Please check the examination details below before entering your candidate information							
Candidate surname			Other name	s			
Pearson Edexcel International Advanced Level	Centre	e Number		Candidate Number			
Tuesday 14 January 2020							
Afternoon (Time: 1 hour 30 minutes)		Paper Reference WFM01/01					
Mathematics International Advanced Subsidiary/Advanced Level Further Pure Mathematics F1							
You must have: Mathematical Formulae and Statistical Tables (Blue), calculator							

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

$$\mathbf{A} = \begin{pmatrix} p & -5 \\ -2 & p+3 \end{pmatrix}$$

- (a) Determine the values of the constant p for which A is singular.
- (3)

Given that p = 3

(b) determine A^{-1}

(3)

(a)
$$det(A) = P(P+3) - (-2)(-5) = 0$$

$$p^2 + 3p - 10 = 0$$

 $(p+5)(p-2) = 0$

(b)
$$A = \begin{pmatrix} 3 & -5 \\ -2 & 6 \end{pmatrix}$$

$$A^{-1} = \frac{1}{8} \begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix}$$

2. Given that $x = -\frac{1}{3}$ is a root of the equation

$$3x^3 + kx^2 + 33x + 13 = 0 \qquad k \in \mathbb{R}$$

determine

(a) the value of k,

(2)

(b) the other 2 roots of the equation in the form a + ib, where a and b are real numbers.

(4)

$$\frac{1a)}{3(-\frac{1}{3})^{3} + k(-\frac{1}{3})^{2} + 33(-\frac{1}{3}) + 13 = 0}{1 + \frac{1}{3}}$$

$$-1 + k = -18$$

$$k = -17$$

$$-18x^2$$
 $-6x$

(2)

Leave blank

3. (a) Use the standard results for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$ to show that for all positive integers n

$$\sum_{r=1}^{n} r^2 (2r+3) = \frac{n}{2} (n+1)(n^2+3n+1)$$
 (4)

(b) Hence calculate the value of $\sum_{r=10}^{25} r^2 (2r+3)$

$$\frac{1}{2r+3} = \frac{1}{2r+3} = \frac{1$$

$$= 2 \left[\frac{1}{4} n^{2} (n + 1)^{2} \right] + 3 \left[\frac{1}{6} n (n + 1) (2n + 1) \right]$$

$$= \frac{1}{2} n^{2} (n+1)^{2} + \frac{1}{2} n (n+1) (2n+1)$$

$$= \frac{n}{\lambda} \left(n+1 \right) \left[\frac{n^2 + 3n + 1}{n^2 + 3n + 1} \right] = \left(\frac{n}{\lambda} \left(n+1 \right) \left(n^2 + 3n + 1 \right) \right)$$

(b)
$$\sum_{r=10}^{25} r^2(2r+3) = \left(\sum_{r=1}^{25} - \sum_{r=1}^{9}\right) r^2(2r+3)$$

$$= \frac{25}{2} (26) (25^2 + 75 + 1) - \frac{9}{2} (10) (81 + 27 + 1)$$

$$= (22) 920$$

$$\sum_{x=10}^{25} (x^{2}(2x+3))$$
222920

(3)

Leave blank

4.
$$z_1 = p + 5i$$
, $z_2 = 9 + 8i$ and $z_3 = \frac{z_1}{z_2}$

where p is a real constant.

- (a) Determine z_3 in the form x + iy, where x and y are in terms of p
- (b) Determine the exact value of the modulus of z_2 (1)

Given that the argument of z_1 is $\frac{\pi}{3}$

- (c) (i) determine the exact value of p
 - (ii) determine the exact value of the modulus of z_3

(b)
$$|Z_1| = \sqrt{g^2 + g^2} = \sqrt{145}$$

$$\frac{(c) (i)}{\tan \left(\frac{\pi}{3}\right) = \frac{5}{p}}$$

$$P = 5/\sqrt{3}$$

(ii)
$$|z_1| = \sqrt{\frac{25}{3} + 25} = \frac{10}{\sqrt{3}}$$

$$\left|\frac{z_{3}}{z_{3}}\right| = \frac{19\sqrt{13}}{\sqrt{145}} = \frac{2\sqrt{435}}{87}$$

5.
$$f(x) = x^4 - 12x^{\frac{3}{2}} + 7 \qquad x \geqslant 0$$

(a) Show that the equation f(x) = 0 has a root, α , in the interval [2, 3].

(2)

(b) Taking 2.5 as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to find a second approximation to α , giving your answer to 2 decimal places.

(c) Show that your answer to (b) gives α correct to 2 decimal places.

- f(2) <0 f(x) is continuous and there is a sign change.
- Hence there is a root between 2 and 3. £13) >0

(b)
$$f'(x) = 4x^3 - 18x^{\frac{1}{2}}$$

$$2.5 - \frac{f(2.5)}{f'(2.5)} = 2.5 - \frac{2.5^4 - 12(2.5)^1}{4 \times 2.5^3 - 18\sqrt{2}}$$

$$2.5 - \frac{2.540296269}{4 \times 2.540296269}$$

blank

$$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$$

The transformation represented by A maps the point R(3p-13, p-4), where p is a constant, onto the point R'(7, -2)

(a) Determine the value of p

(3)

The point S has coordinates (0, 7)

Given that *O* is the origin,

(b) determine the area of triangle *ORS*

(2)

(2)

The transformation represented by A maps the triangle ORS onto the triangle OR'S'

(c) Hence, using your answer to part (b), determine the area of triangle OR'S'

$$6p-26+3p-12 = 9p-38 = 7 9p = 45$$

 $3p-13-4p+16 = -p+3 = -2$

$$3p-13-4p+16 = -p+3 = -2$$

5(0)

 $= \frac{1}{2} \times 7 \times 2 =$

(c)
$$\det(A) = -8 - 3 = -11$$

- 7. The equation $3x^2 + px 5 = 0$, where p is a constant, has roots α and β .
 - (a) Determine the value of

(i)
$$\alpha\beta$$
 = $-\frac{5}{3}$

(ii)
$$\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right) = 2\beta + 1 + 1 + \frac{1}{\alpha\beta} = -\frac{5}{3} + 2 - \frac{3}{5} = -\frac{4}{15}$$

(b) Obtain an expression, in terms of p, for

(i)
$$\alpha + \beta = -\frac{P}{3}$$

(ii)
$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = -\frac{p}{3} + \frac{\alpha + \beta}{\alpha \beta} = -\frac{p}{3} + \frac{-\frac{p}{3}}{-\frac{5}{3}}$$

Given that
$$= -\frac{p}{3} + \frac{p}{5} + \frac{-\frac{p}{3}}{5} = -\frac{p}{3} + \frac{-\frac{p}{3}}{5} = -\frac{p}{3} = -\frac$$

$$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = 2\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$$

- (c) determine the value of p. (1)
- (d) Using the value of p found in part (c), obtain a quadratic equation, with integer coefficients, that has roots $\left(\alpha + \frac{1}{\beta}\right)$ and $\left(\beta + \frac{1}{\alpha}\right)$

$$\frac{-2}{15}p = -\frac{8}{15}$$

$$Sum = -\frac{3}{15}(4) = -\frac{8}{15}$$

$$prod = -\frac{4}{15}$$

blank

A rectangular hyperbola, H, has Cartesian equation xy = 16

The point $P\left(4t, \frac{4}{t}\right)$, $t \neq 0$, lies on H.

(a) Use calculus to show that an equation of the normal to H at P is

$$ty - t^3x = 4 - 4t^4$$

The point A on H has parameter t = 2

The normal to H at A meets H again at the point B.

(b) Determine the exact value of the length of AB.

(6)

(5)

The tangent to H at A meets the y-axis at the point C.

(c) Determine the exact area of triangle ABC.

(3)

$$(a) \qquad \times \cdot y = 16$$

$$y + \times \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-y}{x} = \frac{-\frac{9}{t}}{4t} = \left(-\frac{1}{t^2}\right)$$

NORMAL:
$$y - 4/t = t^2(x - 4t)$$

 $ty - 4 = t^3x - 4t^4$

(b)
$$A(8,2)$$
 NORMAL: $2y - 8x = -60$

$$\frac{\times}{25}$$
 - $8\times = -6c$

$$8x^{2} - 60x - 32 = 0$$

 $2x^{2} - 15x - 8 = 0$

$$\frac{2}{1} \times \frac{1}{8}$$

(2x+1) (x-8)

Question 8 continued

(c) TANGENT AT
$$A(812)$$
 $t=2$

$$y - 2 = -/4 (x - 8)$$

((0,4)

9. (i)
$$f(n) = 7^{n}(3n+1) - 1$$

Prove by induction that, for $n \in \mathbb{Z}^+$, f(n) is a multiple of 9

(6)

(ii) A sequence of numbers is defined by

$$u_1 = 2 \qquad u_2 = 6$$

$$u_{n+2} = 3u_{n+1} - 2u_n \qquad n \in \mathbb{Z}^+$$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 2(2^n - 1)$$

(i) f(i) = 7(3+i) - 1 = 28 - 1 = 27 = 3.9

(6)

P(1) is true. Assume P(n) is true

So $f(n) = 7^n (3n+1) - 1 = 9k, k \in \mathbb{Z}$

P(n+1): f(n+1) - f(n)

$$= \left[7^{n+1}(3n+4)-1\right]-\left[7^{n}(3n+1)-1\right]$$

$$= 7^{n+1} \left(3n+4 \right) - 7^n \left(3n+1 \right)$$

$$= 7 \cdot 7^{n} \left(3n+4\right) - 3n \cdot 7^{n} - 7^{n}$$

$$= 2 \ln 7^{n} + 28.7^{n} - 3n.7^{n} - 7^{n}$$

$$= 18n.7^{n} + 27.7^{n}$$

$$= 9 (2n.7^n + 3.7^n)$$

So f (n+1) is also a multiple of 9.

$$p(n) \Rightarrow p(n+1)$$
 by

by induction.

Question 9 continued

(ii)
$$n=1$$
 $U_1 = 2(2^{i}-1) = 2$ TRUE.
 $n=2$ $U_2 = 2(2^{i}-1) = 6$ TRUE.

ASSUME:
$$U_n = \lambda \left(2^n - 1 \right)$$

CONSIDER
$$U_{n+1} = 2 \left(2^{n+1} - 1\right)$$

$$U_{n+2} = 2 \left(2^{n+2} - 1\right)$$

$$M_{n+2} = 3 M_{n+1} - 2 M_n$$

$$2(2^{n+2}-1) = 3 \cdot 2(2^{n+1}-1) - 2Un$$

$$8 \cdot 2^{n} - 2 = 6 \cdot 2^{n+1} - 6 - 2Un$$

$$8 \cdot 2^{n} = 12 \cdot 2^{n} - 4 - 2Un$$

$$2U_{n} = 4 \cdot 2^{n} - 4$$

$$U_{n} = 2 \cdot 2^{n} - 2$$

$$U_{n} = 2(2^{n}-1)$$

So	p(n)	<u>—</u> й	Plati) by	induction.
	•		•		