tables (Yellow), calculator	

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Leave

$\mathbf{M} = \begin{pmatrix} 3x & 7 \\ 4x + 1 & 2 - x \end{pmatrix}$	
Find the range of values of x for which the determinant of the matrix \mathbf{M}	I is positive. (5)

Question 1 continued	

2.	The complex numbers z_1 and z_2 are given by		blank
	$z_1 = 3 + 5i$ and $z_2 = -2 + 6i$		
	(a) Show z_1 and z_2 on a single Argand diagram.	(2)	
	(b) Without using your calculator and showing all stages of your working,		
	(i) determine the value of $ z_1 $	(1)	
	(ii) express $\frac{z_1}{z_2}$ in the form $a + bi$, where a and b are fully simplified fractions.	(3)	
	(c) Hence determine the value of $\arg \frac{z_1}{z_2}$		
	Give your answer in radians to 2 decimal places.		
		(2)	
_			
_			

Overetion 2 continued	Leave blank
Question 2 continued	

Question 2 continued	Leave blank
Question 2 continued	

uestion 2 continued	

Leave	
hlank	

3.	The parabola C has equation $y^2 = 18x$		blank
	The point S is the focus of C		
	(a) Write down the coordinates of S	(1)	
	The point P , with $y > 0$, lies on C		
	The shortest distance from P to the directrix of C is 9 units.		
	(b) Determine the exact perimeter of the triangle <i>OPS</i> , where <i>O</i> is the origin.		
	Give your answer in simplest form.	(4)	

Question 3 continued	Leave

Question 3 continued	blan

4.	The	equation
----	-----	----------

$$x^4 + Ax^3 + Bx^2 + Cx + 225 = 0$$

where A, B and C are real constants, has

- a complex root 4 + 3i
- a repeated positive real root
- (a) Write down the other complex root of this equation.

(1)

(b) Hence determine a quadratic factor of $x^4 + Ax^3 + Bx^2 + Cx + 225$

(2)

(c) Deduce the real root of the equation.

(2)

(d) Hence determine the value of each of the constants A, B and C

(3)

Question 4 continued	Leave
Question 4 continued	

Question 4 continued	Leave
Question 4 continued	

Question 4 continued	

5.
$$\mathbf{P} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

The matrix **P** represents the transformation U

(a) Give a full description of U as a single geometrical transformation.

(2)

The transformation V, represented by the 2×2 matrix **Q**, is a reflection in the line y = -x

(b) Write down the matrix \mathbf{Q}

(1)

The transformation U followed by the transformation V is represented by the matrix \mathbf{R}

(c) Determine the matrix **R**

(2)

The transformation W is represented by the matrix $3\mathbf{R}$

The transformation W maps a triangle T to a triangle T'

The transformation W' maps the triangle T' back to the original triangle T

(d) Determine the matrix that represents W'

(3)

Question 5 continued	Leave

Question 5 continued	Leave blank
Question 5 continued	

uestion 5 continued	

Leave blank

6.	The	quadratic	ec	uation
~ •		0 0,00001010		0,000

$$Ax^2 + 5x - 12 = 0$$

where A is a constant, has roots α and β

- (a) Write down an expression in terms of A for
 - (i) $\alpha + \beta$
 - (ii) $\alpha\beta$

(2)

The equation

$$4x^2 - 5x + B = 0$$

where *B* is a constant, has roots $\alpha - \frac{3}{\beta}$ and $\beta - \frac{3}{\alpha}$

(b) Determine the value of A

(3)

(c) Determine the value of B

(3)

Overtion 6 continued	Leave blank
Question 6 continued	

Overtion 6 continued	Leave blank
Question 6 continued	

Question 6 continued		Leav blan
		.
		Q6
	(Total 8 marks)	

Leave blank

7.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	The rectangular hyperbola H has equation $xy = 36$	
	The point $P(4, 9)$ lies on H	
	(a) Show, using calculus, that the normal to H at P has equation	
	4x - 9y + 65 = 0 (4)	
	The normal to H at P crosses H again at the point Q	
	(b) Determine an equation for the tangent to H at Q , giving your answer in the form $y = mx + c$ where m and c are rational constants.	
	(5)	

Question 7 continued	Leave blank
Question / continued	

Question 7 continued	Leave blank
Question / continued	

Question 7 continued	Le bl
	Q7
(T	otal 9 marks)

Leave blank

8.
$$f(x) = 2x^{-\frac{2}{3}} + \frac{1}{2}x - \frac{1}{3x - 5} - \frac{5}{2} \qquad x \neq \frac{5}{3}$$

The table below shows values of f(x) for some values of x, with values of f(x) given to 4 decimal places where appropriate.

x	1	2	3	4	5
f(x)	0.5		-0.2885		0.5834

(a)	Complete the table g	giving the values to 4 decimal places.	

(2)

The equation f(x) = 0 has exactly one positive root, α .

Using the values in the completed table and explaining your reasoning,

(b) determine an interval of width one that contains α .

(2)

(c) Hence use interval bisection twice to obtain an interval of width 0.25 that contains α . (3)

Given also that the equation f(x) = 0 has a negative root, β , in the interval [-1, -0.5]

(d) use linear interpolation once on this interval to find an approximation for β .

Give your answer to 3 significant figures.

(3)

Question 8 continued	Leave

Question 8 continued	Leave
Question o continueu	

Overtion 9 continued	Leave blank
Question 8 continued	
	Q8
(Total 10 ma	rks)

Leave blank

	9.	(a)	Prove	by	induction	that,	for	n	\in	\mathbb{N}
--	----	-----	-------	----	-----------	-------	-----	---	-------	--------------

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2 \tag{5}$$

(b) Using the standard summation formulae, show that

$$\sum_{r=1}^{n} r(r+1)(r-1) = \frac{1}{4} n(n+A)(n+B)(n+C)$$

where A, B and C are constants to be determined.

(4)

(c) Determine the value of n for which

$$3\sum_{r=1}^{n} r(r+1)(r-1) = 17\sum_{r=n}^{2n} r^{2}$$
(5)

· · · · · · · · · · · · · · · · · · ·

Question 9 continued	Leave
Question 5 continued	
	1

Question 9 continued	Leave
Question 5 continued	
	1

Question 9 continued	Leave
Question 5 continued	
	1

Question 9 continued		Leave blank
		00
		Q9
т	(Total 14 marks) OTAL FOR PAPER: 75 MARKS	
END	UIAL FUR FAPER: /3 MARKS	

Please check the examination details below before entering your candidate information				
Candidate surname		Other names		
Centre Number Candidate Nu	umber			
Pearson Edexcel International Advanced Level				
Time 1 hour 30 minutes	Paper reference	WFM01/01		
Mathematics				
International Advanced Subsidiary/Advanced Level				
Further Pure Mathematics F1				
You must have: Mathematical Formulae and Statistica	al Tables (Ye	llow), calculator		

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1.		$z_1 = 3 + 3i$	$z_2 = p + qi$	$p, q \in \mathbb{R}$	
	Given that $ z_1 z_2 = 15\sqrt{2}$				
	(a) determine $ z_2 $				(2)
	Given also that $p = -4$				
	(b) determine the possible	values of q			(2)
	(c) Show z_1 and the possible	e positions for a	z_2 on the same A	rgand diagram.	(2)

Question 1 continued	

Question 1 continued		

Question 1 continued		
(Total for Questic	on 1 is 6 marks)	
(Total for Questi	on a marks)	

2.	$f(x) = 10 - 2x - \frac{1}{2\sqrt{x}} - \frac{1}{x^3} \qquad x > 0$	
	(a) Show that the equation $f(x) = 0$ has a root α in the interval [0.4, 0.5]	(2)
	(b) Determine $f'(x)$.	(3)
	(c) Using $x_0 = 0.5$ as a first approximation to α , apply the Newton-Raphson procedure once to $f(x)$ to find a second approximation to α , giving your answer to 3 decimal places.	(2)
	The equation $f(x) = 0$ has another root β in the interval [4.8, 4.9]	
	(d) Use linear interpolation once on the interval [4.8, 4.9] to find an approximation to β , giving your answer to 3 decimal places.	(2)

Question 2 continued		

Question 2 continued

Question 2 continued		
(Tota	l for Question 2 is 9 marks)	

3.	$\mathbf{M} = \begin{pmatrix} k & k \\ 3 & 5 \end{pmatrix} \qquad \text{where } k \text{ is a non-zero constant}$	
	(a) Determine \mathbf{M}^{-1} , giving your answer in simplest form in terms of k . Hence, given that $\mathbf{N}^{-1} = \begin{pmatrix} k & k \\ 4 & -1 \end{pmatrix}$	(2)
	(b) determine $(\mathbf{M}\mathbf{N})^{-1}$, giving your answer in simplest form in terms of k .	(2)

Question 3 continued		
(Tota	l for Question 3 is 4 marks)	
(2000)	,	

4.	$f(z) = 2z^4 - 19z^3 + Az^2 + Bz - 156$	
	where A and B are constants.	
	The complex number $5 - i$ is a root of the equation $f(z) = 0$	
	(a) Write down another complex root of this equation.	
		(1)
	(b) Solve the equation $f(z) = 0$ completely.	(5)
	(c) Determine the value of A and the value of B.	
	(c) Determine the value of it and the value of D.	(2)

Question 4 continued		

Question 4 continued		

Question 4 continued	
(Total fo	r Question 4 is 8 marks)
(Iotai Io.	Z WODOLOGI I ID O MINI IND

5.	The quadratic equation	
	$2x^2 - 3x + 5 = 0$	
	has roots α and β	
	Without solving the equation,	
	(a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$	(1)
	(b) determine the value of	
	(i) $\alpha^2 + \beta^2$	
	(ii) $\alpha^3 + \beta^3$	
		(4)
	(c) find a quadratic equation which has roots	
	$(\alpha^3 - \beta)$ and $(\beta^3 - \alpha)$	
	giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined.	
		(5)

Question 5 continued				

Question 5 continued				

Question 5 continued			
(To	tal for Question 5 is 10 marks)		
(10	THE TOTAL VIOLENTIAL TO THE HIRING		

6.	The parabola C has equation $y^2 = 36x$	
	The point $P(9t^2, 18t)$, where $t \neq 0$, lies on C	
	(a) Use calculus to show that the normal to C at P has equation	
	$y + tx = 9t^3 + 18t$	(4)
	(b) Hence find the equations of the two normals to C which pass through the point (54, 0), giving your answers in the form $y = px + q$ where p and q are constants to be determined.	(4)
	Given that	
	• the normals found in part (b) intersect the directrix of C at the points A and B	
	• the point <i>F</i> is the focus of <i>C</i>	
	(c) determine the area of triangle <i>AFB</i>	(3)

Question 6 continued

Question 6 continued	

Question 6 continued	
/TES 4 3 P	Ougstion (!- 11 ! ·)
(Total for	Question 6 is 11 marks)

7	A -	$\left(-\frac{\sqrt{3}}{2}\right)$	$-\frac{1}{2}$
7.	$\mathbf{A} = \mathbf{A}$	$\begin{pmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix}$	$-\frac{\sqrt{3}}{2}$

(a) Determine the matrix A^2

- **(1)**
- (b) Describe fully the single geometrical transformation represented by the matrix \mathbf{A}^2
- **(2)**
- (c) Hence determine the smallest positive integer value of n for which $\mathbf{A}^n = \mathbf{I}$
- **(1)**

The matrix **B** represents a stretch scale factor 4 parallel to the x-axis.

(d) Write down the matrix **B**

(1)

The transformation represented by matrix ${\bf A}$ followed by the transformation represented by matrix ${\bf B}$ is represented by the matrix ${\bf C}$

(e) Determine the matrix C

(2)

The parallelogram P is transformed onto the parallelogram P' by the matrix \mathbb{C}

(f) Given that the area of parallelogram P' is 20 square units, determine the area of parallelogram P

(2)

www.CasperYC.club/ial

Question 7 continued

Question 7 continued	

Question 7 continued			
(Total for Question 7	7 is 9 marks)		
(Total for Question /	is / mulikaj		

8.	(a) Use the standard results for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r$ to show that for all positive integers n	
	$\sum_{r=0}^{n} (r+1)(r+2) = \frac{1}{3}(n+1)(n+2)(n+3)$	(5)
	(b) Hence determine the value of	
	$10 \times 11 + 11 \times 12 + 12 \times 13 + + 100 \times 101$	(3)

Question 8 continued	

Question 8 continued	

Question 8 continued			
(Total for Question 8 is 8 marks)			
(Total for Question 6 is 6 marks)			

9.	(i) A sequence of numbers is defined by	
	$u_1 = 3$	
	$u_{n+1} = 2u_n - 2^{n+1}$ $n \geqslant 1$	
	Prove by induction that, for $n \in \mathbb{N}$	
	$u_n = 5 \times 2^{n-1} - n \times 2^n$	(=)
	(ii) Prove by induction that, for $n \in \mathbb{N}$	(5)
	$f(n) = 5^{n+2} - 4n - 9$	
	is divisible by 16	
		(5)

Question 9 continued			

Question 9 continued			

Question 9 continued			

Question 9 continued			
		(Total for Question 9 is 10 marks)	
		TOTAL FOR PAPER: 75 MARKS	
	END		

Please check the examination details below before entering your candidate information			
Candidate surname		Other names	
Centre Number Candidate Nu	umber		
Pearson Edexcel Internati	onal Adv	vanced Lev	⁄el
Time 1 hour 30 minutes	Paper reference	WFM	01/01
Mathematics International Advanced Subsidiary/ Advanced Level Further Pure Mathematics F1			
You must have: Mathematical Formulae and Statistics	Tables (Yello	ow), calculator	Total Marks

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1.	Given that $\mathbf{A} = \begin{pmatrix} 2 & -1 & 3 \\ -2 & 3 & 0 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 1 & k \\ 0 & -3 \\ 2k & 2 \end{pmatrix}$	
	where k is a non-zero constant,	
	(a) determine the matrix AB	(2)
	(b) determine the value of k for which $det(\mathbf{AB}) = 0$	
	(b) determine the value of k for which det(AB) = 0	(3)

Question 1 continued			
	Total for Question 1 is 5 marks)		

2.	In this question you must show all stages of your working.		
	Solutions relying entirely on calculator technology are not acceptable.		
	Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that for all positive integers n		
	$\sum_{r=1}^{n} (7r-5)^{2} = \frac{n}{6} (7n+1) (An+B)$		
	where A and B are integers to be determined.	(6)	

Question 2 continued			
(T	otal for Question 2 is 6 marks)		

3.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	$f(z) = 4z^3 + pz^2 - 24z + 108$	
	where p is a constant.	
	Given that -3 is a root of the equation $f(z) = 0$	
	(a) determine the value of p	(2)
	(b) using algebra, solve $f(z) = 0$ completely, giving the roots in simplest form,	(4)
	(c) determine the modulus of the complex roots of $f(z) = 0$	(2)
	(d) show the roots of $f(z) = 0$ on a single Argand diagram.	(2)

Question 3 continued

Question 3 continued

Question 3 continued		
(Total for Question 3 is 10 marks)		

4	
4.	

$$f(x) = 1 - \frac{1}{8x^4} + \frac{2}{7\sqrt{x^7}} \qquad x > 0$$

The equation f(x) = 0 has a single root, α , that lies in the interval [0.15, 0.25]

- (a) (i) Determine f'(x)
 - (ii) Explain why 0.25 cannot be used as an initial approximation for α in the Newton-Raphson process.
 - (iii) Taking 0.15 as a first approximation to α apply the Newton-Raphson process once to f(x) to obtain a second approximation to α Give your answer to 3 decimal places.

(5)

(b) Use linear interpolation once on the interval [0.15, 0.25] to find another approximation to α Give your answer to 3 decimal places.

(3)

Question 4 continued

Question 4 continued

Question 4 continued		
(Total for Question 4 is 8 marks)		
(Total for Question 4 is 6 marks)		

5.	The quadratic equation	
	$4x^2 + 3x + k = 0$	
	where k is an integer, has roots α and β	
	(a) Write down, in terms of k where appropriate, the value of $\alpha + \beta$ and the value of $\alpha\beta$	(2)
	(b) Determine, in simplest form in terms of k , the value of $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$	(4)
	(c) Determine a quadratic equation which has roots	
	$\frac{\alpha}{\beta^2}$ and $\frac{\beta}{\alpha^2}$	
	giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integer	
	values in terms of k	(3)

Question 5 continued

Question 5 continued

Question 5 continued		
(Total for Question 5 is 9 mark	s)	
(2000 101 Yanning 10) IIIIII	-,	

6.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	The rectangular hyperbola H has equation $xy = 20$	
	The point $P\left(2t\sqrt{a}, \frac{2\sqrt{a}}{t}\right)$, $t \neq 0$, where a is a constant, is a general point on H	
	(a) State the value of a	(1)
	(b) Show that the normal to H at the point P has equation	
	$ty - t^3x - 2\sqrt{5}\left(1 - t^4\right) = 0$	(4)
	The points A and B lie on H	
	The point A has parameter $t = c$ and the point B has parameter $t = -\frac{1}{2c}$, where c is a constant.	
	The normal to H at A meets H again at B	
	(c) Determine the possible values of c	(4)

Question 6 continued		

Question 6 continued

Question 6 continued	
(Total for Question 6 is 9 mark	(s)
(20m 101 Question 0 10 5 mar)	-~/

7	(:)
/	(1)
	(1)

$$\mathbf{P} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

The matrix ${\bf P}$ represents a geometrical transformation U

(a) Describe U fully as a single geometrical transformation.

(2)

The transformation V, represented by the 2×2 matrix \mathbf{Q} , is a rotation through 240° anticlockwise about the origin followed by an enlargement about (0, 0) with scale factor 6

(b) Determine the matrix \mathbf{Q} , giving each entry in exact numerical form.

(2)

Given that U followed by V is the transformation T, which is represented by the matrix \mathbf{R}

(c) determine the matrix \mathbf{R}

(2)

(ii) The transformation W is represented by the matrix

$$\begin{pmatrix} -2 & 2\sqrt{3} \\ 2\sqrt{3} & 2 \end{pmatrix}$$

Show that there is a real number λ for which W maps the point $(\lambda, 1)$ onto the point $(4\lambda, 4)$, giving the exact value of λ

(5)

Question 7 continued

Question 7 continued

Question 7 continued	
	-
	_
	_
	-
	_
	_
	_
	-
	_
	_
	_
	-
	_
	_
	-
	_
	_
	-
	-
	_
	_
(Total for Question 7 is 11 marks)	-
(Total for Question / Is 11 marks)	-

8.	A parabola C has equation $y^2 = 4ax$ where a is a positive constant.	
	The point <i>S</i> is the focus of <i>C</i>	
	The line l_1 with equation $y = k$ where k is a positive constant, intersects C at the point P	
	(a) Show that	
	$PS = \frac{k^2 + 4a^2}{4a}$	(3)
	The line l_2 passes through P and intersects the directrix of C on the x -axis.	
	The line l_2 intersects the y-axis at the point A	
	(b) Show that the y coordinate of A is $\frac{4a^2k}{k^2 + 4a^2}$	(3)
	The line l_1 intersects the directrix of C at the point B	
	Given that the areas of triangles BPA and OSP , where O is the origin, satisfy the ratio	
	area BPA : area $OSP = 4k^2$: 1	
	(c) determine the exact value of a	(5)

Question 8 continued

Question 8 continued

Question 8 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
(Total for Question 8 is 11 marks)	_
(Total for Question 6 is 11 marks)	_

9. Prove l	by induction that for all po	ositive integers n	
		$\sum_{r=1}^{n} \log \left(2r-1\right) = \log \left(\frac{(2n)!}{2^{n} n!}\right)$	(6)

Question 9 continued

Question 9 continued			
	(Total for Question 9 is 6 marks)		
	TOTAL FOR PAPER IS 75 MARKS		

Please check the examination details below before entering your candidate information			
Candidate surname	Other names		
Centre Number Candidate Numb Pearson Edexcel Interna			
Tuesday 30 May 2023			
	oper WFM01/01		
Mathematics International Advanced Subsidiary/Advanced Level Further Pure Mathematics F1			
You must have: Mathematical Formulae and Statistical Tak	oles (Yellow), calculator		

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided

 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1.	Use the standard results for	$\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ to show that, for all positive integers n	
		$\sum_{r=1}^{n} r^{2} (r+2) = \frac{1}{12} n(n+1) (an^{2} + bn + c)$	
	where a , b and c are integer	rs to be determined.	(4)

Question 1 continued			
(Total for Question 1 is 4 ma	rks)		

2.	In this question you must show all stages of your working.	
	Solutions relying on calculator technology are not acceptable.	
	Given that $x = 2 + 3i$ is a root of the equation	
	$2x^4 - 8x^3 + 29x^2 - 12x + 39 = 0$	
	(a) write down another complex root of this equation.	(1)
	(b) Use algebra to determine the other 2 roots of the equation.	(4)
	(c) Show all 4 roots on a single Argand diagram.	(2)

Question 2 continued			

Question 2 continued			

Question 2 continued			
(T	otal for Question 2 is 7 marks)		
(1	Comment of the same of th		

3.	The rectangular hyperbola H has Cartesian equation $xy = 9$	
	The point <i>P</i> with coordinates $\left(3t, \frac{3}{t}\right)$, where $t \neq 0$, lies on <i>H</i>	
	(a) Use calculus to determine an equation for the normal to H at the point P	
	Give your answer in the form $ty - t^3x = f(t)$	(4)
	Given that $t = 2$	
	(b) determine the coordinates of the point where the normal meets H again.	
	Give your answer in simplest form.	(3)

Question 3 continued			
(Tot	al for Question 3 is 7 marks)		
·			

4.	(i)	$\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -3 & k \end{pmatrix} \qquad \text{where } k \text{ is a constant}$	
		The transformation represented by A transforms triangle T to triangle T'	
		The area of triangle T' is three times the area of triangle T	
		Determine the possible values of k	
		(2.5.1)	(4)
	(ii)	$\mathbf{B} = \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix}$ and $\mathbf{BC} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$ where a is a constant	
		Determine, in terms of a , the matrix \mathbf{C}	
			(4)

Question 4 continued			

Question 4 continued		

Question 4 continued		
	(Total for Question 4 is 8 marks)	

5.	$f(x) = x^2 - 6x + 3$	
	The equation $f(x) = 0$ has roots α and β	
	Without solving the equation,	
	(a) determine the value of	
	$(\alpha^2+1)(\beta^2+1)$	(4)
	(b) find a quadratic equation which has roots	
	$\frac{\alpha}{(\alpha^2+1)}$ and $\frac{\beta}{(\beta^2+1)}$	
	giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined.	
		(6)

Question 5 continued			

Question 5 continued			

Question 5 continued		
(T	otal for Question 5 is 10 marks)	
<u>.</u>		

6.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	$z_1 = 3 + 2i$ $z_2 = 2 + 3i$ $z_3 = a + bi$ $a,b \in \mathbb{R}$	
	(a) Determine the exact value of $ z_1 + z_2 $	(2)
	Given that $w = \frac{z_2 z_3}{z_1}$	(2)
	(b) determine w in terms of a and b , giving your answer in the form $x + iy$, where $x, y \in \mathbb{R}$	
	Given also that $w = \frac{4}{13} + \frac{58}{13}i$	(4)
	(c) determine the value of a and the value of b	(2)
	(d) determine arg w, giving your answer in radians to 4 significant figures.	(2)
	(a) acternatic arg w, giving your answer in radians to 4 significant rigures.	(2)

Question 6 continued			

Question 6 continued			

Question 6 continued		
	Total for Question 6 is 10 marks)	

•	$f(x) = x^{\frac{3}{2}} + x - 3$	
	(a) Show that the equation $f(x) = 0$ has a root, α , in the interval [1, 2]	
		(2)
	(b) Starting with the interval [1, 2], use interval bisection twice to show that α lies in the interval [1.25, 1.5]	
		(3)
	(c) (i) Determine $f'(x)$	
	(ii) Using 1.375 as a first approximation for α , apply the Newton-Raphson process once to $f(x)$ to determine a second approximation for α , giving your answer to 3 decimal places.	
	o wooman process	(3)
	(d) Use linear interpolation once on the interval [1.25, 1.5] to obtain a different	
	approximation for α , giving your answer to 3 decimal places.	(3)
_		
_		
_		
_		
_		
-		

Question 7 continued		

Question 7 continued		

Question 7 continued		
	(Total for Question 7 is 11 marks)	

8.	The point $P(2p^2, 4p)$ lies on the parabola with equation $y^2 = 8x$	
	(a) Show that the point $Q\left(\frac{2}{p^2}, \frac{-4}{p}\right)$, where $p \neq 0$, lies on the parabola.	
	(b) Show that the chord PQ passes through the focus of the parabola.	(1)
		(4)
	The tangent to the parabola at <i>P</i> and the tangent to the parabola at <i>Q</i> meet at the point <i>R</i> (c) Determine, in simplest form, the coordinates of <i>R</i>	(0)
		(8)

Question 8 continued		

Question 8 continued		

Question 8 continued		
(Total for Que	estion 8 is 13 marks)	

9.	Prove, by induction, that for $n \in \mathbb{Z}$, $n \ge 2$			
	$4^{n} + 6n - 10$			
	is divisible by 18	(5)		

Question 9 continued		

Question 9 continued		
	(Total for Question 9 is 5 marks)	
	TOTAL FOR PAPER IS 75 MARKS	

Please check the examination details below before entering your candidate information			
Candidate surname	Other names		
Centre Number Candidate Number Pearson Edexcel International Advanced Level			
Friday 12 January 2024			
Morning (Time: 1 hour 30 minutes) Paper reference	wFM01/01		
Mathematics			
International Advanced Subsidiary/ Advanced Level Further Pure Mathematics F1			
You must have: Mathematical Formulae and Statistical Tables (Ye	ellow), calculator		

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1.	
$\mathbf{M} = \begin{pmatrix} 2k+1 & k \\ k+7 & k+4 \end{pmatrix} \text{ where } k \text{ is a constant}$	
(a) Show that \mathbf{M} is non-singular for all real values of k .	(3)
(b) Determine \mathbf{M}^{-1} in terms of k .	(2)

Question 1 continued		
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	
(Total for Question 1 is 5 marks)	_	
	_	

2.	
$f(z) = 2z^3 + pz^2 + qz - 41$	
where p and q are integers.	
The complex number $5 - 4i$ is a root of the equation $f(z) = 0$	
(a) Write down another complex root of this equation.	(1)
(b) Solve the equation $f(z) = 0$ completely.	(1)
(b) Solve the equation $\Gamma(z) = 0$ completely.	(4)
(c) Determine the value of p and the value of q .	(2)
When plotted on an Argand diagram, the points representing the roots of the equation $f(z) = 0$ form the vertices of a triangle.	
(d) Determine the area of this triangle.	(2)

Question 2 continued

Question 2 continued		

Question 2 continued
(Total for Question 2 is 9 marks)

3.	The hyperbola <i>H</i> has equation $xy = c^2$ where <i>c</i> is a positive constant.	
	The point $P\left(ct, \frac{c}{t}\right)$, where $t > 0$, lies on H .	
	The tangent to H at P meets the x -axis at the point A and meets the y -axis at the point B .	
	(a) Determine, in terms of c and t ,	
	(i) the coordinates of A ,	
	(ii) the coordinates of B .	(4)
	Given that the area of triangle AOB , where O is the origin, is 90 square units,	
	(b) determine the value of c, giving your answer as a simplified surd.	
	(c) and c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(2)

Question 3 continued	
	(Total for Question 3 is 6 marks)

4.	$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$	
	(a) Describe the single geometrical transformation represented by the matrix \mathbf{A} .	(2)
	The matrix B represents a rotation of 210° anticlockwise about centre (0, 0).	
	(b) Write down the matrix \mathbf{B} , giving each element in exact form.	(1)
	The transformation represented by matrix $\bf A$ followed by the transformation represented by matrix $\bf B$ is represented by the matrix $\bf C$.	
	(c) Find C.	(2)
	The hexagon H is transformed onto the hexagon H' by the matrix \mathbb{C} .	
	(d) Given that the area of hexagon H is 5 square units, determine the area of hexagon H'	(2)

Question 4 continued	
	(Total for Question 4 is 7 marks)

has roots α and β Without solving the equation, (a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (b) determine the value of $\alpha^2 + \beta^2$ (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined. (6)	
Without solving the equation, (a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (b) determine the value of $\alpha^2 + \beta^2$ (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined.	
(a) write down the value of $(\alpha + \beta)$ and the value of $\alpha\beta$ (1) (b) determine the value of $\alpha^2 + \beta^2$ (2) (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined.	
(b) determine the value of $\alpha^2 + \beta^2$ (2) (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined.	
(b) determine the value of $\alpha^2 + \beta^2$ (c) find a quadratic equation which has roots $\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined.	
(c) find a quadratic equation which has roots $\left(\alpha-\frac{1}{\beta^2}\right) \text{ and } \left(\beta-\frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2+qx+r=0$ where p,q and r are integers to be determined.	
$\left(\alpha - \frac{1}{\beta^2}\right) \text{ and } \left(\beta - \frac{1}{\alpha^2}\right)$ giving your answer in the form $px^2 + qx + r = 0$ where p, q and r are integers to be determined.	
giving your answer in the form $px^2 + qx + r = 0$ where p , q and r are integers to be determined.	
be determined.	

Question 5 continued		

Question 5 continued		

Question 5 continued		
	0 1 \	
(Total for Question 5 is	y marks)	

6.	(i)		
		$f(x) = x - 4 - \cos\left(5\sqrt{x}\right) \qquad x > 0$	
	(a) Show that the equation $f(x) = 0$ has a root α in the interval [2.5, 3.5]	(2)
	(b) Use linear interpolation once on the interval [2.5, 3.5] to find an approximation to α , giving your answer to 2 decimal places.	(2)
	(ii)		(2)
		$g(x) = \frac{1}{10}x^2 - \frac{1}{2x^2} + x - 11$ $x > 0$	
	(a) Determine $g'(x)$.	(2)
	,	The equation $g(x) = 0$ has a root β in the interval [6, 7]	
	(b) Using $x_0 = 6$ as a first approximation to β , apply the Newton-Raphson procedur once to $g(x)$ to find a second approximation to β , giving your answer to 3 decimal places.	e
		3 decimal places.	(2)

Question 6 continued

Question 6 continued

Question 6 continued	
(Total for Question 6 is 8	marks)

7.	The parabola C has equation $y^2 = \frac{4}{3}x$	
	The point $P\left(\frac{1}{3}t^2, \frac{2}{3}t\right)$, where $t \neq 0$, lies on C .	
	(a) Use calculus to show that the normal to <i>C</i> at <i>P</i> has equation	
	$3tx + 3y = t^3 + 2t$	(3)
	The normal to C at the point where $t = 9$ meets C again at the point Q .	
	(b) Determine the exact coordinates of Q .	(4)

	_
(Total for Question 7 is 7 marks)	

8.	(a) Use the standard results for summations to show that, for all positive integers n ,		
		$\sum_{r=1}^{n} r (2r^2 - 3r - 1) = \frac{1}{2} n (n+1)^2 (n-2)$	(4)
	(b)	Hence show that, for all positive integers n ,	
		$\sum_{r=n}^{2n} r(2r^2 - 3r - 1) = \frac{1}{2}n(n-1)(an+b)(cn+d)$	
		where a , b , c and d are integers to be determined.	(4)
_			

Question 8 continued

Question 8 continued

Question 8 continued	
	(Total for Question 8 is 8 marks)

9.	Given that	
	$\frac{3z-1}{2} = \frac{\lambda + 5i}{\lambda - 4i}$	
	where λ is a real constant,	
	(a) determine z, giving your answer in the form $x + yi$, where x and y are real and in terms of λ .	
	terms of λ .	(4)
	Given also that $\arg z = \frac{\pi}{4}$	
	(b) find the possible values of λ .	(2)

Question 9 continued
(Total for Question 9 is 6 marks)

10. (i) Prove by induction that for $n \in \mathbb{Z}^+$	
$ \begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}^n = 3^{n-1} \begin{pmatrix} 2n+3 & -n \\ 4n & 3-2n \end{pmatrix} $	(5)
(ii) Prove by induction that for $n \in \mathbb{Z}^+$	
$f(n) = 8^{2n+1} + 6^{2n-1}$	
is divisible by 7	(5)
	(3)

Question 10 continued		

Question 10 continued		

Question 10 continued		

Question 10 continued		
	(Total for Question 10 is 10 marks)	
	TOTAL FOR PAPER IS 75 MARKS	

Please check the examination details below before entering your candidate information		
Candidate surname	Other names	
Centre Number Candidate Number Pearson Edexcel International Advanced Level		
Thursday 23 May 2024		
Morning (Time: 1 hour 30 minutes)	Paper reference WFM01/01	
Mathematics International Advanced Subsidiary/ Advanced Level Further Pure Mathematics F1		
You must have: Mathematical Formulae and Statistical	Total Marks	

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided

 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1. (i) The matrix A is defined by	
$\mathbf{A} = \begin{pmatrix} 3k & 4k - 1 \\ 2 & 6 \end{pmatrix}$	
where k is a constant.	
(a) Determine the value of k for which \mathbf{A} is singular.	(2)
Given that A is non-singular,	
(b) determine A^{-1} in terms of k , giving your answer in simplest form.	(2)
(ii) The matrix \mathbf{B} is defined by	
$\mathbf{B} = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$	
where p and q are integers.	
State the value of p and the value of q when \mathbf{B} represents	
(a) an enlargement about the origin with scale factor -2	
(b) a reflection in the y-axis.	(2)
(b) a reflection in the <i>y</i> -axis.	(2)
(b) a reflection in the y-axis.	(2)
(b) a reflection in the y-axis.	(2)
(b) a reflection in the y-axis.	(2)
(b) a reflection in the <i>y</i> -axis.	(2)
(b) a reflection in the <i>y</i> -axis.	(2)
(b) a reflection in the <i>y</i> -axis.	(2)
(b) a reflection in the <i>y</i> -axis.	(2)
(b) a reflection in the y-axis.	(2)
(b) a reflection in the y-axis.	(2)
(b) a reflection in the y-axis.	(2)
(b) a reflection in the <i>y</i> —axis.	(2)

Question 1 continued		
(Total for Question 1 is 6 marks)		
(1000 100		

2.	In this question you must show all stages of your working.		
	Solutions relying entirely on calculator technology are not acceptable.		
	$f(z) = z^3 - 13z^2 + 59z + p \qquad p \in \mathbb{Z}$		
	Given that $z = 3$ is a root of the equation $f(z) = 0$		
	(a) show that $p = -87$	(2)	
	(b) Use algebra to determine the other roots of $f(z) = 0$, giving your answers in simplest form.	(4)	
	On an Argand diagram		
	• the root $z = 3$ is represented by the point P		
	• the other roots of $f(z) = 0$ are represented by the points Q and R		
	• the number $z = -9$ is represented by the point S		
	(c) Show on a single Argand diagram the positions of P , Q , R and S	(1)	
	(d) Determine the perimeter of the quadrilateral <i>PQSR</i> , giving your answer as a simplified surd.		
		(2)	

Question 2 continued		

Question 2 continued		

Question 2 continued	
(Tat	al for Question 2 is 9 marks)
(100	ui ioi Question 2 is / mai ks)

3.	$f(x) = x^3 - 5\sqrt{x} - 4x + 7 \qquad x \geqslant 0$	
	The equation $f(x) = 0$ has a root α in the interval [0.25, 1]	
	(a) Use linear interpolation once on the interval [0.25, 1] to determine an approximation to α , giving your answer to 3 decimal places.	
		(3)
	The equation $f(x) = 0$ has another root β in the interval [1.5, 2.5]	
	(b) Determine $f'(x)$	(2)
	(c) Hence, using $x_0 = 1.75$ as a first approximation to β , apply the Newton–Raphson process once to $f(x)$ to determine a second approximation to β , giving your answer to 3 decimal places.	
	•	(2)

Question 3 continued
(Total for Question 3 is 7 marks)
,

4.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	The complex number z is defined by	
	z = -3 + 4i	
	(a) Determine $ z^2 - 3 $	(3)
	(b) Express $\frac{50}{z^*}$ in the form kz , where k is a positive integer.	
	(c) Hence find the value of $\arg\left(\frac{50}{z^*}\right)$	(3)
	Give your answer in radians to 3 significant figures.	(2)

Question 4 continued	
(Total fo	r Question 4 is 8 marks)
(Total To	Zaconon i is o marks)

5.	The equation $5x^2 - 4x + 2 = 0$ has roots $\frac{1}{p}$ and $\frac{1}{q}$	
	(a) Without solving the equation,	
	(i) show that $pq = \frac{5}{2}$	
	(ii) determine the value of $p + q$	(4)
	(b) Hence, without finding the values of p and q , determine a quadratic equation with roots	
	$\frac{p}{p^2+1}$ and $\frac{q}{q^2+1}$	
	giving your answer in the form $ax^2 + bx + c = 0$ where a, b and c are integers.	(5)
_		
_		
_		

Question 5 continued

Question 5 continued

Question 5 continued	
(Total	al for Question 5 is 9 marks)
(100	ar for Question 5 is 7 marks)

$$\begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^n = \begin{pmatrix} 1 & (2^n - 1)r \\ 0 & 2^n \end{pmatrix}$$

where r is a constant.

(4)

$$\mathbf{M} = \begin{pmatrix} 4 & 0 \\ 0 & 5 \end{pmatrix} \qquad \mathbf{N} = \begin{pmatrix} 1 & -2 \\ 0 & 2 \end{pmatrix}^4$$

The transformation represented by matrix M followed by the transformation represented by matrix \mathbf{N} is represented by the matrix \mathbf{B}

- (b) (i) Determine **N** in the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c and d are integers.
 - (ii) Determine B

(3)

Hexagon S is transformed onto hexagon S' by matrix **B**

(c)	Given that the area of S'	is 720 square units,	determine the area of S	

(2)

Question 6 continued

Question 6 continued

Question 6 continued	
(To	tal for Question 6 is 9 marks)
(10	war zoz Zuestavia o as / mur ms/

7.	In this question use the standard results for summations.	
	(a) Show that for all positive integers n	
	$\sum_{r=1}^{n} (12r^2 + 2r - 3) = An^3 + Bn^2$	
	where A and B are integers to be determined.	(4)
	(b) Hence determine the value of n for which	
	$\sum_{r=1}^{2n} r^3 - \sum_{r=1}^{n} (12r^2 + 2r - 3) = 270$	(4)

Question 7 continued
(Total for Question 7 is 8 marks)

8.	Prove by induction that for $n \in \mathbb{Z}^+$	
	$f(n) = 7^{n-1} + 8^{2n+1}$	
	is divisible by 57	(6)
_		
_		

Question 8 continued
(Total for Question 8 is 6 marks)

9.	The rectangular hyperbola H has equation $xy = c^2$ where c is a positive constant.	
	The point $P\left(ct, \frac{c}{t}\right)$, where $t > 0$, lies on H	
	(a) Use calculus to show that an equation of the normal to H at P is	
	$t^3x - ty = c(t^4 - 1)$	
		(4)
	The parabola C has equation $y^2 = 6x$	
	The normal to H at the point with coordinates (8, 2) meets C at the point Q where $y > 0$	
	(b) Determine the exact coordinates of Q	(4)
	Given that	
	• the point <i>R</i> is the focus of <i>C</i>	
	• the line <i>l</i> is the directrix of <i>C</i>	
	• the line through Q and R meets l at the point S	
	(c) determine the exact length of QS	(5)

Question 9 continued

Question 9 continued

Question 9 continued

Question 9 continued	
	(Total for Overtion 0 is 12 arks)
	(Total for Question 9 is 13 marks)
	TOTAL FOR PAPER IS 75 MARKS