Table of Contents

FP1_2020_01_MS	2
FP1_2020_10_MS	24
FP1_2021_01_MS	40
FP1_2021_06_MS	52
FP1_2022_01_MS	61
FP1_2023_01_MS	75
FP1_2023_06_MS	93
FP1_2024_01_MS	106

IAL FP1 MarkScheme

January 2020 WFM01/01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme		No	tes	Marks	
1.	(a) $\mathbf{A} = \begin{pmatrix} \\ \end{pmatrix}$	$\begin{pmatrix} p & -5 \\ -2 & p+3 \end{pmatrix}$ (b) $p=3$; $\mathbf{A} = \begin{pmatrix} a & -5 \\ -2 & d \end{pmatrix}$	5)				
(a)	$det(\mathbf{A}) =$	$p(p+3) - (-5)(-2) \{= p(p+3) - 10\}$		Applies $p(p +$	$(-3) \pm (-5)(-2)$	M1	
			Obtains a	correct expressi	ion for $det(\mathbf{A})$,		
	$n^2 + 3n -$	$-10 = 0 \implies (n+5)(n-2) = 0 \implies n =$		sets their o	$det(\mathbf{A}) = 0$ and	M1	
	P + SP	$10 - 0 \rightarrow (p + b)(p - 2) - 0 \rightarrow p - \dots$		solves	s their $3TQ = 0$	1111	
	5.0	<u></u>	by ar	iy valid method	to give $p = \dots$		
	p = -3, 2				p = -5, 2	Al (2)	
	ſ	$\begin{pmatrix} 2 & 5 \end{pmatrix}$				(3)	
(b)	$\begin{cases} p = 3 = 1 \end{cases}$	$\Rightarrow \mathbf{A} = \begin{pmatrix} 5 & -5 \\ -2 & 6 \end{pmatrix} $					
		$\begin{pmatrix} 6 & 5 \end{pmatrix}$	For either	$\begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix}$ or a con	rrect numerical		
	For either	$\left[\begin{array}{c} 3 & -3 \\ 2 & -3 \end{array} \right]$ or det(A) = 3(3+3) - 10 or 8	expression	$\begin{pmatrix} 2 & 3 \end{pmatrix}$	(\mathbf{A}) which can	B1	
			expression	be seen or implied			
				1	A di(A)		
	Δ ⁻¹	1 (6 5)		$\frac{1}{ad \pm (-5)(-2)} \operatorname{Adj}(\mathbf{A}),$			
	3(3	$(3+3) - (-5)(-2) \begin{pmatrix} 2 & 3 \end{pmatrix}$	where a correct method has been			1911	
			emp	loyed for findin	g their Adj(A)		
	$\mathbf{A}^{-1} = \frac{1}{8} \bigg($	$ \begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix} \text{ or } = \begin{pmatrix} \frac{3}{4} & \frac{5}{8} \\ \frac{1}{4} & \frac{3}{8} \end{pmatrix} \text{ or } = \begin{pmatrix} 0.75 & 0 \\ 0.25 & 0 \end{pmatrix} $	(0.625) or =	$\begin{pmatrix} \frac{6}{8} & \frac{5}{8} \\ \frac{2}{8} & \frac{3}{8} \end{pmatrix}$	Correct A^{-1}	A1	
		Quest	tion 1 Notes			0	
		(a, b) $(d, -b)$					
1. (b)	Note	$\mathbf{A} = \begin{pmatrix} a & c \\ c & d \end{pmatrix} \Rightarrow \operatorname{Adj}(\mathbf{A}) = \begin{pmatrix} a & c \\ -c & a \end{pmatrix}$	is a correct m	ethod for findin	g their Adj(A)		
	Note	Allow B1 M1 A0 for just writing $\frac{1}{3(3+1)}$	$\frac{1}{(+3) - (-5)(-2)}$	$\overline{2}\begin{pmatrix} p+3 & 5\\ 2 & p \end{pmatrix}$			
	Note	Allow B0 M1 A0 for just writing $\frac{1}{3(3+3) + (-5)(-2)} \begin{pmatrix} p+3 & 5\\ 2 & p \end{pmatrix}$					
	Note	Allow B0 M1 A0 for just writing $\frac{1}{p(p+3) \pm (-5)(-2)} \begin{pmatrix} p+3 & 5\\ 2 & p \end{pmatrix}$					
	Note	Allow M1 for evidence of a correct numerical expression for det $\mathbf{A} = ad \pm (-5)(-2)$ followed					
		$\frac{1}{\text{their det}(A)} \operatorname{Adj}(\mathbf{A}) \text{ where a correct m}$	ethod has be	en employed for	finding their A	lj(A)	
		1 (6 5)		1(6, 5)			
	Note	Give final A0 for $\frac{1}{18-10} \begin{pmatrix} 3 & 3 \\ 2 & 3 \end{pmatrix}$ with	out reference	to $\frac{1}{8} \begin{pmatrix} 3 & 3 \\ 2 & 3 \end{pmatrix}$ or $\frac{1}{8} \begin{pmatrix} 3 & 3 \\ 2 & 3 \end{pmatrix}$	any other accept	able answer	
	Note	Give B1 M1 A1 for writing down a cor	rect final ans	wer for \mathbf{A}^{-1} from	om no working		

Question Number	Scheme Notes I						Mark	KS .	
2.	Let $f(x)$ =	$=3x^3 + kx^2 + 33x + 13; k \in \mathbb{R}$; $x = -\frac{1}{2}$	$-\frac{1}{3}$ is a root	of $f(x) = 0$				
		Note: Ignore lab	elling	of parts when	n marking Q2	L			
		6	0	1	Some evid	ence of substituting			
(a) Way 1	$3\left(-\frac{1}{3}\right)^3$	$+k\left(-\frac{1}{3}\right)^{2}+33\left(-\frac{1}{3}\right)+13=0$	$\Rightarrow k =$	=	$x = -\frac{1}{3}$ into	the given equation	M1		
, i i i i i i i i i i i i i i i i i i i					and s	olves to find $k =$			
	$\left\{-\frac{1}{9}+\frac{1}{9}\right\}$	$k - 11 + 13 = 0 \Longrightarrow -1 + k + 18 =$	$0 \Rightarrow $	<i>k</i> = −17		k = -17	A1		
)					(2)	
(a)	f(x) = (3x)	$(x+1)(x^2 + Ax + 13)$		Eve	racses f(x) = (3)	$(x+1)(x^2 + 4x + 12)$			
Way 2	x: 3(13)	$A = 33 \Rightarrow A = -6$		Exp	(3) = (3)	$(x \pm 1)(x + Ax \pm 13),$	M1		
way 2	$x^2 \cdot k - 1$	(6)(2)			and equate	$x = x^2$ terms to find k	1411		
	$\begin{array}{c} x \\ k \\$	1 + (-0)(3)			and equates		A 1		
	$\kappa = -1 /$					$\kappa = -1 /$	AI	(2)	
(b)				<u> </u> /	Attempts to find	the quadratic factor		(4)	
(0)				1	e.g. using lon	g division to obtain			
					$(3x\pm 1)$) with $(x^2 \pm qx +)$			
	${f(x) =}$	$(3x+1)(x^2-6x+13)$		or $\left(x \pm \frac{1}{2}\right)$	with $(3x^2 \pm qx)$	+); $q = \text{value} \neq 0$			
				(3)	· · · · · · / · · · · · · · · · · ·	- ffi -i to - leto in	. · M1		
	or			e.g. factor	f(u) (2u	$(1)(x^2 + x^2 + x)$			
	$\{f(x) = \}$	$\left(x+\frac{1}{2}\right)(3x^2-18x+39)$			I(x) = (3x)	± 1) $(x \pm qx \pm r)$ or			
		(3)			$f(x) = \left(x = x\right)$	$\pm \frac{1}{3} \Big) (3x^2 \pm qx \pm r),$			
					q = va	alue $\neq 0, r \operatorname{can} \operatorname{be} 0$			
			x^2 –	-6x + 13 or 3	$5x^2 - 18x + 39$ se	en in their working	A1		
	${x^2-6x-}$	$+13 = 0 \text{ or } 3x^2 - 18x + 39 = 0$	\Rightarrow }						
	e.g.			de	ependent on the	previous M mark			
		$-6 \pm \sqrt{(-6)^2 - 4(1)(13)}$		Corre	ct method of app	olying the quadratic	12.64		
	• <i>x</i> =	2(1)			formula or co	mpleting the square	dM1		
	$\bullet (x-3)^2$	$x^2 - 9 + 13 = 0 \implies x = \dots$			on th	eir quadratic factor			
	$\{x = \}$ 3	$\pm 2i$ (or $3\pm i2$)				3+2i and $3-2i$	A1		
		· · · ·						(4)	
								6	
		1	Q	uestion 2 No	otes				
2. (b)	Note	You can assume $z \equiv x$ for	solutio	ons in this par	t				
	Note	Give final dM1A1 for $x^2 - c$	6x + 13	$3 = 0 \text{ or } 3x^2$	-18x + 39 = 0 =	$\Rightarrow x = 3 + 2i, 3 - 2i$			
		with no intermediate working	ıg.						
	Note	Give M1 A1 dM1 A1 for $3x^3 - 17x^2 + 33x + 13 = 0 \Rightarrow x = 3 + 2i, 3 - 2i$							
		with no intermediate working	ng.						
	Note	They must be solving a 3TQ	Q "A"x	$x^{2} + "B"x + "0$	C" where				
		A, B, C are all numerical	values	$\neq 0$ for the f	inal dM1 mark.				
	Note	Special Case: If <i>their quad</i>	<i>lratic</i> f	Eactor $x^2 + "E$	B''x + "C" can b	e factorised then			
		Otherwise, give dM0 for an	plving	a method of	factorisation to s	solve their $3TO = 0$			
	1	Otherwise, give dwo for applying a method of factorisation to solve their $51Q - 0$.							

		Question 2 Notes Continued							
2. (b)	Note	<u>Reminder:</u> Method mark for solving a $3TQ = 0$							
		Formula: $Ax^2 + Bx + C = 0 \Rightarrow$ Attempt to use the correct formula (with values for	A, B, C)						
		Completing the Square: $x^2 + Bx + C = 0 \Rightarrow \left(x \pm \frac{B}{2}\right)^2 \pm q \pm C = 0, q \neq 0$, leading	to $x =$						
	Note:	<u>Comparing coefficients:</u> $f(x) = (3x+1)(x^2 + \alpha x + \beta) \equiv 3x^3 - 17x^2 + 33x + 13$							
		$x^{2}: 3\alpha + 1 = -17 \Rightarrow \alpha = -6; z: 3\beta + \alpha = 33 \Rightarrow 3\beta - 6 = 33 \Rightarrow \beta = 13; \text{constant}: \beta = 13$	$x^2: 3\alpha + 1 = -17 \Rightarrow \alpha = -6; \ z: 3\beta + \alpha = 33 \Rightarrow 3\beta - 6 = 33 \Rightarrow \beta = 13; \ \text{constant}: \beta = 13$						
		yielding quadratic factor = $x^2 - 6x + 13$	ielding quadratic factor = $x^2 - 6x + 13$						
	Note	The solutions $3 \pm 2i$ need to follow on from a correct $x^2 - 6x + 13 = 0$ or $3x^2 - 18$	x + 39 = 0						
		in order to gain the final A mark.							
	Note	Give final A0 for writing $\frac{6 \pm 4i}{2}$ followed by either $3 \pm 4i$ or $6 \pm 2i$	Give final A0 for writing $\frac{6 \pm 4i}{2}$ followed by either $3 \pm 4i$ or $6 \pm 2i$						
2. (a)	Note	Long division:							
ALT 1		$3x^2 - 18x + 39$ $x^2 - 6x + 13$							
		$x + \frac{1}{3} \overline{3x^3 + kx^2} + 33x + 13 \qquad \qquad 3x + 1 \overline{3x^3 + kx^2} + 33x + 13$							
		$3\underline{x^3 + x^2} \qquad \qquad 3\underline{x^3 + x^2}$							
		$(k-1)x^2 + 33x$ or $(k-1)x^2 + 33x$							
		$-18 x^2 - 6x$ $-18 x^2 - 6x$							
		$39x + 13 \qquad 39x + 13$							
		39x + 13 $39x + 13$							
		0 0							
		Full complete method of dividing by either $x + \frac{1}{3}$							
		$(k-1) - 18 = 0 \Rightarrow k =$ or $(3x+1)$, applying remainder = 0 and solving a	M1						
		relevant equation to find $k =$							
		k = -17 $k = -17$	A1 (2)						
	Noto	Give M0 for dividing by either $x = \frac{1}{2}$ or $3x = 1$	(2)						
	INOTE	Give two for dividing by either $x - \frac{1}{3}$ or $5x - 1$							

		Questio	on 2 Notes Continued	
2. (a)	Note	Long division:		
ALI Z		$x^2 + \left(\frac{k-1}{3}\right)x$	$+\left(\frac{100-k}{9}\right)$	
		$3x+1 \mid \overline{3x^3 + kx^2 + 33x}$	+ 13	
		$3\underline{x^3 + x^2}$		
		$(k-1)x^2 + 33x$		
		$(k-1)x^2 + \left(\frac{k-1}{3}\right)x$		
		$\boxed{\left(\frac{100-k}{3}\right)x}$	- - + 13	
		$\left(\frac{100-k}{3}\right)x$	$x + \left(\frac{100-k}{9}\right)$	
			$13 - \left(\frac{100 - k}{9}\right)$	
		or	(100 - k)	
		$3x^2 + (k-1)x$	$+\left(\frac{100-k}{3}\right)$	
		$x + \frac{1}{3} 3x^3 + kx^2 + 33x$	+ 13	
		$3x^3 + x^2$		
		$(k-1)x^2 + 33x$		
		$\frac{(k-1)x^2 + \left(\frac{k-1}{3}\right)x}{2}$	_	
		$\left(\frac{100-k}{3}\right)x$	z + 13	
		$\left(\frac{100-k}{3}\right)x$	$x + \left(\frac{100-k}{9}\right)$	
			$13 - \left(\frac{100 - k}{9}\right)$	
		$13 - \left(\frac{100 - k}{9}\right) = 0 \Longrightarrow k = \dots$	Full complete method of dividing by either	
		or $(k-1)$	$x + \frac{1}{3}$ or $(5x + 1)$, applying remainder = 0 and solving a relevant equation to find $k - \frac{1}{3}$	MI
		$33 - \left(\frac{n-1}{3}\right) = 39 \implies k = \dots$		
		$\left\{\frac{117-100+k}{9}=0 \implies \right\} k=-17$	k = -17	A1
				(2)
	Note	Give M0 for dividing by either x -	$-\frac{1}{3}$ or $3x-1$	

Question Number		Scheme			Notes	Marks		
3. (a)	$\sum_{r=1}^{n} r^2 (2r -$	$(+3) = 2\sum_{r=1}^{n} r^{3} + 3$	$\sum_{r=1}^{n} r^2$					
	(1)	Attempts to e substitute at le $\sum_{r=1}^{n} r^{3} \text{ or } \sum_{r=1}^{n}$	M1			
	$= 2\left(\frac{1}{4}n^2\right)$	$(n+1)^2 + 3\left(\frac{1}{6}n(n+1)^2\right) + 3\left(\frac{1}{6}$	(n+1)(2n+1)	$\alpha n^2(n +$	Obtains an expression of the form $(1)^2 + \beta n(n+1)(2n+1); \ \alpha, \beta \neq 0$	M1		
				$2\left(\frac{1}{4}n\right)$ which	$\binom{2}{n}(n+1)^{2} + 3\left(\frac{1}{6}n(n+1)(2n+1)\right)$ can be simplified or un-simplified	A1		
	$= \frac{1}{2}n(n+1)$ $= \frac{1}{2}n(n+1)$	$1)(n(n+1) + (2n + 1))(n^2 + 3n + 1)$	1)) *	Achieves intermediate ste	the given result via an appropriate ep with no algebraic errors seen in their working	A1 * cso		
					(4)			
	25)		{Note:				
(b)	$\left\{\sum_{r=10}r^2(2$	2r+3) =	or their (for $f(n)$) of	the form $\alpha n^2 (n + \alpha)^2$) or their un-simplified expression $1)^{2} + \beta n(n+1)(2n+1); \alpha, \beta \neq 0$			
	$=\frac{25}{2}(25)$	$+1)((25)^2 + 3(25)^2)$	+1)((25) ² + 3(25) + 1) - $\frac{9}{2}(9+1)((9)^2 + 3(9) + 1)$ Applies f(25) - f(9) Note: Give M0 for applying f(25) - f(10)					
	$\left\{=\frac{25}{2}(26)\right\}$	$6)(701) - \frac{9}{2}(10)($	109) = 227825 -	- 4905}				
	= 22292	0			222920 cao	A1		
						(2)		
				Question 2 No	tas	6		
3 . (a)	Note	Final A mark.		Question 5 140	u3			
J. (a)	INOR	LHS = $\frac{1}{2}n^2(n + \frac{1}{2}n^4 + n^3)$ RHS = $\frac{n}{2}(n + \frac{1}{2}n^4 + \frac{1}{2}n^4 + \frac{1}{2}n^4 + \frac{1}{2}n^4$ Give final A1 c	Final A mark: LHS = $\frac{1}{2}n^2(n+1)^2 + \frac{1}{2}n(n+1)(2n+1) = \frac{1}{2}n^2(n^2+2n+1) + \frac{1}{2}n(2n^2+3n+1)$ = $\frac{1}{2}n^4 + n^3 + \frac{1}{2}n^2 + n^3 + \frac{3}{2}n^2 + \frac{1}{2}n = \frac{1}{2}n^4 + 2n^3 + 2n^2 + \frac{1}{2}n$ RHS = $\frac{n}{2}(n+1)(n^2+3n+1) = \frac{n}{2}(n^3+3n^2+n+n^2+3n+1) = \frac{n}{2}(n^3+4n^2+4n+1)$ = $\frac{1}{2}n^4 + 2n^3 + 2n^2 + \frac{1}{2}n$ Give final A1 cso for using algebra to show that the LHS and RHS are the same with some acknowledgment (e.g. 'proved', LHS = RHS, QED or \Box) that their proof is complete.					

	Question 3 Notes Continued					
3. (a)	Note	Give final A0 for				
		• jumping from $\frac{1}{2}n^4 + 2n^3 + 2n^2 + \frac{1}{2}n$ to $\frac{n}{2}(n+1)(n^2 + 3n + 1)$ with no intermediate working				
	Note	Condone final A1 for				
		• jumping from $\frac{n}{2}(n^3 + 4n^2 + 4n + 1)$ to $\frac{n}{2}(n+1)(n^2 + 3n + 1)$ with no intermediate working				
	Note	Achieving the given result via an appropriate intermediate step with no algebraic errors seen in				
		their working includes e.g.				
		• $2\left(\frac{1}{4}n^2(n+1)^2\right) + 3\left(\frac{1}{6}n(n+1)(2n+1)\right) = \frac{1}{2}n^2(n+1)^2 + \frac{1}{2}n(n+1)(2n+1)$				
		$= \frac{1}{2}n(n+1)(n^2+3n+1)$				
		• $2\left(\frac{1}{4}n^2(n+1)^2\right) + 3\left(\frac{1}{6}n(n+1)(2n+1)\right) = \frac{1}{2}n(n+1)(n^2+n) + \frac{1}{2}n(n+1)(2n+1)$				
		$= \frac{1}{2}n(n+1)(n^2+3n+1)$				
		• $2\left(\frac{1}{4}n^2(n+1)^2\right) + 3\left(\frac{1}{6}n(n+1)(2n+1)\right) = \frac{1}{2}n(n+1)[n(n+1)] + \frac{1}{2}n(n+1)(2n+1)$				
		$= \frac{1}{2}n(n+1)(n^2+3n+1)$				
3. (b)	Note	Allow M1 for 227825 – 4905 and A1 for obtaining 222920				
	Note	Allow M1 for $\left(\frac{1}{2}(25)^2(26)^2 + \frac{1}{2}(25)(26)(51)\right) - \left(\frac{1}{2}(9)^2(10)^2 + \frac{1}{2}(9)(10)(19)\right)$				
		$\{= (211250 + 16575) - (4050 + 855) = 227825 - 4905\}$ and A1 for obtaining 222920				
	Note	Give M0 A0 for writing 222920 by itself with no supporting working				
	Note	Allow M1 A1 for writing $\sum_{r=1}^{25} r^2 (2r+3) - \sum_{r=1}^{9} r^2 (2r+3) = 222920$				
	Note	Give M0 A0 for listing individual terms				
		i.e. $\sum_{r=10}^{25} r^2 (2r+3) = (10)^2 (23) + (11)^2 (25) + (12)^2 (27) + \dots + (25)^2 (53)$				
		= 2300 + 3025 + 3888 + + 33125 = 222920 by itself is M0 A0				
	Note	Give M0 A0 for applying				
		$f(25) - f(10) = \frac{25}{2}(25+1)((25)^2 + 3(25) + 1) - \frac{10}{2}(10+1)((10)^2 + 3(10) + 1)$				
		$= \frac{25}{2}(26)(701) - 5(11)(131) = 227825 - 7205 = 220620$				
	Note	For M1 allow only one slip when substituting in $n = 25$ and $n = 9$				
	Note	Give M0 for				
		• $\frac{25}{2}(25+1)((25)^2+3(25)+1) - \frac{9}{2}(9+1)((10)^2+3(10)+1) \{=227825-5895=221930\}$				

Question Number	Scheme]	Notes	Mark	S
4.	$z_1 = p + 5i, \ z_2 = 9 + 8i, \ z_3 = \frac{z_1}{z_2}$	$-; \arg(z_1) = \frac{\pi}{3}$					
(a) Way 1	$z_3 = \frac{(p+5i)}{(9+8i)} \times \frac{(9-8i)}{(9-8i)}$			Multiplies numerator and denominator of z_3 by $9-8i$			
	$=\frac{9p-8pi+45i+40}{81+64}$	 a corr a correct nu	ect expr imerical	App ession in terms expression or	blies $i^2 = -1$ to give either s of <i>p</i> for the numerator or value for the denominator	A1	
	$=\frac{9p+40}{145} + \left(\frac{-8p+45}{145}\right)\mathbf{i}$		Corre or writ	ect answer writ tes a correct x	ten in the form $x + iy$ o.e. = $\frac{9p + 40}{145}$, $y = \frac{-8p + 45}{145}$	A1	
							(3)
(a) Way 2	$z_3 = \frac{(p+5i)}{(9+8i)} \times \frac{(-9+8i)}{(-9+8i)}$			Multiplies nu	imerator and denominator of z_3 by $-9+8i$	M1	
	$=\frac{-9p+8pi-45i-40}{-81-64}$	 a corr a correct nu	ect expr imerical	App ession in terms expression or	blies $i^2 = -1$ to give either s of <i>p</i> for the numerator or value for the denominator	A1	
	$=\frac{-9p-40}{-145} + \left(\frac{8p-45}{-145}\right)\mathbf{i}$	or	Corre writes a	ect answer writ correct $x = -$	ten in the form $x + iy$ o.e. $\frac{9p-40}{-145}$ and $y = \frac{8p-45}{-145}$	A1	
							(3)
(b)	$\left\{ \left z_2 \right = \sqrt{9^2 + 8^2} \implies \right\} \left z_2 \right = \sqrt{145}$				$\sqrt{145}$	B1	
							(1)
(c)(i) Way 1	$\left\{ \arg(z_1) = \frac{\pi}{3} \Longrightarrow \right\}$						
	e.g. $\arctan\left(\frac{5}{p}\right) = \frac{\pi}{3}$ or $\tan\left(\frac{\pi}{3}\right)$	$\left(\right) = \frac{5}{p} \text{ or } \sqrt{3} =$	$\frac{5}{p}$	l I	Uses trigonometry to form a correct equation in <i>p</i>	M1	
	$p = \frac{5}{\sqrt{3}}$ or $\frac{5}{3}\sqrt{3}$ or $\sqrt{\frac{25}{3}}$				Correct exact value for p Note: You can apply isw	A1	
(c)(i) Way 2	$\left\{z_1 = \sqrt{p^2 + 25} \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right\}$	$= p + 5i \Longrightarrow$					
	e.g. $\sqrt{p^2 + 25} \left(\cos \frac{\pi}{3} \right) = p$ or	$\sqrt{p^2+25}\left(\sin\frac{\pi}{3}\right)$	$\left(\frac{5}{5}\right) = 5$	I	Uses trigonometry to form a correct equation in <i>p</i>	M1	
	$p = \frac{5}{\sqrt{3}}$ or $\frac{5}{3}\sqrt{3}$ or $\sqrt{\frac{25}{3}}$				Correct exact value for p Note: You can apply isw	A1	
(ii)	• $ z_3 = \frac{ z_1 }{ z_2 } = \frac{\sqrt{\left(\frac{5}{\sqrt{3}}\right)^2 + (5)^2}}{\sqrt{145}}$	$=\frac{\sqrt{\frac{100}{3}}}{\sqrt{145}}$					
	• $z_3 = \frac{8+3\sqrt{3}}{29} + \frac{27-8\sqrt{3}}{87} \Rightarrow z_3 = \sqrt{\left(\frac{8+3\sqrt{3}}{29}\right)^2 + \left(\frac{27-8\sqrt{3}}{87}\right)^2}$						
	$ z_3 = \frac{10}{\sqrt{435}}$ or $\frac{10}{435}\sqrt{435}$ or	$\frac{2}{87}\sqrt{435}$ or $\frac{2}{87}$	$\frac{\sqrt{435}}{87}$	Correct e form $\frac{a}{\sqrt{b}}$	exact answer written in the or $c\sqrt{b}$; $a, b \in \mathbb{Z}, c \in \mathbb{Q}$	B1	
		Note: Give B	1 for $ z_3 $	$=\sqrt{\frac{20}{87}}$			(3)
							7

Page 8 of 119

		Question 4 Notes						
4. (a)	Note	Give 2 nd A0 for $z_3 = \frac{9p+40}{81+64} + \left(\frac{-8p+45}{81+64}\right)i$ without reference to $z_3 = \frac{9p+40}{145} + \left(\frac{-8p+45}{145}\right)i$						
	Note	$\frac{9p+40+(45-8p)i}{145}$ is not considered to be in the form $x+iy$						
	Note	Allow final A1 for $z_3 = \frac{9p}{145} + \frac{8}{29} + \left(\frac{9}{29} - \frac{8p}{145}\right)i$						
	Note	Allow final A1 for $z_3 = \frac{9p+40}{145} - \left(\frac{8p-45}{145}\right)i$						
	Note	y written as $y = \left(\frac{-8p+45}{145}\right)i$ is incorrect						
	Note	11 A1 can be implied for writing $z_3 = \frac{(p+5i)}{(9+8i)} = \frac{9p-8pi}{145} + \frac{8+9i}{29}$						
		and final A1 is then given for $z_3 = \frac{9p}{145} + \frac{8}{29} + \left(\frac{9}{29} - \frac{8p}{145}\right)i$						
(b)	Note	You can apply isw after seeing $\sqrt{145}$						
	Note	Give B0 for writing 12, 12.0 or awrt 12.0 without reference to $\sqrt{145}$						
(c)(i)	Note	Give M1 for any of $\arctan\left(\frac{5}{p}\right) = 60$, $\tan 60 = \frac{5}{p}$, $\arctan\left(\frac{p}{5}\right) = \frac{\pi}{6}$, $\tan 30 = \frac{p}{5}$						
	Note	Give M1 A0 for $p = 2.88$ (truncated) or $p = awrt 2.89$ without reference to a correct exact value						
	Note	Give A0 for $p = \pm \frac{5}{\sqrt{3}}$ with no evidence of rejecting the negative value of p						
(c)(ii)	Note	Allow B1 for $ z_3 = \frac{\sqrt{1740}}{87}$						

Question Number	Scheme				Notes	Marks	
5.	$f(x) = x^4$	$-12x^{\frac{3}{2}}+7$; $x \ge 0$					
(a) Way 1	f(2) = -1 f(3) = -2	0.9411255 5.64617093		Attempts to evaluate both $f(2)$ and $f(3)$ and either f(2) = -10 (truncated) or awrt -11 or $f(3) = 25$ (truncated) or awrt 26		M1	
	Sign chan continuou interval {	ge {negative, positive} {and $f(x)$ is s} therefore a root { α } exists in the [2, 3]}			Both va	alues correct awrt (or truncated) to 2 sf, reason and a valid conclusion	A1 cso
							(2)
(b)	f'(x) = 4x	$c^3-18x^{\frac{1}{2}}$	At least one of either $x^2 \to \pm Ax^3$ or $-12x^{\frac{3}{2}} \to \pm Bx^{\frac{1}{2}}; A, B \neq 0$			M1	
			Correct di	fferenti	iation, w	hich can be un-simplified or simplified	A1
	$\left\{\alpha\simeq 2.5\right\}$	$-\frac{f(2.5)}{f'(2.5)} \Rightarrow \left\{ \alpha \approx 2. \right.$	$5 - \frac{(2.5)^4 - 12(1)^4}{4(2.5)^3 - 1}$	$\frac{2.5)^{\frac{3}{2}}}{8(2.5)^{\frac{1}{2}}}$	7	dependent on the previous M mark Valid attempt at Newton-Raphson using the applied $f(2.5)$ and their applied $f'(2.5)$	dM1
	$\begin{cases} \alpha \simeq 2.5 \end{cases}$	$-\frac{-1.3716649}{34.0395011} = 2$	2.5 + 0.0402962	2}			
	<u> </u>)		dependent on all 3 previous marks	A1
	$\alpha = 2.54$	(2 dp)				2.54 on first iteration	cao
	Correct	(Ignore any subsequent iterations)			<u>cso</u> (4)		
(c)	6(2,525)	Chooses a suitable interval $[x_l, x_{ll}]$ for x, which is			(-)		
Way 1	f(2.535) =	= -0.13/392933		withi	thin ± 0.005 and either side of their answer to (b)		M1
	1(2.343)	- 0.231219419			and	attempts to find either $f(x_L)$ or $f(x_U)$	
	Sign chan continuou	ge {negative, positives} therefore (a root)	ve} {and $f(x)$ $\alpha = 2.54 \{2 d_1\}$	is p}	Both values correct awrt 1 sf, reason and a valid conclusion		
							(2)
(c)	Condone	d Method: Applyin	ng Newton-Ra	phson	<mark>again.</mark> E	E.g. Using $\alpha = 2.54, 2.5402962$	
Way 2	• $\alpha \simeq$	$2.54 - \frac{0.046101609}{36.8609766}$	${} = 2.538751$	631		Evidence of applying Newton- Raphson for a second time on their answer to part (b)	M1
	• $\alpha \simeq$ So $\alpha = 2$.	$2.5402962 \frac{1}{36.88}$ 54 (2 dp)	$\frac{1}{3822382} = 2$.53875	2436	Obtains either a truncated 2.538 or awrt 2.539 and a valid conclusion	A1
		Note: \	Work for Way	2 can	be recov	vered in part (b)	(2)
			Į.			• • • •	8
		I		Quest	ion 5 No	otes	
5. (a)	Note	Way 1: A1, corre	ect solution on	$\int (2)$	1 f(2)		
		Required to state f	oth values for	I(2) a grence t	na 1(3)	correct awrt (or truncated) to 2 st along e of sign or e g $f(2) \times f(3) < 0$ or	With
		a reason and a conclusion. Kelerence to change of sign or e.g. $I(2) \times I(3) < 0$ or f(2) < 0 < f(3) or a diagram or <0 and >0 or one negative one positive are sufficient					
		reasons. There must be a conclusion, e.g. $\{x \text{ or }\} \alpha \in [2, 3]$ or $\{x \text{ or }\} \alpha \in (2, 3)$ or root lies					es
		between 2 and 3.	Ignore the pres	ence or	absence	of any reference to continuity.	
	Note	A minimal accepta	able reason and	conclu	sion is "	change of sign, so $\alpha \in [2, 3]$ "	
		or "change of sign or "f (2)= -10.9	t, so root is between < 0 , $f(3) = 25$	ween 2 5.6 > 0,	and 3" (, so root	or "change of sign, so root"or "change of sign, so in the interval"	,

	Question 5 Notes Continued						
5. (a)	Note	Give final A0 for writing as their conclusion "root lies between $f(2)$ and $f(3)$ "					
5. (a)	Note	<u>ALT</u> The root of $f(x) = 0$ is 2.5388, so they can choose x_1 which is less than 2.5388, and choose x_2 which is greater than 2.5388 with both x_1 and x_2 lying in the interval [2, 3]. M1: Finds $f(x_1)$ and $f(x_2)$ with one of these values correct awrt (or truncated) to 2 sf A1: Both values correct awrt (or truncated) to 2 of reason (a.g. sign change) and conclusion					
	Note	Helpful Table					
	THUL						
		x f(x)					
		2 -10.9411255					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		2.2 -8./31928012					
		$\begin{array}{ c c c c c c c c } 2.3 & -6.8/33/2451 \\ \hline 2.4 & 4.420168148 \\ \hline \end{array}$					
		2.4 -4.439108146					
		2.5 -1.3/1004905					
		2.7 6.90546741					
		2.8 12.24204622					
		2.9 18.46583545					
		3 25.64617093					
(b)	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(2.5)$ or their $f'(2.5)$ (where $f'(2.5)$ is found using their $f'(x)$) to awrt 2 significant figures in $2.5 - \frac{f(2.5)}{f'(2.5)}$.					
		So <i>just writing</i> $2.5 - \frac{f(2.5)}{f'(2.5)}$ with an incorrect ft answer on their f'(2.5) scores dM0 A0.					
	Note	Allow M1 A1 dM1 A1 for $2.5 - \frac{f(2.5)}{f'(2.5)} = 2.54$ with no algebraic differentiation					
	Note	Allow M1 A1 dM1 A1 for correct answer 2.54 given with no other working					
	Note	You can imply the M1 A1 marks for the absence of algebraic differentiation by either					
		• $f'(2.5) = 4(2.5)^3 - 18(2.5)^{\frac{1}{2}}$					
		• f'(2.5) applied correctly in $\alpha \simeq 2.5 - \frac{(2.5)^4 - 12(2.5)^{\frac{3}{2}} + 7}{4(2.5)^3 - 12(2.5)^{\frac{1}{2}}}$					
		• $f'(2.5) = awrt 34$					
	Note	Differentiating INCORRECTLY to give $f'(x) = 4x^3 + 18x^{\frac{1}{2}}$ leads to					
		$\alpha \simeq 2.5 - \frac{-1.3716649}{20.000000} = 2.51507978 = 2.52 (2 dp)$					
		90.9004989 This response should be given M1 A0 dM1 A0					
	Note	Differentiating INCORRECTLY to give $f'(x) = 4x^3 + 18x^{\frac{1}{2}}$ and					
		$\alpha \simeq 2.5 - \frac{f(2.5)}{f'(2.5)} = 2.52$ is M1 A0 dM1 A0					

		Question 5 Notes Continued						
5. (c)	Note	If they obtain a correct answer 2.54 by an incorrect method in part (b) then M1 A1 is						
		allowed in part (c).						
	Note	Way 1: A1, correct solution only						
		Required to state both values for $f(x_L)$ and $f(x_U)$ correct awrt (or truncated) to 1 sf along with						
		a reason and a conclusion. Reference to change of sign or e.g. $f(2.535) \times f(2.545) < 0$ or						
		f(2.535) < 0 < f(2.545) or a diagram or < 0 and > 0 or one negative, one positive are sufficient						
		reasons. There must be a (minimal, not incorrect) conclusion e.g. $\alpha = 2.54$, root (or α to part						
		(b)) is correct, QED or \Box are all acceptable. Ignore the presence or absence of any reference to						
		continuity.						
	Note	A minimal acceptable reason and conclusion is any of						
		• "change of sign, hence root"						
		• "change of sign, so $\alpha = 2.54$ "						
		• "change of sign, so $x = 2.54$ "						
		• "change of sign, so α is correct {to 2 decimal places}"						
		• " $f(2.535) = -0.1 < 0$, $f(2.545) = 0.2 > 0$, so root"						
		• " $f(2.535) = -0.1 < 0$, $f(2.545) = 0.2 > 0$, so $\alpha = 2.54$ "						
	Note	No explicit reference to 2 decimal places is necessary for the conclusion						
	Note	Give A0 for stating "root is in between 2.535 and 2.545" or "root lies in the given interval"						
		without reference to either $\alpha = 2.54$, root (or α to part (b)) is correct, QED or \Box						
(c)	Note	Way 1: ALT						
		The root of $f(x) = 0$ is 2.5388, so they can choose x_L which is less than 2.5388,						
		and choose x_U which is greater than 2.5388 with both x_L and x_U lying in the interval						
		$[2.535, 2.545]$ and evaluate $f(x_L)$ and $f(x_U)$						
		M1: Chooses a suitable interval $[x_L, x_U]$ and attempts to find either $f(x_L)$ or $f(x_U)$						
		A1: Both values correct awrt (or truncated) to 1 sf, reason (e.g. sign change) and conclusion Helpful Table						
	Note							
		x = f(x)						
		2525 -0137392933						
		2.535 -0.100854301						
		2.530 -0.064244144						
		2.537 -0.027562401						
		2.539 0.00919099						
		2.54 0.046016091						
		2.541 0.082912964						
		2.542 0.119881671						
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
(c)	Note	If $\alpha = 2.54$ in part (b), then give M1 A1 in part (c) for any of						
Way 2		• " $\alpha_2 = 2.538 \Rightarrow \alpha_2 = 2.54$ "						
		• " $\alpha_2 = 2.539 \Rightarrow \alpha_2 = 2.54$ "						
		• " $\alpha_2 = 2.539$, so answer to part (b) is correct"						
	Note	If $\alpha = 2.54$ in part (b), then give M1 A0 in part (c) for writing " $\alpha \simeq 2.54 - \frac{f(2.54)}{f'(2.54)} = 2.54$ "						

Question Number	Scheme			Notes	Marks
6.	$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}; \ A : R(3p-13, p-4)$	$)\mapsto R'(7,$	$\mapsto R'(7,-2)$		
(a) Way 1	$\begin{cases} \begin{pmatrix} x_{R'} \\ y_{R'} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 3p - 13 \\ p - 4 \end{pmatrix} = \\ = \begin{pmatrix} 2(3p - 13) + 3(p - 4) \\ 1(3p - 13) - 4(p - 4) \end{pmatrix}$		Co (2 tr Note:	brrect method of multiplying out either 2. 3) $\binom{3p-13}{p-4}$ or $(1 - 4)\binom{3p-13}{p-4}$ o give a linear expression in terms of <i>p</i> for either $x_{R'}$ or $y_{R'}$ c Allow one slip in their multiplication	M1
	• $2(3p-13) + 3(p-4) = 7 \Rightarrow p =$ • $1(3p-13) - 4(p-4) = -2 \Rightarrow p =$ { $9p-38 = 7 \text{ or } -p+3 = -2 \Rightarrow$ }	= p = 5		dependent on the previous M mark Solves either their $x_{R'} = 7$ or their $y_{R'} = -2$ to give $p =$ p = 5	dM1 A1
(a)	$\{\mathbf{A}\mathbf{R}=\mathbf{R}'\Rightarrow\mathbf{R}=\mathbf{A}^{-1}\mathbf{R}'\Rightarrow\}$				
Way 2	$\mathbf{R} = \frac{1}{-8-3} \begin{pmatrix} -4 & -3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$	Applies	$\mathbf{A}^{-1} \begin{pmatrix} 7\\ -2 \end{pmatrix}$	b) to find the value for either x_R or y_R Note: Allow one slip in finding \mathbf{A}^{-1}	M1
	• $3p-13 = 2 \Rightarrow p =$ • $p-4 = 1 \Rightarrow p =$			dependent on the previous M mark Solves either $3p-13 =$ their x_R or $p-4 =$ their y_R to give $p =$	dM1
	<i>p</i> = 5			<i>p</i> = 5	A1 (2)
(a) Way 3	$\{\mathbf{AR} = \mathbf{R}' \Rightarrow \} \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \end{pmatrix} \begin{pmatrix} 2a + 3b = 7 \\ a - 4b = -2 \end{pmatrix} \Rightarrow a = 2 \text{ or } b = 1$ • $3p - 13 = 2 \Rightarrow p = \dots$ • $p - 4 = 1 \Rightarrow p = \dots$		simul Note:	Correct method of applying $\begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$ to form a pair of Itaneous equations and attempts to find either $a =$ or $b =$ Allow one slip in their multiplication dependent on the previous M mark Solves either $3p - 13 =$ their a or $p - 4 =$ their b to give $p =$	(3) M1 dM1
	p = 5			$p = \mathfrak{I}$	A1 (3)
(b) Way 1	$\{R(3(5)-13, 5-4) = R(2,1)\}$ $\{Area(ORS) = \} \frac{1}{2}(7)("2")$			A correct method for finding their x_R and applies $\frac{1}{2}(7)$ (their x_R)	M1
	= / (units)			1	(2)
(c)	{Area($OR'S'$) = } $ 2(-4) - 3(1) \times (7)$	7)	Correc	$\pm (2(-4) - 3(1)) \times (\text{their area}(ORS))$ t answer of 77, which must be positive	M1
	= 77		Only	y allow follow through of the value for $11 \times$ their positive answer to (b)	A1 ft (2) 7

Question Number		Scheme	Notes	Marks		
6. (b) Way 2	$\begin{cases} \text{Area } (O) \\ = \frac{1}{2} \begin{vmatrix} 0 & 2 \\ 0 & 1 \end{vmatrix}$	RS)} $\begin{vmatrix} 0 & 0 \\ 7 & 0 \end{vmatrix} = \frac{1}{2} (0 + 14 + 0) - (0 + 0 + 0) $	A correct method for finding their $R(2, 1)$ with a complete applied method for finding area(<i>ORS</i>) using $S(0, 7)$ and their $R(2, 1)$	M1		
	= 7 (uni	$(ts)^2$	7	A1 cao		
				(2)		
6.	Note	$ORS \mapsto OR'S' \Rightarrow \begin{pmatrix} 0 & 2 & 0 \\ 0 & 1 & 7 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 2 & 0 \\ 0 & 1 & 7 \end{pmatrix}$	$\begin{array}{ccc} \textbf{uestion 6 Notes} \\ \hline 0 & 7 & 21 \\ 0 & -2 & -28 \end{array}$			
(b)	Note	A correct method for finding their	x_R includes any of			
Way 1		• $x_R = 3("5") - 13 = 2$, where p	= "5" is found using part (a), Way 1			
		• their x_R found by applying A	$^{-1}\mathbf{R}'$ using part (a), Way 2			
		• x_R = their <i>a</i> found using part	(a), Way 3			
(b) Way 2	Note	Give M1 A1 for $\frac{1}{2} \begin{vmatrix} 2 & 0 \\ 1 & 7 \end{vmatrix} = \frac{1}{2} 14 - 0 $	Give M1 A1 for $\frac{1}{2} \begin{vmatrix} 2 & 0 \\ 1 & 7 \end{vmatrix} = \frac{1}{2} 14 - 0 = 7$			
	Note	Give M0 A0 for $\begin{vmatrix} 0 & 2 & 0 & 0 \\ 0 & 1 & 7 & 0 \end{vmatrix} = (0+14+0) - (0+0+0) = 14$				
	Note	There are other ways to find Area(ORS). All ways require a complete correct method for				
		the M mark and a correct area of 7 for the A mark.				
	Note	Give M1 for $\frac{1}{2}(1)("2") + \frac{1}{2}(6)("2")$ as this method is equivalent to writing $\frac{1}{2}(7)("2")$				
	Note	Give M0 for the calculation $\frac{1}{2}(7)(7) \left\{ = \frac{49}{2} \right\}$				
(c)	Note	Give M1 A0 for applying $(2(-4))$	-3(1) × (7) to give -77 with no reference to 77	1		
	Note	Part (c) requires the use of the answer to part (b).				
		• Area $(OR'S') = \frac{1}{2} \begin{vmatrix} 0 & 7 & 21 & 0 \\ 0 & -2 & -28 & 0 \end{vmatrix} = \frac{1}{2} (0 - 196 + 0) - (0 - 42 + 0) = \frac{1}{2} (154) = 77$				
		• Area $(OR'S') = \frac{1}{2} \begin{vmatrix} 7 & 21 \\ -2 & -28 \end{vmatrix} = \frac{1}{2} (-196) - (-42) = \frac{1}{2} (154) = 77$				
		• Area $(OR'S') = (28)(21) - \frac{1}{2}(21)(28) - \frac{1}{2}(7)(2) - \frac{1}{2}(2+28)(14)$				
		= 588 - 294 - 7 - 210 = 77				
	Note	Allow M1 A1 for • $\frac{\begin{vmatrix} 7 & 21 \\ -2 & -28 \end{vmatrix}}{\begin{vmatrix} 2 & 0 \\ 1 & 7 \end{vmatrix}} \times 7 = \frac{ (-196) - (-4) }{ 14 - 0 }$	$\frac{42)}{1} \times 7 = \frac{154}{14} \times 7 = 11 \times 7 = 77$			

Question Number	Scheme		Notes	Marks
7.	$3x^2 +$	px-5=0 has	roots α , β ; p is a constant	
	(c)	$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\beta}\right)$	$\left(\frac{1}{\alpha}\right) = 2\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$	
(a) (i)	$\alpha\beta = -\frac{5}{3}$		$\alpha\beta = -\frac{5}{3}$	B1
(ii)	$\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$		Expands to give $\frac{1}{\alpha\beta} + 1 + 1 + \alpha\beta$; and uses their	
	$= \alpha\beta + 2 + \frac{1}{\alpha\beta} = -\frac{5}{3} + 2 + \frac{1}{(\alpha\beta)}$	$\frac{1}{-\frac{5}{3}}$	value of $\alpha\beta$ at least once in a resulting expression	M1
	$=-\frac{4}{15}$		$-\frac{4}{15}$	A1
				(3)
(b)(i)	$\alpha + \beta = -\frac{p}{3}$		$\alpha + \beta = -\frac{p}{3}$ (may be recovered from (a))	B1
(ii)	$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = \alpha + \beta$	$+\frac{\alpha+\beta}{\alpha\beta}$	Evidence of $\frac{1}{\beta} + \frac{1}{\alpha}$ rewritten as $\frac{\alpha + \beta}{\alpha\beta}$ Can be implied	M1
	$=-\frac{p}{3}+\frac{-\frac{p}{3}}{-\frac{5}{3}}$ or $-\frac{p}{3}+\frac{p}{5}$ or	or $-\frac{2p}{15}$	$-\frac{p}{3} + \frac{-\frac{p}{3}}{-\frac{5}{3}} \text{ or } -\frac{p}{3} + \frac{p}{5} \text{ or } -\frac{2p}{15}$ or an equivalent fraction in terms of p Note: You can apply isw	A1
				(3)
(c)	$-\frac{2p}{15} = 2\left(-\frac{4}{15}\right) \implies p = 4$		Correctly obtains $p = 4$	B1
				(1)
(d)	$\sum = 2\left(-\frac{4}{15}\right) = -\frac{8}{15};$	$\mathbf{I} = -\frac{4}{15}$		
			Valid method for finding (their sum) and	
		applies :	x^2 – (their sum)x + their product (can be implied),	
	$x^{2} - \frac{8}{15}x - \frac{4}{15} = 0$		for their numerical values of the sum and product. Note: "=0" is not required for this mark	M1
	15 15		Note: E.g. Using (their sum) = $\alpha + \beta = -\frac{p}{3} = -\frac{4}{3}$	
		is not	t considered a valid method for finding (their sum)	
	$15x^2 + 8x - 4 = 0$		Any integer multiple of $15x^2 + 8x - 4 = 0$, including the "=0"	A1 cso
				(2)
				9

Question Number		Scheme	Notes	Marks
(a)(ii) Way 2	$\left(\alpha + \frac{1}{\beta}\right) = \frac{(\alpha\beta + 1)^2}{\alpha\beta}$	$ \begin{pmatrix} \beta + \frac{1}{\alpha} \\ \frac{1}{\alpha\beta} \end{pmatrix} = \frac{\left(-\frac{5}{3} + 1\right)\left(-\frac{5}{3} + 1\right)}{\left(-\frac{5}{3}\right)} = \frac{\frac{4}{9}}{-\frac{5}{3}} $	Expands to give $\frac{(\alpha\beta + 1)(\alpha\beta + 1)}{\alpha\beta}$ and uses their value of $\alpha\beta$ at least once in a resulting expression	M1
	$=-\frac{4}{15}$		$-\frac{4}{15}$	A1
(b)(ii) Way 2	$\left(\alpha + \frac{1}{\beta}\right) = \frac{(\alpha\beta + 1)}{\beta}$	$+\left(\beta + \frac{1}{\alpha}\right)$ $\frac{1}{\alpha} + \frac{(\alpha\beta + 1)}{\alpha} = \frac{\alpha^2\beta + \alpha + \alpha\beta^2 + \beta}{\alpha\beta}$	Embedded evidence of $\frac{1}{\beta} + \frac{1}{\alpha}$ rewritten as $\frac{\alpha + \beta}{\alpha\beta}$ Can be implied	M1
	$=\frac{\alpha\beta(\alpha+1)}{\alpha\beta(\alpha+1)}$	$\frac{(-\beta) + \alpha + \beta}{\alpha\beta}$		
	$=\frac{(-\frac{5}{3})(-)}{(-)}$	$\frac{p}{3} + (-\frac{p}{3})$ or $\frac{\frac{5p}{9} - \frac{p}{3}}{-\frac{5}{3}}$ or $\frac{\frac{2p}{9}}{-\frac{5}{3}}$ or $-\frac{2p}{15}$	Correct expression in terms of <i>p</i> Note: You can apply isw	A1
	Question 7 Notes			
7. (d)	Note	Valid method for finding (their sum) inclu • applying their $p =$ in (c) to $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = 2\left(\alpha + \frac{1}{\beta}\right)$	des $+\frac{1}{\beta} + \left(\beta + \frac{1}{\alpha}\right) = \text{their} - \frac{2p}{15} \text{ found in (b}$ $\frac{1}{15} \text{ from (a)(ii)}$)(ii)
	Note	Defining a quadratic equation $px^2 + qx + r$ p = 15, q = 8, r = -4 without writing a fir	= 0 and a correct method leading to nal answer of $15x^2 + 8x - 4 = 0$ is final M	11 A0
	Note	Give M0 for $\sum = -\frac{8}{15}$, $\Pi = -\frac{4}{15}$ leading	ng to $x^2 + \frac{8}{15} - \frac{4}{15} = 0$ (without recovery	·)
	Note	Allow M1 for $\sum = -\frac{8}{15}$, $\Pi = -\frac{4}{15}$ with $x^2 + \frac{8}{15} - \frac{4}{15} = 0$	$x^2 - (sum)x + (product)$ leading to	
	Note	Give A1 for $15y^2 + 8y - 4 = 0$ (i.e. writing	ng their answer completely in another vari	able)
	Note	$\alpha, \beta = \frac{-2 \pm \sqrt{19}}{3}$ and $\alpha + \frac{1}{\beta}, \beta + \frac{1}{\alpha} = \frac{1}{\beta}$ and product of $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\beta}$	$\frac{-4 \pm 2\sqrt{19}}{15}$ may be used in (d) to find the	sum
		$\beta \qquad \beta \qquad \alpha$		

		Question 7 Notes Continued
7.	ALT	For finding α , $\beta = \frac{-p + \sqrt{p^2 + 60}}{6}, \frac{-p - \sqrt{p^2 + 60}}{6}$
(a) (i)	Note	Give B1 for α , $\beta = \frac{-p + \sqrt{p^2 + 60}}{6}$, $\frac{-p - \sqrt{p^2 + 60}}{6}$ and then finding $\alpha\beta = -\frac{5}{3}$ or $-\frac{60}{36}$
(b) (i)	Note	Give B1 for α , $\beta = \frac{-p + \sqrt{p^2 + 60}}{6}$, $\frac{-p - \sqrt{p^2 + 60}}{6}$ and then finding $\alpha + \beta = -\frac{p}{3}$
	Note	Allow B1 for writing $\alpha + \beta = \frac{-p + \sqrt{p^2 + 60}}{6} + \frac{-p - \sqrt{p^2 + 60}}{6}$
(b)(ii)	Note	Allow M1 A1 for writing $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$ as
		$\frac{-p + \sqrt{p^2 + 60}}{6} + \frac{-p - \sqrt{p^2 + 60}}{6} + \frac{6}{-p + \sqrt{p^2 + 60}} + \frac{6}{-p - \sqrt{p^2 + 60}}$

Question Number	Scher	ne	Notes	Marks
8.	H: xy = 16;	$P\left(4t,\frac{4}{t}\right), t \neq 0, \text{ and } A$: t = 2 lies on H. A(8, 2)	
(a)	$y = \frac{16}{x} = 16x^{-1} \implies \frac{dy}{dx} = -1$	$16x^{-2} \text{ or } -\frac{16}{x^2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-2} ; k \neq 0$	
	$xy = 16 \implies x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$		Uses implicit differentiation to give $\pm x \frac{dy}{dx} \pm y$	M1
	$x = 4t, y = \frac{4}{t} \implies \frac{dy}{dx} = \frac{dy}{dt}$	$\frac{\mathrm{d}t}{\mathrm{d}x} = -\left(\frac{4}{t^2}\right)\left(\frac{1}{4}\right)$	their $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}}$; Condone $p \equiv t$	
	So at <i>P</i> , $m_T = -\frac{1}{t^2}$	Co	prrect calculus work leading to $m_T = -\frac{1}{t^2}$	A1
	So, $m_N = t^2$	Applies m_{Λ}	$_{T} = \frac{-1}{m_{T}}$, where m_{T} is found using calculus	M1
	• $y - \frac{4}{t} = "t^2"(x - 4t)$ • $\frac{4}{t} - "t^2"(4t) + c \implies v = 0$	t^2 "r + their c	Correct straight line method for an equation of a normal where $m_N (\neq m_T)$ is found by using calculus	M1
	$\frac{t}{t}$ Correct algebra leading to	$tv - t^3 x = 4 - 4t^4 *$	Correct solution only	A1 cso
		<i>.</i>		(5)
(b)	$\{t=2 \Longrightarrow\}$ N: $2y-8x=4-$	$64 \ \{ \Rightarrow y = 4x - 30 \}$	Uses $t = 2$ to find the equation of the normal to H at A	M1
	• $x(4x-30) = 16 \{\Rightarrow 2x^2$ • $\left(\frac{y+30}{4}\right)y = 16 \{\Rightarrow y^2 + \frac{4}{t} = 4(4t) - 30 \{\Rightarrow 8t^2 - \frac{4}{t} = 4(4t) - 30 \{\Rightarrow 8t^2 - \frac{4}{t} = 4(4t) - 30 \{\Rightarrow 8t^2 - \frac{4}{t} = 4(4t) - \frac{4}{t} = $	$x^{2} - 15x - 8 = 0$ + $30y - 64 = 0$ 15t - 2 = 0	Substitutes the equation of the normal into the equation of the curve H to obtain an equation in x only or y only or t only	M1
	• $(x-8)(2x+1) = 0 \implies x$ • $(y-2)(y+32) = 0 \implies$ • $(t-2)(8t+1) = 0 \implies t_B =$	$y_{B} = -\frac{1}{2}$ $y_{B} = -32$ $= -\frac{1}{8}$	dependent on the first two M marks Solves their $3 \text{ TQ} = 0$ to obtain a value for the <i>x</i> (or <i>y</i>) coordinate of <i>B</i> or a value of <i>t</i> at <i>B</i>	ddM1
	B(-0.5, -32)	0	Correct coordinates for <i>B</i>	Al
	$AB = \sqrt{(8 - 0.5)^2 + (2 - 0.5)^2}$	32) ²	dependent on the second M mark Correct Pythagoras method to find the length of <i>AB</i>	dM1
	$=\frac{17\sqrt{17}}{2}$ or $\frac{\sqrt{4913}}{2}$ or $$	$\frac{4913}{4}$ or $\sqrt{1228.25}$	Correct exact length	A1
				(6)
(c)	$y-2 = -\frac{1}{4}(x-8)$ and $x = 0$	$0 \Rightarrow y_c = 2 + 2 = 4$	Finds the equation of the tangent at $(8, 2)$ to <i>H</i> , and sets $x = 0$ to find $y_c =$	M1
	$AC = \sqrt{(8-0)^2 + (2-4)^2} \{$ Area $ABC = \frac{1}{2} \left(\frac{17\sqrt{17}}{2} \right) (\sqrt{6})$	$=\sqrt{68} \}$ $\overline{58}$	Uses the points $(8, 2), (-0.5, -32)$ and $(0, 4)$ in a complete method to find the area of triangle <i>ABC</i>	M1
	$=144.5$ or $\frac{289}{2}$		Correct answer	A1
				(3)
				14

	Question 8 Notes				
8. (b)	Note	The correct coordinates of B can be implied. e.g. embedded in the distance expression for AB			
	Note	An incorrect N: $y = 4x + 30$ leads to the correct length AB for $A(-8, -2)$ and $B(0.5, 32)$			
	Note	Condone final dM1 for $x_B = -\frac{1}{2}$ leading to $B(-2, -8)$ and $AB = \sqrt{(8-2)^2 + (2-8)^2}$			
(c)	Note	Give 1 st M0 for setting $x = 0$ in the equation of the normal to find $y_c =$			
	Note	The 2^{nd} M mark can only be gained by using all 3 correct points (8, 2), (-0.5, -32) and (0, 4).			
		Complete area methods include			
		• Area $ABC = \frac{1}{2} \left(\frac{17\sqrt{17}}{2} \right) (\sqrt{68}) \{= 144.5\}$			
		• <i>AB</i> crosses <i>y</i> -axis at $(0, -30)$ and so Area <i>ABC</i> = $\frac{1}{2}(34)\left(\frac{1}{2}\right) + \frac{1}{2}(34)(8) \{= 8.5 + 136 = 144.5\}$			
		• Area $ABC = \frac{1}{2} \begin{vmatrix} 8 & -0.5 & 0 & 8 \\ 2 & -32 & 4 & 2 \end{vmatrix} = \frac{1}{2} (-256 - 2 + 0) - (-1 + 0 + 32) \left\{ = \frac{1}{2} (-289) = 144.5 \right\}$			
		• Area $ABC = (32+4)\left(\frac{1}{2}+8\right) - \frac{1}{2}(32+2)\left(\frac{1}{2}+8\right) - \frac{1}{2}(32+4)\left(\frac{1}{2}\right) - \frac{1}{2}(2)(8)$			
		$\{=306-144.5-9-8=144.5\}$			
		• Area $ABC = \frac{1}{2}(8+8.5)(36) - \frac{1}{2}(32+2)\left(\frac{1}{2}+8\right) - \frac{1}{2}(2)(8) \{= 297 - 144.5 - 8 = 144.5\}$			
	Note	Helpful Sketch			
		(0,4) (0,4) (0,-30) (0,-30) (0,-30) $(17\sqrt{17})$ (-0.5,-32) (0,-30) (0,-30) $(17\sqrt{17})$ (1717			

Question Number	Scheme		Notes	Marks
9.	$f(n) = 7^n(3n+1) - 1$ is a multiple of 9)	$u_1 = 2, u_2 = 6, u_{n+2} = 3u_{n+1} - 2u_n \Longrightarrow u_n = 2(2^n - 1)$	
(i)	$f(1) = 7(4) - 1 = 27$ {is a multiple of	9}	f(1) = 27 is the minimum	B1
Way 1		ŀ	Attempts $f(k+1) - f(k)$	M1
	$f(k+1) - f(k) = \frac{7^{k+1}(3(k+1)+1) - 1}{2^{k+1}(3(k+1)+1) - 1} - \frac{1}{2^{k+1}(3(k+1)+1) - \frac{1}{2^{k+1}(3(k+1)+1) - 1} - \frac{1}{2^{k+1}(3(k+1)+1) - 1} - \frac{1}{2^{k+1}(3(k+1)+1) - \frac{1}{2^{k+1}(3(k+1)+1) - 1} - \frac{1}{2^{k+1}(3(k+1)+1) $	- (7*((3k+1)-1) A correct expression for $f(k+1)$	A1
	$= 7^{k+1}(3k+4) - 1 - 7^k(3k+1) + 1 = 7^k$	^k (21k	$(+28) - 7^k (3k+1)$	
	, , ,		dependent on the previous M mark	
	$= 18k(7^{\kappa}) + 27(7^{\kappa}) \text{ or } 7^{\kappa}(18k + 27)$	27) Uses correct algebra to achieve an expression where		
	$f(k+1) = O(7^k)(2k+2) + 7^k(2k+1)$	1	Correct algebra leading to either	
	$\frac{1(\lambda + 1) - 9(\lambda + 1)}{0r}$	- 1	e.g. $f(k+1) = 9(7^k)(2k+3) + 7^k(3k+1) - 1$	A 1
	$f(k+1) = 18k(7^k) + 27(7^k) + f(k)$		or $f(k+1) = 18k(7^k) + 27(7^k) + f(k)$	111
	If the result is true for $n = k$, then	it is t	rue for $n = k + 1$. As the result has been shown to be	
	$\underline{\qquad}$ true for $n = 1$ t	– hen tł	the result is true for all $n \in \mathbb{Z}^+$	A1 cso
				(6)
(i)	$f(1) = 7(4) - 1 = 27$ {is a multiple of	9 }	f(1) = 27 is the minimum	(0) R1
Way 2	1(1) - 7(4) - 1 - 27 (is a multiple of	<i>)</i>	$\frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}$	M1
Wuy 2	$f(k+1) = 7^{k+1}(3(k+1)+1) - 1$		A correct expression for $f(k+1)$	A 1
	$= 7^{k+1}(3k+4) - 1 = 7^k(21k+28) - 1$			711
	/ (3// + 1) 1 / (21// + 20) 1		dependent on the previous M mark	
			Uses correct algebra to express	
	$= 18k(7^{k}) + 27(7^{k}) + 7^{k}(3k+1) - 1$		$f(k+1) = g(k) + 7^{k}(3k+1) - 1$	dM1
	or		or $f(k+1) = g(k) + f(k)$	
	$= (7^{*})(18k+27) + 7^{*}(3k+1) - 1$		where each term in $g(k)$ is an obvious multiple of 9	
	or $O(7^k)(2k+2) + 7^k(2k+1) = 1$		Correct algebra leading to either	
	= 9(7)(2k+3) + 7(3k+1) - 1		e.g. $f(k+1) = 9(7^k)(2k+3) + 7^k(3k+1) - 1$	A1
			or $f(k+1) = 18k(7^k) + 27(7^k) + f(k)$	
	If the result is true for $n = k$, then	it is <u>t</u>	rue for $n = k + 1$. As the result has been shown to be	A 1 aga
	true for $n = 1$, t	hen tł	the result is true for all $n \in \mathbb{Z}^+$	AT CSO
				(6)
(ii)	$\{n=1,\}$ $u_1=2(2^1-1)=2;$	Ch	ecks that the general formula works for either u_1 or u_2	M1
	$\{n=2,\}$ $u_2 = 2(2^2 - 1) = 6$	Che	ecks that the general formula works for both u_1 and u_2	A1
	$\{u_{1,2} = 3u_{1,2} - 2u_{2,2} \Longrightarrow\}$	F	inds u_{k+2} by attempting to substitute $u_{k+1} = 2(2^{k+1} - 1)$	
	$u_{k+2} = 3(2(2^{k+1}-1)) - 2(2(2^k-1))$		and $u_k = 2(2^k - 1)$ into $u_{k+2} = 3u_{k+1} - 2u_k$	M1
			Condone one slip	
	$\{u_{k+2}\} = 6(2^{n+1}) - 6 - 4(2^n) + 4$	_		
	$\{u_{k+2}\} = 3(2^{k+2}) - 2^{k+2} - 2$		Valid evidence of working in the same power of 2	M1
	$= 2(2^{k+2}) - 2 = 2(2^{k+2} - 1)$		<i>Uses algebra</i> in a complete method to achieve this result with no errors	A1
	If the result is true for $n =$	= k an	ad for $n = k + 1$, then it is true for $n = k + 2$.	
	As the result has b	een sł	nown to be true for $n = 1$ and $n = 2$,	A1
	then the	resul	It is true for all $n \in \mathbb{Z}^+$	cso
			(=)	(6)
				12

		Question 9 Notes				
9. (i)	NoteFinal A1 is dependent on all previous marks being scored.It is gained by candidates conveying the ideas of all four underlined points in part (i)					
		It is gained by candidates conveying the ideas of all four underlined points in part (i)				
		either at the end of their solution or as a narrative in their solution.				
	Note	Shows $f(k+1) - f(k) = 7^{k}(18k+27)$ or $f(k+1) - f(k) = 9(7^{k})(2k+3)$ and writing if				
		$f(k+1) - f(k) = 9(7^k)(2k+3)$ o.e. is a multiple of 9 then $f(k+1)$ is a multiple of 9 is acceptable				
		for the penultimate A mark in part (i). This means that the final A mark can potentially be available.				
	Note	Only showing $f(k+1) = 7f(k) + 6 + 21(7^k)$ (see Way 4) does not get the final dM mark because				
		$6+21(7^k)$ is not an obvious multiple of 9				
	Note	Allow dM1 for obtaining e.g. $f(k+1) - f(k) = 18k(7^k) - 27(7^k)$ or $f(k+1) - f(k) = 7^k(18k - 27)$				
	Note	Allow dM1 for obtaining $f(k+1) = 18k(7^k) - 27(7^k) + 7^k(3k+1) - 1$				
		or $f(k+1) = 9(7^k)(2k-3) + f(k)$				
(ii)	Note	1 st M1: At least one check is correct. 1 st A1: Both checks are correct				
		• Check 1: Shows $u_1 = 2$ by writing an intermediate step of e.g. $2(2^1 - 1)$ or 2×1				
		• Check 2: Shows $u_2 = 6$ by writing an intermediate step of e.g. $2(2^2 - 1)$ or 2×3				
	Note	Ignore $u_3 = 3u_2 - 2u_1 = 3(6) - 2(2) = 14$ as part of their solution to (ii)				
	Note	Ignore $\{n = 3,\}$ $u_2 = 2(2^3 - 1) = 14$ as part of their solution to (ii)				
	Note	Valid evidence of working in the same power of 2 includes:				
		• $6(2^{k+1}) - 4(2^k) \rightarrow 6(2^{k+1}) - 2(2^{k+1})$ or $2(3(2^{k+1}) - 2^{k+1})$				
		• $3(2(2^{k+1})) - 2(2(2^k)) \rightarrow 3(2^{k+2}) - (2^{k+2})$				
		• $3(2(2^{k+1})) - 2(2(2^k)) \rightarrow 12(2^k) - 4(2^k)$				
		• $6(2^{k+1}) - 4(2^k) \to 8(2^k)$ (by implication)				
		• $6(2^{k+1}) - 4(2^k) \to 4(2^{k+1})$ (by implication)				
	Note	Writing $u_{k+2} = 3(2(2^{k+1}-1)) - 2(2(2^k-1)) = 2(2^{k+2}-1)$ is 2 nd M1, 3 rd M0, 2 nd A0				
	Note	Showing {RHS = } $u_{k+2} = 2(2^{k+2} - 1) = 8(2^k) - 2$ and writing				
		{LHS = } $u_{k+2} = 3(2(2^{k+1} - 1)) - 2(2(2^k - 1))$ and using valid algebra to show that				
		$u_{k+2} = 8(2^k) - 2 \{= \text{RHS}\}$ is fine for the 2 nd M, 3 rd M and 2 nd A marks				
	Note	Final A1 is dependent on all previous marks being scored.				
		It is gained by candidates conveying the ideas of all four underlined points in part (ii)				
		either at the end of their solution or as a narrative in their solution.				
	Note	"Assume for $n = k$, $u_k = 2(2^k - 1)$ and for $n = k + 1$, $u_{k+1} = 2(2^{k+1} - 1)$ " satisfies the requirement				
		"true for $n = k$ and $n = k + 1$ "				
	Note	"For $n \in \mathbb{Z}^+$, $u_n = 2(2^n - 1)$ " satisfies the requirement "true for all <i>n</i> "				
	Note	Full marks in (ii) can be obtained for an equivalent proof where e.g.				
		• $n = k, n = k + 1, \rightarrow n = k - 2, n = k - 1;$ i.e. $k \equiv k - 2$				
		• $n = k, n = k + 1, \rightarrow n = k - 1, n = k$; i.e. $k \equiv k - 1$				
(i), (ii)	Note	Allow as part of their conclusion "true for all positive values of <i>n</i> "				
	Note	Allow as part of their conclusion "true for all values of <i>n</i> "				
	Note	Allow as part of their conclusion "true for all $n \in \mathbb{N}$ "				
	Note	Condone referring to <i>n</i> as any integer in their conclusion for the final A1				
	Note	Condone $n \in \mathbb{Z}^*$ as part of their conclusion for the final A1				
	Note	Referring to <i>n</i> as a real number their conclusion is final A0				

г

Question Number	Scheme		Notes	Marks
9.	$f(n) = 7^{n}(3n+1) - 1$ is a multiple of 9; $P \in Z$	\mathbb{Z}^+		
(i)	$f(1) = 7(4) - 1 = 27$ {is a multiple of 9}		f(1) = 27 is the minimum	B1
Way 3	f(k+1) - (9P+1)f(k)		Attempts $f(k+1) - (9P+1)f(k)$	M1
	$= \underline{7^{k+1}(3(k+1)+1)-1} - (9P+1)(7^k(3k+1)-1) - (9P+1)(7^k(3k+1$	-1)	A correct expression for $f(k+1)$	A1
	$= 7^{k} (21k + 28 - (9P + 1)(3k + 1)) - 1 + 9P + 1$			
	$= 7^{k} (21k + 28 - (27Pk + 9P + 3k + 1)) - 1 + 9$	<i>PP</i> +1		
	$= 7^{k} (21k + 28 - 27Pk - 9P - 3k - 1) + 9P$			
	$= 7^k (18k - 27Pk - 9P + 27) + 9P$	Uses of whe	dependent on the previous M mark correct algebra to achieve an expression re each term is an obvious multiple of 9	dM1
	$f(k+1) = 7^{k}(18k - 27PK - 9P + 27) + 9P +$	$(9P+1)\mathbf{f}(k)$	Achieves a correct result for $f(k+1) =$	A1
	If the result is true for $n = k$, then it is true	ue for $n = k + 1$	As the result has been shown to be	. 1
	true for $n = 1$, then the	e result is true	for all $n \in \mathbb{Z}^+$	Al cso
				(6)
	Note:			
	$P = 0 \Longrightarrow f(k+1) - f(k) = 7^{*} (18k+27)$			
	$P = 1 \Longrightarrow f(k+1) - 10f(k) = 7^{k}(18 - 9k) + 9$			
	$P = 2 \Longrightarrow f(k+1) - 19f(k) = 7^{k}(9 - 36k) + 18$	8		
	$P = 3 \Longrightarrow f(k+1) - 28f(k) = 7^{k}(-63k) + 27$	$= 27 - 9k(7^{k+1})$)	

Question Number	Scheme	Notes	Marks
9.	$f(n) = 7^n (3n+1) - 1$ is a multiple of 9		
(i)	$f(1) = 7(4) - 1 = 27$ {is a multiple of 9}	f(1) = 27 is the minimum	B1
Way 4	$f(l + 1) = 7^{k+1} (2(l + 1) + 1) = 1$	Attempts $f(k+1)$	M1
	I(k+1) = / (3(k+1)+1) - 1	A correct expression for $f(k+1)$	A1
	$= 7(7^k)(3k+3+1) - 1$		\Box
	$= 7(7^k)(3k+1) + 3(7)(7^k) - 1$		
	$= 7[(7^{k})(3k+1) - 1] + 7 + 21(7^{k}) - 1$ $= 7f(k) + 6 + 21(7^{k})$ Let $g(n) = 6 + 21(7^{n})$ $g(1) = 6 + 21(7^{1}) = 153$ {is a multiple of 9} {Assume the result is true for $n = k$ } $g(k+1) = 6 + 21(7^{k+1})$ $= 6 + 147(7^{k})$ $= 6 + 21(7^{k}) + 126(7^{k})$ or $= g(k) + 9(14)(7^{k})$	dependent on the previous M mark Uses correct algebra to express $f(k+1) = \alpha(7^k(3k+1)-1) + g(k)$ or $f(k+1) = \alpha f(k) + g(k); \ \alpha \neq 0$ and uses correct algebra to achieve an expression for $g(k+1)$ where each term is an obvious multiple of 9Correct algebra leading to $f(k+1) = 7f(k) + 6 + 21(7^k)$ o.e. and $g(k+1) = 6 + 21(7^k) + 126(7^k)$ where $g(n) = 6 + 21(7^n)$	M1
	Proves that $g(n) = 6 + 21(7^n)$ is a multiple of 9 and proves that for $f(n)$ if the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$		A1 cso
			(6)
	Note: An alternative Way 4 method shows • $f(k+1) = 7f(k) + 6 + 21(7^k) = 7f(k)$ • Defines $g(n) = 3(7^n) - 3$ and proceeds	+ $9(7^{k} + 1) + 3(7^{k}) - 3$ to show that $g(n)$ is also a multiple of 9	

Question Number	Scheme	Notes	Marks	
1(a)	$f(x) = x^3 - \frac{10\sqrt{2}}{2}$	$\frac{\overline{x} - 4x}{x^2} \qquad x > 0$		
	f(1.4) = -0.435673 f(1.5) = 0.598356	Attempts both $f(1.4)$ and $f(1.5)$	M1	
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore (a root) α is between x = 1.4 and $x = 1.5$	Both $f(1.4) = awrt -0.4$ and $f(1.5) = awrt 0.6$, sign change and conclusion. For 'sign change' indication that $f(1.4) < 0$ and $f(1.5) > 0$ is sufficient. Also $f(1.4) f(1.5) < 0$ is sufficient. 'Therefore root' (without mention of the interval) is a sufficient conclusion. Mention of 'continuous' is not required.	A1	
			(2)	
(b)	$\int f(x) = x^3 - \frac{10\sqrt{x} - 4}{x^2}$	$\frac{4x}{x} = x^3 - 10x^{-\frac{3}{2}} + 4x^{-1}$		
		$x^n \rightarrow x^{n-1}$ for one term	M1	
	$f'(x) = 3x^2 + 15x^{-\frac{5}{2}} - 4x^{-2}$ (or equivalent, see below)	2 correct terms simplified or unsimplified	A1	
		All correct simplified or unsimplified	A1	
			(3)	
(c)	$(x_1) = 1.4 - \frac{f(1.4)}{f'(1.4)}$ $\left(= 1.4 - \frac{-0.43567}{10.30720}\right) = \dots$	Correct application of N-R leading to an answer. <u>Values</u> of $f(1.4)$ and $f'(1.4)$ need not be seen before their final answer.	M1	
	= 1.442	cao (must be corrected to 3 d.p.) isw if x_2 , etc. have been found, but the answer for 'one use of N-R' must be seen as 1.442 to score this mark.	A1	
			(2)	
			Total 7	
(b)	Equivalent unsimplified versions are	The 'two correct terms' still applies for		
	acceptable, e.g. (using quotient rule); $\left(-\frac{3}{2}+2\right)^{3}$	the first A1. Here a term would be, for $\frac{5}{2}$		
	$3x^{2} - \frac{(5x^{2} - 4x^{2}) - 20x^{2} + 8x^{2}}{x^{4}}$	example, the x^{-2} terms in unsimplified form.		
(b)(a)	A common amon in (h) is to have	1 Isw after a correct unsimplified form. $4x^{-2}$ instead of $4x^{-2}$ giving 1.420 in		
	This, if otherwise co	-4x, giving 1.450 m prrect, would score (b) 110 and (c) 10	(0).	
u	This, if otherwise context, would score (b) 110 and (c) 10			

Question Number	Scheme		Notes	Marks
2	$5x^2 - 2x + 3 = 0$			
(a)	$\alpha + \beta = \frac{2}{5}, \alpha\beta = \frac{3}{5}$	Both corr	rect	B1
				(1)
(b)(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	Uses a co	orrect identity	M1
	$= \left(\frac{2}{5}\right)^2 - 2\left(\frac{3}{5}\right) = -\frac{26}{25}$	Correct v even afte	value (allow -1.04), or $\alpha + \beta = -\frac{2}{5}$ in (a)	A1
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$ or $\alpha^{3} + \beta^{3} = (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2})$	Uses a co	prrect identity	M1
	$= \left(\frac{2}{5}\right)^3 - 3\left(\frac{3}{5}\right)\left(\frac{2}{5}\right) = -\frac{82}{125}$	Correct v	value (allow -0.656)	A1
			Ι	(4)
(c)	Sum = $\alpha + \beta + \alpha^2 + \beta^2 = \frac{2}{5} - \frac{26}{25} \left(= -\frac{16}{25} \right)$		Attempts value of sum	M1
	Product = $\alpha\beta + \alpha^3 + \beta^3 + (\alpha\beta)^2 = \frac{3}{5} - \frac{82}{125} + (\frac{3}{5})^2$	$\Big ^2 \left(=\frac{38}{125}\right)$	Attempts value of product, using the <u>correct</u> expansion of $(\alpha + \beta^2)(\beta + \alpha^2)$	M1
	$x^{2} + \frac{16}{25}x + \frac{38}{125}(=0)$ Applie Acception The '=	es x^2 – (the ot unsimplif = 0' is not r	ir sum)x + their product ied versions. equired	M1
	$125x^2 + 80x + 38 = 0$	Allow any Must be a including Not just <i>p</i>	y integer multiple. fully correct equation, the '= 0' p = 125, q = 80, r = 38	A1
				(4)
				Total 9

Question Number	Scheme	Notes	Marks
3	$f(z) = z^4 + az^3 + bz$	$^{2}+cz+d$	
(a)	(z=)3-i or (z=)-1+2i		B1
	(z =) 3 - i and (z =) - 1 + 2i		B1
			(2)
(b)	Im (-1, 2) (3, 1) Re	$3\pm i$ correctly plotted with vectors or dots or crosses etc. or $-1\pm 2i$ correctly plotted with vectors or dots or crosses etc.	B1
	(-1, -2) (3, -1)	All 4 correct roots correctly plotted with scaling approximately correct (e.g. (-1, 2) higher than (3, 1), etc.) There should be approximate symmetry about the real axis, but be generous	B1
			(2)
(c)	$z = 3 \pm i \Longrightarrow (z - (3 + i))(z - (3 - i)) = \dots$ or $z = -1 \pm 2i \Longrightarrow (z - (-1 + 2i))(z - (-1 - 2i)) = \dots$	Correct strategy to find at least one quadratic factor. Throughout this part ignore the use of x (or other variable) instead of z	M1
	$z^2 - 6z + 10$ or $z^2 + 2z + 5$	One correct quadratic	A1
	$z^2 - 6z + 10$ and $z^2 + 2z + 5$	Both correct	A1
	$(z^2-6z+10)(z^2+2z+5)=$	Attempts product of their two <u>3-term</u> quadratic factors no 'missing terms' in the expansion	M1
	a = -4, b = 3, c = -10, d = 50 or $f(z) = z^4 - 4z^3 + 3z^2 - 10z + 50$	All correct values or correct quartic	A1
			(5)
			Total 9

(c) Way 2	$(z - (3 + i))(z - (-1 \pm 2i)) = \cdots$ or $(z - (3 - i))(z - (-1 \pm 2i)) = \cdots$	Correct strategy to find at least one quadratic factor. Throughout this part ignore the use of x (or other variable) instead of z	M1
	$z^{2} + z(-2 + i) + (-1 - 7i) (i)$ or $z^{2} + z(-2 - i) + (-1 + 7i) (ii)$ or $z^{2} + z(-2 + 3i) + (-5 - 5i) (iii)$ or $z^{2} + z(-2 - 3i) + (-5 + 5i) (iv)$	One correct quadratic	A1
	(i) and (ii) correct or (iii) and (iv) correct	A correct pair	A1
	e,g $[z^2 + z(-2 + i) + (-1 - 7i)] \times [z^2 + z(-2 - i) + (-1 + 7i)] =$	Attempts product of their two 3 -term quadratic factors no 'missing terms' in the expansion	M1
	a = -4, b = 3, c = -10, d = 50 or $f(z) = z^{4} - 4z^{3} + 3z^{2} - 10z + 50$	All correct values or correct quartic	A1

-			
(c) Way 3	$\sum_{i=1}^{n} \alpha = (3 + i) + (3 - i) + (-1 - 2i) + (-1 + 2i) = \dots$ or $\alpha \beta \gamma \delta = (3 + i)(3 - i)(-1 - 2i)(-1 + 2i) = \dots$	Attempts one of these	M1
	a = -4 or d = 50		A1
	Both $a = -4$ and $d = 50$		A1
	$\sum \alpha \beta = \dots$ and $\sum \alpha \beta \gamma = \dots$	Attempts $\sum \alpha \beta$ (all 6 terms) and $\sum \alpha \beta \gamma$ (all 4 terms)	M1
	a = -4, b = 3, c = -10, d = 50 or $f(z) = z^{4} - 4z^{3} + 3z^{2} - 10z + 50$	All correct values or correct quartic	A1

(c) Way 4	$(3+i)^4 + a(3+i)^3 + b(3+i)^2 + c(3+i) + d = 0$ () + () i = 0	Substitutes one of the roots into the given quartic and fully multiplies out	M1
	(28 + 18a + 8b + 3c + d) + i(96 + 26a + 6b + c) or (-7 + 11a - 3b - c + d) + i(-24 + 2a + 4b - 2c)	One correct expansion	A1
	(28 + 18a + 8b + 3c + d) + i(96 + 26a + 6b + c) and (-7 + 11a - 3b - c + d) + i(-24 + 2a + 4b - 2c)	Obtains a second correct expansion using another root.	A1
	(28 + 18a + 8b + 3c + d) = 0, etc leading to $a = , b = , c = , d =$	Solves 4 simultaneous equation to find values of <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i>	M1
	a = -4, b = 3, c = -10, d = 50 or $f(z) = z^{4} - 4z^{3} + 3z^{2} - 10z + 50$	All correct values or correct quartic	A1

Page 27 of 119

Question Number	Scheme	Notes	Marks
4(a)	$(2r-1)^2 = 4r^2 - 4r + 1$	Correct expansion	B1
	$\sum_{r=1}^{n} (4r^2 - 4r + 1) = 4 \times \frac{1}{6}n(n+1)$ M1: Attempt to use at least one of A1: Correct ex	$(2n+1)-4 \times \frac{1}{2}n(n+1)+n$ the standard results correctly pression	M1A1
	$=\frac{1}{3}n[2(n+1)(2n+1)-6(n+1)+3]$	Attempt to factorise $\frac{1}{3}n()$ Condone one slip but there must have been + n, not +1 in their expression for the sum	M1
	$=\frac{1}{3}n\left[4n^2-1\right]*$	Correct proof with no errors. There should be an intermediate step showing the expansion of (n + 1)(2n + 1), or equivalent	A1*
	Condone poor or incorrect use of notation, e.g	g. Σ used at every step of the proof	
(b)	$2r - 1 = 499 \Longrightarrow r = 250$	Identifies the correct upper limit (may be implied)	(5) B1
	$2r - 1 = 201 \Longrightarrow r = 101$	Identifies the correct lower limit (may be implied)	B1
	$\sum_{r=101}^{250} (2r-1)^2 = \frac{1}{3} \times 250 (4 \times 250^2)$ Uses the result from part (a) together with the A common mistake is to assume 500 and 200 is scored if 199 is used	$(-1) - \frac{1}{3} \times 100(4 \times 100^2 - 1))$ eir upper limit and their lower limit – 1. are the limits, and in this case the mark	M1
	= 19 499 950	Сао	Al
			(4)
			Total 9

Question Number	Scheme	Notes	Marks
5(a)	$xy = 64 \Rightarrow y = 64x^{-1} \Rightarrow \frac{dy}{dx} = -64x^{-2}$ or $xy = 64 \Rightarrow x\frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}$ or $x = 8p, y = \frac{8}{p} \Rightarrow \frac{dy}{dx} = \frac{-8p^{-2}}{8}$	Correct $\frac{dy}{dx}$ This can be in any form, simplified or unsimplified. The parameter could be a different variable, e.g. <i>t</i>	B1
	$m_T = -\frac{64}{64p^2} \Longrightarrow m_N = p^2$ or $\frac{8}{p}$	Correct use of the perpendicular gradient rule and the point <i>P</i> to obtain the normal gradient	M1
	$m_T = -\frac{p}{8p} \Longrightarrow m_N = p^2$ or $m_T = -p^{-2} \Longrightarrow m_N = p^2$	Correct normal gradient of p^2	A1
	$y - \frac{8}{p} = p^{2} (x - 8p)$ or $y = p^{2}x + c, \frac{8}{p} = p^{2} \times 8p + c \Longrightarrow c =$	Correct straight line method for normal	M1
	$p^{3}x - py = 8(p^{4} - 1)*$	cso. (No errors, but possibly direct from the version in line 1 above)	A1*
(b)	$n^3 \mathbf{r} - m\mathbf{v} = 8(n^4 - 1) \mathbf{r} \mathbf{v} = 64 \Rightarrow$		(5)
(b)	$p^{3}x - p\frac{64}{x} = 8(p^{4} - 1)$ or $p^{3}\frac{64}{y} - py = 8(p^{4} - 1)$	Uses both equations to obtain an equation in one variable	M1
	$p^{3}x^{2} + 8(1-p^{4})x - 64p = 0$ or $py^{2} + 8(p^{4} - 1)y - 64p^{3} = 0$	Correct quadratic. Must have the x^2 or y^2 term, but the <i>x</i> or <i>y</i> terms need not be combined. The terms do not need to be 'all on one side', and the coefficients could involve fractions, e.g. $p^2x^2 + \frac{8x}{p} - 8p^3x = 64$	A1
	$(x-8p)(p^{3}x+8) = 0 \Longrightarrow x = \dots$ or $(py-8)(y+8p^{3}) = 0 \Longrightarrow y = \dots$	Solves their 3TQ (usual rules) to obtain the other value of x or y. The other value must be picked out as a solution. This could be done by algebraic division (see below)	dM1
	$x = -\frac{8}{p^3} \ y = -8p^3$ or $\left(-\frac{8}{p^3}, -8p^3\right)$	Correct coordinates (ignore coordinates of <i>P</i> if they are also given as an answer). $-8p^{-3}$ may be seen rather than $-\frac{8}{p^3}$	A1
			(4)
age 29 o	f 119		Total 9
<u> </u>	-		

5(b)	Rather than solving the 3TQ for the dM1, algebraic division can be used. To score the mark the division should follow the usual rules for solution by factorisation, so in the first case, e.g. if the quadratic is correct, the quotient should be $\pm p^3 x \pm 8$, then this must lead to the other value $x_2 = \cdots$			
5(b)	Note that another way to find the other valu	ue for the dM1 is to use the 'sum of roots' =	$-\frac{b}{a}$,	
	e.g.		u	
	$8p + x_2 = -$	$\frac{-8(1-p^4)}{p^3} \qquad x_2 = \cdots$		
(b) Way 2	$p^{3}x - py = 8\left(p^{4} - 1\right), \left(8q, \frac{8}{q}\right) \Longrightarrow$ $p^{3}8q - p\frac{8}{q} = 8\left(p^{4} - 1\right)$	Uses the given normal equation and the parametric form for Q to form an equation in p and q	M1	
	$p^3q^2 - p = qp^4 - q$	Correct quadratic. Must have the q^2 term, but the q terms need not be combined. The terms do not need to be 'all on one side', and the coefficients could involve fractions.	Al	
	$(p-q)(p^3q+1)=0 \Rightarrow q=$	Solves their $3TQ$ (usual rules) to obtain the value of q . This could be done by algebraic division (condition as for main scheme)	dM1	
	$q = -\frac{1}{p^3} \Longrightarrow x = -\frac{8}{p^3} y = -8p^3$ or $\left(-\frac{8}{p^3}, -8p^3\right)$	Correct coordinates (ignore coordinates of <i>P</i> if they are also given as an answer). $-8p^{-3}$ may be seen rather than $-\frac{8}{p^3}$	Al	
			(4)	

Question Number	Scheme	Notes	Marks
6(i)(a)	Stretch scale factor 3 parallel to the y-axis	Stretch (not enlargement)Scale factor 3 parallel to the y-axis.Allow, e.g. '3 times y values', 'yincreased by 3 factor', or similar.Allow, e.g. 'direction of y', 'along y','vertical', or similar.Ignore any mention of the origin.If additional transformations areincluded, send to Review	B1 B1
(b)	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$	Correct matrix. $\frac{1}{\sqrt{2}}$ may be seen rather than $\frac{\sqrt{2}}{2}$	B1
(c)		Attempt to multiply the right way	(1)
(c)	$ \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} $	round, i.e. BA , not AB At least two correct terms (for their matrix B) are needed to indicate a correct multiplication attempt	M1
	$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{3\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{3\sqrt{2}}{2} \end{pmatrix} \text{ or equiv. e.g.} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 3 \\ -1 & 3 \end{pmatrix}$	Correct matrix	A1
			(2)
(ii)	Trapezium area= $\frac{1}{2}(5+2)(k+8)$	Correct method for the area of the trapezium	M1
	$\begin{vmatrix} 5 & 1 \end{vmatrix}_{-5 \times 2} (2) \times 1 - 17$	Correct method for the determinant	M1
	$ -2 3 ^{-3 \times 3 - (-2) \times 1 - 17}$	$17 (\text{Allow} \pm 17)$	A1
	$\frac{1}{2}(5+2)(k+8) \times 17 = 510 \Longrightarrow k = \dots$	Multiplies their trapezium area by their determinant, sets equal to 510 and solves for k . Or equivalently: Equates their trapezium area to (510 ÷ determinant) and solves for k	M1
	$k = \frac{4}{7}$	$\frac{4}{7}$ or exact equivalent. If additional answers such as $-\frac{4}{7}$ are given and not rejected, this is A0	A1
			(5)

(ii) Way 2	$ \begin{pmatrix} 5 & 1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} -2 & -2 & 5 & 5 \\ 0 & k & 8 & 0 \end{pmatrix} $	Multiplies correct matrices to find the coordinates for T '	2 nd M
	$= \begin{pmatrix} -10 & -10+k & 33 & 25\\ 4 & 4+3k & 14 & -10 \end{pmatrix}$	Correct coordinates (can be left in matrix form)	Al
	$\frac{1}{2}[-10(4+3k) + 14(-10+k) - 330 + 100 - 4(-10+k) - 33(4+3k) - 350 - 100]$	Correct method for area of T' ('shoelace rule' with or without a modulus), using their coordinates for T'	1 st M
	$\pm \frac{1}{2}(952 + 119k) = 510$, $k = \dots$	Sets area of T' equal to 510 and solves for k	M1
	$k = \frac{4}{7}$	$\frac{4}{7}$ or exact equivalent. If additional answers such as $-\frac{4}{7}$ are given and not rejected, this is A0	A1
			Total 10

Question Number	Scheme	Notes	Marks
7(a) Way 1	$3x - 4y + 48 = 0 \Rightarrow x = \frac{4y - 48}{3}$ $y^{2} = 4ax \Rightarrow y^{2} = 4a\left(\frac{4y - 48}{3}\right)$ or $3x - 4y + 48 = 0 \Rightarrow y = \frac{3x + 48}{4}$ $y^{2} = 4ax \Rightarrow \left(\frac{3x + 48}{4}\right)^{2} = 4ax$ or $x = \frac{y^{2}}{4a} \Rightarrow \frac{3y^{2}}{4a} - 4y + 48 = 0$	Uses both equations to obtain an equation in one variable.	M1
	$3y^{2} - 16ay + 192a = 0$ or $9x^{2} + (288 - 64a)x + 2304 = 0$ or $3x - 8\sqrt{a}\sqrt{x} + 48 = 0$	Correct 3TQ (Coefficients could be 'fractional') (This could be a quadratic in \sqrt{x})	A1
	Equal roots: $(16a)^2 = 4 \times 3 \times 192a$ or $(288 - 64a)^2 = 4 \times 9 \times 2304$ $\Rightarrow a =$	Uses " $b^2 = 4ac$ " to find a value for a	M1
	<i>a</i> = 9 *	CSO	A1*
	Beware the use of the given result $a = 9$, but the deserves merit (if in doubt, send to Review).	here may be cases where 'working backwar	rds'
	· · · · · · · · · · · · · · · · · · ·		(4)

		FP1 2020	10 MS
(a) Way 2	$y^{2} = 4ax \Rightarrow 2y\frac{dy}{dx} = 4a$ $3x - 4y + 48 = 0 \Rightarrow \frac{dy}{dx} = \frac{3}{4}$ $\Rightarrow 2y \times \frac{3}{4} = 4a$ $y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \Rightarrow a^{\frac{1}{2}}x^{-\frac{1}{2}} = \frac{3}{4}$ $x = at^{2}, y = 2at \Rightarrow \frac{dy}{dx} = \frac{1}{t}$ $\frac{1}{t} = \frac{3}{4}$	Uses differentiation to obtain the gradient of C and substitutes the gradient of l to obtain an equation connecting y and a , or connecting x and a , or an equation in t	 M1
	$y = \frac{8a}{3}$ or $x = \frac{16a}{9}$	Correct <i>y</i> value, or correct <i>x</i> value (possibly implied in subsequent work, particularly if using the parametric equations)	A1
	$y^{2} = 4ax \Rightarrow \frac{64a^{2}}{9} = 4ax \Rightarrow x = \frac{16a}{9}$ $3 \times \frac{16a}{9} - 4 \times \frac{8a}{3} + 48 = 0 \Rightarrow a =$ $x = \frac{4y - 48}{3} = \frac{32a}{9} - 16$ $\frac{64a^{2}}{9} = 4a\left(\frac{32a}{9} - 16\right) \Rightarrow a =$ $y^{2} = 4ax \Rightarrow y^{2} = \frac{64a^{2}}{9} \Rightarrow y = \frac{8a}{3}$ $3 \times \frac{16a}{9} - 4 \times \frac{8a}{3} + 48 = 0 \Rightarrow a =$ $y = \frac{3x + 48}{4} = \frac{4a}{3} + 12$ $\left(\frac{4a}{3} + 12\right)^{2} = 4a\left(\frac{16a}{9}\right) \Rightarrow a =$ $3(at^{2}) - 4(2at) + 48 = 0$ $3\left(\frac{16a}{9}\right) - 4\left(\frac{8a}{3}\right) + 48 = 0 \Rightarrow a =$	Uses $y^2 = 4ax$ or l to find a value for x (or y) and substitutes their x and y into the other equation to find a value for a If using parameter t , substitutes their value for t into $3(at^2) - 4(2at) + 48 = 0$ and solves to find a value for a	M1
1	<i>a</i> = 9 *	CSO	AI*

		1 .	\sim	0	0	0	-	1 /		л	
н. т	$\mathbf{\nu}$		2	()	~			1 (1 1	VI	

(b)	$a = 9 \Longrightarrow 3y^2 - 144y + 1728 = 0 \Longrightarrow y = 24$ $9x^2 - 288x + 2304 = 0 \Longrightarrow x = 16$	Uses $a = 9$ to solve their 3TQ to obtain the repeated root for x or y.	M1
	x = 16 and $y = 24$	Correct values or coordinates.	A1
			(2)

(b) Way 2 follows (a)Way2	$a = 9 \Rightarrow x = \cdots$ or $y = \cdots$	Substitutes $a = 9$ into their expression for x or y, OR substitutes $a = 9$ into at^2 to find x, or into $2at$ to find y.	M1
	x = 16 and $y = 24$	Correct values or coordinates.	Al

(c) Way 1	Focus is at (9, 0)	Correct focus (could be seen on a sketch or implied in working)	B1	
	$x = -9 \Longrightarrow 3(-9) - 4y + 48 = 0 \Longrightarrow y = 5.25$	Correct method with the correct directrix to find the y coordinate of A	M1	
	E.g.Trapezium – 2 triangles			
	$=\frac{1}{2}\left(\frac{21}{4}+24\right)\times25-\frac{1}{2}\times18\times\frac{21}{4}-\frac{1}{2}\times7\times24=\frac{1875}{8}$			
	Fully correct triangle area method (condone one slip if the intention seems clear)			
	$=\frac{1875}{8}(234.375)$	Correct area (exact)	A1	
			(4)	
			Total 10	

(c) Way 2	Focus is at $(9,0)$	Correct focus (could be seen on a sketch or implied in working)	B1
	$x = 9 \Longrightarrow 3(9) - 4y + 48 = 0 \Longrightarrow y = 18.75$	Correct method to find the <i>y</i> coordinate when $x = 9$, but also requires correct directrix at some stage of the solution	M1
	E.g. $A = \frac{1}{2} (18.75 \times 18) + \frac{1}{2} (18.75 \times (16 - 9))$	Fully correct triangle area method (condone one slip if the intention seems clear)	dM1
	$=\frac{1875}{8}(234.375)$	Correct area (exact)	A1
(c) Way 3	Focus is at (9, 0)	Correct focus (could be seen on a sketch or implied in working)	B1
	$x = -9 \Longrightarrow 3(-9) - 4y + 48 = 0 \Longrightarrow y = 5.25$	Correct method with the correct directrix to find the <i>y</i> coordinate of <i>A</i>	M1
	E.g. $\frac{1}{2} \begin{vmatrix} 9 & -9 & 16 & 9 \\ 0 & 5.25 & 24 & 0 \end{vmatrix}$ $= \frac{1}{2} 47.25 - 216 - 84 - 216 $	Fully correct area method (condone one slip if the intention seems clear)	dM1
	$=\frac{1875}{8}(234.375)$	Correct area (exact)	A1

		FPI ZUZU	IU MS			
(c) Way 4	Focus is at (9, 0)	Correct focus (could be seen on a sketch or implied in working)	B1			
	$x = -9 \Longrightarrow 3(-9) - 4y + 48 = 0 \Longrightarrow y = 5.25$	Correct method with the correct directrix to find the <i>y</i> coordinate of <i>A</i>	M1			
	E.g.Rectangle – 3 triangles					
	$(25 \times 24) - \frac{1}{2}(18 \times 5.25) - \frac{1}{2}(7 \times 24) - \frac{1}{2}(25 \times 18.75)$					
	Fully correct triangle area method (condone one slip if the intention seems clear)					
	$=\frac{1875}{8}(234.375)$	Correct area (exact)	A1			

FP1_2020_10_MS

Question Number	Scheme		Notes	Marks
8(i)	$\sum_{r=1}^{n} \frac{2r^2 - 1}{r^2 (r+1)}$	$\frac{1}{2} = \frac{n}{(n+1)^2}$	$\frac{2}{(-1)^2}$	
	$\frac{2(1)^2 - 1}{1^2(1+1)^2} = \frac{1}{4}, \frac{1^2}{(1+1)^2} = \frac{1}{4}$	Getting minimu	$\frac{1}{2^2}$ or $\frac{1}{4}$ from each is the	B1
	Assume $\sum_{r=1}^{k} \frac{2r^2 - 1}{r^2 (r+1)^2} = \frac{k^2}{(k+1)^2}$			
	$\sum_{r=1}^{k+1} \frac{2r^2 - 1}{r^2 (r+1)^2} = \frac{k^2}{(k+1)^2}$ Assumes the result is true for s	$\frac{2}{1^2} + \frac{2}{\left(k\right)^2} + \frac{2}{\left(k\right)^2}$	$\frac{2(k+1)^2 - 1}{(k+2)^2}$ and adds the next term	M1
	$k^{2}(k+2)^{2} + 2(k+1)^{2} - 1$	Attemp	ts common denominator	dM1
	$\frac{(k+1)^2(k+2)^2}{(k+1)^2(k+2)^2}$	Correct	expression	A1
	$\frac{k^4 + 4k^3 + 4k^2 + 2k^2 + 4k + 1}{(k+1)^2 (k+2)^2} = \frac{k^4 + 4k^4}{(k+1)^2 (k+2)^2} = k^4 + $	$4k^3 + 6k^2$ $(k + 1)^2 (k$	$\frac{k^{2}+4k+1}{k+2} = \frac{(k+1)^{4}}{(k+1)^{2}(k+2)^{2}}$	
	$\frac{(k+1)^2}{(k+2)^2}$	Achiev	es this result with intermediate g and no errors	A1
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k+1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result is true for all n .	The un Some r	derlined features should be seen. nay appear earlier in the solution.	A1cso
				(6)
(ii)	$f(n) = 12^{\prime}$	$^{\prime}$ + 2 × 5	n-1	
	$f(1) = 12 + 2 \times 1 = 14$		This is sufficient	B1
	$f(k+1) = 12^{k+1} + 2 \times 5^k$		Attempt $f(k + 1)$	M1
	$f(k+1) - f(k) = 12^{k+1} + 2 \times 5^{k} - 12^{k} - 2 \times 5^{k}$ $f(k+1) - f(k) = 11 \times 12^{k} + 22 \times 5^{k-1} + 10 \times 5^{k-1} - 2$	$\times 5^{k-1}$	Working with $f(k + 1) - f(k)$	
	$-11\times(12^{k}+2\times5^{k-1})$ $14\times5^{k-1}$		$11 \times (12^k + 2 \times 5^{k-1})$ or $11f(k)$	A1
	$-11\times(12+2\times5)$ -14×5		$-14 \times 5^{k-1}$	A1
	$f(k+1) = 12f(k) - 14 \times 5^{k-1}$		Makes $f(k + 1)$ the subject Dependent on at least one of the A marks	dM1
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k+1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result is true for all n .	The un Some r	derlined features should be seen. nay appear earlier in the solution.	A1cso
				(6)
				Total 12

FP1_2020_10_MS

ALT 1	$f(1) = 12 + 2 \times 1 = 14$	This	is sufficient		B1
	$f(k+1) = 12^{k+1} + 2 \times 5^k$	Atte	mpt $f(k+1)$		M1
	$f(k+1) = 12(12^k + 2 \times 5^{k-1})$	$)+2\times5\times$	$5^{k-1}-12\times 2\times$	5^{k-1}	
	$f(k+1) = 12(12^{k} + 2 \times 5^{k-1}) - 14 \times 5^{k-1}$	12(1	$2^k + 2 \times 5^{k-1} \Big)$	or 12f(<i>k</i>)	A1
		-14	$\times 5^{k-1}$		A1
	$f(k+1) = 12f(k) - 14 \times 5^{k-1}$		Dependent of the A marks	on at least one of	dM1
	If the result is <u>true for</u> $n = k$, then it is				
	<u>true for $n = k+1$.</u> As the result has been	The un	derlined feat	ures should be seen.	Alco
	shown to be <u>true for</u> $n = 1$, then the result	Some n	ay appear ea	rlier in the solution.	AICSU
	is <u>true for all <i>n</i></u> .				
ALT 2	$f(1) = 12 + 2 \times 1 = 14$	This is s	ufficient		B1
	Let $12^k + 2 \times 5^{k-1} = 7M$				
	$f(k+1) = 12^{k+1} + 2 \times 5^k$	Attempt	f(<i>k</i> +1)		M1
	$f(k+1) = 12(7M - 2 \times 5^{k-1}) + 2 \times 5^{k}$	OR:	f(k+1) = 5	$5(7M) + 7 \times 12^k$	
	$f(k+1) = 84M - 14 \times 5^{k-1}$	84 <i>M</i>		OR: 35M	A1
	OR: $f(k+1) = 35M + 7 \times 12^k$	-14×5^k	-1	$+7 \times 12^{k}$	A1
	$f(k+1) = 12f(k) - 14 \times 5^{k-1}$	Depend	ent on at lea	ist one of the A	
	OR:	marks		ist one of the A	dM1
	$f(k + 1) = 5f(k) + 7 \times 12^{n}$ If the result is true for $n = k$, then it is				
	true for $n = k+1$. As the result has been	The un	derlined feat	ires should be seen	
	shown to be true for $n = 1$, then the result	Some n	ay appear ea	rlier in the solution.	Alcso
	is true for all <i>n</i> .				
ALT 3	$f(1) = 12 + 2 \times 1 = 14$		This is suff	icient	B1
	$f(k+1) = 12^{k+1} + 2 \times 5^k$		Attempts f((k + 1)	M1
	$\frac{1}{(n+1) - 12} + 2 \times 3$ Working with 1	f(k+1) =	mf(k)		1011
	$f(k+1) - mf(k) = 12^{k+1} + 12^{k+1}$	$2 \times 5^k - n$	$n(12^k + 2 \times 5^k)$	-1),	
	$f(k+1) - f(k) = (12 - m) \times 12^k + 2 \times 12^k$	$(12-m)\times$	$5^{k-1} + 10 \times 5^{k-1} - 5^{k-1}$	$-24 \times 5^{k-1}$	
		× /	$(12-m)\times($	$12^{k} + 2 \times 5^{k-1}$)	
	$=(12-m)\times(12^{k}+2\times5^{k-1})-14\times5^{k-1}$	-1	or $(12 - m)$	f(k)	A1
	(12 m) (12 + 200) 1000		$-14 \times 5^{k-1}$,	A1
	$f(k+1) = 12f(k) - 14 \times 5^{k-1}$		Makes f(k -	+ 1) the subject	dM1
	$1(n+1) - 121(n) - 17 \times 3$		the A mar	ks	
	If the result is <u>true for $n = k$</u> , then it is				
	<u>true for $n = k+1$.</u> As the result has been	The un	derlined feat	ures should be seen.	Alcso
	shown to be <u>true for $n = 1$</u> , then the result	Some n	ay appear ea	rlier in the solution.	111000
	is <u>true for all <i>n</i></u> .				

ALT 4	$f(1) = 12 + 2 \times 1 = 14$		This is sufficient	B1
	$f(k+1) = 12^{k+1} + 2 \times 5^k$		Attempts $f(k+1)$	M1
	$f(k+1) - 5f(k) = 12^{k+1} + 2 \times 5^k - 5(12^k + 2)$	$2 \times 5^{k-1}$	Working with $f(k + 1) - 5f(k)$	
	$= 7 \times 12^k + 2 \times 5^k - 2 \times 5^k$		7×12^k	A1
			$2 \times 5^k - 2 \times 5^k$ (or zero)	A1
	$f(k+1) = 5f(k) + 7 \times 12^{k}$		Makes $f(k + 1)$ the subject Dependent on at least one of the A marks	dM1
	If the result is <u>true for $n = k$</u> , then it is			
	<u>true for $n = k+1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result is <u>true for all n</u> .	The und Some m	derlined features should be seen. ay appear earlier in the solution.	Alcso

NOTES:

<u>Part (i)</u>

This approach may be seen: Assume result is true for n = k and n = k + 1Subtract: (sum to (k + 1) terms) minus (sum to k terms) Show that this is equal to the (k + 1)th term Please send any such response to Review.

<u>Part (ii)</u>

Apart from the given alternatives, other versions will work and can be marked equivalently. If in any doubt, send to Review.

Question Number	Scheme	Marks	
1.(a)	f(0.2) = and $f(0.6) =$	M1	
	f(0.2) = -0.5973 and $f(0.6) = 0.2707$		
	Continuous function with change of sign so root (in given interval)		
(b)	f(0.4) = -0.1788	B1	
	f(0.5) =	M1	
	$f(0.5) = 0.04114 \implies 0.4 \le \alpha \le 0.5$	A1 (3)	
		[5]	
	Notes	<u> </u>	
	Must see correct values for the accuracy marks. But allow signs only for	r attempts at	
(a)	values for the method marks.		
(a) M1	Attempts both values, accept $f(0.2)=$ and $f(0.6)=$ with any values. (NB $f(0.2) = -0.2069$ $f(0.6) = 1.379$ are the values with calculator in degrees mode.)		
A1	Both values correct (rounded or truncated to 1d.p.) and a correct conclusion (continuous		
	and sign change). Allusion to continuity must be mentioned somewhere in the solution.		
(h)	Allow other ways to show sign change e.g. $<0, >0$ etc.		
B1	Correct value of $f(0.4)$: may be rounded or truncated to 1 dp		
M1	Attempt value of $f(0.5)$ or attempt value of $f(0.3)$ if relevant for their sign of $f(0.4)$.		
A1	Correct value of $f(0.5)$ which may be rounded to 2 dp and correct interval. Allow as open		
	or closed interval. Accept any valid notation for the interval. Accept e.g. $0.4 < x < 0.5$		

Question Number	FP1 Scheme	2021_01_MS Marks	
2 (a)	$\frac{3}{8} - \frac{\sqrt{71}}{8}i$	B1 (1)	
(b)	$\left(x - \frac{3}{8} - \frac{\sqrt{71}}{8}i\right)\left(x - \frac{3}{8} + \frac{\sqrt{71}}{8}i\right) ((x - 4) = 0)$		
	$\begin{pmatrix} x^2 - \frac{3}{4}x + \frac{5}{4} \end{pmatrix} ((x-4) = 0)$ $x^3 - \frac{19}{x^2} + \frac{17}{x} = 5 (=0)$	M1A1	
	$x - \frac{1}{4}x + \frac{1}{4}x - 3 (=0)$ $4x^{3} - 19x^{2} + 17x - 20 (=0) p = 17, q = -20$	A1 (4)	
(a) B1 (b)	Correct answer only	[5]	
M1 A1 dM1 A1	Attempt the multiplication of the 2 brackets with the complex terms. Allow $(x \pm root)$ for the brackets. Allow "invisible" brackets. Correct quadratic obtained - may have multiplied by the 4 (or other constant factor) and this is fine. (Need not be fully simplified but must have real terms) Attempt to multiply their quadratic by $(x-4)$ or may divide their quadratic into the cubic or other full method leading to at least one of p or q . Correct values. Values of p and q need not be shown explicitly but may been seen in a		
	Note if a candidate uses a hybrid method, mark under main scheme unless an Alt scores more marks.		
Alt 1 (b)	$-\frac{q}{4} = 4 \times \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right) \times \left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) = \dots \rightarrow q = \dots \text{ or }$ $\frac{p}{4} = 4 \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right) + 4 \left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) + \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right) \left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) \rightarrow p = \dots$ $\Rightarrow q = -16 \times \left(\frac{9}{64} + \frac{71}{64}\right) = -20 \text{or } p = 17$ E.g. $f(4) = 0 \Rightarrow 4(4)^3 - 19(4)^2 + 4p - "20" = 0 \Rightarrow p = \dots$ $\text{or } \frac{p}{4} = 4 \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right) + 4 \left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) + \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right) \left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) \rightarrow p = \dots$	M1 A1 dM1	
	p = 17, q = -20	A1 (4)	

Page 41 of 119

Question Number	FP1 Scheme	2021_01_MS Marks	
M1 A1 dM1	A correct attempt to use product of roots is $-\frac{q}{4}$ to find a value for q or pair sum is $\frac{p}{4}$ to find a value of p. Correct value for p or q Correct full method to find both p and q.		
A1	Correct values for both		
Alt 2	 Attempts at using the factor theorem are possible but unlikely to succeed. Score as follows: M1: Uses the factor theorem to generate two equations in the two unknowns (note they will need to use a complex root to achieve this and equate real and imaginary parts.). A1: Correct equations. dM1: Solves their two equations to find values for <i>p</i> and <i>q</i>. A1: Correct values Send to review if unsure. 		
414.2	2	T	
Alt 3 (b)	$\frac{4x^{2} - 3x + p - 12}{x - 4 \sqrt{4x^{3} - 19x^{2} + px + q}}$ $4x^{3} - 16x^{2}$ $-3x^{2} + px + q$ $-3x^{2} + 12x$ $(p - 12)x + q$ $(p - 12)x - 4(p - 12)$ $\Rightarrow q + 4(p - 12) = 0 \& \frac{p - 12}{4} = \left(\frac{3}{8} + \frac{\sqrt{71}}{8}i\right)\left(\frac{3}{8} - \frac{\sqrt{71}}{8}i\right) = \frac{5}{4}$ $P = 17, q = -20$	M1 A1 dM1 A1 (4)	
(b) M1 A1 dM1 A1	Divides $x - 4$ into the cubic to achieve a 3TQ quotient and a remainder Correct quotient and remainder Correct full method to find p or q Correct values		

Question Number	Scheme	Marks
3(a)	k(k+5)-6=0	M1
	$k^2 + 5k - 6 = 0$	
	$((k-1)(k+6)=0 \Longrightarrow)$ $k=1, -6$	A1 (2)
(b)	$\frac{1}{"k^2 + 5k - 6"} \begin{pmatrix} k & 2\\ 3 & k + 5 \end{pmatrix}$	M1A1 (2)
		[4]
(a) M1 A1	Attempts determinant and sets equal to zero (or equivalent method) to obtain an unsimplified quadratic equation Correct values for k (may solve the quadratic by any valid means)	
(b) M1 A1	Forms the matrix of signed minors (must have at least three correct elements) divided or multiplied by an attempt at the determinant Fully correct inverse	

Question	Scheme FP1	-2021_01_MS Marks-
4 (a)	$\alpha + \beta = -\frac{5}{2} \qquad \alpha\beta = \frac{7}{2}$ $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \left(-\frac{5}{2}\right)^{3} - 3\left(\frac{7}{2}\right)\left(-\frac{5}{2}\right)$	B1 M1
	$=\frac{85}{8}$	A1 (3)
(b)	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \dots$	M1
	$=\left(\frac{85}{8}\right)\times\left(\frac{2}{7}\right)=\frac{85}{28}$	A1
	$\frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = \frac{7}{2}$	B1ft
	$x^{2} - "\frac{85}{28}"x + "\frac{7}{2}" \ (=0)$	M1
	$28x^2 - 85x + 98 = 0$	A1 (5) [8]
(a) B1 M1 A1	Note: if a candidate solves the equation and uses the roots to answer the qu send to review. Both correct. (Seen anywhere in the working) Uses their sum and product of roots in a correct expression for $\alpha^3 + \beta^3$. Correct value. Must be exact. Accept 10.625	estion, then
(b) M1 A1 B1ft M1 A1	$\alpha^{3} + \beta^{3} \qquad \alpha\beta \qquad \frac{\alpha^{3} + \beta^{3}}{\alpha\beta} = \dots$ substitutes their values for and into $\alpha\beta$ (allow slips in substitution). Correct sum as a single fraction (may be seen or implied in their equation) Correct product or follow through their product Use x^{2} – sum of roots × x + product of roots with their values for sum and product. "= 0" may be missing. A correct final equation as shown or any integer multiple of this. " = 0" must be included.	

Question Number	Scheme	Marks		
5(a)	$\sum_{r=1}^{n} (r+1)(r+5) = \sum_{r=1}^{n} (r^2 + 6r + 5)$	B1		
	$=\sum_{r=1}^{n}r^{2}+6\sum_{r=1}^{n}r+5n$			
	$=\frac{n}{6}(n+1)(2n+1)+6\frac{n}{2}(n+1)+5n$	M1A1		
	$=\frac{n}{6}\left(2n^2+3n+1+18n+18+30\right)$	dM1		
	$=\frac{n}{6}(2n^{2}+21n+49)=\frac{n}{6}(n+7)(2n+7) $ *	A1 * (5)		
(b)	$\sum_{r=n+1}^{2n} = \sum_{r=1}^{2n} -\sum_{r=1}^{n} = \frac{2n}{6} (2n+7)(4n+7) - \frac{n}{6} (n+7)(2n+7)$	M1		
	$=\frac{n}{6}(2n+7)\{8n+14-(n+7)\}$			
	$=\frac{7n}{6}(2n+7)(n+1)$	A1 (2)		
(a) B1 M1	Brackets multiplied out correctly. Summation signs not needed. Use at least two correct formulae from $\sum_{r=1}^{n} r$, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} 1 = n$.			
dM1	Attempt to remove factor $\frac{n}{6}$ from an expression with common factor <i>n</i> pression	sent. (if "5 <i>n</i> " is		
مه م	just 5 then this mark will not be scored). Must be seen before the given answer is quoted. No need to simplify the remaining quadratic factor.			
A1*	Obtain the correct 3 term quadratic and factorise. This is a "show that" question, so the 3 TQ must be seen. No errors seen.			
(b) M1	Use $\sum_{n=1}^{2n} = \sum_{n=1}^{2n} -\sum_{n=1}^{n}$			
A1	Simplify to the correct answer.			

	Question Number	Scheme FP1	2021 (Mark)1_MS s
1	6(a)	$\lambda = 4$	B1	(1)
	(b)	$\arctan \frac{3}{"4"}$ or $\arctan \frac{-3}{"4"}$	M1	
		(Second quadrant so arg $z = 2.498$) = 2.5 (rad)	A1	(2)
	(c)(i)	$\frac{z+3i}{2-4i} = \frac{-4+6i}{2-4i} \times \frac{2+4i}{2+4i} \text{or } \frac{z+3i}{2-4i} = a+ib \Longrightarrow -4+6i = (a+ib)(2-4i)$	M1	
		$-8+12i-16i+24i^2$ 8 1. $-32-4i$		
		$= \frac{4+16}{4+16} = -\frac{5}{5} - \frac{5}{5} + \frac{1}{20}$	dM1A1	
	(ii)	Or $2a+4b = -4$, $2b-4a = 6 \Rightarrow a =, b =$ $z^2 = (-4+3i)^2 = -16 = 24i + 9i^2 = -16 = 24i = 9$	M1	
	(11)	=7-24i	Alft	(5)
	(d)	Im		(5)
		A or z	B1 B1ft	
			B1ft	
		C Re		
		$B \text{ or } \overline{z^*}$		
		$D \text{ or } z^2$		(3)
				[11]
	(a) B1	Correct answer. No working needed.		
	(b)	6		
	M1	For $\arctan\left(\pm\frac{3}{"4"}\right)$ with their "4". Can be awarded from $\tan\theta = \pm\frac{3}{"4"} \Longrightarrow \theta$	= or by	7
		implication if correct value for either arctan or correct final answer (rounde	d or not	
	A 1	rounded, may be degrees) is seen.		
	A1 (c)(i)			
	M1	Multiplies numerator and denominator by complex conjugate of denominator	or. Award	if
		denominator of 4+16 or 20 is seen instead of product. May still have z at the allow with $\lambda + 3i$ as numerator	is stage, or	even
		Alternatively, sets equal to $a + ib$ and cross multiplies.		
	dM1	Using their λ or 4 substitutes correctly for <i>z</i> , fully expands the numerator	and uses	
		$1^{-} = -1$ Alt, uses $i^{2} = -1$, equates real and imaginary terms and solves their equation	ns for <i>a</i> ar	nd b
	A1	Correct answer only, as shown or single fraction accepting equivalent fractions or with		
	(ii) M1	exact decimals $(-1.6 - 0.2i)$.	ıs (may he	
	()	implied) and uses $i^2 = -1$		
	A1ft	Correct answer, follow through their $\lambda > 0$ (ie for " $\lambda^2 - 9$ "–" 6λ "i must be negative i		
	(d)	term) NB: Penalise once only (in the first mark due) for mislabelling or failing to label points as		
	(4)	long as they look to be placed correctly. Award if lines/arrows not included. Points ma		
	D1	labelled by letter, name or their Cartesian coordinates (which may be given	on the axe	es).
	B1 B1ft	Plot and label C for their solution to (c)(ii) It must be the correct side of B (for their	icu.

	answers) and a correct relative scale (so noticeably closer to O than the $\mathbb{F}B^{1}$ if correct $01_{\mathbb{N}}$				
	values).				
D164	Plot and label their D (- 24 need not be to scale, but should be further from O than their				
вщ	<i>B</i>).				

Question	Scheme FP2	1_20 Marks 1_MS	
7(a)	$\begin{vmatrix} 4 & -5 \\ -3 & 2 \end{vmatrix} = 8 - 15 = -7 \implies \text{Area } T' = "\pm 7" \times 23 = \dots$	M1	
	Area T'=161	A1 (2)	
(b)	$ \begin{pmatrix} 4 & -5 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 3p+2 \\ 2p-1 \end{pmatrix} = \begin{pmatrix} 17 \\ -18 \end{pmatrix} \text{ or } \begin{pmatrix} 3p+2 \\ 2p-1 \end{pmatrix} = \frac{1}{8-15} \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 17 \\ -18 \end{pmatrix} $		
	4(3p+2)-5(2p-1)=17 or -3(3p+2)+2(2p-1)=-18 or $3p+2=-\frac{1}{7}(34-90) \text{ or } 2p-1=-\frac{1}{7}(51-72)$	M1	
	p = 2	A1 (2)	
(c)	Rotation; through 90° clockwise (or 270° anticlockwise) about origin	B1;B1 (2)	
(d)	$\mathbf{CA} = \mathbf{B}$ $\mathbf{A}^{-1} = -\frac{1}{7} \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix} \text{ or } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 4 & -5 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 4a - 3b & -5a + 2b \\ 4c - 3d & -5c + 2d \end{pmatrix}$ $1 \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} = \begin{pmatrix} 4a - 3b & -5a + 2b \\ 4c - 3d & -5c + 2d \end{pmatrix}$	B1	
	$\mathbf{C} = -\frac{1}{7} \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix} = \dots \text{ or } \begin{cases} 4c - 3d = -1 & -5c + 2d = 0 \end{cases} \Longrightarrow \dots$ $\mathbf{C} = -\frac{1}{7} \begin{pmatrix} 3 & 4 \\ -2 & -5 \end{pmatrix} \text{ or } \begin{pmatrix} -\frac{3}{7} & -\frac{4}{7} \\ \frac{2}{7} & \frac{5}{7} \end{pmatrix} \text{ oe }$	M1 A1 (3)	
(9)		9	
(u) M1	Attempts to find the determinant of M and use as a scale factor. Accept if a slip in calculation is made and accept if negative is used for this mark. Dividing by the		
A1	Correct answer only. No working needed (correct answer implies the method	od).	
(b) M1	Form a matrix equation using either A or an attempt at A^{-1} , obtain a linear equation and solve for <i>n</i>		
A1	Correct value for <i>p</i> , obtained from a correct equation. (No need to check in other equation.)		
(c) B1	Rotation rotates rotate or rotating (oe) Accept "turn"		
B1	Correct angle (degrees or radians) with direction specified and about origin	or (0, 0)	
(d)	Correct matrix for \mathbf{A}^{-1} May have been found in (b) but must be used in (d)) Alternatively	
B1	correct CA with unknowns for entries of C.		
M1	Multiply B by A^{-1} on the right. Alternatively, sets CA equal to B and solve Correct matrix C (isw after a correct answer)	Multiply B by A^{-1} on the right. Alternatively, sets CA equal to B and solves equations.	
	Concer matrix Clisw after a concer answer).		

Question Number	Scheme FP1	_20 Marks 1_MS	
8(a)	$200t^3 = 25$ or $\left(\frac{25}{x}\right)^2 = 40x$ or $y^2 = 40\left(\frac{25}{y}\right)$	M1	
	$t = \frac{1}{2}$ or $x = \frac{5}{2}$ or $y = 10$	A1	
	$\left(\frac{5}{2},10\right)$	A1 (3)	
(b)	$y^{2} = 40x \Rightarrow x = \frac{y^{2}}{40} \Rightarrow \frac{dx}{dy} = \frac{2y}{40} \text{ or } 2y \frac{dy}{dx} = 40 \Rightarrow \frac{dy}{dx} = \frac{40}{2y} \text{ or } \frac{dy}{dx} = \frac{\sqrt{10}}{\sqrt{x}}$	B1	
	at $(10, 20): \frac{dy}{dt} = 1$ or $\frac{dx}{dt} = 1$	M1	
	dx dy Grad normal = -1	A1	
	y - 20 = -(x - 10)	M1	
	x + y - 30 = 0	A1 (5)	
(c)	xy = 25 $x + y = 50 = 0x + \frac{25}{x} - 30 = 0 or \frac{25}{y} + y - 30 = 0 or \frac{5}{t} + 5t - 30 = 0$	M1	
	$x^{2}-30x+25=0$ or $y^{2}-30y+25=0$ or $5t^{2}-30t+5=0$	dM1	
	$x = 15 \pm \sqrt{200}$ or $y = 15 \pm \sqrt{200}$ or $t = 3 \pm 2\sqrt{2}$ (or exact equivalents)	A1	
	eg $x = 15 + \sqrt{200} \Rightarrow y = 15 - \sqrt{200}$	ddM1	
	$(15+10\sqrt{2},15-10\sqrt{2})$ $(15-10\sqrt{2},15+10\sqrt{2})$	A1A1 (6)	
		[14]	
(a) M1	Attempt on equation in a single variable		
A1	Correct value for x, y or t		
A1	Correct values for x and y. Need not be in coordinate brackets. No other points se	een.	
(b)			
B1	Any correct expression involving the derivative, $\frac{dy}{dx}$ or $\frac{dx}{dy}$, for P		
	Attempt to obtain value of their derivative at (10, 20). May be from an incorrect	curve.	
AT MI	Equation of normal by any complete method. Must involve a sign change of their	r derivative and	
	have numerical gradient. Cam be scored from an incorrect starting equation/poin	t.	
(c)	concer equation in form demanded (mough terms may be in different order).		
M1	Use the equation of H and their equation of the normal from (b) to obtain an equation in a single variable		
dM1	Obtains a 3TQ and attempts to solve by any valid means.		
A1	Correct values for <i>x</i> or <i>y</i> or <i>t</i> . Must be exact but need not be fully simplified (but discriminant must be evaluated).		
ddM1	Use at least one of their values for x or y to obtain a value for the other coordinate or t to find at least one set of coordinates. (Can be scored with inexact values.)		
	Either pair of coordinates correct. Allow if unsimplified. Second pair of coordinates correct and no extra solutions and both pairs in simpl	est form (as	
	shown in scheme). Need not be coordinates as long as correctly paired. Award A1A0 if $x = 15 \pm 10\sqrt{2}$, $y = 15 \pm 10\sqrt{2}$ is given	est form (as	

Question Number	Scheme FP1	_20 Marks 1_MS		
9(i)	$n=1$ $u_1 = 3 \times \frac{2}{3} - 1 = 1$ (so true for $n = 1$ (†))	B1		
	Assume true for $n = k$ ie $u_k = 3\left(\frac{2}{3}\right)^k - 1$ (†)			
	M1A1			
	$=\frac{1}{3}\left(2\times 3\left(\frac{2}{3}\right)^{k+1}\times\left(\frac{3}{2}\right)-2-1\right)$			
	$= \frac{1}{3} \times 2 \times 3\left(\frac{2}{3}\right)^{k+1} \times \left(\frac{3}{2}\right) + \frac{1}{3}(-2-1)$			
	$=3\left(\frac{2}{3}\right)^{k+1}-1$	A1		
	\therefore if true for $n = k$, also true for $n = k + 1$ (†)			
	(True for $n = 1$) so $u_n = 3\left(\frac{2}{3}\right) - 1$ is true for all $n \in \mathbb{Z}^+$	Alcso (6)		
(ii)	f(1) = $2^3 + 3^3 = 8 + 27 = 35$ (Multiple of 7) (so true for $n = 1$ (†))	B1		
	Assume $f(k)$ is a multiple of 7 $f(k) = 2^{k+2} + 3^{2k+1}$ is a multiple of 7 (†)			
	$f(k+1) - Mf(k) = 2^{k+3} + 3^{2k+3} - M(2^{k+2} + 3^{2k+1})$	M1		
	$=2^{k+2}(2-M)+3^{2k+1}(3^2-M)$	A1		
	= $(2-M)(2^{k+2}+3^{2k+1})+3^{2k+1}\times7$ or $(9-M)(2^{k+2}+3^{2k+1})-7\times2^{k+2}$ oe	dM1		
	: $f(k+1) = 2f(k) + 7 \times 3^{2k+1}$ oe e.g. $9f(k) - 7 \times 2^{k+2}$	A1		
	Or e.g. $7 \times 3^{2^{k+1}}$ is a multiple of 7, so if $f(k)$ is a multiple of 7 <u>then</u> <u>$f(k+1)$ is also a multiple of 7</u>			
	If the result is true for $n = k$ it is also true for $n = k + 1$ (†)			
	As the result has been shown to be true for $n = 1$, it is true for all $n \in \mathbb{Z}^+$	A1 cso (6)		

9(i)	
B1	Check that the formula gives 1 when $n = 1$ Working must be shown. (Need not state true
	for $n = 1$ for this mark – but see final A)
M1	(Assume true for $n = k$ and) attempts to substitute the formula for u_k into
	$u_{k+1} = \frac{1}{3}(2u_k - 1)$ or equivalent with suffixes increased. Allow slips.
A1	Correct substitution.
dM1	Obtain an expression with $\left(\frac{2}{3}\right)^{k+1}$ and no other k. Alternatively, expands u_{k+1} to a
	matching expression (ie work from both directions).
A1	Correct expression when $n = k + 1$
	At least one intermediate stage of working must be shown and no errors (though notational slips may be condoned).
	If working from both directions, it is for correct work to reach matching expressions.
A1cso	Correct concluding statements following correct solution which has included each of the points (†) at some stage during the working. Depends on all except the first B mark (e.g. if they think they have checked $n = 1$ but have really checked $n = 2$). Note: Allow the M's and first two A's for students who go from $k+1$ to $k+2$ but treat it as k to $k + 1$.
(ii)	
B1	Checks the case $n = 1$. Minimum statement of $f(1) = 35$
M1	Attempts an expression for $f(k + 1) - Mf(k)$ with any value of M . Need not be simplified. Most likely with $M = 1$ but may be seen with other values of M . With $M = 0$, $f(k+1) = 2^{k+3} + 3^{2k+3}$ is all that is required.
A1	A correct expression with terms 2^{k+2} and 3^{2k+1} clearly identified.
dM1	Attempts to extract/identify $f(k)$ within a correct expression to give terms divisible by 7.
	With $M = 0$ look for $f(k+1) = 2 \times (2^{k+2} + 3^{3k+1}) + 7 \times 3^{2k+1}$ or $9 \times (2^{k+2} + 3^{3k+1}) - 7 \times 2^{k+2}$
A1	oe and similar for other value of M . One of the correct expressions for $f(k+1)$ shown (or with powers of 2 and 3) or full reason why $f(k+1)$ is divisible by 7, following a suitable expression.
AIUSU	points (†) at some stage during the working. Depends on all previous marks.

Question Number	Scheme	Notes	Marks
1	$f(x) = x^3 + 4x - 6$		
1(i)(a)	f(1) = -1 f(1.5) = 3.375 $\left(= \frac{27}{8} \right)$	Attempts to evaluate at both end points. If substitution not seen accept f(1) = -1 or $f(1.5) = 3.375$ as evidence, with any value for the other end.	M1
	Sign change and $f(x)$ continuous therefore α is between $x = 1$ and $x = 1.5$	f(1) = -1 and $f(1.5) = 3.375$ <u>both</u> <u>correct</u> and mentions/indicates <u>sign</u> <u>change</u> , <u>continuous</u> and <u>conclusion</u> .	Al
			(2)
1(i)(b)	$f'(x) = 3x^2 + 4$	Correct derivative. Can be implied by a correct expression seen later such as $3(1.5)^2+4$	B1
	$x_2 = 1.5 - \frac{f(1.5)}{f'(1.5)} = 1.5 - \frac{3.375}{10.75}$	Attempt Newton-Raphson using the correct formula.	M1
	$x_2 = 1.186$	Accurate first application either awrt 1.186, $\frac{51}{43}$ or a correct numerical expression.	A1
	$x_3 = \left(1.186 \frac{0.412}{8.220}\right) = 1.1358$		
	$\alpha \approx 1.136$	cao	A1
			(4)
1(ii)	g(1.4) = 3.442116 or $g(1.5) = -3.601419$	Evidence of at least one value correct to 3 d.p. or better. May be implied by correct answer if never seen.	B1
	$\frac{\frac{1.5 - \beta}{\beta - 1.4}}{\frac{\beta - 1.4}{0 - g(1.4)}} = \frac{\frac{0 - g(1.5)}{g(1.4) - 0} \text{ or}}{\frac{\beta - 1.4}{0 - g(1.4)}} = \frac{1.5 - 1.4}{g(1.5) - g(1.4)} \text{ oe}$	A correct linear interpolation statement as shown oe (with correct signs). May omit the zeroes or use evaluated values (e.g 0.1 instead of $1.5 - 1.4$). Other forms are possible.	B1
	$\Rightarrow \beta \approx 1.448869$	Evaluates β from an attempt at a linear interpolation statement, allow if signs are incorrect. $\beta \approx \text{awrt } 1.449$	M1 A1
			(4)
			Total 10

Qn No	Scheme	Notes	Marl	ks
2. (a)	$\frac{z_2 z_3}{z_1} = \frac{(p-i)(p+i)(2+i)}{(2-i)(2+i)}$	Multiply top and bottom by complex conjugate of their denominator. (The two M's may be scored if the given numbers are wrongly placed.)	M1	
	$=\frac{(p^2+1)(2+i)}{5}$	Simplifies numerator with evidence that $i^2 = -1$ and denominator real. Accept any equivalent form in the numerator as long as there are not i^2 terms if expanded.	M1	
	$=\frac{2(p^2+1)}{5}+\frac{(p^2+1)}{5}i$	Correct real +imaginary form with i factored out. Accept as single fraction with numerator in correct form. Accept ' $a =$ ' and ' $b =$ '.	A1	
				(3)
ALT	$\frac{z_2 z_3}{z_1} = \frac{(p-i)(p+i)}{(2-i)} = a + bi$ $p^2 + 1 = (a+bi)(2-i)$ $2a + b = p^2 + 1$ $2b - a = 0$	Cross multiplies by 2-i (or their denominator), expands and equates real and imaginary parts. (The two M's may be scored if the given numbers are wrongly placed.)	M1	
	$2a+b=p^2+1$ $2b-a=0$ $\Rightarrow a=,b=$	Attempt to solve their equations.	M1	
	$a+bi = \frac{2(p^2+1)}{5} + \frac{(p^2+1)}{5}i$	Correct real +imaginary form with i factored out. Accept as single fraction with numerator in correct form. Accept ' $a =$ ' and ' $b =$ '.	A1	
				(3)
2(b)	$\left \frac{z_2 z_3}{z_1}\right ^2 = \frac{4(p^2 + 1)^2}{25} + \frac{(p^2 + 1)^2}{25}$	Correct attempt at the modulus or modulus squared. Accept with their answers to part (a). Any erroneous i or i^2 is M0.	M1	
	$\frac{4(p^2+1)^2}{25} + \frac{(p^2+1)^2}{25} = \left(2\sqrt{5}\right)^2$	Their $\left \frac{z_2 z_3}{z_1}\right ^2 = \left(2\sqrt{5}\right)^2$	dM1	
	$(p^2 + 1)^2 = 100 \Longrightarrow p = \pm 3$	Attempt to solve and achieves $p =$ (may be scored from use of $ _{1}^{2} - 2\sqrt{5}$)	M1	
		$p = \pm 3$	A1	
				(4)
ALTI	$\left \frac{z_2 z_3}{z_1}\right = 2\sqrt{5} \Longrightarrow \left z_2 z_3\right = \sqrt{4+1} \times 2\sqrt{5}$	Cross multiplies and attempts $ z_1 $	M1	
	$\Rightarrow z_2 ^2 = \sqrt{4+1} \times 2\sqrt{5} \Rightarrow p^2 + 1 = \dots$	Attempts $ z_2 z_3 $ either directly or using $ z_2 z_2^* = z_2 ^2$ to get an equation in <i>p</i> .	dM1	
	$(p^2+1) = 10 \implies p = \pm 3$	Attempt to solve and achieves $p = \dots$ p = +3	M1	
				(4)
		1	Total	7

Question Number	Scheme	Notes	Marks
3(a)	$ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 2 & 0 \\ 1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 1 \\ -2 & -2 & 0 \end{pmatrix} $	Attempt to multiply in the correct order with at least four correct elements. May be done as three separate calculations, so look for at least 4 correct values.	M1
	(1,-2), (3,-2) and (1,0)	Accept as individual column vectors but not as a single 2x3 matrix.	A1
			(2)
3(b)	Rotation	Accept rotate or turn oe.	B1
	270 ° (anticlockwise) about the origin	Accept -90° (anticlockwise) or 90° clockwise (must be stated) and (0,0) or <i>O</i> . <i>Assume anticlockwise unless otherwise</i> <i>stated</i> .	B1
			(2)
3(c)	$\mathbf{Q} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	One correct, both correct	B1,B1
			(2)
3(d)	$\mathbf{RQ} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	Multiplication in correct order for their matrices and at least 1 row or 1 column correct.	M1
	$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	Correct matrix	A1
			(2)
3(e)	Reflection	Correct type identified.	B1
	in (the line) $y = x$	Correct line of reflection specified, accepting equivalent forms (e.g. line at angle 45° (anticlockwise) to the (positive) <i>x</i> -axis).	B1
			(2)
			Total 10

		FP1 2021 0	6 MS
Question Number	Scheme	Notes	– Marks
4(a)	$y = 25x^{-1} \Rightarrow \frac{dy}{dx} = -25x^{-2}$ $xy = 25 \Rightarrow y + x\frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = -\frac{5}{t^2} \cdot \frac{1}{5}$	Attempts a derivative expression, such as $\frac{dy}{dx} = kx^{-2} \text{ or } x\frac{dy}{dx} = ky \text{ or}$ $\frac{dy}{dx} = \frac{\text{their}\frac{dy}{dt}}{\text{their}\frac{dx}{dt}}$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -25x^{-2} \text{ or } \frac{-y}{x} \text{ or } \frac{-1}{t^2}$	Correct derivative.	Al
	$y - \frac{5}{t} = -\frac{1}{t^2} (x - 5t)$	Uses $y - \frac{5}{t} = (\text{their gradient}) \times (x - 5t) \text{ or}$ $y = (\text{their gradient})x + c \text{ using } x = 5t, y = \frac{5}{t}$ in an attempt to find <i>c</i> . Their gradient must be a function of <i>t</i> for marks to be awarded.	M1
	$t^2 y + x = 10t *$	cso	A1
			(4)
Alt 4(a)	Intersect when $(10t - t^2 y)y = 25$	Substitutes given line equation into the curve equation to find intersections	M1
	$\Rightarrow t^2 y^2 - 10ty + 25 = 0$	Correct equation	A1
	$\Rightarrow (ty-5)^2 = 0 \Rightarrow y = \frac{5}{t} \text{ is single root.}$	Shows the equation has a single root.	M1
	Single root when $y = \frac{5}{t}$ means the line is the tangent to <i>H</i> at <i>P</i> .	All work correct, with correct conclusion.	A1
			(4)
4(b)	$t^2(-5) + 15 = 10t$	Substitute $(15, -5)$ into equation of tangent	M1
	$(t+3)(t-1) = 0 \Longrightarrow t = \dots$	Solves via any valid means	M1
	$\Rightarrow t = -3, t = 1$ (or one correct point)	Both values of <i>t</i> or one correct coordinate pair.	A1
	$\left(-15, -\frac{5}{3}\right)$ and $(5, 5)$	Both correct sets of coordinates.	A1
			(4)
ALT	$t_1^2 y + x = 10t_1$ $t_2^2 y + x = 10t_2$	Form equations with their t_1, t_2 and attempt to solve for x and y	M1
	$(x=)\frac{10t_1t_2}{(t_1+t_2)} = 15, (y=)\frac{10}{(t_1+t_2)} = -5$	Equates to coordinate and attempt to solve for t_1, t_2	M1
	$t_1 = -3, t_2 = 1$ (or one correct point)	Both values of <i>t</i> or one correct coordinate pair.	A1
	$\left(-15, -\frac{5}{3}\right)$ and $(5, 5)$	Both correct sets of coordinates.	A1
			(4)
			Total 8

Question Number	Scheme		Notes	Marks
	$\mathbf{f}(x) = \left(9x^2 + d\right)$	$\left(x^2 - 8x + (10d)\right)$	+1))	
5(a)	$9x^2 + d = 0 \Rightarrow x = \pm \sqrt{-\frac{d}{9}} \text{ or } \pm \frac{i\sqrt{d}}{3}$		or exact equivalents	B1
	or $x = \frac{8 \pm \sqrt{64 - 4(10d + 1)}}{2}$ or $(x - 4)^2 - 16 + 10d + 1 = 0 \Rightarrow x =$		Solve $x^2 - 8x + (10d + 1) = 0$ by formula or completing the square. Must have complete constant term.	M1
	$x = 4 + \sqrt{15 - 10d}$ and $x = 4 - \sqrt{15 - 10d}$		oe with discriminant simplified. Mark final answer, do not isw.	A1
				(3)
5(b)	$x = \pm \frac{2i}{3}$ or f.t. their roots		Correct roots, or f.t.their answer for the $9x^2 + d$	B1ft
	$x = 4 \pm 5i$ or f.t. their roots		Correct roots for the given quadratic, or f.t. their 3TQ	B1ft
	SC Award B1ftB0 if only one of each pair is given.			
				(2)
5(c)	Im 5Two roots on i distance from Follow throug (b). B0 if real		maginary axis the same O. h their <i>imaginary</i> roots from roots found.	B1ft
	2i/3 O 4 Re -2i/3 -5 4-5i	Their two <i>com</i> , imaginary part other, so reflec Must be correct with the imagin (c) has been a from <i>O</i> if correct if first B0 has b	<i>plex</i> roots with real and s, one the conjugate of the sted in the real axis. et relative scale compared mary roots if the first B1 in warded (ie clearly further ect, or f.t. their answers). But been given, ignore scales.	B1ft
		Complex numb	pers must be labelled in some	
		way e.g. via sc	ales or coordinates or vectors.	
				(2)
				Total 7

FP1_2021_06_MS

Question Number	Scheme	Notes	Mark	ŝ
6(a)	$y = \sqrt{8}x^{\frac{1}{2}} \Longrightarrow \frac{dy}{dx} = \frac{1}{2}\sqrt{8}x^{-\frac{1}{2}} = \sqrt{2}x^{-\frac{1}{2}}$ $y^{2} = 8x \Longrightarrow 2y\frac{dy}{dx} = 8$ $\text{or } \frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = 4.\frac{1}{4t}$	Attempts a derivative expression, such as $\frac{dy}{dx} = kx^{-\frac{1}{2}} \text{ or } ky \frac{dy}{dx} = c$ or their $\frac{dy}{dt} \times \left(\frac{1}{\text{their } \frac{dx}{dt}}\right)$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}\sqrt{8}x^{-\frac{1}{2}} \left(=\sqrt{2}x^{-\frac{1}{2}}\right) \text{ or } 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 8 \text{ or}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 4 \cdot \frac{1}{4t} \left(=\frac{1}{t}\right)$	Correct differentiation (need not have substituted for <i>t</i> etc)	A1	
	At <i>P</i> , gradient of normal is $m_N = -p$	Correct gradient for the normal.	A1	
	$y - 4p = -p(x - 2p^2)$	$y-4p = (\text{their } m_N) \times (x-2p^2) \text{ or}$ $y = (\text{their } m_N)x + c \text{ using}$ $x = 2p^2, y = 4p \text{ in an attempt to find } c.$ Their gradient must be a function of p for marks to be awarded. Must use a changed gradient, not tangent gradient.	M1	
	$y + px = 2p^3 + 4p *$	CSO	A1	
6(b)	$y + qx = 2q^3 + 4q$	ое	B1	(5)
6(c)				(1)
	$y + px = 2p^{3} + 4p$ $y + qx = 2q^{3} + 4q$	Attempt to solve simultaneous equations.	M1	
	$\overline{px-qx=2p^3+4p-2q^3-4q}$	A correct equation in only one variable	A1	
	$(p-q)x = 2((p-q)(p^2 + pq + q^2) + 2(p-q))$	Attempts to simplify the expression to required form. E.g. factorise difference of two cubes, $p^3 - q^3 = (p-q)(p^2 + pq + q^2)$ or equivalent work to enable $p-q$ to cancel.	M1	
	$x = 2(p^2 + pq + q^2 + 2)^*$	cso for reaching the correct x coordinate.	A1	
	$y + 2p^{3} + 2p^{2}q + 2pq^{2} + 4p = 2p^{3} + 4p$ $y = -2pq(p+q)^{*}$	cso for reaching both coordinates correctly.	A1	
				(5)
	$qy + pqx = 2p^{3}q + 4pq$ $\underline{py + pqx} = 2pq^{3} + 4pq$	Attempt to solve simultaneous equations.	MI	
	$py - qy = 2pq^3 - 2p^3q$	A correct equation in only one variable	A1	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$(p-q)y = -2pq(p^{2}-q^{2})$ (p-q)y = -2pq(p-q)(p+q)	Attempts to simplify the expression to required form. E.g. Attempt to factorise difference of two squares.	M1
$y = -2pq(p+q)^* \qquad \text{cso for reaching the correct y coordinate.} A1$ $\frac{-2p^2q^2 - 2pq^3 + pqx = 2p^3q + 4pq}{x = 2(p^2 + pq + q^2 + 2)^*} \qquad \text{cso for reaching both coordinates correctly.} A1$ $A1$ $\frac{-2p^2(p^2 + pq + q^2 + 2)^*}{x = 2(p^2 + pq + q^2 + 2)^2} \qquad \text{cso for reaching both coordinates correctly.} A1$ $\frac{A1}{x}$ $\frac{-2pq(p+q) + 2p(p^2 + pq + q^2 + 2) =}{-2p^2q - 2pq^2 + 2p^3 + 2p^2q + 2pq^2 + 4p} \qquad \text{Substitutes both coordinates into the equation for normal at P} \qquad A1$ $\frac{-2pq(p+q) + 2q(p^2 + pq + q^2 + 2) =}{-2p^2q - 2pq^2 + 2p^2q + 2pq^2 + 2q^3 + 4q} \qquad \text{Substitutes both coordinates into the equation for normal at P} \qquad A1$ $\frac{-2pq(p+q) + 2q(p^2 + pq + q^2 + 2) =}{-2p^2q - 2pq^2 + 2p^2q + 2pq^2 + 2q^3 + 4q} \qquad \text{Substitutes both coordinates into the equation for normal at Q} \qquad \text{Substitutes both coordinates into the equation for normal at Q} \qquad A1$ $\frac{-2pq(p+q) + 2q(p^2 + pq + q^2 + 2) =}{-2p^2q - 2pq^2 + 2p^2q + 2pq^2 + 2q^3 + 4q} \qquad \text{Substitutes both coordinates into the equation for normal at Q} \qquad A1$ $\frac{-2pq(p+q) + 2q(p^2 + pq + q^2 + 2) =}{-2p^2q - 2pq^2 + 2p^2q + 2pq^2 + 2q^3 + 4q} \qquad \text{Substitutes both coordinates into the equation for normal at Q} \qquad A1$ $\frac{-2pq(p+q) + 2q(p^2 + pq + q^2 + 2) =}{-2q^2q - 2pq^2 + 2p^2q + 2pq^2 + 2q^3 + 4q} \qquad \text{Substitutes both coordinates into the equation for normal at Q} \qquad A1$ $\frac{-2pq(p+q) + 2q(p^2 + pq + q^2 + 2) =}{-2q^2q - 2pq^2 + 2p^2q + 2pq^2 + 2q^3 + 4q} \qquad \text{Substitutes both coordinates into the equation for normal at Q} \qquad A1$ $\frac{-2pq(p+q) + 2q(p^2 + pq + q^2 + 2)}{-2q^2(p^2 + pq + q^2 + 2)} \qquad A1$ $\frac{-2p^2q - 2pq^2 + 2p^2q - 2pq^2}{-2p^2(p^2 + pq + q^2 + 2)} \qquad Can be unsimplified. \qquad B1$ $\frac{-2p^2q - 2pq(p+q)}{-2p(p^2 + pq + q^2 + 2)} = -1$ $\frac{-2p^2q - 2pq(p+q)}{-2p(p^2 + pq + q^2 + 2)} = -1$ $\frac{-2p^2q - 2pq(p+q)}{-2p(p^2 + pq + q^2 + 2)} = -1$ $\frac{-2p^2q - 2pq(p+q)}{-2p(p^2 + pq + q^2 + 2)} = -1$ $\frac{-2p^2q - 2pq(p+q)}{-2p(p^2 + pq + q^2 + 2)} = -1$			$p^2 - q^2 = (p - q)(p + q)$ or equivalent work to enable $p - q$ to cancel.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$y = -2pq(p+q)^*$	cso for reaching the correct <i>y</i> coordinate.	A1
ALT 2 $-2pq(p+q)+2p(p^2+pq+q^2+2) =$ $-2p^2q-2pq^2+2p^3+2p^2q+2pq^2+4p$ (5) $alt T 2$ $-2pq(p+q)+2p(p^2+pq+q^2+2) =$ $-2p^2q-2pq^2+2p^2+2p^2+2pq^2+4p$ Simplifies correctly to $2p^3+4p$ and deduces N is on the normal at PA1 $-2pq(p+q)+2q(p^2+pq+q^2+2) =$ $-2p^2q-2pq^2+2p^2+2pq^2+2q^3+4q$ Substitutes both coordinates into the equation for normal at Q and expands brackets.M1 $-2pq(p+q)+2q(p^2+pq+q^2+2) =$ $-2p^2q-2pq^2+2p^2+2pq^2+2q^3+4q$ Substitutes both coordinates into the equation for normal at Q and expands brackets.M1 $=2q^3+4q$ so N is on normal at QSimplifies correctly to $2q^3+4q$ and deduces N is on the normal at Q but penalice only the first instance for missing the deduction.A1As N is on both normals it is therefore the 		$-2p^{2}q^{2} - 2pq^{3} + pqx = 2p^{3}q + 4pq$ $x = 2(p^{2} + pq + q^{2} + 2)*$	cso for reaching both coordinates correctly.	Al
ALT 2 $ \begin{array}{c} -2pq(p+q)+2p(p^2+pq+q^2+2) = \\ -2p^2q-2pq^2+2p^3+2p^2q+2pq^2+4p \\ -2p^2q-2pq^2+2p^3+2p^2q+2pq^2+4p \\ -2pq(p+q)+2q(p^2+pq+q^2+2) = \\ -2pq(p+q)+2q(p^2+pq+q^2+2) = \\ -2p^2q-2pq^2+2p^2q+2pq^2+2q^3+4q \\ -2pq(p+q)+2q(p^2+pq+q^2+2) = \\ -2p^2q-2pq^2+2p^2q+2pq^2+2q^3+4q \\ -2p^2q-2pq^2+2p^2q+2pq^2+2q^3+4q \\ -2q^3+4q \text{ so } N \text{ is on normal at } Q \\ Simplifies correctly to 2q^3+4q \text{ and} \\ deduces N \text{ is on the normal at } Q \\ equation for normal at Q and expands \\ for ad PQ = \frac{4q-4p}{2q^2-2p^2} \left(= \frac{2}{p+q} \right) \\ Use of \frac{y_2 - y_1}{x_2 - x_1} and substituting. \\ M1A1 \\ equation for advect and particle fore their gradients = -1 \\ for ad PQ = \frac{2pq(p+q)}{2(p^2 +$				(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ALT 2	$-2pq(p+q)+2p(p^{2}+pq+q^{2}+2) = -2p^{2}q-2pq^{2}+2p^{3}+2p^{2}q+2pq^{2}+4p$	Substitutes both coordinates into the equation for normal at <i>P</i> and expands brackets.	M1
$\frac{-2pq(p+q)+2q(p^2+pq+q^2+2) = -2p^2q-2pq^2+2p^2q+2pq^2+2q^3+4q}{(p+q)^2-2pq^2+2p^2q+2pq^2+2q^3+4q}$ Substitutes both coordinates into the equation for normal at <i>Q</i> and expands brackets. $\frac{-2p^2q-2pq^2+2p^2q+2pq^2+2q^3+4q}{(p+q)^2+2pq^2+2q^3+4q}$ Simplifies correctly to $2q^3+4q$ and deduces <i>N</i> is on hormal at <i>Q</i> and deduces <i>N</i> is on the normal at <i>Q</i> but penalise only the first instance for missing the deduction. As <i>N</i> is on both normals it is therefore the intersection point of them. $\frac{-2p(q-2pq^2+2p^2q+2pq^2+2q^3+4q)}{(p+q)^2+2pq^2+2p$		$=2p^3+4p$ so N is on normal at P	Simplifies correctly to $2p^3 + 4p$ and deduces <i>N</i> is on the normal at <i>P</i>	A1
$= 2q^{3} + 4q \text{ so } N \text{ is on normal at } Q$ Simplifies correctly to $2q^{3} + 4q$ and deduces N is on the normal at Q but penalise only the first instance for missing the deduction. As N is on both normals it is therefore the intersection point of them. 6(d) Grad $PQ = \frac{4q - 4p}{2q^{2} - 2p^{2}} \left(= \frac{2}{p + q} \right)$ Use of $\frac{y_{2} - y_{1}}{x_{2} - x_{1}}$ and substituting. Grad $ON = \frac{-2pq(p+q)}{2(p^{2} + pq + q^{2} + 2)}$ Can be unsimplified. Grad $PQ \times (ard ON)$ $= \frac{2}{p + q} \times \frac{-2pq(p+q)}{2(p^{2} + pq + q^{2} + 2)} = -1$ Using product of their gradients = -1 M1 (p+q)^{2} - 3pq = -2 (p + q)		$-2pq(p+q)+2q(p^{2}+pq+q^{2}+2) = -2p^{2}q-2pq^{2}+2p^{2}q+2pq^{2}+2q^{3}+4q$	Substitutes both coordinates into the equation for normal at <i>Q</i> and expands brackets.	M1
As N is on both normals it is therefore the intersection point of them.Makes a suitable conclusionA16(d)Grad $PQ = \frac{4q-4p}{2q^2-2p^2} \left(=\frac{2}{p+q}\right)$ Use of $\frac{y_2 - y_1}{x_2 - x_1}$ and substituting.M1A16(d)Grad $PQ = \frac{4q-4p}{2q^2-2p^2} \left(=\frac{2}{p+q}\right)$ Use of $\frac{y_2 - y_1}{x_2 - x_1}$ and substituting.M1A16(d)Grad $ON = \frac{-2pq(p+q)}{2(p^2 + pq + q^2 + 2)}$ Can be unsimplified.B1Grad $PQ \times \text{Grad } ON$ Using product of their gradients = -1M1 $(p+q)^2 - 3pq = -2$ -2A1(5)Total 16		$=2q^3+4q$ so N is on normal at Q	Simplifies correctly to $2q^3 + 4q$ and deduces N is on the normal at Q but penalise only the first instance for missing the deduction.	A1
Image: constraint of the sector of the se		As <i>N</i> is on both normals it is therefore the intersection point of them.	Makes a suitable conclusion	A1
$\begin{array}{c} \mathbf{6(d)} \\ \mathbf{6(d)} \\ \mathbf{6(d)} \\ \mathbf{6(d)} \\ \mathbf{6(d)} \\ \mathbf{7(d)} \\$				(5)
Grad $ON = \frac{-2pq(p+q)}{2(p^2 + pq + q^2 + 2)}$ Can be unsimplified.B1Grad $PQ \times$ Grad ON Using product of their gradients = -1M1 $= \frac{2}{p+q} \times \frac{-2pq(p+q)}{2(p^2 + pq + q^2 + 2)} = -1$ -2 A1 $(p+q)^2 - 3pq = -2$ -2 A1(5)Total 16	6(d)	Grad $PQ = \frac{4q - 4p}{2q^2 - 2p^2} \left(= \frac{2}{p+q} \right)$	Use of $\frac{y_2 - y_1}{x_2 - x_1}$ and substituting.	M1A1
Grad $PQ \times \text{Grad } ON$ Using product of their gradients = -1M1 $= \frac{2}{p+q} \times \frac{-2pq(p+q)}{2(p^2+pq+q^2+2)} = -1$ -2 A1 $(p+q)^2 - 3pq = -2$ -2 A1(5)Total 16		Grad $ON = \frac{-2pq(p+q)}{2(p^2 + pq + q^2 + 2)}$	Can be unsimplified.	B1
		Grad $\overline{PQ} \times \text{Grad } ON$ = $\frac{2}{p+q} \times \frac{-2pq(p+q)}{2(p^2+pq+q^2+2)} = -1$	Using product of their gradients $= -1$	M1
(5) Total 16		$(p+q)^2 - 3pq = -2$	-2	A1
Total 16				(5)
				Total 16

FP1_2021_06_MS

Question Number	Scheme	Notes	Marks
7	$\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1)$		
7(a)	$n = 1, LHS = 1^{2} = 1, RHS = \frac{1}{6} \cdot 2 \cdot 3 = 1$	Shows both LHS=1 and RHS=1 Accept LHS = 1 but must see at least $\frac{1}{6}$.2.3 = 1 for RHS.	B1
	Assume true for $n = k$		
	When $n = k + 1$ $\sum_{r=1}^{k+1} r^2 = \frac{k}{6} (k+1)(2k+1) + (k+1)^2$	Adds $(k+1)^2$ to result for $n = k$	M1
	$=\frac{(k+1)}{6}(k(2k+1)+6(k+1))$	Attempt to factorise by $\frac{(k+1)}{6}$	dM1
	$=\frac{(k+1)}{6}(k+2)(2k+3)$ $=\frac{(k+1)}{6}((k+1)+1))((2(k+1)+1)$	Either factorised form. SC allow dM1A0 for fully factorising to a cubic expression and going direct to the fully factorised expression with no intermediate quadratic seen.	A1
	True for $n = 1$. If true for $n = k$ then true for $n = k + 1$ therefore true for all n .	Complete proof with no errors and these 4 statements seen anywhere. Depends on both M's and the A, but may be scored if the B is lost as long as some indication of true for $n = 1$ is given.	Alcso
			(5)
7(b)	$\sum_{r=1}^{n} (r^{2} + 2) = \sum_{r=1}^{n} r^{2} + \sum_{r=1}^{n} 2$ $= \frac{n}{6} (n+1)(2n+1) + \dots$	Split into the addition of 2 sums and applies the result of (a).	M1
	$=\frac{n}{6}(n+1)(2n+1)+2n$	Correct expression.	A1
	$-\frac{n}{(2n^2+3n+13)}$	Factorises out the $\frac{n}{6}$ - must have a	M1;
	6	common factor <i>n</i> to achieve this mark; Simplifies to correct answer.	A1
	(a=2,b=3,c=13)		(4)
7(c)	25		(4)
	$\sum_{r=10}^{\infty} (r^2 + 2) = S_{25} - S_9$ = $\frac{25}{6} \cdot (2 \times 25^2 + 3 \times 25 + 13) - \frac{9}{6} (2 \times 9^2 + 3 \times 9)$	9+13) Attempts $S_{25} - S_9$ or $S_{25} - S_{10}$ with some substitution.	M1
	$=\frac{25}{6} \times 1338 - \frac{9}{6} \times 202 = 5575 - 303 = 5272$	2 For 5272	A1
	Note: Answer only (from calculator) is M	0A0 as question requires use of part (b).	
	• ` ` /		(2)
		· · · · · · · · · · · · · · · · · · ·	Total 11

Question Number	Scheme	Notes	Marks
	$f(n) = 4^{n+2} + 5^{2n+1} \operatorname{div}$	visible by 21	
8	$n = 1, 4^3 + 5^3 = 189 = 9 \times 21$ (Or $n = 0, 4^2 + 5^1 = 21$)	$f(1) = 21 \times 9$ Accept $f(0) = 21$ as an alternative starting point.	B1
	Assume that for $n = k$, $f(k) = (4^{k+2} + 5^{2k+1})$ is divisible by 21 for $k \in \mathbb{Z}^+$.		
	$f(k+1) - f(k) = 4^{k+3} + 5^{2k+3} - (4^{k+2} + 5^{2k+1})$	Applies $f(k+1)$ with at least 1 power correct. May be just as $f(k+1)$, or as part of an expression in $f(k+1)$ and $f(k)$.	M1
	$=4.4^{k+2}+25.5^{2k+1}-4^{k+2}-5^{2k+1}$	For a correct expression in $f(k + 1)$, and possibly $f(k)$, with powers reduced to those of $f(k)$.	A1
	$= 3.4^{k+2} + 24.5^{2k+1}$		
	$= 3f(k) + 21.5^{2k+1} \text{ or } = 24f(k) - 21.4^{k+2}$	For one of these expression or equivalent with obvious factor of 21 in each.	A1
	$f(k+1) = 4f(k) + 21.5^{2k+1}$	Makes $f(k+1)$ the subject or gives clear reasoning of each term other than f(k+1) being divisible by 21. Dependent on at least one of the previous accuracy marks being awarded.	dM1
	{ $f(k+1)$ is divisible by 21 as both $f(k)$ and 21 are both divisible by 21}		
	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$ (or 0), then the result is true for all $n \in \mathbb{Z}^+$).	Correct conclusion seen at the end. Condone true for $n = 1$ stated earlier. Depends on both M's andA's, but may be scored if the B is lost as long as at least f(1) = 189 was reached (so e.g. if the 21×9 was not shown)	A1 cso
			(6)
ALT for first 4 marks	$n = 1, 4^3 + 5^3 = 189 = 9 \times 21$ (Or $n = 0, 4^2 + 5^1 = 21$)	As main scheme.	B1
	$f(k+1) - \alpha f(k) = 4^{k+3} + 5^{2k+3} - \alpha (4^{k+2} + 5^{2k+1})$	Attempts $f(k + 1)$ in any equation (as main scheme).	M1
	$f(k+1) - \alpha f(k) = (4 - \alpha)4^{k+2} + (25 - \alpha)5^{2k+1}$	For a correct expression with any α , with powers reduced to match $f(k)$.	A1
	$f(k+1) - \alpha f(k) = (4 - \alpha)(4^{k+2} + 5^{2k+1}) + 21.5^{2k+1}$ $f(k+1) - \alpha f(k) = (25 - \alpha)(4^{k+2} + 5^{2k+1}) - 21.4^{k+2}$	Any suitable equation with powers sorted appropriately to match $f(k)$	A1
	NB: $\alpha = 0, \alpha = 4, \alpha = 25$ will make relevant terms awarded accordingly.	s disappear, but marks should be	
			Total 6

Question	Scheme								
1.	det $\mathbf{M} = 3x \times (2-x) - (4x+1) \times 7 =$								
	$= -3x^2 - 22x - 7 \text{or} 3x^2 + 22x + 7$								
	$-3x^2 - 22x - 7 = 0 \Longrightarrow (-3x - 1)(x + 7) = 0 \Longrightarrow x = \dots$								
	$-3x^{2} - 22x - 7 > 0 \Longrightarrow "-7" < x < "-\frac{1}{3}"$	M1							
	So range is $-7 < x < -\frac{1}{3}$ or $(x \in) \left(-7, -\frac{1}{3}\right)$	A1							
		(5)							
(5 marks)									
Notes:									
M1: Attempts to expand the determinant of M. Allow with + between the 2 products. A1: Correct simplified quadratic with = or an inequality sign or neither M1: Attempts to solve their three term quadratic, any valid means (usual rules – see front pages). Correct answers seen implies correct method. Can be awarded even if the roots are complex. M1: Chooses the inside region for their roots, accept with strict or loose inequalities. A1: Correct answer. Accept $x > -7 \cap x < -\frac{1}{3}$									

Question	Scheme	Marks
2(a)	$\cdot z_2 $ $\cdot z_1$	M1 A1
		(2)
(b) (i)	$ z_1 = \sqrt{3^2 + 5^2} = \sqrt{34}$	B 1
		(1)
(ii)	$\frac{z_1}{z_2} = \frac{3+5i}{-2+6i} \times \frac{-2-6i}{-2-6i} = \dots$	M1
	$=\frac{-6-18i-10i+30}{40}$	A1
	$=\frac{3}{5}-\frac{7}{10}i$	A1
		(3)
(c)	$\arg \frac{z_1}{z_2} = \arctan \frac{-\frac{7}{10}}{\frac{3}{5}} = \arctan \frac{-7}{6} = \dots \text{ but allow } \arctan \frac{7}{6} \text{ for M1}$	M1
	=-0.86 or 5.42 (awrt)	A1
		(2)
		(8 marks)

(a)

M1: Points in correct quadrants - z_1 in quadrant 1 and z_2 in quadrant 2. Must be clearly labelled either eg z_1 or 3 + 5i or correct numbers on the axes. (Accept with vector arrows.)

A1: Correct diagram, z_1 in first quadrant further away from real axis than imaginary and z_2 in second quadrant, closer to imaginary axis but above z_1 OR correct nos on their axes (imag axis may include i), but not dashes w/o any indication of scale.

Allow M1A0 for points unlabelled but diagram otherwise correct.

(b)(i)

B1: Correct modulus. Must be evaluated to $\sqrt{34}$ Question says "without using your calculator" so decimal answers can be ignored (isw) but exact answer must be seen somewhere.

(ii)

M1: Multiplies numerator and denominator by the conjugate of their denominator. A1: Correct unsimplified (or simplified) numerator, with the i^2 correctly dealt with, and correct denominator.

A1: Correct answer. Allow as shown, $\frac{6}{10} - \frac{7}{10}i$, or 0.6 - 0.7*i*.

(c) M1: For $\arctan\left(\pm \frac{7}{6}\right)$ (not necessarily simplified to this) or $\tan \alpha = \pm \frac{7}{6}$ $\alpha = \dots$ This mark is available if answer is given in degrees. Can use $\arctan\left(\pm \frac{6}{7}\right)$ provided a complete method to reach the correct arg is seen. A1:For awrt -0.86 or awrt 5.42 Must be radians. ALT for (c): M1: Use $\arg z_1 - \arg z_2$ correctly A1: Correct answer

Question	Scheme	Marks
3 (a)	$\left(\frac{9}{2},0\right)$	B1
		(1)
(b)	PS = 9	B1
	$x_{p} = -\frac{9}{2} + 9 = \frac{9}{2} \Longrightarrow OP = \sqrt{\left(\frac{9}{2}\right)^{2} + \left(18 \times \frac{9}{2}\right)} = \dots$	M1
	So perimeter = " $\frac{9}{2}$ "+"9"+" $\frac{9\sqrt{5}}{2}$ "	dM1
	$=\frac{27+9\sqrt{5}}{2}$ oe	A1
		(4)
	(5 marks)
Notes:		
(a)B1: Correct(b)B1: Deduce	coordinates. s $PS = 9$ from the focus directrix property (may be implied by seeing it embedded)	ed in an

B1: Deduces PS = 9 from the focus directrix property (may be implied by seeing it embedded in an expression for the perimeter). May find coordinates of *P* first and then attempt Pythagoras theorem – must be correct. May be seen on the diagram. Allow even if incorrect value used later.

M1: Uses distance from directrix to find *x* coordinate of *P* and goes on to find *OP* by Pythagoras (with a plus sign).

dM1: Sums their **three** side lengths. Extras – including 0 – score M0. Depends on the previous M mark.

A1: Correct answer. Equivalents must be in simplified surd form.

Question	Scheme							
4(a)	4-3i							
		(1)						
(b)	(x-(4+3i))(x-(4-3i)) =							
	$x^2 - 8x + 25$	A1						
		(2)						
(c)	E.g. Product of roots is 225, so product of real roots is $\frac{225}{25} = 9$ Or $x^4 + Ax^3 + Bx^2 + Cx + 225 = (x^2 - 8x + 25)(x^2 + + 9)$							
	Hence (as root is positive) repeated real root is 3	A1						
		(2)						
(d)	$ (x^{2} - 8x + 25)(x^{2} - 6x + 9) $ = $x^{4} - 6x^{3} + 9x^{2} - 8x^{3} + 48x^{2} - 72x + 25x^{2} - 150x + 225$	M1						
	$= x^4 - 14x^3 + 82x^2 - 222x + 225$ Two correct middle term coefficients	A1						
	So $A = -14$, $B = 82$ and $C = -222$ (or accept in the quartic)	A1						
		(3)						
		(8 marks)						

(a)

B1: For 4 – 3i

(b)

M1: Correct strategy to find a quadratic factor. May expand as shown in scheme, or may look for sum of roots and product of roots first and then write down the factor.

A1: Correct quadratic factor. Can be written down – give M1A1 if correct, M0A0 if incorrect. Ignore "= 0" with their quadratic factor.

Alt for (b):

M1: Product of complex roots is 25, so product of real roots is $\frac{225}{25} = 9$, so the (positive) real root is

"3", hence quadratic factor is $(x - "3")^2$

A1:
$$x^2 - 6x + 9$$
 or $(x - 3)^2$

(c)

M1: A complete strategy to deduce the real root or its square. May consider product of roots, as in scheme, or may first attempt to factorise/long division to find the other quadratic factor – award at the point the quadratic factor with real roots is found. May have been seen in (b)

A1: Real root is 3. (No need to see rejection of the negative possibility.)

Not a "show that" so award M1A1 if correct root is written down with no working.

(d)

M1: Attempts to expand the two quadratic factors – one of which must have a repeated root, so

 $(x^2 \pm 9)$ scores M0. (Alternative, may apply –(sum of roots) to find A, pair sum to find B etc –

accept method for at least two constants.)

A1: Two correct values of the three. Accept as embedded in a quartic equation.

A1: All three correct. Accept as embedded in their quartic equation.

If their answers are wrong a correct method would get M1A0A0 but w/o some working score M0

Question	Scheme						
5(a)	Two of: Rotation; about <i>O</i> ; through $60^{\circ}\left(\frac{\pi}{3}\right)$ (anticlockwise)	M1					
	All of: Rotation about <i>O</i> through $60^{\circ}\left(\frac{\pi}{3}\right)$ (anticlockwise)	A1					
		(2)					
(b)	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	B1					
		(1)					
(c)	$\mathbf{R} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$	M1					
	$= \begin{pmatrix} -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \mathbf{QP} \text{ correctly found}$	A1					
		(2)					
(d)	$3\mathbf{R} = \begin{pmatrix} -\frac{3\sqrt{3}}{2} & -\frac{3}{2} \\ -\frac{3}{2} & \frac{3\sqrt{3}}{2} \end{pmatrix}$ or correctly deals with 3 as a multiple.	B1ft					
	Required matrix is						
	$(3\mathbf{R})^{-1} = \frac{1}{\left(-\frac{3\sqrt{3}}{2}\right)\left(\frac{3\sqrt{3}}{2}\right) - \left(-\frac{3}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{3}{2}\right)\left(\frac{3\sqrt{3}}{2} - \frac{3\sqrt{3}}{2}\right) = \dots$	M1					
	Or $(\mathbf{R})^{-1} = \frac{1}{\left(-\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right)} = \dots$						
	$(3\mathbf{R})^{-1} = \frac{1}{-9} \begin{pmatrix} \frac{3\sqrt{3}}{2} & \frac{3}{2} \\ \frac{3}{2} & -\frac{3\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{3}}{6} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{\sqrt{3}}{6} \end{pmatrix}$	A1					
		(3)					
		8 marks)					

(a)

M1: Two aspects of the type, centre of rotation and angle correct. Accept equivalent angles or angle in radians. (E.g. 300° clockwise is fine). Assume anticlockwise unless otherwise stated.

A1: Fully correct description. Accept just 60° for the angle, but 60° clockwise is incorrect (b)

B1: Correct matrix.

(c)

M1: Attempts to multiply Q and P in the correct order.

A1: QP correct

(d)

B1ft: Multiplies all elements of their matrix by 3, or multiplies all elements of their \mathbf{R}^{-1} by $\frac{1}{3}$

M1: Attempts the inverse of their $3\mathbf{R}$ or \mathbf{R} . This must be a complete method – ie must transpose and evaluate the determinant and use it. Alternatively, they may attempt an inverse from first principles. Award this mark if a slip is made in solving their simultaneous equations.

A1: Correct answer. Accept alternative forms

Question	Scheme	Marks
6(a)	(i) $\alpha + \beta = -\frac{5}{A}$	B1
	(ii) $\alpha\beta = -\frac{12}{A}$	B1
		(2)
(b)	$\left(\alpha - \frac{3}{\beta}\right) + \left(\beta - \frac{3}{\alpha}\right) = \left(\alpha + \beta\right) - 3\left(\frac{\alpha + \beta}{\alpha\beta}\right) = -\frac{5}{A} - 3\left(\frac{-5}{A}\right) \times \frac{-A}{12}$	M1
	$-\frac{5}{A} - \frac{15}{12} = \frac{5}{4} \Longrightarrow A = \dots$	dM1
	A = -2	A1
		(3)
(c)	$\left(\alpha - \frac{3}{\beta}\right)\left(\beta - \frac{3}{\alpha}\right) = \alpha\beta - 6 + \frac{9}{\alpha\beta} = -\frac{12}{A} - 6 + \frac{9}{-\frac{12}{A}}$	M1
	$-\frac{12}{"-2"} - 6 - \frac{9"-2"}{12} = \frac{B}{4} \Longrightarrow B = \dots$	dM1
	B = 6	A1
		(3)
	(8 marks)
Notes:		
(a) (i) P1:Corre	pot expression for $a + a$	
(i) B1 :Corr	ect expression for $\alpha\beta$	
(b)		
M1:Attemp in signs.	ts the sum of roots for second equation in terms of A using results from (a). Allo	ow slips
dM1: Equat	tes the sum of roots to $\frac{5}{4}$ and solves for A. Depends on the previous M mark.	
A1: $A = -2$		
(C) M1:Attemp slips in sign	ts the product of roots for second equation in terms of A using results from (a). A s. May be using their value of A or A itself	Allow
dM1: Equat	tes the product of roots to $\frac{B}{4}$ and solves for B using their value of A. Depends of	n first M
mark of (c). A1: $B = 6$	т	

Question	Scheme						
7(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{36}{x^2} \mathrm{oe}$	B1					
	$m_t = -\frac{36}{4^2} \Longrightarrow m_n = \frac{16}{36} = \frac{4}{9}$	M1					
	Normal is $y - 9 = \frac{4}{9}(x - 4)$	M1					
	$\Rightarrow 9y - 81 = 4x - 16 \Rightarrow 4x - 9y + 65 = 0 *$	A1*					
		(4)					
(b)	Normal meets <i>H</i> again when $4x - 9 \times \frac{36}{x} + 65 = 0$ or $4 \times \frac{36}{y} - 9y + 65 = 0$	M1					
	$\Rightarrow 4x^2 + 65x - 324 = 0 \Rightarrow x = \dots \text{ or } 9y^2 - 65y - 144 = 0 \Rightarrow y = \dots$	dM1					
	$\Rightarrow Q = \left(-\frac{81}{4}, -\frac{16}{9}\right)$	A1					
	At $x = -\frac{81}{4}$, $\frac{dy}{dx} = -\frac{36}{\left(-\frac{81}{4}\right)^2} = \dots$ so tangent is $y - \left(-\frac{16}{9}\right) = -\frac{64}{729}\left(x - \left(-\frac{81}{4}\right)\right)$	M1					
	$y = -\frac{64}{729}x - \frac{32}{9}$	A1(5)					
	(9 marks)					

(a)

B1: Correct expression for $\frac{dy}{dx}$, or any equivalent correct expression including it, such as

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$$
 or $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{t^2}$

M1: Attempts negative reciprocal gradient at the point P

M1: Uses their normal (changed from tangent) gradient and P(4,9) to find the equation of the normal. Look for $y-9 = "m_n"(x-4)$ Working must be shown for their constant if y = mx + c is used as this is a "show that" question.

A1*: Correct equation achieved from correct working with intermediate step.

(b)

M1: Substitutes hyperbola equation into the **given** normal to obtain an equation in one variable. Other valid means of obtaining an equation in a single variable are acceptable.

dM1: Gathers terms and solves the 3 term quadratic to find a value $\neq 4$ for x or $\neq 9$ for y. Solution by calculator allowed if correct roots (or values $\neq 4$ for x or $\neq 9$ for y) are shown

A1: Correct coordinates of intersection.

M1: Uses their x value to find the gradient at Q and then uses the intersection point with their gradient to form the equation of the line.

A1: Correct equation.

Question	Scheme						Marks	
8(a)	$\begin{array}{ c c } x \\ f(x) \end{array}$	1 0.5	2 -1.2401	3 -0.2885	4 0.1508	5 0.5840	One correct Both correct	B1 B1
								(2)
(b)	Identify an interval where the sig changes and mention the change of sign f is continuous on [3,4], not on [1,2] hence the root is in [3,4]							
(c)	(c) $f(3.5) = -0.064 < 0$ so root in [3.5,4] f(3.75) = 0.0435 > 0							M1
								M1
	Hence root is in the interval [3.5, 3.75]							A1
(d)	E.g. $\frac{f(-0.5) - f(-1)}{-0.5 - (-1)} = \frac{f(-0.5) - 0}{-0.5 - \beta}$ or $\frac{\beta - (-1)}{0 - f(-1)} = \frac{\beta - (-0.5)}{0 - f(-0.5)}$ etc						M1	
	$\Rightarrow \beta = -0.5 - \frac{0.5 \times f(-0.5)}{f(-0.5) - f(-1)} = \dots \text{ or } \beta = \frac{-0.5f(-1) + f(-0.5)}{(f(-1) - f(-0.5))} = \dots \text{ etc}$							dM1
	$= -0.5 - \frac{0.5 \times 0.5786}{0.5786 (-0.875)} = -0.6990 = -0.699 \text{ (awrt)}$							
								(3)
	(10 mar						l0 marks)	

Accept open or closed intervals throughout the question where relevant and intervals described by inequalities.

(a)

B1: One correct value of the two missing.

B1: Both values correct.

(b)

M1: Identifies at least one of the intervals on which a sign change occurs – must mention sign changing.

A1: Correct interval with reason given. Accept reasons such as f not defined at $\frac{5}{3}$ in [1,2] or $x = \frac{5}{3}$

is an asymptote as reason for dismissing this interval.

(c)

M1: Evaluates f at the midpoint of their chosen interval from (b) and selects interval of length 0.5 in which the root lies. This mark can be awarded if the interval was incorrect (even if no change of sign in that interval)

M1: Evaluates f at the midpoint of their interval of length 0.5, and considers the signs or chooses the "correct" interval of length 0.25. There must have been a change of sign in their initial interval for this mark to be awarded.

A1: Correct interval selected with all values correct to at least 1 s.f. rounded or truncated. No extra intervals included.

(d)

M1: Correct interpolation strategy. Accept any correct statement such as the one shown. Sign errors imply an incorrect formula unless they follow a correct general statement.

dM1: Rearranges to find β and evaluates.

A1: Accept awrt -0.699 following correct working.
Question	Scheme	Marks
9(a)	For $n = 1$, $\sum_{r=1}^{1} r^3 = 1$ and $\frac{1}{4} (1^2) (1+1)^2 = \frac{1}{4} \times 1 \times 4 = 1$	B1
	So true for $n = 1$	
	(Assume the result is true for $n = k$, so $\sum_{r=1}^{k} r^3 = \frac{1}{4}k^2(k+1)^2$)	
	Then $\sum_{r=1}^{k+1} r^3 = \frac{1}{4} k^2 (k+1)^2 + (k+1)^3$	M1
	$=\frac{1}{4}(k+1)^{2}[k^{2}+4(k+1)]=\frac{1}{4}(k+1)^{2}[k^{2}+4k+4]$	M1
	$=\frac{1}{4}(k+1)^{2}(k+2)^{2}$	A1
	$\left[= \frac{1}{4} (k+1)^2 ((k+1)+1)^2 \right]$	
	Hence result is true for $n = k + 1$. As true for $n = 1$ and have shown if true for $n = k$ then it is true for $n = k + 1$, so it is true for all $n \in \mathbb{N}$ by induction.	A1
		(5)
(b)	$\sum_{r=1}^{n} r(r+1)(r-1) = \sum_{r=1}^{n} r^{3} - r$	B1
	$=\frac{1}{4}n^{2}(n+1)^{2}-\frac{1}{2}n(n+1)$	M1
	(Please note the mark above is incorrectly labelled as A1 on e-PEN)	
	$=\frac{1}{4}n(n+1)\left[n^{2}+n-2\right]=\frac{1}{4}n(n+1)(n+)(n+)$	M1
	$=\frac{1}{4}n(n+1)(n-1)(n+2)$	A1
		(4)
(c)	$\sum_{r=n}^{2n} r^2 = \frac{1}{6} (2n) (2n+1) (2(2n)+1) - \frac{1}{6} (n-1)(n) (2(n-1)+1)$	M1 A1
	$3\sum_{n=1}^{n} r(r+1)(r-1) = 17\sum_{n=1}^{2n} r^{2}$	
	$\Rightarrow \frac{3}{4}n(n+1)(n-1)(n+2) = \frac{17}{6}n(2(8n^2+6n+1)-(2n^2-3n+1))$	dM1
	$\Rightarrow 18(n+1)(n-1)(n+2) = 68(14n^2+15n+1) = 68(14n+1)(n+1)$	

Page 73 of 119

$\Rightarrow 18(n-1)(n+2) = 68(14n+1)$ $\Rightarrow 18n^2 - 934n - 104 = 0 \Rightarrow n = \dots$	ddM1
<i>n</i> = 52	A1
	(5)

(14 marks)

Notes:

(a)

B1: Checks the result for n = 1. Should see a clear substitution into both sides, accept minimum of seeing $\frac{1}{4} \times 1 \times 4$, or $\frac{1}{4} \times 1 \times 2^2$, or $\frac{1}{4} \times 1 \times (1+1)^2 = 1$ for right hand side.

M1:(Makes or assumes the inductive assumption, and) adds $(k + 1)^3$ to the result for n = k

M1: Attempts to take at least $(k+1)^2$ as a factor out of the expression. Allow if an expansion to a quartic is followed by the factorised expression.

A1: Reaches the correct expression for n = k + 1 from correct working with sufficient working seen, so expect at least seeing the quadratic before a factorised form. Need not see the "k+1" explicitly for this mark.

A1: Completes the induction by demonstrating the result clearly, with suitable conclusion conveying "true for n = 1", "assumed true for n = k" and "shown true for n = k + 1", and "hence true for all n". All these statements (or equivalents) must be seen in their conclusion (not simply scattered through the work). Depends on all except the B mark, though a check for n = 1 must have been attempted.

(b)

B1: Correct expansion.

M1: Applies the standard formula for $\sum r$ and the result from (a) to their sum.

If the expansion is given as $\sum r^3 - r^2$, allow the use of $\sum r^2$ instead of $\sum r$

M1: Takes out the common factors n and (n+1) and attempts to simplify to required form OR factorises their quartic.

A1: Correct answer. (Ignore *A*, *B* and *C* listed explicitly.) Correct answer can be obtained from a cubic or a quartic. Award M1A1 in either of these cases.

M1:Attempts to apply
$$\sum_{r=n}^{2n} r^2 = \sum_{r=1}^{2n} r^2 - \sum_{r=1}^{n-1} r^2$$
 with the standard result for $\sum r^2$ Accept with *n*

instead of n-1 in second expression.

A1: Correct expression for the RHS seen, no need to be simplified.

dM1:Applies the summations to the equation in the question and cancels/factorises out the factor n. Depends on the first M mark of (c)

ddM1: Simplifies the quadratic factor of the right hand side and cancels/factors out the n+1 and

solves the resulting quadratic. Note M1M1 is implied by sights of the correct roots $-\frac{1}{0}$, 52, 0, -1 of

the quartic. Depends on both previous M marks in (c)

A1: Correct answer. Must reject other roots. The correct answer obtained from a quartic or cubic equation solved by calculator gains all relevant marks.

Question	Scheme	Marks
1.(a)	$\begin{pmatrix} 2 & -1 & 3 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & -3 \\ 2k & 2 \end{pmatrix} = \begin{pmatrix} 2+0+6k & 2k+3+6 \\ -2+0+0 & -2k-9+0 \end{pmatrix}$	M1
	$ = \begin{pmatrix} 2+6k & 2k+9 \\ -2 & -2k-9 \end{pmatrix} $	Alcao
		(2)
(b)	det $\mathbf{AB} = (2+6k)(-2k-9) - (-2)(2k+9)$	M1
	$\det \mathbf{AB} = 0 \Longrightarrow -12k^2 - 54k = 0 \Longrightarrow k = \dots$	dM1
	$k = -\frac{9}{2}$	A1
		(3)
	(!	5 marks)
Notes:		
 (a) M1: Obtains A1cao: Corr (b) M1: Attemp correct "ad - part of the a 	s a 2×2 matrix with at least two entries correct, unsimplified. rect matrix with terms simplified. ots the determinant, be tolerant of minor slips, such as sign slips with the negativ – <i>bc</i> " form is apparent. They may give the $-(-2)()$ as just + 2(). Accept if ttempt at the inverse matrix.	res, if the f seen as
dM1: Expands their determinant to a quadratic , sets equal to zero (may be implied) and achieves a value for <i>k</i> via correct method (allow if a factor <i>k</i> is cancelled, use of formula or calculator (a correct		

value for their quadratic)).

A1: cso for $-\frac{9}{2}$.	Accept as decimal or equivalent fractions, such as	$s -\frac{54}{12}$.	Ignore any reference to
the 0 solution.			

Question	Scheme	Marks
2.	$(7r-5)^2 = 49r^2 - 70r + 25$	B1
	$\sum_{r=1}^{n} (7r-5)^2 = 49 \sum_{r=1}^{n} r^2 - 70 \sum_{r=1}^{n} r + \sum_{r=1}^{n} 25$ $= 49 \times \frac{n}{6} (n+1)(2n+1) - 70 \times \frac{n}{2} (n+1) + 25 \times n$	M1 A1ft
	$=\frac{n}{6}\left(49(2n^2+3n+1)-210(n+1)+150\right)$	M1
	$=\frac{n}{6}(98n^2-63n-11)$	A1
	$=\frac{n(7n+1)(14n-11)}{6}$	A1
		(6)
		(6 marks)

B1: Correct expansion.

M1: Attempts the summations with at least two of the underlined formulae correct.

A1ft: Fully correct application of all three summations. Follow through on their expansion as long as there are 3 terms.

M1: Attempts to factor out at least the factor of *n* from their **three term** expansion – must have a common factor of *n* throughout to be able to score this mark which must be extracted from each term. (If the last term is +25, it is M0.) Allow if there are minor slips but the process must be correct.

Alternatively allow this mark for an attempt to expand $\frac{n}{6}(7n+1)(An+B)$ and compare coefficients

with their expanded equation.

A1: Gathers terms appropriately and achieves the correct quadratic. In the alternative approach allow for A = 14 and B = -11 stated from their comparison.

A1cso: Correct answer from correct work. Any values found from the comparison approach must be substituted back in to achieve the result. Note from a correct unsimplified quadratic to correct answer, A0A1 can be awarded.

Question	Scheme	Marks
	$f(z) = 4z^3 + pz^2 - 24z + 108, -3$ a root.	
3(a)	$f(-3) = 0 \Longrightarrow 4(-3)^3 + p(-3)^2 - 24(-3) + 108 = 0 \Longrightarrow p = \dots$	
	p = -8	A1
		(2)
(b)	$4z^{3} - 8z^{2} - 24z + 108 = (z+3)(4z^{2} + \dots z + 36)$	M1
	$= (z+3)(4z^2 - 20z + 36)$	A1
	$4z^{2} - 20z + 36 = 0 \Longrightarrow z = \frac{20 \pm \sqrt{400 - 4 \times 4 \times 36}}{8} = \dots$	dM1
	Roots are $-3, \frac{5\pm i\sqrt{11}}{2}$	A1
		(4)
(c)	e.g. Product of complex roots is $\frac{36}{4} = 9$, so modulus is $\sqrt{"9"}$ or Modulus is $\sqrt{\left(\frac{5}{2}\right)^2 + \left(\frac{\sqrt{11}}{2}\right)^2}$	M1
	Hence modulus is 3	A1
		(2)
(d)	Complex conjugate pair in correct quadrant for their roots	M1
	All three roots correctly positioned.	A1
		(2)
	(1	0 marks)
Notes:		
Mark the q (a)	uestion as a whole - do not be concerned part labelling.	

M1: A complete method to find the value of p. Use of the factor theorem is most direct, look for setting f(-3) = 0 and solving for p. May attempt to factor out (z+3) and compare coefficients, e.g.

$$f(z) = 4z^3 + pz^2 - 24z + 108 = (z+3)(4z^2 + bz + 36) \Longrightarrow 3b + 36 = -24, 12 + b = p \Longrightarrow b = ..., p = ... \text{ or }$$

may attempt long division and set remainder equal to zero to find p or variations on these.

A1: For p = -8

(b)

Note: Allow marks in (b) for work seen in (a) e.g. via attempts in (a) by long division.

M1: Correct strategy to find a quadratic factor. If factorising, look for correct first and last terms. May use long division, in which case look for the correct first term and attempt to use it - may have been seen in (a).

Question instructs use of algebra so an algebraic method must be seen.

A1: Correct quadratic factor - may have been seen in (a).

dM1: Uses the quadratic formula or completing the square or calculator to find the roots of their quadratic factor (allow for attempts at a quadratic factor via long division which had non-zero remainder). If a calculator is used (no method shown), there must be at least one correct **complex** root for their equation. Factorisation is M0.

A1: Correct roots in simplest form. All three should be included at some point in the solution in (b). (c)

M1: Any correct method to find the modulus of the complex roots. Most likely to see Pythagoras, but some may deduce from product of roots. They must have complex roots to score the marks in (c).

A1: Modulus 3 only. If -3 is also given as a modulus then score A0.

(d)

Note: Allow the marks in (d) if the i's were missing in their roots in (b) but they clearly mean the correct complex roots on their diagram.

M1: Plots the complex roots as a conjugate pair in the correct quadrants for their roots.

A1: Fully correct diagram with one root on the negative real axis, and the other as a complex pair of roughly the same length in quadrants 1 and 4.

Question	Scheme	Marks
4(a)	(i) $f'(x) = \underline{Ax^{-5}} + \underline{Bx^{-2}}^{9}$ oe for at least one power	M1
	$f'(x) = -\frac{-4x^{-5}}{8} + \frac{2 \times -\frac{7}{2}x^{-\frac{9}{2}}}{7} = \frac{1}{2x^5} - \frac{1}{\frac{9}{x^2}} \text{oe}$	A1
	(ii) Since $f'(0.25) = 512 - 512 = 0$ the process cannot be carried out as it would require division by zero.	B1
	(iii) $\alpha = 0.15 - \frac{f(0.15)}{f'(0.15)} = 0.15 - \frac{-27.332}{1484.137} =$	M1
	= 0.168 to 3 d.p.	A1cso
		(5)
(b)	e.g. $\frac{f(0.25) - f(0.15)}{0.25 - 0.15} = \frac{f(0.15) - 0}{0.15 - \alpha}$ or $\frac{\alpha - 0.25}{0 - f(0.25)} = \frac{\alpha - 0.15}{0 - f(0.15)}$ etc	M1
	$\Rightarrow \alpha = 0.15 - \frac{0.1 \times f(0.15)}{f(0.25) - f(0.15)} = \dots \text{ or } \alpha = \frac{0.25 f(0.15) - 0.15 f(0.25)}{(f(0.15) - f(0.25))} = \dots$ etc	M1
	$= 0.15 - \frac{0.1 \times -27.332}{5.571 (-27.332)} = 0.23306 = awrt \ 0.233 \ (3 \text{ d.p.})$	A1
		(3)
		8 marks)

(a)(i)

M1: Attempts to differentiate f(x), obtaining the correct power for at least one term.

A1: Correct differentiation, need not be simplified.

(ii)

B1: Correct reason given, accept e.g. "as f'(0.25) = 0" as a minimum and isw after a correct reason is given. Just stating f'(0.25) = 0 is not sufficient, there must be an indication this is the reason why the process cannot be used but accept any indication (such as "not valid") following this. (iii)

M1: Correct Newton-Raphson process attempted using their derivative or implied by the correct answer from use of a calculator.

A1cso: Correct answer from correct work (derivative must have been correct). Must be 3dp. (b)

M1: Correct interpolation strategy. Accept any correct statement such as the one shown. They may use e.g. x for $\alpha - 0.15$, in which case the the method will be gained once the correct overall strategy is clear.

M1: Proceeds from a recognisable attempt at interpolation to find a value for α . Not dependent, but they must have attempted to set up a suitable equation in α . If no working is shown accept any value for the root following the suitable statement.

A1: Accept awrt 0.233 following correct working.

Question	Scheme	Marks
5(a)	$\alpha + \beta = -\frac{3}{4}$	B1
	$\alpha\beta = \frac{k}{4}$	B1
		(2)
(b)	$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2}$	B1
	$=\frac{(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)}{(\alpha\beta)^2};=\frac{\left(-\frac{3}{4}\right)^3-3\left(\frac{k}{4}\right)\left(-\frac{3}{4}\right)}{\left(\frac{k}{4}\right)^2}=\dots$	M1; M1
	$=\frac{36k-27}{4k^2}=\frac{9}{k}-\frac{27}{4k^2}$	A1
		(4)
(c)	Product of roots is $\frac{\alpha\beta}{\alpha^2\beta^2} = \frac{1}{\alpha\beta} = \frac{4}{k}$	B1ft
	Equation is $x^2 - \left(\frac{36k - 27}{4k^2}\right)x + \frac{4}{k} = 0$	M1
	$4k^2x^2 - (36k - 27)x + 16k = 0$	A1
		(3)
		9 marks)
Notes:		

(a)

B1: Correct expression for $\alpha + \beta$

B1: Correct expression for $\alpha\beta$

(b)

B1: Combines the fractions correctly.

M1: For a correct identity for the sum of cubes.

M1: Substitutes their values for $\alpha + \beta$ and $\alpha\beta$ into their equation for sum of $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$ (not

dependent, so there may be a slip in the identity used for $\alpha^3 + \beta^3$).

A1: Correct expression in terms of k in a simplified form - e.g. either form as shown in scheme. (c)

B1ft: Correct product of roots in terms of k, or follow through $\frac{1}{\text{their }\alpha\beta}$ from part (a).

M1: Applies $x^2 - (\text{their sum of roots})x + \text{their product of roots} (= 0)$. Allow without the "=0" for this mark.

A1: Correct equation, as shown or an integer multiple thereof. Accept equivalents for the *x* term (e.g. $4k^2x^2 + (27-36k)x + 16k = 0$. Must include the "=0".

Question	Scheme	Marks
6(a)	<i>a</i> = 5	B1
		(1)
(b)	$\frac{dy}{dx} = -\frac{20}{x^2}$ or $\frac{dy}{dx} = -\frac{2\sqrt{5}}{t^2} \div 2\sqrt{5} = -\frac{1}{t^2}$ or $x\frac{dy}{dx} + y = 0$ oe	B1
	Gradient of normal is $\frac{-1}{"-1/t^2"} = t^2$	M1
	Normal is $y - \frac{2\sqrt{5}}{t} = t^2 (x - 2t\sqrt{5})$	M1
	$\Rightarrow ty - 2\sqrt{5} = t^3 x - 2t^4 \sqrt{5} \Rightarrow ty - t^3 x - 2\sqrt{5} \left(1 - t^4\right) = 0 *$	A1*
		(4)
(c)	$cy - c^3x - 2\sqrt{5}\left(1 - c^4\right) = 0 \text{ passes through}\left(-\frac{\sqrt{5}}{c}, -4c\sqrt{5}\right)$ $\Rightarrow -4c^2\sqrt{5} + c^2\sqrt{5} - 2\sqrt{5}\left(1 - c^4\right) = 0$	M1
	$\Rightarrow 2c^4 - 3c^2 - 2 = 0 \text{ (oe)}$	A1
	$\Rightarrow c^2 = \frac{3 \pm \sqrt{9 - 4 \times 2 \times -2}}{4} = \dots \left(2, -\frac{1}{2}\right)$	dM1
	$c^2 > 0 \Longrightarrow c^2 = 2 \Longrightarrow c = \pm \sqrt{2}$	A1
		(4)
	(9 marks)
Notes:		
(a) D1 . Comm. (
(b)	value stated.	
B1: Correct expression for $\frac{dy}{dx}$, or any equivalent correct expression including it, such as		
$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$	or $\frac{dy}{dx} = -\frac{1}{t^2}$	

M1: Attempts negative reciprocal gradient at the point *P*. Allow with *a* instead of 5 for this mark, so score for e.g. $m_N = \frac{4at^2}{20}$.

M1: Uses their normal (changed from tangent) gradient and *P* to find the equation of the tangent. Look for $y - \frac{2\sqrt{5}}{t} = "m_n"(x - t\sqrt{5})$. If using y = mx + c they must proceed as far as finding *c*. A1*: Correct equation achieved from correct working with intermediate step. (c)

M1: Substitutes the parameter for A into the normal equation and attempts to substitute the coordinates of B to obtain an equation in one variable. Allow if there are slips during substitution.

A1: Correct quadratic in c^2 need not be simplified.

dM1: Solves their (at least two term) quadratic in c^2 to find a value for at least c^2

A1: Deduces correct values. Both required. Ignore reference to any complex roots.

Alts

(c)
$$cy - c^3x - 2\sqrt{5}(1 - c^4) = 0$$
 intersects *H* again
 $\Rightarrow \frac{20}{x}c - c^3x - 2\sqrt{5}(1 - c^4) = 0$ or $cy - \frac{20}{y}c^3 - 2\sqrt{5}(1 - c^4) = 0$ A1
 $\Rightarrow c^3x^2 + 2\sqrt{5}(1 - c^4)x - 20c = 0$ or $cy^2 - 2\sqrt{5}(1 - c^4)y - 20c^3 = 0$
 $\Rightarrow (c^3x + 2\sqrt{5})(x - 2c\sqrt{5}) = 0$ or $(cy - 2\sqrt{5})(y + 2\sqrt{5}c^3) = 0$
 $(x = 2c\sqrt{5} \text{ is } A \text{ so })$ for $B \ x = -\frac{2\sqrt{5}}{c^3} = -\frac{\sqrt{5}}{c} \Rightarrow c = ...$ M1
 $(cory = \frac{2\sqrt{5}}{c} \text{ is } A \text{ so })$ for $B \ y = -2\sqrt{5}c^3 = -4c\sqrt{5} \Rightarrow c = ...$
 $\Rightarrow c^2 = 2 \Rightarrow c = \pm\sqrt{2}$ A1
(4)

Notes:

(c)

M1: Substitutes parameters for A and equation for H into normal to obtain a quadratic in x.

A1: Correct quadratic in *x* or *y*

M1: Solves the quadratic in x or y, identifies correct solution and equates to the relevant coordinate of B and solves for c

A1: Deduces correct values. Both required.

(c)	$m_{AB} = \frac{\frac{2\sqrt{5}}{c} - \left(-4c\sqrt{5}\right)}{2\sqrt{5}c - \left(-\frac{\sqrt{5}}{c}\right)}$	M1
	$m_{AB} = \frac{2+4c^2}{2c^2+1} = 2$	A1
	From (b), normal at A has gradient $(t^2 =)c^2 \Rightarrow c^2 = 2$	M1
	$\Rightarrow c^2 = 2 \Rightarrow c = \pm \sqrt{2}$	A1
		(4)

(c)

M1: Attempts the gradient of *AB*.

A1: Correct gradient need not be simplified.

M1: Finds/deduces the gradient of the normal at A and sets equal to their gradient of AB.

A1: Deduces correct values. Both required.

Question	Scheme	Marks
7(i)(a)	Reflection or in the line $y = -x$	M1
	Reflection in the line $y = -x$	A1
		(2)
(b)	$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \text{ or } 6 \times \begin{pmatrix} \pm \cos 240^\circ & \pm \sin 240^\circ \\ \pm \sin 240^\circ & \pm \cos 240^\circ \end{pmatrix}$	M1
	$\begin{pmatrix} -3 & 3\sqrt{3} \\ -3\sqrt{3} & -3 \end{pmatrix}$	A1
		(2)
(c)	$\mathbf{R} = \mathbf{Q}\mathbf{P} = \begin{pmatrix} -3 & 3\sqrt{3} \\ -3\sqrt{3} & -3 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \dots$	M1
	$= \begin{pmatrix} -3\sqrt{3} & 3\\ 3 & 3\sqrt{3} \end{pmatrix}$ QP correctly found	A1
		(2)
(ii)	$\begin{pmatrix} -2 & 2\sqrt{3} \\ 2\sqrt{3} & 2 \end{pmatrix} \begin{pmatrix} \lambda \\ 1 \end{pmatrix} = \begin{pmatrix} 4\lambda \\ 4 \end{pmatrix} \Longrightarrow \begin{pmatrix} -2\lambda + 2\sqrt{3} \\ 2\lambda\sqrt{3} + 2 \end{pmatrix} = \begin{pmatrix} 4\lambda \\ 4 \end{pmatrix}$	M1
	$-2\lambda + 2\sqrt{3} = 4\lambda$ or $2\lambda\sqrt{3} + 2 = 4$	A1
	$\Rightarrow 6\lambda = 2\sqrt{3} \Rightarrow \lambda = \dots \text{ or } 2\sqrt{3}\lambda = 2 \Rightarrow \lambda = \dots$	dM1
	$\lambda = \frac{\sqrt{3}}{3}$ or $\frac{1}{\sqrt{3}}$ oe	A1
	Both $-2\lambda + 2\sqrt{3} = 4\lambda$ and $2\lambda\sqrt{3} + 2 = 4$ solved leading to $\lambda = \frac{\sqrt{3}}{3}$ or $\frac{1}{\sqrt{3}}$	A1
		(5)
Notos	(1	1 marks)

(a)

M1: Identifies the transformation as a reflection or identifies the correct line of reflection.

A1: Fully correct description, with the equation of the line of reflection or suitable description (e.g. in the line through angle 135° with the positive *x*-axis). Ignore any references to a centre of reflection.

(b)

M1: Either the correct matrix for the rotation (with trig ratios evaluated) or an attempt at scaling a matrix of form shown by a factor 6 (need not evaluate ratio) – if no trig ratios seen this may be implied by the exact values in the right places. The correct answer implies the M.

A1: Correct matrix.

(c)

M1: Attempts to multiply Q and P in the correct order.

A1: QP correct

(ii)

M1: Attempts the product $\begin{pmatrix} -2 & 2\sqrt{3} \\ 2\sqrt{3} & 2 \end{pmatrix} \begin{pmatrix} \lambda \\ 1 \end{pmatrix}$ and sets equal to $\begin{pmatrix} 4\lambda \\ 4 \end{pmatrix}$. Allow for poor notation as

long as the intention is clear, and it may be implied by one correct equation or follow through equation.

A1: Extracts at least one correct equation (not part of the matrix equation). May be implied by correct value for λ following correct matrix equation.

dM1: Attempts to solve the equation. May be implied by the correct value following a correct matrix equation with no extraction of separate equations.

A1: Correct value for λ from at least one equation and isw if incorrectly simplified (allow if their second equation does not concur).

A1: Correct value for λ coming from both equations, solved explicitly, or checks the value of λ from the first equation works in the second equation.

Alt (ii)	$ \begin{pmatrix} -2 & 2\sqrt{3} \\ 2\sqrt{3} & 2 \end{pmatrix} \begin{pmatrix} \lambda \\ 1 \end{pmatrix} = \begin{pmatrix} 4\lambda \\ 4 \end{pmatrix} \Rightarrow \begin{pmatrix} \lambda \\ 1 \end{pmatrix} = \frac{1}{-4 - 12} \begin{pmatrix} 2 & -2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} 4\lambda \\ 4 \end{pmatrix} $ $ \Rightarrow \begin{pmatrix} \lambda \\ 1 \end{pmatrix} = -\frac{1}{16} \begin{pmatrix} 8\lambda - 8\sqrt{3} \\ -8\lambda\sqrt{3} - 8 \end{pmatrix} $	M1
	$2\lambda = \sqrt{3} - \lambda$ or $2 = \lambda\sqrt{3} + 1$	A1
	$\Rightarrow 3\lambda = \sqrt{3} \Rightarrow \lambda = \dots$ or $\sqrt{3}\lambda = 1 \Rightarrow \lambda = \dots$	dM1
	$\lambda = \frac{\sqrt{3}}{3} \text{ or } \frac{1}{\sqrt{3}}$	A1
	Both $2\lambda = \sqrt{3} - \lambda$ and $2 = \lambda\sqrt{3} + 1$ solved leading to $\lambda = \frac{\sqrt{3}}{3}$ or $\frac{1}{\sqrt{3}}$	A1
		(5)

Notes:

M1: Correct attempt at inverse, attempts the product

$$\begin{pmatrix} -2 & 2\sqrt{3} \\ 2\sqrt{3} & 2 \end{pmatrix}^{-1} \begin{pmatrix} 4\lambda \\ 4 \end{pmatrix} \text{ and sets equal to } \begin{pmatrix} \lambda \\ 1 \end{pmatrix}$$

Allow for poor notation as long as the intention is clear, and it may be implied by one correct equation or follow through equation.

A1: Extracts at least one correct equation (not part of the matrix equation). May be implied by correct value for λ following correct matrix equation.

Page 87 of 119

dM1: Attempts to solve the equation. May be implied by the correct value following a correct matrix equation with no extraction of separate equations.

A1: Correct value for λ from at least one equation (allow if their second equation does not concur).

A1: Correct value for λ coming from both equations, solved explicitly, or checks the value of λ from the first equation works in the second equation.

Question	Scheme	Marks
8(a)	$y^2 = 4ax, y = k \Longrightarrow P = \left(\frac{k^2}{4a}, k\right)$	B1
	Either $PS = \frac{k^2}{4a} + a = \text{ or } PS^2 = \left(\frac{k^2}{4a} - a\right)^2 + k^2 = \Longrightarrow PS =$	M1
	$PS = \frac{k^2 + 4a^2}{4a} *$	A1*
		(3)
(b)	Gradient of l_2 is $\frac{k}{\frac{k^2 + 4a^2}{4a}} = \frac{4ak}{k^2 + 4a^2}$ oe	B1
	$l_2: y = \frac{4ak}{k^2 + 4a^2} (x+a) \Longrightarrow y = \frac{4ak}{k^2 + 4a^2} \times (0+a) = \dots$	M1
	$y _{x=0} = \frac{4a^2k}{k^2 + 4a^2} *$	A1*
		(3)
(c)	Area $OSP = \frac{1}{2} \times a \times k$	B1
	Area $BPA = \frac{1}{2} \times \frac{k^2 + 4a^2}{4a} \times \left(k - \frac{4a^2k}{k^2 + 4a^2}\right) \qquad \left(=\frac{k^3}{8a}\right)$	M1
	$\frac{\text{Area }BPA}{\text{Area }OSP} = \frac{\frac{k^2 + 4a^2}{4a} \times \left(k - \frac{4a^2k}{k^2 + 4a^2}\right)}{ak} = 4k^2$	M1
	$\Rightarrow k^3 + 4a^2k - 4a^2k = 16a^2k^3 \Rightarrow a = \dots$	dM1
	$a = \frac{1}{4}$	A1
		(5)
	(1	1 marks)

(a)

B1: Correct *x* coordinate at *P* found. May be seen on diagram.

M1: For a full method to find an expression for *PS*. Either use of focus-directrix property or may use Pythagoras with their coordinates.

A1*: Reaches the correct expression with a suitable intermediate step and no errors seen. If using Pythagoras the suitable step must be one with brackets expanded before factorising again.

(b)
B1: Correct expression for the gradient of
$$l_2$$
 given or implied by working. Need not be simplified. If
using a similar triangles approach this may be scored for e.g. $\frac{k^2 + 4a^2}{4a} \div k = \frac{a}{y}$ or $k = \left(\frac{k^2 + 4a^2}{4a}\right)m$

M1: Full method to find the *y* intercept, e.g. by forming the equation of the line and substituting x = 0

May use
$$y - k = \frac{4ak}{k^2 + 4a^2} \left(x - \frac{k^2}{4a} \right) \Longrightarrow y = k + \frac{-k^3}{k^2 + 4a^2}$$

A1*: Reaches correct answer with no errors seen.

(c)

NB: If a value is chosen for k (or k = 2a) used, all marks are available, score for the relevant correct expressions/methods with their value.

B1: Correct area of *OSP* stated or implied. Note that if they go direct to ratios, the $\frac{1}{2}$ may not be

seen (as it cancels with that in *BPA*)

M1: Correct method for the area of the triangle *BPA*. Allow sign slips if the method is clear (e.g. L^2

 $\frac{k^2}{4a}$ - "- a" = $\frac{k^2}{4a}$ - a if it is clear BP is meant). Allow if the negative of the area is found.

M1: Applies the ratio correctly to the problem.

dM1: Attempts to solve their equation.

A1: Correct answer. Allow if the negative of the area was found and later made positive as recovery.

Question	Scheme	Marks
9	For $n = 1$, $\sum_{r=1}^{1} \log(2r-1) = \log(2-1) = \log 1$ and $\log\left(\frac{(2 \times 1)!}{2^{1}1!}\right) = \log 1$ So true for $n = 1$	B1
	(Assume the result is true for $n = k$, so $\sum_{r=1}^{k} \log(2r-1) = \log\left(\frac{(2k)!}{2^{k}k!}\right)$ Then) $\sum_{r=1}^{k+1} \log(2r-1) = \log\left(\frac{(2k)!}{2^{k}k!}\right) + \log(2(k+1)-1)$	M1
	$= \log\left(\frac{(2k)!}{2^k k!} \times (2k+1)\right)$	M1
	$= \log\left(\frac{(2k+1)!}{2^{k}k!} \times \frac{2k+2}{2k+2}\right) = \log\left(\frac{(2k+2)!}{2^{k} \times 2(k+1)!}\right)$	M1
	$= \log \left(\frac{(2k+2)!}{2^{k+1}(k+1)!} \right)$	A1
	Hence result is true for $n = k + 1$. As true for $n = 1$ and have shown if true for $n = k$ then it is true for $n = k + 1$, so it is true for all $n \in \mathbb{N}$ by induction.	A1
		(6)
		6 marks)
Notore		

(a)

B1: Checks the result for n = 1. Must see **both** sides (possibly in one line) identified as log1 or 0 but may not see much more than this.

M1: Makes the inductive assumption (may be implied) and applies it to the question by adding the $(k+1)^{\text{th}}$ term to the expression for the sum to *k* terms. Allow if there are minor slips (e.g. a missing factorial) if the intent is clear.

M1: Attempts to combine or split log terms appropriately. Not dependent, so may be scored if the wrong term is added in the previous M as long it is a log term.

M1: Introduces the relevant cancelling factors to achieve the (2k + 2)! term. The introduction of the factors must shown or implied in an intermediate step. Alternatively, may decompose from the k+1 statement to achieve the same intermediate expression.

A1: Achieves correct expression from correct work (or correctly shows equivalence).

A1: Completes the induction by demonstrating the result clearly, with suitable conclusion conveying "true for n = 1", "assumed true for n = k" and "shown true for n = k + 1", and "hence true for all n". Depends on all except the B mark, though a check for n = 1 must have been attempted.

NB Allow the M's and first A if n is used throughout but the steps are correct, but must have used a different variable for the final A.

Alt steps if splitting logs:
$$\sum_{r=1}^{k+1} \log(2r-1) = \log\left(\frac{(2k)!}{2^k k!}\right) + \log(2k+1) \qquad M1$$
$$= \log(2k)! - \log(2^k k!) + \log(2k+1) \qquad M1$$
$$= \log(2k+1)! - \log\left(\frac{2^{k+1}(k+1)!}{2\times(k+1)}\right) = \log\left(\frac{(2k+1)!(2k+2)}{2^k(k+1)!}\right) \qquad M1$$

Question Number	Scheme	Notes	Marks
1	$\sum_{r=1}^{n} r^{2} (r+2) = \sum_{r=1}^{n} r^{3} + 2 \sum_{r=1}^{n} r^{2} \text{ or } \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} 2r^{2}$	Correct split with 2 summations. Could be implied by correct work. Condone missing or incorrect summation limits.	B1
	$=\frac{1}{4}n^{2}(n+1)^{2}+2\times\frac{1}{6}n(n+1)(2n+1)$	Attempts to use both standard results and obtains an expression of the form $pn^2(n+1)^2 + qn(n+1)(2n+1)$ $p, q \neq 0$ Could be implied by immediate expansion	M1
	$= \frac{1}{12}n(n+1)[3n(n+1)+4(2n+1)]$ $= \frac{1}{12}n(n+1)(3n^2+11n+4)$	dM1: Attempts factorisation to obtain $\frac{1}{12}n(n+1)(an^{2}+bn+c)$ $a,b,c \neq 0$. Condone poor algebra. Could follow cubic or quartic. Allow a consistent $a =, b =,$ c = if quadratic never seen simplified Requires previous M mark. A1: Correct expression or a = 3, b = 11, c = 4 Allow e.g., $\frac{1}{12}n(n+1)$ written as $\frac{n}{12}(n+1)$	d M1 A1
	Note: $n(n+1)(3n^2+11n+4) =$	$=3n^4+14n^3+15n^2+4n$	Total 4

Question Number	Scheme	Notes	Marks
2	$2x^4 - 8x^3 + 29x^2 - 12x + 39 = 0, x = 2 + 3i$		
	Condone work in e.g., z throughout		
(a)	2–3i	Correct conjugate	B1
			(1)
(b)	$ (x - (2 - 3i))(x - (2 + 3i)) = \dots \{x^2 - 4x + 13\} $ or sum = 4, product = 13 $ \Rightarrow x^2 \pm 4x \pm 13 \text{ or } x^2 \pm 13x \pm 4 $ or $ x^2 - (2 + 3i + 2 - 3i)x + (2 + 3i)(2 - 3i) $ $ \Rightarrow \dots \{x^2 - 4x + 13\} $	Attempts to multiply the two correct factors to obtain a 3 term quadratic with real coefficients. Could use $(x-2)^2 = (\pm 3i)^2$ or $x^2 - 2ax + a^2 + b^2$ with $a = 2, b = \pm 3$ Or uses the correct sum and product of the roots to obtain an expression of the form shown (must be some minimal working – but if just a quadratic is given the next 2 marks are available) or $x^2 - (\alpha + \beta)x + \alpha\beta$ to obtain a 3 term	M1
		quadratic with real coefficients.	
	$2x^{4} - 8x^{3} + 29x^{2} - 12x + 39 \Longrightarrow (x^{2} - 4x + 13)(2x^{2} + 3)$	Uses their 2 or 3 term quadratic factor with real coefficients to obtain a second 2 or 3 term quadratic of the form $2x^2 +$ by long division, equating coefficients or inspection. Ignore any remainder from long division. Can follow M0	M1
		dM1: Solves their second quadratic	
	$2x^{2} + 3(=0) \Rightarrow$ $x = \pm \frac{\sqrt{6}}{2}i \text{ or } \pm i\sqrt{\frac{3}{2}} \text{ or } \pm \frac{\sqrt{3}}{\sqrt{2}}i \text{ or } \sqrt{1.5}i$ $\sqrt{1.5i} \text{ is M0}$ $1.2247i \text{ is M1 A0}$	factor = 0. If 2 term must get one correct non-zero root. (Usual rules if 3TQ and one correct root if no working) Could be inexact. Requires previous method mark. A1: Both correct exact roots with "i" Requires all previous marks.	d M1 A1
	Solving by calculator, sometimes followed b	by attempts to reconstruct factors. e.g.,	
	$f(x) = (x^2 - 4x + 13)(x^2 + \frac{3}{2})$ is first M1 only	and working for the 3TQ must be seen	(4)
(c)	x x x x	Allow ft on their answers to (b) if they are of the form $\pm ki$ or $\pm k\sqrt{-1}$, $k \neq 0$ regardless of how they were obtained 1st B1: One of the two pairs of roots in correct positions 2nd B1: Both pairs of roots in correct positions and correct relative to each other for their k Allow any suitable indication of the roots such as vectors. Ignore all labelling and scaling but each pair should be reasonably symmetric in <i>x</i> -axis for any marks (for each pair -distance of one to <i>x</i> -axis not less than $\frac{1}{2}$ of the other)	B1 B1 (ft on (b))
			(2) Total 7

Question Number	Scheme	Notes	Marks
3(a)	$y = 9x^{-1} \Rightarrow \frac{dy}{dx} = -9x^{-2} \left\{ = -\frac{9}{(3t)^2} \right\}$ or $xy = 9 \Rightarrow x\frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} \left\{ = -\frac{3}{t} \right\}$ or	Any correct expression for $\frac{dy}{dx}$ but allow e.g., $\frac{dx}{dy} = -9y^{-2}$ Calculus must be seen so there is no	B1
	$x = 3t$, $y = 3t^{-1} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = 3$, $\frac{\mathrm{d}y}{\mathrm{d}t} = -3t^{-2} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3t^{-2}}{3}$	credit for just a statement e.g., $m_T = -\frac{1}{t^2}$	
	e.g., $m_N = \frac{(3t)^2}{9}$ or $\frac{3t}{\frac{3}{t}}$ or $\frac{3}{3t^{-2}} = t^2$	Uses the perpendicular gradient rule to obtain the gradient of the normal in terms of <i>t</i> correct for their m_T Implied by correct use of $-\frac{dx}{dy}$	M1
	$y - \frac{3}{t} = t^2 \left(x - 3t \right) \text{ or } \frac{3}{t} = t^2 \left(3t \right) + c \Longrightarrow c = \dots$ $\left\{ c = \frac{3}{t} - 3t^3 \right\}$	Applies straight line method correctly with their normal (changed) gradient in terms of t. If using $y = mx + c$ coordinates must be correctly placed and $c =$ reached	M1
	$ty - t^3x = 3 - 3t^4$ Intermediate step not required. Allow recovery from a slip.	Correct equation or $f(t)$. Must be seen in (a). Accept equivalents for $f(t)$ e.g., $3(1-t^4), -3(t^4-1)$	A1
	Allow work with $xy = c^2$ but the final mark requires use of $c^2 = 9$ No calculus scores a maximum of 0111 if m_T is stated and 0011 if m_N is stated		(4)
(b)	$xy = 9, \ 2y - 8x = 3 - 3 \times 16$ e.g., $\Rightarrow y = 4x - \frac{45}{2}$ or $x = \frac{45}{8} + \frac{y}{4}$ $\Rightarrow x\left(4x - \frac{45}{2}\right) = 9$ or $y\left(\frac{45}{8} + \frac{y}{4}\right) = 9$	Uses $t = 2$ in their $ty - t^3x = f(t) \neq 0$ and the equation of H to obtain an unsimplified three term quadratic equation in x or y (no variables in denominators). Only allow $f(t) = \frac{9}{t}$ if stated first	M1
	$8x^{2} - 45x - 18 = 0 \text{ or } 2y^{2} + 45y - 72 = 0$ $\{\Rightarrow (8x+3)(x-6) = 0 \text{ or } (2y-3)(y+24) = 0\}$ $\Rightarrow x = \dots \{-\frac{3}{8}, 6\} \text{ or } y = \dots \{\frac{3}{2}, -24\}$	Solves their 3TQ to find a value for x or y – apply usual rules. One root correct if no working. Can award for P provided it has come from quadratic. Requires previous method mark.	d M1
	$\left(-\frac{3}{8}, -24\right)$ or $\left(-0.375, -24\right)$	Correct exact coordinates in simplest form from correct work. Allow $x =, y =$ Ignore $(6, \frac{3}{2})$ but A0 for any other point shown or incorrect x or y value.	Al
	Solving in terms of t: M1: \Rightarrow Unsimplified 3 M1: Solves e.g, $x = \frac{-\frac{3}{t} + 3t^3 \pm \sqrt{\left(\frac{3}{t} - 3t^3\right)^2 + 36t^2}}{2t^2}$	TQ e.g., $t^2x^2 + \left(\frac{3}{t} - 3t^3\right)x - 9 = 0$ M1 $\left\{\Rightarrow \left(-\frac{3}{t^3}, -3t^3\right)\right\}$ A1: $t = 2 \Rightarrow \left(-\frac{3}{8}, -24\right)$	(3)
		Jik is i i i piùvideu i(i) was collect	I ULAI /

Question Number	Scheme	Notes	Marks
4	$\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -3 & k \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix}$	$\mathbf{BC} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$	
(i)	det $\mathbf{A} = -3k - 8(-3) \{= -3k + 24\}$ Could be implied	Attempts det A and obtains $\pm 3k \pm 8(\pm 3)$ or $\pm 3k \pm 24$	M1
	$-3k + 24 = 3 \text{or} -3k + 24 = -3$ $\Rightarrow k = \dots$ May see $(-3k + 24)^2 = +9 \Rightarrow 9k^2 - 144k + 567 = 0 \Rightarrow \dots$	Equates their det A of form $ak+b$ a, $b \neq 0$ to 3 or -3 or equivalent work and solves for k (usual rules if quadratic and must use +9)	M1
	k = 7, k = 1st A1: Either correct value of k from corr 2nd A1: Both correct values of k from corr	ect work. Allow e.g., $\frac{-21}{-3}$ or $\frac{-27}{3}$ rect work. 7 and 9 only. No extra	A1 A1
			(4)
(ii)	det B = $1 \times 3a - (-4) \times 2 = 3a + 8$	Correct unsimplified expression for det B . Could be implied	B1
	$\mathbf{B}^{-1} = \frac{1}{"3a+8"} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix}$	Correct B ⁻¹ with their det B . Adj(B) to be correct but allow elements to have their det B as denominators if incorporated.	M1
	$\mathbf{C} = \mathbf{B}^{-1}\mathbf{B}\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix} \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} = \dots$ Access to this mark is allowed if there is no	Multiplies BC by their B ⁻¹ (changed – and not just by incorporation of their determinant) the correct way round. Expect four correct elements for their matrices if the method is unclear. The	M1
	determinant or if $\mathbf{B}^{-1} = \det \mathbf{B} \times \operatorname{Adj}(\mathbf{B})$ used	incorrect order scores M0 even if the correct result is obtained.	
	$\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 10 & 31 & 11 \\ a-4 & 4a-10 & 2a-2 \end{pmatrix}$ Ignore any reference to inapplicable values of a $(a \neq -\frac{8}{3})$	Correct C or equivalent with like terms collected and single fractions if necessary. e.g., $\begin{pmatrix} 10 & 31 & 11 \\ 3a+8 & 3a+8 & 3a+8 \\ \frac{a-4}{3a+8} & \frac{2(2a-5)}{3a+8} & \frac{2(a-1)}{3a+8} \end{pmatrix}$	A1
Alt	(a, A)(p, a, r) $(2, 5, 1)$ and	$A_{n} = 2$ as $A_{t} = 5$ as $A_{t} = 1$	(4)
Sim. equations	$ \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} p & q & r \\ s & t & u \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 4 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} ap - 2 \\ 2p + 1 \end{pmatrix} $ Multiplies in the correct order to obtain	-4s = 2 uq - 4t = 5 ur - 4u = 1 -3s = 1 2q + 3t = 4 2r + 3u = 2 at least three correct equations	B1
	$(3a+8) p = 10 \qquad (3a+8)q = 31 \qquad (3a+8)n$ $p = \frac{10}{3a+8} \qquad q = \frac{31}{3a+8} \qquad r = \frac{1}{3a}$ $s = \frac{1}{3}\left(1 - \frac{20}{3a+8}\right) \qquad t = \frac{1}{3}\left(4 - \frac{62}{3a+8}\right) \qquad u = \frac{1}{3}\left(2 - \frac{1}{3a}\right)$ $s = \frac{a-4}{3a+8} \qquad t = \frac{4a-10}{3a+8} \qquad u = \frac{2a}{3a}$ $M1: \text{ Solves their equations to find expression}$ $M1: \text{ Finds expressions in terms of }$ $A1: \text{ Correct matrix - like terms column}$	$r = 11$ $\frac{1}{+8}$ $\frac{22}{3a+8} \Rightarrow \begin{pmatrix} \frac{10}{3a+8} & \frac{31}{3a+8} & \frac{11}{3a+8} \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{pmatrix}$ $\frac{-2}{+8}$ ons in terms of <i>a</i> for three elements of <i>a</i> for three elements of <i>a</i> for all six elements lected and single fractions	M1 M1 A1
		l	IULAIO

Question Number	Scheme	Notes	Marks
5	Solutions that rely entirely on solving the equat there may be attempts which include some of appropriate cr	ion are generally unlikely to score but f the work below which can receive	
(a)	$\alpha + \beta = 6 \alpha\beta = 3$	Correct sum and product. Could be implied.Allow $\frac{6}{1}$ and $\frac{3}{1}$	B1
	$(\alpha^{2}+1)(\beta^{2}+1) = \alpha^{2}\beta^{2} + \alpha^{2} + \beta^{2} + 1$	Multiplies $(\alpha^2 + 1)(\beta^2 + 1)$ to obtain 3 or 4 terms with 3 correct. Do not condone $\alpha\beta^2$ for $(\alpha\beta)^2$ unless implied later	M1
	$= \alpha^{2}\beta^{2} + (\alpha + \beta)^{2} - 2\alpha\beta + 1$	Uses $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1
	$ \left\{ = 3^2 + 6^2 - 2 \times 3 + 1 \right\} $ = 40	Correct answer from correct work. Use of e.g., $\alpha + \beta = -6$ is A0	A1
(b)	All $(a^2 + 1)(a^2 + 1) = 1$	1. from (1) from the set in (1)	(4)
	Allow use of their $(\alpha^2 + 1)(\beta^2 + 1)$ which could	be from (a) or a first or reattempt in (b).	
	Numerator must b	Any correct expression with their	
	$\alpha \qquad \beta \qquad \alpha \left(\beta^2+1\right)+\beta \left(\alpha^2+1\right)$	$(\alpha^2 + 1)(\beta^2 + 1)$ for the new sum as	D1
	$\overline{(\alpha^2+1)}^+ \overline{(\beta^2+1)}^= \overline{(\alpha^2+1)(\beta^2+1)}^+$	a single fraction (or two fractions both with the common denominator)	BI
	$=\frac{\alpha\beta(\beta+\alpha)+(\alpha+\beta)}{"(\alpha^{2}+1)(\beta^{2}+1)"}=\frac{"3"\times"6"+"6"}{"40"}=$	Uses a correct expression with their $(\alpha^2 + 1)(\beta^2 + 1)$ for the new sum to obtain a correct numerical expression with their denominator, $\alpha + \beta \& \alpha\beta$	M1
		and achieves a value.	
	$\frac{\alpha\beta}{"(\alpha^2+1)(\beta^2+1)"} = \frac{"3"}{"40"}$	Uses a correct expression with their $(\alpha^2 + 1)(\beta^2 + 1)$ for the new product to obtain a correct value with their denominator and $\alpha\beta$	M1
	new sum = $\frac{24}{40} \left\{ = \frac{3}{5} \right\}$ or new product = $\frac{3}{40}$	One value for new sum or new product correct. Any equivalent fractions. Not ft. Requires appropriate previous M mark.	A1
	$x^2 - \frac{24}{40}x + \frac{3}{40} \{=0\}$	Correctly uses $x^2 - (\text{sum of roots})x + (\text{product of roots})$ or equivalent work with their new sum and product. Condone use of a different variable. Allow appropriate values for <i>p</i> , <i>q</i> and <i>r</i>	M1
	$40x^2 - 24x + 3 = 0$	Any correct equation with integer coefficients and "= 0". Condone use of a different variable. Allow e.g., $p = 40$, q = -24, $r = 3$. Requires all marks.	A1
	Note that although $(\alpha^2 + 1)(\beta^2 + 1)$ may be atte	mpted or reattempted in (b) there is no	(0)
credit for work in (a) that is only seen in (b)			Total 10

Question Number	Scheme	Notes	Marks
6(a)	$ z_1 + z_2 \{ = 3 + 2i + 2 + 3i = 5 + 5i \} = \sqrt{5^2 + 5^2}$	Attempts the sum (allow one slip) and uses Pythagoras correctly	M1
	$\sqrt{50}$ or $5\sqrt{2}$	Either correct exact answer	A1
	Answer only is no marks but working can l	be minimal e.g., $ 5+5i = 5\sqrt{2}$	(2)
(b)	$\frac{z_2 z_3}{z_1} = \frac{(2+3i)(a+bi)}{(3+2i)} = \frac{(2+3i)(a+bi)}{(3+2i)} \times \frac{(3-2i)}{(3-2i)}$ or $\frac{z_2}{z_1} = \frac{2+3i}{3+2i} \times \frac{3-2i}{3-2i}$ or $\frac{z_3}{z_1} = \frac{a+bi}{3+2i} \times \frac{3-2i}{3-2i}$	Substitutes complex numbers and correct multiplier to rationalise the denominator seen or implied. See note below Could use $\times \frac{-3+2i}{-3+2i}$	M1
	(3+2i)(3-2i)=13	13 <u>obtained from</u> $(3+2i)(3-2i)$ Could be implied.	B1
	$\frac{z_2 z_3}{z_1} = \frac{12a - 5b}{13} + \frac{5a + 12b}{13}i$ or $\frac{1}{13}(12a - 5b) + \frac{i}{13}(5a + 12b)$ or $\frac{12}{13}a - \frac{5}{13}b + i\left(\frac{5}{13}a + \frac{12}{13}b\right)$ etc.	d M1: Attempts to simplify the numerator and collects terms to obtain $pa + qb + rai + sbi$ with at least three of p , q , r and s non-zero. Requires previous M mark . A1: Correct answer in any form with a single "j". Correct bracketing	d M1 A1
	Condone $\frac{(12a-5b)+(5a+12b)i}{13}$	where needed. Allow $x =, y =$	
	Note: The following marks are accessible if complex in z_2 as denominator max 1010, z_3 as denominator max 1000, z_3	umbers are substituted in the wrong places: denominator max 1000	(4)
(c)	$\frac{12a-5b}{13} = \frac{4}{13}, \frac{5a+12b}{13} = \frac{58}{13} \implies a = \dots, b = \dots$	Equates their x to $\frac{4}{13}$ and their y to $\frac{58}{13}$ to obtain 2 linear equations in both a and b and solves to obtain values for both a and b.	
	No need to check values but must be some wor " $\frac{12a-5b}{13} = \frac{4}{13}$, $\frac{5a+12b}{13} = \frac{58}{13}$ $12a-5b=4$, 5 Values can immediately follow if equations are p the same magni	king between equations and values. a+12b=58 $a=2$, $b=4$ " is M0A0 produced with coefficients of <i>a</i> or <i>b</i> of tude	M1
	a=2 and $b=4$	Correct values for <i>a</i> and <i>b</i> from correct equations with working.	A1
	SC: Allow access to both marks for the exact $a = -\frac{242}{169}$ and $b =$ There are no marks in (c) if z_3 was used as the den	$\frac{716}{169} \text{ from using } w = \frac{z_1 z_3}{z_2} = \frac{12a + 5b}{13} + \frac{12b - 5a}{13} \text{ i}$ ominator in (b) [leads to a = b = 0]	(2)
(d)	$\arctan\left(\frac{\frac{58}{13}}{\frac{4}{13}}\right) \left\{=1.5019 \text{ or } 86.05^{\circ}\right\} \text{ or}$ $\arctan\left(\frac{\frac{4}{13}}{\frac{58}{13}}\right) \left\{=0.068856 \text{ or } 3.945^{\circ}\right\}$	Either correct arctan or tan ⁻¹ seen or implied by a correct 2sf value (awrt 1.5, 86, 0.069/0.068, 3.9) Could use equivalent trig. Note : tan $\frac{58}{4} = -2.634$ or 0.258	M1
	1.502	1.502 only (not awrt) Mark final answer if 1.502 is followed by e.g., $\frac{\pi}{2}$ -1.502 = 0.06880	A1
			(2) Total 10

Question Number	Scheme	Notes	Marks
7(a)	$f(x) = x^{\frac{3}{2}} + x - 3$	Calculates values for both f(1) and f(2) with one correct Allow	M1
	$f(1) = 1 + 1 - 3 = -1$ $f(2) = \sqrt{8} + 2 - 3 = 1.828$	e.g., $f(2) = 2\sqrt{2} - 1$ or awrt 2	1011
	f is continuous and changes sign , so root or α in [1, 2]. Correct interval [1, 2] if given. Sign change can be implied by "negative, positive", "f(1) < 0, f(2) > 0" or "f(1)f(2) < 0"	Correct values and sight of continuous, sign change and e.g., root/shown/QED/true/proven/√	A1
			(2)
(b)	$f(1.5) = 1.5^{\frac{3}{2}} + 1.5 - 3 \{=0.3371\}$	Obtains a <u>numerical expression or</u> <u>value</u> for f (1.5)	M1
Work may be	$f(1.25) = 1.25^{\frac{3}{2}} + 1.25 - 3 = \dots \{-0.3524\}$	Obtains a <u>value</u> for f(1.25). Requires previous M mark.	dM1
seen in a table	$\Rightarrow \operatorname{root}/\alpha / x/\operatorname{it's in/on/} \in [1.25, 1.5]$ or "in [1.25, 1.5]" or $1.25 \leq \operatorname{root}/\alpha / x \leq 1.5$	Correct values (awrt 0.3 and -0.3 or -0.4) and suitable conclusion. Allow "between $\frac{5}{4}$ and $\frac{3}{2}$ inclusive"	A1
	Do not accept [1.5, 1.25]. Just " $f(1.25) = \dots$ followed b interval bisection. There are no marks if it is	y f(1.5) = so" is 100 if no evidence of a clear attempt at interpolation.	(3)
(c)(i)	$f'(x) = \frac{3}{2}x^{\frac{1}{2}} + 1$	Correct differentiation. Any correct equivalent e.g., $1.5\sqrt{x} + 1$	B1
(ii)	$\alpha \approx 1.375 - \frac{1.375^{\frac{3}{2}} + 1.375 - 3}{\frac{3}{2} \times 1.375^{\frac{1}{2}} + 1"} = \dots$ $\begin{cases} = 1.375 - \frac{-0.01266958256\dots}{2.75890591\dots} = 1.375 + 0.004592248875\dots\\ = 1.379592249\dots\\ = 1.379592249\dots\\ \end{cases}$ $\begin{cases} \text{exact values} : \frac{11}{8} - \frac{11\sqrt{22} - 52}{32} \div \frac{8 + 3\sqrt{22}}{8} \end{cases}$	Correctly applies the Newton- Raphson formula with 1.375 & their f'(x) and obtains a value. Some working must be seen unless approx. root is seen correct to 6 d.p. accuracy (1.379592) or better. Allow "=1.375 $-\frac{f(1.375)}{f'(1.375)}$ " followed by value but formula must be fully substituted if just followed by value unless "r."defined	M1
	awrt 1.380 or "1.38" (Ignore further iterations)	No clearly incorrect work.	Al
	NB Actual root is 1.379589808. A	nswer only is no marks.	(3)
(d)	e.g., $\frac{\alpha - 1.25}{1.5 - \alpha} = \frac{0.3524575141}{0.3371173071}$ or e.g., $\frac{1.5 - \alpha}{0.337} = \frac{1.5 - 1.25}{0.337 + 0.352}$	Forms an equation in e.g., α with their f(1.25) and f(1.5) allowing for sign errors only but must be using differences. Allow use of "f(1.25)" and "f(1.5)"- could recover sign error	M1
	$\alpha = 1.377780737 = 1.378$	dM1: Solves ⇒value Requires previous M mark. A1: awrt 1.378	d M1 A1
	May use a formula. Allow work in, e.g., x for all 1	marks. No working required for 2nd M	(3)
Alt (Equation of line methods)	or $y - (-0.3524[$ or $0.3371]) = \frac{0.3371}{1}$ or $-0.3524[$ or $0.3371] = \frac{0.3371(-0.1)}{1.5-1.2}$ A full method to determine the equation of the	$\frac{(-0.3524)}{.5-1.25}(x-1.25[or 1.5])$ $\frac{.3524)}{.5}(1.25[or 1.5])+c \Rightarrow c =$ e line using their f(1.25) and f(1.5)	M1
	allowing for sign errors only (but allow subseque	ent errors finding c if $y = mx + c$ used)	
	$\{\Rightarrow y = 2.758x - 3.800\}$ $\alpha = 1.377780737 = 1.378$	Requires previous M mark. A1: awrt 1.378	(3)
	May use a formula. Allow work in, e.g., x for all x	marks. No working required for 2nd M	Total 11

Question Number	Scheme	Notes	Marks
8	$y^2 = 8x P(2p^2, 4p)$	$Q\left(\frac{2}{p^2}, \frac{-4}{p}\right)$	
	Each part is marked separately. For example there unless that work is refe	e is no credit in (c) for work seen in (b) rred to in (c)	
(a) Subs. both x and y	LHS or $y^2 \left\{ = \left(\frac{-4}{p}\right)^2 \right\} = \frac{16}{p^2}$ RHS or $8x \left\{ = 8 \times \frac{2}{p^2} \right\} = \frac{16}{p^2}$	Substitutes both coordinates of Q into the parabola equation, obtains e.g., $\frac{16}{p^2}$ twice and makes minimal	
$y^2 = 8x$	So Q lies on the parabola* Allow e.g., $\left(\frac{-4}{p}\right)^2 = 8\left(\frac{2}{p^2}\right) \Rightarrow \frac{16}{p^2} = \frac{16}{p^2} \Rightarrow \text{true}$	conclusion - e.g., shown/QED/true/proven/ \checkmark Sight of just" $y^2 = 8x$ " is insufficient but allow " $y_Q^2 = 8x_Q$ "	B1*
			(1)
Alt Subs. x or y to find y or x	$x = \frac{2}{p^2} \Rightarrow y^2 = 8 \times \frac{2}{p^2} \text{ or } \frac{16}{p^2} \Rightarrow y = \frac{-4}{p} \text{ or } \pm \frac{4}{p}$ or $y = \frac{-4}{p} \Rightarrow \frac{16}{p^2} = 8x \Rightarrow x = \frac{2}{p^2}$ So Q lies on the parabola*	Substitutes one coordinate of Q into the parabola equation to correctly find the other coordinate and makes minimal conclusion - e.g., - e.g., shown/QED/true/proven/ \checkmark Sight of just" $y^2 = 8x$ " is insufficient but allow " $y_0^2 = 8x_0$ "	B1*
		<u> </u>	(1)
8(b)	Focus is $(2, 0)$ or $x = 2, y = 0$ Could be seen on a diagram	Correct focus seen or used. Condone (0, 2) if $x = 2$, $y = 0$ used but award final A0	B1
	gradient of $PQ = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}}$ or $\frac{-\frac{4}{p} - 4p}{\frac{2}{p^2} - 2p^2}$ $\left\{ = \frac{4p^3 + 4p}{2p^4 - 2} = \frac{2p^3 + 2p}{p^4 - 1} = \frac{2p(p^2 + 1)}{p^4 - 1} = \frac{2p}{p^2 - 1} \right\}$	Attempts the gradient of <i>PQ</i> condoning one term of incorrect sign. Allow this mark is they subsequently attempt to convert it to a normal gradient. Note that <i>m</i> may be obtained from $4p = 2mp^2 + c, -\frac{4}{p} = \frac{2m}{p^2} + c \implies m =$	M1
	e.g., $y-4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} (x-2p^2)$ If $y = mx + c$ is used, one of the following express	Any correct equation for PQ . May use Q . Allow this mark to be implied if their equation would have been correct but errors were made simplifying a correct gradient. ions oe for <i>c</i> must be reached following -4 2	A1
	correct gradient seen: $c = 4p - 2p^2$ (gradien	t) or $c = \frac{1}{p} - \frac{2}{p^2} (\text{gradient})$	
	Examples with fully simplified gradient (see over $x = 2 \Rightarrow y - 4p = \frac{2p}{p^2 - 1}(2 - 2p^2) \Rightarrow y = \frac{4p - 4p^3}{p}$ or $y - 4p = \frac{2p}{p^2 - 1}(2 - 2p^2) \Rightarrow y - 4p = -4p^3$ $y = 0 \Rightarrow -4p = \frac{2p}{p^2 - 1}(x - 2p^2) \Rightarrow x = \frac{-4p^3}{p^2}$ $(2,0) \Rightarrow -4p = \frac{2p}{p^2 - 1}(2 - 2p^2) \Rightarrow -4p^3$	The for a fuller list): $\frac{+4p^{3}-4p}{2-1} = 0$ $4p \Rightarrow y = 0$ $50 PQ \text{ passes}$ $4p \Rightarrow y = 0$ $50 PQ \text{ passes}$ $4p \Rightarrow y = 0$ $50 PQ \text{ passes}$ $4p \Rightarrow y = 0$ $4p \Rightarrow y = 0$ $50 PQ \text{ passes}$ $50 PQ \text{ pass}$ $50 PQ $	A1*

Page 100 of 119

	Substitutes $x = 2$ and shows $y = 0$ or vice versa or substitutes both values and shows that the equation is true. Must have minimal conclusion e.g., shown/QED/true/proven/ \checkmark and		
	no incorrect work. Condone no conclusion if the r	nark in (a) was withheld for this reason	
	exception of using (2, 0) with a fully simplified gradient, look for substitution into the		
	line followed by a further step which shows an expression that clearly leads to 0, 2 or		
	e.g., -4p or "1=1" followed by a minimal conclusion		
	Work in " <i>a</i> " can only access the accuracy	marks when $a = 2$ is substituted	(4)
Alt 1	Focus is $(2, 0)$ or $x = 2, y = 0$	Correct focus seen or used.	D1
Grad PF =	Could be seen on a diagram	but award final A0	DI
Grad OF	4p $-4p$		
~	gradient $PF = \frac{1}{2p^2 - 2}$ or $\frac{1}{2-2p^2}$	M1: Obtains expressions for both	
		gradients condoning one term of	M1
	and gradient $QF = \frac{p}{p}$ or $\frac{-p}{p}$	expressions	A1
	$-\frac{2}{2-\frac{2}{2}}$ or $\frac{2}{\frac{2}{2}-2}$	A1: Both correct expressions oe	
	$p^2 p^2$		
	4 n	Shows that the gradients are the same	
	Grad $QF = \frac{4p}{2n^2 - 2} = \text{Grad } PF$	shown/OED/true/proven/v with no	Δ1*
	2p - 2 So PO passes through the focus*	incorrect work. Condone no	211
	507 g passes through the focus	conclusion if penalised in (a).	
	Note: A variation is to show grad <i>PF</i> or gra	d QF = grad PQ - marked as Alt	(4)
	Alt 2 Follows (simila	r triangles)	
8(b)	Examples of minimum amount of algebra require	ed with different expressions for gradi	ent:
	4p + -	+	
	$v-4p = -\frac{1}{2}$	$\frac{p}{2}(x-2p^2)$	
	$2p^2$		
p^2			
	$4p+\frac{4}{p}$	$8p + \frac{8}{n} - 8p^3 - 8p + 8p^3 - \frac{8}{n}$	
x = 2, y =	$x=2 \Rightarrow y-4p=\frac{P}{2}(2-2p^2)$	$\Rightarrow y = \frac{P}{2} = \frac{P}{2}$	0
	$2p^2 - \frac{-}{n^2}$	$2p^2 - \frac{-}{n^2}$	
	P	<u>P</u>	
	$4p + \frac{1}{p}$	$-8p^3 + \frac{6}{p} + 8p^3 + 8p$	
y = 0, x =	$y = 0 \Longrightarrow -4p = \frac{p}{2}(x-2p)$	$x^{2} \Rightarrow x = \frac{p}{4} = 2$	
	$2p^2 - \frac{2}{n^2}$	$4p + \frac{1}{p}$	
	РЛ	<u>Р</u>	
	$4p + \frac{7}{p}$	$8p + \frac{6}{2} - 8p^3 - 8p$	
$(2, 0) \Rightarrow$	$(2,0) \Rightarrow -4p = \frac{p}{2}(2-2p^2) \Rightarrow$	$-4p = \frac{p}{2} \Longrightarrow -4p = -4$	-p
	$2p^2 - \frac{2}{n^2}$	$2p^2 - \frac{2}{n^2}$	
I	<i>P</i>	<i>p</i>	
	$y - 4p = \frac{4p^3 + 2}{2}$	$\frac{p}{2}(x-2p^2)$	
	$2p^4 -$	2 (
	$x = 2 \Longrightarrow y - 4p = \frac{4p^3 + 4p}{2} (2 - 2p^2) \Longrightarrow$	$y = \frac{8p^3 + 8p - 8p^5 - 8p^3 + 8p^5 - 8p^3}{6p^4 - 6p^4}$	$\frac{p}{2} = 0$
x = 2, y =	$2p^{+}-2$	$2p^2-2$	
	or $y - 4p = \frac{4p^3 + 4p}{(2 - 2p^2)}$	$\Rightarrow y = \frac{-4p^3 - 4p + 4p^3 + 4p}{2} = 0$	
	$2p^4 - 2 (-p^4)$	$p^2 + 1$	
n = 0	$y = 0 \implies 4r^3 + 4p(1 - 2r^2)$	$) \rightarrow x - \frac{-8p^5 + 8p + 8p^5 + 8p^3}{2}$	
$y = 0, x \equiv$	$y = 0 \Longrightarrow -4p = \frac{1}{2p^4 - 2}(x - 2p)$	$j \rightarrow x - \frac{4p^3 + 4p}{4p^3 + 4p} = 2$	

Page 101 of 119

Page 102 of 119

Question Number	Scheme	Notes	Marks	
9	$f(n) = 4^n + 6n - 10 \qquad n$	$v \in \mathbb{Z}$ $n \ge 2$		
General guidance: Apply the way that best fits the overall approach. Condone work in e.g., <i>n</i> instead of <i>k</i> . Attempts with no induction e.g., not using $f(k)$ in an equation with $f(k+1)$ score a max of 11000 Using e.g., $f(k+2) - f(k+1)$ requires a clear indication of assuming $f(k+1)$ is true to access the last three Alternative explanations are unlikely to access the last three marks unless there is a fully convincing justified divisibility e.g., $f(k+1) - f(k) - 3 \times 4^k + 6$ followed by "Since 3×4^k is a multiple of both 3 and 4 and				
$3 \times 4^k +$ <u>Allow use of</u> Ig Final A1 : Th	 3×4^k + 6 is divisible by 18" is not a sound argument. Attempts that involve further induction on different expressions must be complete methods to access the last 3 marks. <u>Allow use of -18 but if any different multiples of 18 are involved e.g., 36, the first A1 requires "36 is a multiple of/divisible by (but not "factor of") 18" oe for each case</u> B1: Any correct numerical expression that is not just "18" is sufficient for this mark e.g., 16 + 12 -10, 28 - 10, 4² + 2. Starting with e.g., f(3) scores a max of 01110. Ignore an extra evaluation of f (1) but a comment on f (1)'s divisibility is final A0 since n≥2 			
a conclusion	or a narrative or via both. So if e.g., "Assume true for $n = k + 1$ " in a conclusion	for $n = k$ " is seen in the work follows this is sufficient.	ed by "true	
Wav 1	Condone "for all $n \in \mathbb{Z}$ ", "all $n \in \mathbb{Z}$ $n > 2$ ", "a f(2) = $\Lambda^2 + 6 \times 2$ 10 = 18	all $\mathbb{Z} > (\text{or} \ge) 2^n$ but not $n \in \mathbb{R}$	D1	
f(k+1)-f(k)	$f(k+1) = 4^{k+1} + 6(k+1) = 10$	Obtains $I(2) = 18$ with substitution	BI	
	$\frac{1}{k+1} = 4 + 6(k+1) - 10$	Attempts $1(k+1)$	MI	
	$f(k+1) - f(k) = 4^{k+1} + 6(k+1) - 10 - (4^{k} + 6k - 10)$ $= 4^{k+1} - 4^{k} + 6 = 3 \times 4^{k} + 6$ $= 3(4^{k} + 6k - 10) - 18k + 36$	Attempts $f(k+1)-f(k)$, uses $4^{k+1} = 4 \times 4^k$ & obtains $pf(k)+g(k)$ with $g(k)$ linear (allow constant $\neq 0$)	M1	
	f(k+1) = 4f(k) + 18(2-k) f(k) may be written in full	Correct factorised expression Allow $4f(k)+18 \times 2-18 \times k$ If $f(k+1)$ is not made the subject then e.g., "true for $f(k+1) - f(k)$ " is also required	A1	
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
Way 2	$c(2)$ d^2 $c(2, 10, 10)$		(5)	
f(k+1) =	$t(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1	
	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1	
	$= 4 \times 4^{k} + 6k - 4$ = 4(4 ^k + 6k - 10) - 18k + 36	Uses $4^{k+1} = 4 \times 4^k$ & obtains pf(k) + g(k) with $g(k)$ linear (allow constant $\neq 0$)	M1	
	= 4f(k) + 18(2-k) f(k) may be written in full	Correct factorised expression Allow $4f(k) + 18 \times 2 - 18 \times k$	A1	
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
			(5)	

Question Number	Scheme	Notes	Marks	
9 cont.	$f(n) = 4^n + 6n - 10 \qquad n \in \mathbb{Z} \qquad n \ge 2$			
Way 3 f(k+1) = mf(k)	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1	
$\Gamma(n+1) = m\Gamma(n)$	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1	
	$f(k+1) - mf(k) = 4^{k+1} + 6(k+1) - 10 - m(4^{k} + 6k - 10)$	Attempts $f(k+1) - mf(k)$ and		
	$=(4-m)4^{k}+(6-6m)k-4+10m$	uses a value of <i>m</i> to obtain	M1	
	e.g. $m = -14 \Longrightarrow 18 \times 4^k + 90k - 144$	$c \times 4^k + \dots$ where c is a multiple of		
	e.g. $m = 4 \Longrightarrow -18k + 36$	their 18 of uses $m - 4$		
	e.g., $f(k+1) = -14f(k) + 18(4^{k} + 5k - 8)$	A correct factorised expression Allow $-14f(k)+18 \times 4^{k}+18 \times 5k-18 \times 8$		
	f(k+1) = 4f(k) + 18(2-k)	If $f(k + 1)$ is not made the subject then a g "true for $f(k + 1) = mf(k)$ " is	A1	
	f(k) may be written in full	also required		
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
			(5)	
$\mathbf{Way 4}$	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1	
f(k) = 18M	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1	
	$f(k) = 18M, f(k+1) = 4 \times 4^{k} + 6k - 4$ = 4×18M - 18k + 36	Sets $f(k) = 18M$, uses $4^{k+1} = 4 \times 4^k$		
		& obtains $pf(k) + g(k)$ with $g(k)$	M1	
		linear (allow constant $\neq 0$)		
	f(k+1) = 18(4M+2-k)	A correct factorised expression Allow $18 \times 4M + 18 \times 2 - 18 \times k$	A1	
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
	PAPER TOTAL: '			

Question	Scheme	Marks
1.(a)	det $\mathbf{M} = (2k+1)(k+4) - k(k+7)$	M1
	det $\mathbf{M} = k^2 + 2k + 4 \Longrightarrow b^2 - 4ac = 4 - 16$ or det $\mathbf{M} = k^2 + 2k + 4 = (k+1)^2 + 3$ or $\frac{d(\det \mathbf{M})}{dk} = 2k + 2 = 0 \Longrightarrow k = -1$	M1
	$b^{2} - 4ac < 0 \Rightarrow k^{2} + 2k + 4 > 0$ or $det \mathbf{M} = (k+1)^{2} + 3 \dots 3$ or $k = -1 \text{ at minimum so det } \mathbf{M} \dots 3$ Hence M is non-singular for all real values of k	A1
		(3)
(b)	1 (k+4 -k)	M1
	$\mathbf{M}^{-1} = \frac{1}{k^2 + 2k + 4} \begin{pmatrix} -k - 7 & 2k + 1 \end{pmatrix}$	A1
		(2)
	(Total	5 marks)
Notes		
 (a) M1: Attempts the determinant of M. Must see evidence of the attempt at subtracting but allow e.g. minor sign slips inside the brackets. Must be seen in (a). M1: Begins a correct strategy for attempting to establish that the determinant is non-zero, must follow a valid attempt at the determinant involving all four terms. May find the discriminant, complete the square (usual rules) on the determinant, attempt to solve the quadratic via formula, or attempt a minimisation process. There must be an attempt at a calculation. A1: Full and correct reasoning and conclusion. Must see consideration of the sign or non-zero oe, but accept e.g 3 (condone >3) as being sufficient to show det M cannot be zero for the reason. Showing the roots (-1±i√3) are not real is acceptable The final deduction must refer to non-singular, but no need to mention M and condone detM is non-singular as conclusion. (b) M1: For applying M⁻¹ = 1/det M × adj(M) with their determinant. At least three entries in adj(M) must be correct initially. A1: Correct matrix, and isw after a correct answer. 		

Question	Scheme	Marks	
2.	$f(z) = 2z^3 + pz^2 + qz - 41$		
(a)	(z =)5 + 4i	B1	
		(1)	
(b)	$z = 5 \pm 4i \Longrightarrow (z - (5 + 4i))(z - (5 - 4i)) = \dots$ Or e.g. Sum of roots = 10, Product of roots = 41	M1	
	$z^2 - 10z + 41$	A1	
	$f(z) = (z^2 - 10z + 41)(2z +)$	M1	
	$\Rightarrow z = \frac{1}{2}, (5 \pm 4i)$	A1	
		(4)	
(c)	$f(z) = (z^2 - 10z + 41)(2z - 1) = \dots$	M1	
	p = -21, q = 92	A1	
		(2)	
(d)	$Area = \frac{1}{2} \times 8 \times \left(5 - \frac{1}{2}\right)$	M1	
	= 18	A1ft	
		(2)	
	(Total	9 marks)	
Notes Marl	x (b) and (c) together		
 (a) B1: Correct complex number (b) M1: Correct strategy to find the quadratic factor using the conjugate pair. A1: Correct quadratic factor. M1: Attempts to find the linear factor. Look for 2z + k where k is number (or allow if k is in terms of p as long as a value of p is also found at some stage). May arise from attempts at long division. A1: Correct real root (condone if labelled x). The complex roots do not have to be stated. Must be seen in (b) (or (c) if done together). 			
M1: Multipli (b).	es out to obtain values for p and q . May have been found as part of a long division proc	cess in	
A1: Correct values. May be seen embedded in the cubic. (d)			
M1: For $\frac{1}{2} \times 8 \times \left 5 - \text{their "} \frac{1}{2} \right $ where their real root is non-zero.			
A1ft: Correct area (follow through their non-zero real root).			

Alt 1 (b)	Product of complex roots = 41, Product of all roots = $\frac{\pm 41}{2}$	M1
	Product of complex roots = 41, Product of all roots = $\frac{41}{2}$	A1
	$z = \frac{\text{Product of roots of } f(z)}{\text{Product of complex roots}} = \frac{41}{2} \div 41$	M1
	$\Rightarrow z = \frac{1}{2}, (5 \pm 4i)$	A1
		(4)
(c)	$\frac{p}{2} = -\sum \alpha_i \frac{q}{2} = \sum \alpha_i \alpha_j \Longrightarrow p =, q =$	M1
	p = -21, q = 92	A1
		(2)

Alt 1 (b)

M1: Identifies the product of roots of f(z) up to sign error, and the product of complex roots.

A1: Correct products seen or implied.

M1: Attempts to find the third root of f(z).

A1: Correct real root. The complex roots do not have to be stated. Must be seen in (b) (or (c) if done together) (c)

M1: Applies sum and pair sum properties, or multiplies out to obtain values for *p* and *q*.

A1: Correct values. May be seen embedded in the cubic.

Alt 2 (b)	$f(5 \pm 4i) = -230 \pm 472i + p(9 \pm 40i) + q(5 \pm 4i) - 41 = 0$ $\Rightarrow -271 + 9p + 5q = 0,472 + 40p + 4q = 0$	M1 A1
	$\Rightarrow p = \dots, q = \dots \Rightarrow f(z) = 2z^3 + p''z^2 + q''z - 41 \Rightarrow z = \dots$	M1
	$\Rightarrow z = \frac{1}{2}, (5 \pm 4i)$	A1
		(4)
(c)	$\Rightarrow p =, q =$	M1
	p = -21, q = 92	A1
		(2)

Notes Alt (b)+(c) together

Alt 2 (b)

M1: Attempts factor theorem with one of the complex roots **and** equates real and imaginary terms to produce simultaneous equations.

A1: Correct equations.

M1: Uses their p and q from solving the simultaneous equations in f(z) and solves the cubic (may just see roots).

A1: Correct real root. The complex roots do not have to be stated. Must be seen in (b) (or (c) if done together) (c)

M1: Awarded before previous M. Solves their simultaneous equations to obtain values for p and q.

A1: Correct values. May be seen embedded in the cubic.
Question	Scheme	Marks
3.(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{t^2}$	B1
	$y - \frac{c}{t} = -\frac{1}{t^2} \left(x - ct \right)$	M1
	$\Rightarrow x =, y =$	M1
	$A(2ct,0)$ and $B\left(0,\frac{2c}{t}\right)$	A1
		(4)
(b)	$\frac{1}{2} \times 2ct \times \frac{2c}{t} = 90 \Longrightarrow c = \dots$	M1
	$c^2 = 45 \Longrightarrow c = 3\sqrt{5}$	A1cso
		(2)
(Total 6 marks)		
Notes		
(a) B1: Correct found memo correc M1: Correct $m = \pm$ M1: Uses the <i>A</i> and A1: Both con- just mark	$\frac{dy}{dx}$ in terms of <i>t</i> . May be implied at the point of substitution into the equation if in terms of <i>x</i> and/or <i>y</i> initially. Allow if just stated, no working needed (may har rised). You may see attempts where this is derived but they must get to or imply t derivative in terms of <i>t</i> . thy forms the equation of the tangent. If no working for the gradient is shown acc $\frac{1}{t^2}$ for this mark. If using $y = mx + c$ they must proceed at least as far as finding their "tangent" (which must be a straight line equation) to find the non-zero coord <i>B</i> . Both must be attempted. The attempted is a straight line equation of the tangent is shown as it is a $\left(2ct, \frac{2c}{t}\right)$ is A0. If coordinates are labelled the wrong way award A0 but allow the in (b)	only ve been v the cept c. dinates of clear, but both
 (b) M1: Uses their coordinates and the "90" correctly to form and solve an equation for <i>c</i>. A1cso: Correct value for <i>c</i> (must be simplified surd so 3√5). Must have come from correct coordinates. A0 if the negative root is also given (and not rejected). 		

Question	Scheme	Marks
4.(a)	Stretch – SF 3 parallel to the y-axis	M1
(b)	$\mathbf{B} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	B1
		(1)
(c)	$\mathbf{C} = \mathbf{B}\mathbf{A} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$	M1
	$\mathbf{C} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{3}{2} \\ -\frac{1}{2} & -\frac{3\sqrt{3}}{2} \end{pmatrix}$	A1
		(2)
(d)	det $\mathbf{C} = -\frac{\sqrt{3}}{2} \times -\frac{3\sqrt{3}}{2} - \frac{3}{2} \left(-\frac{1}{2}\right) = 3$ So area of $H \notin$ is $5 \times \det \mathbf{C} =$	M1
	= 15	A1
		(2)
	(Total	7 marks)
Notes		

(a)

M1: Identifies one correct aspect, EITHER stretch (or allow scaling)

OR scale factor 3 **and** correct direction indicated (need not be precise). **A1:** Fully correct description with both aspects correct. Must mention stretch or scaling, but be tolerant with the description of direction and scale factor as long as both are clear. Accept e.g. parallel to the *y*-axis, *y* direction, in *y* axis, or vertically for direction, but not "about *y*" (reflection implied). Accept e.g. scale factor 3, by 3, ×3 or three times for the scale factor. Ignore references to "about origin" or additional references to stretch of factor 1 parallel to the *x*-axis.

Some examples:

- "stretched by 3 in direction of *y* axis".
- "stretch the *y* for scale factor of 3."
 - Both the above score M1A1. Stretch stated, direction and scale factor 3 both indicated.
- "enlargement scale factor 3 for *y*-axis."
- "A enlarge by three times paralleled to *y*-axis."
 Both score M1A0 Indicates direction and scale factor but does not mention stretch or scaling.
- "the *y*-axis will be enlarged by three times, whereas the *x*-axis stay the same." M1A0 Indicates direction and scale factor but does not mention stretch or scaling, the reference to the *x*-axis is ignored as not incorrect.

(b)

B1: Correct matrix. Must be exact (trig terms evaluated) and seen in (b).

(c)

- M1: Attempts to multiply matrices the right way around. Implied by 3 correct entries if no product shown.
- A1: Correct matrix. Must be exact.

(d)

- M1: Attempts determinant of C (or deduces area scale factor is 3) and multiplies by 5. Implied by a correct answer if no incorrect working is seen.
- A1: Cao. Allowed if scored from a C arising from multiplication the wrong way round in (c) or an incorrect **B** that has determinant ±1

Question	Scheme	Marks
5.(a)	$2x^2 - 3x + 7 = 0$	
	$\alpha + \beta = \frac{3}{2}, \alpha \beta = \frac{7}{2}$	B1
		(1)
(b)	$\alpha^2 + \beta^2 = \left(\alpha + \beta\right)^2 - 2\alpha\beta$	M1
	$=\left(\frac{3}{2}\right)^2 - 2\left(\frac{7}{2}\right) = -\frac{19}{4}$	A1
		(2)
(c)	Sum = $\alpha - \frac{1}{\beta^2} + \beta - \frac{1}{\alpha^2} = \alpha + \beta - \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{3}{2} - \frac{-\frac{19}{4}}{\left(\frac{7}{2}\right)^2} = \frac{185}{98}$	M1A1
	$\operatorname{Prod} = \left(\alpha - \frac{1}{\beta^2}\right) \left(\beta - \frac{1}{\alpha^2}\right) = \alpha\beta - \frac{\alpha + \beta}{\alpha\beta} + \frac{1}{\alpha^2\beta^2} = \frac{7}{2} - \frac{3}{7} + \frac{4}{49} = \frac{309}{98}$	M1A1
	$x^2 - \frac{185}{98}x + \frac{309}{98} (=0)$	M1
	$98x^2 - 185x + 309 = 0$	A1
		(6)
	(Tota	l 9 marks)

Notes

(a)

B1: Both values correct.

(b)

M1: Attempts to use a correct identity to find the sum of square of roots.

A1: Correct value. Note do not allow recovery from $\alpha + \beta = -\frac{3}{2}$ for this mark.

(c)

M1: Attempts sum for the new roots using their values from (a) and (b). They must be substituting into a correct identity for this mark. If substitution not seen allow for any value appearing after a suitable combined identity is seen.

A1: Correct value.

M1: Attempts product for the new roots using their values from (a). Must be substituting into an expression of the correct form, but allow if a sign slip occurs when expanding. If substitution not seen allow for any value appearing after a suitable expanded identity is seen.

A1: Correct value.

- M1: Applies x^2 (their sum)x + their prod (= 0). May be implied by suitable values for p, q and r stated if no quadratic seen.
- A1: Allow any integer multiple. Must include the "= 0", and must be an equation, not just values for p, q and r.

Note: Answers from solving the quadratic will gain no credit for (a) and (b) and only score in (c) if the method marks as described are earned.

Question	Scheme	Marks
6.(i)	$f(x) = x - 4 - \cos\left(5\sqrt{x}\right) \qquad x > 0$	
(a)	f(2.5) = -1.44, f(3.5) = 0.497	M1
	Sign change (negative, positive) and $f(x)$ is continuous therefore (a root) α is between $x = 2.5$ and $x = 3.5$	A1
		(2)
(b)	E.g. $\frac{\alpha - 2.5}{ f(2.5) } = \frac{3.5 - \alpha}{f(3.5)} \Longrightarrow \alpha = \text{ or } \frac{\alpha - 2.5}{0 - f(2.5)} = \frac{3.5 - 2.5}{f(3.5) - f(2.5)} \Longrightarrow \alpha =$	M1
	$\alpha = \operatorname{awrt} 3.24$	A1
		(2)
(ii)	$g(x) = \frac{1}{10}x^2 - \frac{1}{2x^2} + x - 11 \qquad x > 0$	
(a)		M1
	$g(x) = \frac{1}{5}x + \frac{1}{x^3} + 1$	A1
		(2)
(b)	$x_1 = 6 - \frac{g(6)}{g'(6)} = 6 - \frac{-1.41388}{2.20462}$	M1
	= 6.641	A1cao
		(2)
	(Total	l 8 marks)

(i)(a)

M1: Attempts both f(2.5) and f(3.5) with at least one correct in either radians or degrees. Note that in degrees f(2.5) = -2.49... and f(3.5) = -1.4867...

A1: Both f(2.5) = awrt - 1 and f(3.5) = awrt 0.5, sign change (accept f(2.5)f(3.5) < 0), continuous and conclusion all given but be forgiving with exact language. Use of degrees will be A0 as there is no change in sign.

(b)

M1: Uses a correct interpolation method to find a value for α . There are other alternative versions but look for a correct full process. E.g. may attempt the equation of the line through the two end points, then substitute y = 0 to find x. Allow if using degrees so long as a correct interpolation statement is clear.

A1: Correct value, accept awrt 3.24.

(ii)(a)

M1: $x^n \rightarrow x^{n-1}$ in at least two of the first 3 terms.

A1: All correct simplified or unsimplified.

(b)

M1: Correct application of Newton-Raphson. If no expression is seen, the method may be implied by a correct answer. (Look for the process rather than labelling if they write f but use g.)

Alcao: Correct value. Must be to 3d.p.. ISW if they try a second application of N-R.

Note: If correct answers for (b) appear after an incorrect derivative then please send to review.

Question	Scheme	Marks
7.(a)	$x = \frac{1}{3}t^2, y = \frac{2}{3}t \Rightarrow \frac{dy}{dx} = \frac{2}{3} \div \frac{2}{3}t = \frac{1}{t} \text{ or } y^2 = \frac{4}{3}x \Rightarrow 2y\frac{dy}{dx} = \frac{4}{3} \Rightarrow \frac{dy}{dx} = \frac{2}{3y} = \frac{1}{t}$ or $y^2 = \frac{4}{3}x \Rightarrow y = \frac{2}{\sqrt{3}}\sqrt{x} \Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{3}\sqrt{x}} = \frac{1}{t}$	B1
	$y - \frac{2}{3}t = -t\left(x - \frac{1}{3}t^2\right)$	M1
	$3tx + 3y = t^3 + 2t^*$	A1*
		(3)
(b)	$t = 9 \Longrightarrow 27x + 3y = 747$	B1
	$y^{2} = \frac{4}{3}x \Longrightarrow x = \frac{3y^{2}}{4} \Longrightarrow 3y + 3 \times 9 \times \frac{3y^{2}}{4} = 729 + 18 \text{ or}$ $y^{2} = \frac{4}{3}x \Longrightarrow \frac{1}{9}(747 - 27x)^{2} = \frac{4}{3}x \Longrightarrow 729x^{2} - 40350x + 558009 = 0$	M1
	$27y^2 + 4y - 996 = 0 \Longrightarrow y = \dots$ or $729x^2 - 40350x + 558009 = 0 \Longrightarrow x = \dots$	M1
	$y = -\frac{166}{27}, \ x = \frac{6889}{243}$	A1
		(4)
(b)	$t = 9 \Longrightarrow 27x + 3y = 747$	B1
ALT	$9x + y = 249 \Longrightarrow 3t^2 + \frac{2}{3}t = 249$	M1
	$9t^2 + 2t - 747 = 0 \Longrightarrow t = \dots \left(-\frac{83}{9}\right)$	M1
	$y = -\frac{166}{27}, \ x = \frac{6889}{243}$	A1
	(Total	7 marks)
Notes		
(a)		

B1: Correct $\frac{dy}{dx}$ or $\frac{dx}{dy}$ in terms of *t* from a calculus method. Must have seen a derivative used.

M1: Correct straight line method for the normal – must be using $\frac{-1}{\text{their } m_T}$ (or other correct

approach). If using y = mx + c they must proceed at least as far as finding c.

A1: cso – must have seen the evidence of use of calculus.

(b) + Alt(b)

B1: Correct equation for the normal at t = 9

M1: Solves normal and equation of C simultaneously to obtain a quadratic equation in x or y or substitutes the parametric form to obtain a quadratic in t.

M1: Solves 3TQ in y to obtain a value (other than 6) or in x to obtain a value (other than 27) or in t to obtain a value (other than 9)

A1: Both co	ordinates correct and no incorrect ones (but ignore (27,6))	
Question	Scheme	Marks
8.(a)	$\sum_{r=1}^{n} r(2r^2 - 3r - 1) = \sum_{r=1}^{n} (2r^3 - 3r^2 - r)$ $= 2 \times \frac{1}{4} n^2 (n+1)^2 - 3 \times \frac{1}{6} n(n+1)(2n+1) - \frac{1}{2} n(n+1)$	M1 A1
	$\frac{1}{2}n^{2}(n+1)^{2} - \frac{1}{2}n(n+1)(2n+1) - \frac{1}{2}n(n+1)$ $= \frac{1}{2}n(n+1)\left[n(n+1) - (2n+1) - 1\right]$	M1
	$= \frac{1}{2}n(n+1)\left[n^2 - n - 2\right] = \frac{1}{2}n(n+1)(n+1)(n-2)$ $= \frac{1}{2}n(n+1)^2(n-2)^*$	A1*
		(4)
(b)	$\sum_{r=n}^{2n} r(2r^2 - 3r - 1) = \sum_{r=1}^{2n} r(2r^2 - 3r - 1) - \sum_{r=1}^{n-1} r(2r^2 - 3r - 1)$ $= \frac{1}{2}(2n)(2n+1)^2(2n-2) - \frac{1}{2}(n-1)(n)^2(n-3)$	M1
	$=\frac{1}{2}n(n-1)\Big[4(2n+1)^{2}-n(n-3)\Big]$	M1
	$=\frac{1}{2}n(n-1)\left[15n^2+19n+4\right]$	A1
	$= \frac{1}{2}n(n-1)(15n+4)(n+1)$	A1
		(4)
	(Tota	l 8 marks)

Notes

(a) Note – attempts at induction score no marks.

M1: Expands the bracket and attempt to use at least one of the standard formulae correctly.

A1: Fully correct expression

M1: Attempts to factorise out at least n(n+1) - both terms must have been common factors in the terms of their expression. If expanded to a quartic, there must be a clear attempt at factorisation in stages, directly to the given answer will be M0A0. (Note if they try to find roots there needs to be evidence that -1 is a repeated root before going direct to the given answer from these.)

A1*: cso Must have achieved a suitable correct intermediate stage with a quadratic in their working. (b)

M1: Applies f(2n) - f(k) where k is n - 1 or n with the formula from (a) or allow from restarts using the standard formulae.

dM1: Attempts to factorise out n(n-1) - which must be factors of their expression, so use of f(2n)

-f(n) will score dM0. Accept for this mark if they expand from a correct expression and achieve the correct answer.

A1: Correct quadratic factor. May be implied if expansion to a quartic achieves the correct answer without intermediate factorisation shown.

A1: Correct	expression	
Question	Scheme	Marks
9.(a)	$\frac{3z-1}{2} = \frac{\lambda+5i}{\lambda-4i} \times \frac{\lambda+4i}{\lambda+4i}$	M1
	$=\frac{\lambda^2+9\lambda i-20}{\lambda^2+16}$	M1
	$\frac{3z-1}{2} = \frac{\lambda^2 + 9\lambda i - 20}{\lambda^2 + 16} \Longrightarrow z = \frac{2\left(\frac{\lambda^2 + 9\lambda i - 20}{\lambda^2 + 16}\right) + 1}{3}$	ddM1
	$=\frac{\lambda^2-8}{\lambda^2+16}+\frac{6\lambda}{\lambda^2+16}\mathbf{i}$	A1
		(4)
(a) Way 2	$\frac{3z-1}{2} = \frac{\lambda+5i}{\lambda-4i} \Longrightarrow 3z = \frac{2\lambda+10i}{\lambda-4i} + 1 = \frac{3\lambda+6i}{\lambda-4i}$ $\Longrightarrow 3z = \frac{3\lambda+6i}{\lambda-4i} \times \frac{\lambda+4i}{\lambda+4i} \text{ or } z = \frac{\lambda+2i}{\lambda-4i} \times \frac{\lambda+4i}{\lambda+4i}$	M1
	$3z = \frac{3\lambda^2 + 18\lambda i - 24}{\lambda^2 + 16} \text{ or } z = \frac{\lambda^2 + 6\lambda i - 8}{\lambda^2 + 16}$	M1
	$3z = \frac{3\lambda^2 + 18\lambda i - 24}{\lambda^2 + 16} \Longrightarrow z = \dots$	ddM1
	$=\frac{\lambda^2-8}{\lambda^2+16}+\frac{6\lambda}{\lambda^2+16}\mathbf{i}$	A1
(a) Way 3	$\frac{3z-1}{2} = \frac{\lambda+5i}{\lambda-4i} \Longrightarrow (3x+3yi-1)(\lambda-4i) = 2\lambda+10i$ $\Longrightarrow 3\lambda x - \lambda + 12y + (4+3\lambda y - 12x)i = 2\lambda+10i$	M1
	$\Rightarrow 3\lambda x + 12y = 3\lambda, \ 3\lambda y - 12x = 6$	M1
	$\Rightarrow x =, y =$	ddM1
	$z = \frac{\lambda^2 - 8}{\lambda^2 + 16} + \frac{6\lambda}{\lambda^2 + 16}i$	A1
(b)	$\arg z = \frac{\pi}{4} \Longrightarrow \operatorname{Re} z = \operatorname{Im} z \ (>0) \Longrightarrow \lambda^2 - 6\lambda - 8 = 0 \Longrightarrow \lambda = \dots \text{ or}$	
	$\arg z = \frac{\pi}{4} \Longrightarrow \frac{6\lambda}{\lambda^2 - 8} = \tan \frac{\pi}{4} = 1 \Longrightarrow \lambda^2 - 6\lambda - 8 = 0 \Longrightarrow \lambda = \dots$	MI
	(Also need $\operatorname{Re}(z)$, $\operatorname{Im}(z) > 0$, so $\lambda > 0$)	A1
	$\lambda = 3 + \sqrt{17}$	

	(2)
(Total	6 marks)
Notes	
(a)	
M1: Multiplies rhs by $\frac{\lambda + 4i}{\lambda + 4i}$	
M1: Applies $i^2 = -1$ in both numerator and denominator and obtains a real number in the denominator.	
ddM1: Rearranges to $z = \dots$	
A1: Correct and in the required form, but accept $\frac{\lambda^2 - 8 + 6\lambda i}{\lambda^2 + 16}$. Need not be fully simplified.	. Accept
e.g $\frac{3\lambda^2 - 24}{3\lambda^2 + 48} + \frac{18\lambda}{3\lambda^2 + 48}i$	
(a) Way 2	
M1: Rearranges to $3z =$ (or $z =$) and multiplies numerator and denominator by the conconjugate of their denominator.	nplex
M1: Applies $i^2 = -1$ in both numerator and denominator and obtains a real number in the denominator	
ddM1: Rearranges to $z =$ if not already done so. If rearranged to z initially M1ddM1 will scored together.	l be
A1: As per main scheme.	
There may be variations on the rearrangement, but the key steps will remain the same.	
M1: Cross multiplies, applies $z = x + iy$, expands and applies $i^2 = -1$ to achieve Cartesian for M1: Equates real and imaginary parts to form two equations with real coefficients. ddM1: Solves the equations simultaneously to find x and y in terms of λ .	m terms.
AI: As per main scheme.	
 (b) M1: Sets the imaginary part of z equal to their real part of z, or divides these and sets equal to forms and solves the resulting quadratic in λ. (Need not be real roots for the M.) Watch for answers to (a) with a negative imaginary component that do not consider the sign, as these should score M0 as they have not set real and imaginary parts equal. 	to 1, and
A1: Correct exact answer only. The negative solution must have been rejected. Allow if bot	th

numerators were correct in (a) if there was a slip in the denominator only (e.g. $\lambda^2 + 4$ or $\lambda + 16$) or if they were only out by a positive scale factor (e.g. lost the 3).

Question	Scheme	Marks
10.(i)	$n = 1 \Longrightarrow 3^{n-1} \begin{pmatrix} 2n+3 & -n \\ 4n & 3-2n \end{pmatrix} = 3^0 \begin{pmatrix} 2(1)+3 & -1 \\ 4(1) & 3-2(1) \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}^1$	B1
	Assume true for $n = k$ so that $\begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}^k = 3^{k-1} \begin{pmatrix} 2k+3 & -k \\ 4k & 3-2k \end{pmatrix}$	
	$\binom{5 \ -1}{4 \ 1}^{k+1} = 3^{k-1} \binom{2k+3 \ -k}{4k \ 3-2k} \binom{5 \ -1}{4 \ 1} \text{ or }$	M1
	$ \begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix} = 3^{k-1} \begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 2k+3 & -k \\ 4k & 3-2k \end{pmatrix} $	
	$=3^{k-1} \begin{pmatrix} 10k+15-4k & -2k-3-k \\ 20k+12-8k & -4k+3-2k \end{pmatrix} \text{ or } 3^{k-1} \begin{pmatrix} 10k+15-4k & -5k-3+2k \\ 8k+12+4k & -4k+3-2k \end{pmatrix}$	A1
	or $3^{k-1} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 12k+12 & -6k+3 \end{pmatrix}$	
	$\begin{bmatrix} =3^{k} \begin{pmatrix} 2k+5 & -k-1 \\ 4k+4 & -2k+1 \end{pmatrix} \end{bmatrix} = 3^{k} \begin{pmatrix} 2(k+1)+3 & -(k+1) \\ 4(k+1) & 3-2(k+1) \end{pmatrix}$	A1
	If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n .	A1cso
		(5)
(ii)	$f(1) = 8^3 + 6 = 518 = 7/4 \times 7$ (so true for $n = 1$)	B1
	Assume true for $n = k$ so that $8^{2k+1} + 6^{2k-1}$ is divisible by 7	
	$f(k+1) = 8^{2k+3} + 6^{2k+1}$	M1
	$= 64 \times (8^{2k+1} + 6^{2k-1}) + \dots \text{or} 36 \times (8^{2k+1} + 6^{2k-1}) + \dots$	dM1
	$= 64 \times \left(8^{2k+1} + 6^{2k-1}\right) - 28 \times 6^{2k-1} \text{or} 36 \times \left(8^{2k+1} + 6^{2k-1}\right) + 28 \times 8^{2k+1}$	A1
	So if the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n .	A1cso
		(5)
(ii) Alt	$f(1) = 8^3 + 6 = 518 = 74 \times 7$ (so true for $n = 1$)	B1
	Assume true for $n = k$ so that $8^{2k+1} + 6^{2k-1}$ is divisible by 7	
	$f(k+1) - Mf(k) = 8^{2k+3} + 6^{2k+1} - M(8^{2k+1} + 6^{2k-1})$	M1
	= $(64 - M)(8^{2k+1} + 6^{2k-1}) + \dots$ or $(36 - M)(8^{2k+1} + 6^{2k-1}) + \dots$	dM1
	$= (64 - M) \left(8^{2k+1} + 6^{2k-1} \right) - 28 \times 6^{2k-1} \text{or} (36 - M) \left(8^{2k+1} + 6^{2k-1} \right) + 28 \times 8^{2k+1}$	A1
	$\Rightarrow f(k+1) - Mf(k) \text{ divisible by } 7 \Rightarrow f(k+1) \text{ divisible by } 7.$	
	So if the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n .	A1cso
	(Total 1	10 marks)

Notes
(i) B1: Shows the result is true for $n = 1$. The LHS may just be stated for the RHS accent as a
minimum either one unsimplified term or the 3^0 seen. (Conclusion not needed here if both sides have been found correctly.)
M1: Attempts $\begin{pmatrix} 5 & -1 \\ 4 & 1 \end{pmatrix}^{k+1}$ either way round using the result for $n = k$.
A1: Correct unsimplified matrix. The coefficients inside may be simplified but the common factor 3 not taken out directly.
A1: Achieves this result with no errors, via $3^{k-1}\begin{pmatrix} 6k+15 & -3k-3\\ 12k+12 & -6k+3 \end{pmatrix}$ or $3^k\begin{pmatrix} 2k+5 & -k-1\\ 4k+4 & -2k+1 \end{pmatrix}$ (oe with
simplified linear terms).
A1cso: Suitable conclusion following fully correct work. Must include in some form the points "true for $n = 1$ ", "true for $n = k$ implies true for $n = k + 1$ " and conclude true for all n in the conclusion. Depends on the preceding MAA marks and at least stating the correct matrix for $n = 1$ in the initial base case check (So B0M1A1A1A1 is possible).
(ii)
B1: Shows the result is true for $n = 1$, Must express as a multiple of 7 or clearly show the factor.
M1: Attempts $f(k + 1)$
dM1: Attempts to express $f(k + 1)$ in terms of $f(k)$. Note they may let $f(k) = 7m$ where <i>m</i> is an integer and use this in the working.
A1: Correct expression for $f(k + 1)$ in terms of $f(k)$ (or <i>m</i>)
A1cso: Suitable conclusion following fully correct work. Must include in some form the points "true for $n = 1$ ", "true for $n = k$ implies true for $n = k + 1$ " and conclude true for all n in the conclusion. Depends on the preceding MdMA marks and finding at least $f(1) = 518$ (So B0M1dM1A1A1 is possible if all that is missing is showing the factor 7 in $f(1)$).
(ii) Alt
B1: Shows the result is true for $n = 1$. Must express as a multiple of 7 or clearly show the factor.
M1: Attempt $f(k+1) - Mf(k)$ for any integer <i>M</i> . If $M = 0$ this is the main scheme. $M = 1$ may be seen frequently, but other value are possible.
dM1: Attempts to express $f(k+1) - Mf(k)$ in terms of $f(k)$ or otherwise show a common factor of 7.
A1: Correct expression for $f(k+1) - Mf(k)$ in terms of $f(k)$ or with clear common factor of 7 shown. Note if $M = 1$ is used, the expression becomes $63 \times 8^{2k+1} + 35 \times 6^{2k-1} = 7(9 \times 8^{2k+1} + 5 \times 6^{2k-1})$ which is fine for $dM1 \wedge 1$
which is fille for $divisibility of f(l + 1)$ and maltag suitable conclusion following fully constants
Must include in some form the points "true for $n = 1$ ", "true for $n = k$ implies true for $n = k + 1$ " and conclude true for all n in the working. Depends on the preceding MdMA marks and finding at least $f(1) = 518$ (So B0M1dM1A1A1 is possible if all that is missing is showing the

factor 7 in f(1)).