Question Number	Scheme	FP1_2025_0 Notes	6_MS Marks
1	$\mathbf{M} = \begin{pmatrix} 1 & a \\ 3 & -5 \end{pmatrix}$	$\mathbf{M}^{-1} = 2\mathbf{M} + 8\mathbf{I}$	
	Condone any brackets (or missing b		
(a)	Allow clear miscopying slips (e.g., $-5-3$)		D.1
(a)	$\left\{\det\mathbf{M}=\right\}-5-3a$	Correct determinant. Allow unsimplified	B1
	$\{\mathbf{M}^{-1} = \} \frac{1}{-5 - 3a} \begin{pmatrix} -5 & -a \\ -3 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} \frac{-5}{-5 - 3a} & \frac{-a}{-5 - 3a} \\ \frac{-3}{-5 - 3a} & \frac{1}{-5 - 3a} \end{pmatrix}$ $\text{May see e.g., } \frac{-1}{5 + 3a} \begin{pmatrix} -5 & -a \\ -3 & 1 \end{pmatrix}, \frac{1}{5 + 3a} \begin{pmatrix} 5 & a \\ 3 & -1 \end{pmatrix}$	M1: For $\frac{1}{\pm 5 \pm 3a} \times$ a changed matrix or a	M1
	$\begin{pmatrix} -5 - 3a & -5 - 3a \end{pmatrix}$	correct Adj(M) seen i.e., $\begin{bmatrix} 3 & a \\ -3 & 1 \end{bmatrix}$	A1
	May see e.g., $\frac{-1}{5+3a} \begin{bmatrix} 3 & a \\ -3 & 1 \end{bmatrix}$, $\frac{1}{5+3a} \begin{bmatrix} 3 & a \\ 3 & -1 \end{bmatrix}$	A1: Any correct inverse	
			(3)
(b)	$\left\{\frac{1}{-5-3a}\begin{pmatrix} -5 & -a \\ -3 & 1 \end{pmatrix} = \right\} 2 \begin{pmatrix} 1 & a \\ 3 & -5 \end{pmatrix} + 8 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & 2a \\ 6 & -10 \end{pmatrix} + \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 10 & 2a \\ 6 & -2 \end{pmatrix}$	
	Substitutes M into the RHS of the equation obtaining one correct element which may be use e.g., $-5 = 2(-5-3a)+8$ but next mark is	insimplified e.g., 2 + 8. Apply BOD if only	M1
	$\mathbf{M}^{-1} - 2\mathbf{M} = +8\mathbf{I}$ so $\frac{-5}{-5 - 3a} - 2 = 8$ implie	(1 1)	
	If $I = 0$ the Note that it is fine to just use 1 element		
	e.g., $\Rightarrow -5 = 10(-5 - 3a)$ or $-5 = -50 - 3a$		
	Obtains a non-zero value for <i>a</i> from a consist If the fraction is not dealt with (going straig	-	
	Equation must come from $\frac{1}{+5+3a}$ a cha	anged matrix = credible attempt at $2\mathbf{M} + 8\mathbf{I}$	
	M0 for equating to a zero element of their	-	M1
		st correctly get $-\frac{3}{2}$ oe. Ignore usual rules if	
	_	on multiplied out it must be consistent with of $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. If $\mathbf{I} = 0$ then M0.	
	May see: $-a = 2a(-5-3a)$, $-3 = 6(-5-3a)$		
	a = 2a(5+3a), 3 = 6(5+3a)		
	A1: $-\frac{3}{2}$ or $-1\frac{1}{2}$ or -1.5 and allow	w equivalent fractions e.g., $-\frac{45}{30}$	
		r checks if they are wrong but unused. But do	A1
	not isw if any extra incorrect unrejected solu	tions are offered e.g., $a = 0$ from $6a^2 + 9a = 0$	(3)
	Some alternatives for (l	o) are shown overleaf	Total 6
-			

1(b)	$\mathbf{M} = \begin{pmatrix} 1 & a \\ 3 & -5 \end{pmatrix} \qquad \mathbf{M}^{-1} = 2\mathbf{M} + 8\mathbf{I}$	o_MS
Alt 1	$\mathbf{M}^{-1} = 2\mathbf{M} + 8\mathbf{I} \Rightarrow \mathbf{I} = 2\mathbf{M}^2 + 8\mathbf{M} \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{6a+10}{0} & 0 \\ 0 & 6a+10 \end{pmatrix} \Rightarrow 6a+10=1 \Rightarrow a = -\frac{3}{2}$	
	M1: Achieves $\underline{pa+q}$ M1: Solves $pa+q=1$ A1: Correct value (no others or incorrect I)	
	$\det \mathbf{M}^{-1} = \det (2\mathbf{M} + 8\mathbf{I}) \Rightarrow \frac{1}{-5 - 3a} = \underline{-20 - 12a} \Rightarrow 36a^2 + 120a + 99 = 12a^2 + 40a + 33 = (2a + 3)(6a + 11) = 0 \Rightarrow a = -\frac{3}{2}$	
Alt 2	M1: Achieves $pa+q$ M1: Solves $\frac{1}{\pm 5\pm 3a} = pa+q$ A1: Correct value and no others	
	Determinants may also be used to form the equation in Alt 1 i.e., $1 = (6a+10)^2$	
Others	Another (unlikely) possibility is to equate the traces of the matrices:	
0 1== 1= 0	$\frac{1}{-5-3a}(-5+1) = 10 + (-2) \Rightarrow -4 = -40 - 24a \Rightarrow a = -\frac{3}{2}$	

Question			06_MS
Number	Scheme	Notes	Marks
2	$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\mathbf{Q} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$	
	Condone any brackets (or missing	brackets) for matrices throughout	
(a)	Rotation	Identifies the transformation as a rotation. Allow any reasonable attempt at this word e.g., "rotate". M0 for a combination of transformations or if any different types of transformation	M1
		are given as alternatives. Note that giving an angle does not imply "rotation".	
	(anti-clockwise) of $\frac{3\pi}{2}$ (270°) or clockwise	wise of $\frac{\pi}{2}$ (90°) about/around/from (etc.) O	
	stated then assume anticlockwise is meant Condone "original" for "origin". Accept	cluding angle & direction (if no direction is a) and any mention of origin or O or $(0, 0)$. in degrees (symbol not required) or exact $-\frac{3\pi}{2} (-270^{\circ}) $ clockwise are acceptable}	A1
	2	2	(2)
(b)		Identifies the transformation as an enlargement. Allow any reasonable attempt at this word e.g., "inlarge", "large".	
	Enlargement	Nothing else so e.g. "stretch" is M0. M0 for a combination of transformations or if any different types of transformation are given as alternatives.	M1
	of scale factor/factor/scale/size 5, centre/from (etc.) <i>O</i>	Correct full description for the enlargement including scale factor and centre. Allow any mention of "5" and any mention of origin, <i>O</i> or (0, 0) Condone "original" for "origin".	A1
(-)	(0 1)	1	(2)
(c)	$\{\mathbf{R} =\} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	Correct matrix	B1
		,	(1)
(d)	$\left\{ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \right\} (-3, -4)$	Correct coordinates for A . Brackets may be missing. May be stated as $x =, y =$ Condone answer given as a vector. Isw if necessary. Score B0 if an incorrect \mathbf{R} has clearly been used in this part. Allow if correct answer comes from multiplying the wrong way round. No ft.	В1
			(1)

Question			06_MS
Number	Scheme	Notes	Marks
2(e)	$\mathbf{P} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\mathbf{Q} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$	
	For either mark there must be no clear e		
	matrix in this part e.g., using their		
	i.e, sight of their $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	even if this is labelled as P .	
	Do not allow confusion between their A	A(-3, -4) and the given point $(4, 3)$ and	
	there are no marks if a matrix or point	-	
	restated in this part. This also applies in miscopied into the		
	Both marks can be scored fr	` '	
	Both marks can be scored in	on minima of no working.	
	$\left(\frac{4}{5},\right)$ or $\left(0.8,\right)$ or $\left(, -\frac{3}{5}\right)$ or $\left(, -\frac{3}{5}\right)$	$(, -0.6)$ or $\left(-\frac{"-4"[y]}{5}, \frac{"-3"[x]}{5}\right)$	
	For one correct coordinate or ft non-zero c	oordinate on their $A(-3, -4)$ but must not	
	use (4, 3) even if that is their		M 1
	Examples of foll	9	
		$\rightarrow \left(-\frac{3}{5}, -\frac{4}{5}\right) \left(4, -3\right) \rightarrow \left(\frac{3}{5}, \frac{4}{5}\right)$	
	$(-3, 4) \rightarrow (-\frac{4}{5}, -\frac{3}{5}) (3, -4)$		
	May be stated as $x = / y =$ and condobut do not condone a correct value	=	
	but do not condone a correct vari	le seen within e.g., a 2 x 2 matrix	
	$\{B:\}\left(\frac{4}{5},-\frac{3}{5}\right)$ or	(0.8 - 0.6) only	
	$(5, 5)^{\text{or}}$	(0.0, 0.0) only	A1
	Both correct coordinates. Not ft. May be sta	ated as $r = v = and$ condone if given	
	without brackets or as a		
	Examples of		
	Do not allow confusion between their		
	Using matrices (Note that the matrices can transform	= =	
	$ \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 5 \\ -5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ -4 \end{pmatrix} \text{ or } \begin{pmatrix} 5 \\ 0 \end{pmatrix} $		
		$\binom{1}{0} \binom{5x}{5y} = \binom{-3}{-4} \Rightarrow 5y = -3, -5x = -4 \Rightarrow \left(\frac{4}{5}, -\frac{3}{5}\right)$	
	Using i $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 5 \\ -5 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -3 \\ -4 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix}$		
	Using the actual		
	$(-3,-4) \Rightarrow \left(-\frac{3}{5},-\frac{4}{5}\right) \Rightarrow \left(\frac{4}{5},-\frac{3}{5}\right)$	or $(-3, -4) \Rightarrow (4, -3) \Rightarrow \left(\frac{4}{5}, -\frac{3}{5}\right)$	
	. / . /		(2)
			Total 8

Question		FP1_2025_0	
Number	Scheme	Notes	Marks
3(i)	There is no credit if only sig	ns instead of values are used	
	$f(x) = x^2 + 5 - 8^{5x}$ $f(0) = 4, \ f(0.5) = -175.769, \ [f(1) = -32762]$	Obtains a value for $f(0.5)$ and at least one of $f(0)$ and $f(1)$ with at least one correct: $f(0) = 4$, $f(0.5) = awrt - 180$, $[f(1) = awrt - 33000]$	M1
	$\{f(0) > 0, f(0.5) < 0 \text{ so root}$	$\sin [0, 0.5]$ \Rightarrow $f(0.25) =$	
	If by error the sign change occurs with f(or f(0.5) and f(0), obtains a value for f(0.25). 0.5) and f(1), allow for attempting f(0.75) using a full list/table of values e.g.,	d M1
	f(0) = 4, $f(0.25) = awrt - 8.4$ $f(0.5) = awrt - 8.4$	5.769, $f(0.75) = -2429.93$, $f(1) = -32762180$, $f(0.75) = awrt - 2400$, $f(1) = awrt - 33000calculated in any order.$	
		rk required.	
	f(0.25) = -8.39184.	$ \Rightarrow (\alpha \in) [0, 0.25]$	
	bisections e.g., f(0.125), f(0.375), f(0.625), [0, 0.25]. Accept e.g., (0, 0.25). Condone e	d correct to 2 sf (ignore values from further $f(0.875)$) and concludes required interval is .g., $0 \le x \le 0.25$, $0 < \beta'' < 0.25$ but do not	A1
		val so e.g., "It's between 0 & 0.25" is A0. Interval has been seen. Allow 2 sf truncated ues.	
			(3)

Question Number	Scheme	FP1_2025_0 Notes	Marks Marks
3(ii)(a)	$g(x) = 3^{\sin x} - 3\cos x$ g(4) = 2.396, g(5) = -0.502	Attempts both g(4) and g(5) with at least one correct (using radians): g(4) = awrt 2.4 (or 2.3 truncated), $g(5) = awrt - 0.5$	M1
	Sign change oe and g (x) is continuous therefore a root oe e.g., β is between $x = 4$ and $x = 5$	Both $g(4) = awrt 2.4$ (or 2.3 truncated) and $g(5) = awrt -0.5$, sign change (accept equivalents e.g., $g(4) > 0$ & $g(5) < 0$ or $g(4)g(5) < 0$ or "positive, negative"), continuous and conclusion all given. Be generous with attempt at "continuous" and condone e.g., " x is continuous". Minimum in bold. Condone a wrong interval following e.g., "There is a solution in" May use f for g.	A1
(ii)(b)		Uses a correct interpolation	(2)
	$\frac{\beta - 4}{"2.396"} = \frac{5 - \beta}{-"-0.502"} \Rightarrow \beta =$ $\frac{5 - \beta}{\beta - 4} = \frac{-"-0.502"}{"2.396"} \Rightarrow \beta =$ $\frac{\beta - 4}{5 - 4} = \frac{"2.396"}{"2.396"-"-0.502"} \Rightarrow \beta =$ $\frac{4("-0.502") - 5("2.396")}{"-0.502" - "2.396"} =$ or $m = \frac{"-0.502"-"2.396"}{5 - 4} \{ = -2.8986 \}$ $\Rightarrow \text{e.g., } y - "2.396" = m(x - 4), y = 0$ $\Rightarrow x \text{ or } \beta =$ If only unsubstituted $\frac{ag(b) - bg(a)}{g(b) - g(a)} \text{ oe}$ is seen followed by value it must round to $4.83 \text{ unless } a, b, g(a) \& g(b) \text{ are}$ identified. May use f for g.	equation/expression for their values (allow for any value provided $g(4)$ positive, $g(5)$ negative and condone clear miscopying) and finds a value for β or x etc. Accept any correct statement for their values followed by any attempt to solve. If not fully substituted, values for $g(4)$ & $g(5)$ may be seen separately here or in part (a). May use f for g . Alternatively finds the gradient and then the line joining the endpoints and sets $y=0$ to get β . Straight line equation must be correct for their values but allow a correct unsimplified gradient seen which is miscalculated later and allow errors finding c from a consistent equation with a correctly substituted point. Ignore how the value is labelled (may be unlabelled or x or α used). If their variable denotes e.g., the distance between $(4,0)$ and $(\beta,0)$ then 4 must be added later. Implied by awrt 4.83 provided no evidence of incorrect equation but must not clearly be using the actual root of 4.8245 from solving by calculator. Note that failure to change the sign of $g(5)$ leads to 5.265	M1
	= 4.827 (4 s.f.)	awrt 4.827 Accept answer only. Ignore further interpolations.	A1
			(2)
			Total 7

Question		FP1_2025_0	6_MS
Number	Scheme	Notes	Marks
4(a)	For the first two marks if any ambiguous fractions within fractions are seen e.g., $\frac{-9}{t^2}$		
	then marks must be confirmed by appropriate later processing		
	then marks must be confirmed by appropriate later processing. $xy = 81, P\left(9t, \frac{9}{t}\right) \Rightarrow \frac{dy}{dx} = -\frac{81}{x^2} \text{ or } \frac{dy}{dx} = \frac{\frac{-9}{t^2}}{9} \text{ or } x\frac{dy}{dx} + y = 0 \left\{ \Rightarrow \frac{dy}{dx} = -\frac{y}{x} \right\}$		
	\		
	Any correct equation involving $\frac{dy}{dx}$ (or $\frac{dx}{dy}$). Accept just $\frac{dy}{dx}$ or $m_T = -\frac{1}{t^2}$.	B1
	May see e.g. $x = \frac{81}{y} \Rightarrow$	$\frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{81}{y^2} \text{ or } -\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{81}{y^2}$	
	e.g., $-\frac{81}{x^2} \to \frac{x^2}{81}$, $-\frac{81}{(9t)^2} \to \frac{(9t)^2}{81}$, $\frac{-\frac{9}{t^2}}{9}$	$\rightarrow \frac{9}{\frac{9}{t^2}}, -\frac{y}{x} \rightarrow \frac{x}{y}, -\frac{1}{t^2} \rightarrow -\frac{1}{-\frac{1}{t^2}} \{ \Rightarrow t^2 \}$	
	Applies correct perpendicular gradient rule	to obtain a gradient for the normal. Allow in	
	terms of t , x , y , or x and y . $\frac{dy}{dx}$ may be in	accorrect - just look for clear use of $-\frac{1}{m_T}$.	M1
	Could just chang	ge the sign of $\frac{dx}{dy}$.	
	If starts with just m	$_N = t^2$ then 0110 max	
	$y - \frac{9}{t} = t^2 (x - 9t)$ or $\frac{9}{t} = t^2 \times 9t + c \Rightarrow c = \dots \left\{ \frac{9}{t} - 9t^3 \right\}$	Correct straight line method with any changed gradient in terms of t. "Changed" gradient may just be the negative or reciprocal instead of negative reciprocal. Condone (for all marks) late substitution if gradient not initially in terms of t (but no "x"s or "y"s can be combined before this	M1
	$\Rightarrow ty - 9 = t^3x - 9t^4 \text{ or } y = t^2x + \frac{9}{t} - 9t^3$ $\Rightarrow ty = t^3x + 9(1 - t^4) *$	substitution) Correct equation reached with an intermediate step and no errors seen. Allow recovery of poor bracketing provided it is before the final answer. Allow e.g., $yt = 9(1-t^4) + xt^3$ (yt must be on its own on one side, +9 must have been factorised out)	A1*
(b)		Sets $x = 0$ in given equation of normal and	(4)
	${x=0 \Rightarrow} ty = 9(1-t^4) \Rightarrow y =$	obtains an expression in t for y (which may be incorrect)	M1
	$A\left(0, \frac{9}{t} \times (1 - t^4)\right) \text{ or oe e.g.,}$ $\left(0, \frac{9}{t} - 9t^3\right), \left(0, \frac{9 - 9t^4}{t}\right), \left(0, 9\left(\frac{1}{t} - t^3\right)\right)$	Correct answer - coordinates or $x = 0$, $y = \dots$ stated separately. Brackets may be missing. The $x = 0$ must be seen at some point in	A1
	$\left[\begin{array}{c} (0, \frac{9i}{t}), (0, \frac{i}{t}), (0, \frac{9(\frac{1}{t})}{t}) \end{array} \right]$	this part. Isw once a correct y is seen.	
			(2)

Question		FP1_2025_0	
Number	Scheme	Notes	Marks
4(c)	$A: \left(0, \frac{9}{\frac{1}{3}} \left(1 - \frac{1}{3^4}\right)\right) \text{ or } \left(0, \frac{80}{3}\right)$ $\Rightarrow \left\{\text{Area } OPA = \right\}$ $\frac{1}{2} \times 9 \times \frac{1}{3} \times \frac{9}{\frac{1}{3}} \left(1 - \frac{1}{3^4}\right) \text{" or } \frac{1}{2} \times 9 \times \frac{1}{3} \times \frac{80}{3} \text{"}$ $\text{or } \frac{1}{2} \times 3 \times \frac{80}{3} \text{"}$ May see alternatives e.g., $27 \times 3 - \frac{1}{2} \times \left(27 - \frac{80}{3}\right) - \frac{1}{2} \times 3 \times 27$ $= 40$	Uses $t = \frac{1}{3}$ to obtain a positive value/expression for the y coordinate of A using their result from (b) provided it is a function of t and obtains a consistent exact numerical expression or value for the area of OPA . If there is no work calculating y_A then the value must be correct and exact. Note that subsequent work could recover an exact expression. The coordinate/coordinates of P that are used must be correct. Do not allow if any length is negative. May use "shoelace" algorithm - award once multiplications are set up e.g., $\frac{1}{2} \begin{vmatrix} 3 \times \frac{80}{3} - 0 \end{vmatrix}$. If modulus is missing and expression within is negative, it must be corrected to positive. M0 if the x -axis intercept (-240) of the normal is used. Allow if correct method for area in terms of t followed by substitution to obtain a numerical expression or value e.g., $\left[\frac{1}{2} \times 9t \times \frac{9}{t} (1-t^4)^n\right]_{t=\frac{1}{3}} \Rightarrow \dots$ 40 only. No equivalents. Allow if e.g., the y -coordinate of P is	M1
	To all an all annual and for a final and a	incorrect but not used	
		the triangle are used work must be exact (or be recovered) to score any marks	
			(2)
			Total 8

Question	Scheme	FP1_2025_0 Notes	6_MS Marks
Number			
5	$z_1 = r \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right), \qquad z_1 z_2 = 15$	$ z_2 = 5$ $\left\{ z_1 = -\frac{3\sqrt{3}}{2} - \frac{3}{2}i = 3e^{\frac{7\pi}{6}i} \right\}$	
(a)	r = 3	Correct value. No others and not ±3.	
	Allow $z_1 = 3\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$	Accept just "3" but $ z_1 = 3$ is insufficient	B1
	. (6 6)	unless later work implies $r = 3$	(1)
(b)		7π 1	(1)
	$z_2 = a + bi$, $z_1 + z_2 = c + 0i \Rightarrow r \sin \frac{7\pi}{6} + b = 0$	Obtains "b" = \pm "3"sin $\frac{7\pi}{6}$ or \pm "3"× $\pm\frac{1}{2}$	
	_	(a) (a)	M1
	$\Rightarrow b = -3\sin\frac{7\pi}{6} \left\{ = -3 \times -\frac{1}{2} = \frac{3}{2} \right\}$	have been negative or \pm . The "b" may be	1411
	6 (2 2)	implied by e.g., $z_2 = x + \frac{3}{2}i$ or later work	
	$a^2 + b^2 = 25$ or e.g	$\int_{a}^{a} \sqrt{a^2 + \left(\frac{3}{2}\right)^2} = 5$	
	Uses the modulus of z_2 to form a correct of	equation linking real and imaginary parts.	
	Allow even if equation has no rea	l solution. See SC below if $r = 5$	M1
	Using $ z_1 z_2 = 15$ leads to $\sqrt{\left(-\frac{3\sqrt{3}}{2}\right)}$	$a + \frac{3}{2}b$) ² + $\left(-\frac{3}{2}a - \frac{3\sqrt{3}}{2}b\right)^2 = 15$ oe	
	Must see a correct equation ft the	eir r and value for b if necessary.	
	$a = \sqrt{25 - \left(\frac{3}{2} \right)^2} \left\{ = \dots \pm \frac{\sqrt{91}}{2} \right\}$	Substitutes b into a correct equation and	
	$\begin{bmatrix} u - \sqrt{23} & 2 \end{bmatrix} \begin{bmatrix} -\dots + 2 \end{bmatrix}$	finds at least one value or expression for <i>a</i> .	M1
	Allow $a = (\pm) \sqrt{25 - ("3" \sin \frac{7\pi}{6})^2}$	Pythagoras must be used correctly and expression must be real.	
	SC: If $r = 5$ in (a) we will allow access	<u> </u>	
		$\sqrt{a^2 + \left(\frac{5}{2}\right)^2} = 3 \Rightarrow a = \sqrt{9 - \left(\frac{5}{2}\right)^2} \left\{ = \dots \pm \frac{\sqrt{11}}{2} \right\}$	
	${z_{2a} = }\frac{\sqrt{91}}{2} + \frac{3}{2}i, \ {z_{2b} = } - \frac{\sqrt{91}}{2} + \frac{3}{2}i$	or exact equivalents e.g., $\pm \sqrt{\frac{91}{4}} + \frac{3}{2}i$	
	A1: One correct answer: (±awrt 4.8) +1.5i an	nd allow $-3\sin\frac{7\pi}{6}$ for 1.5 (but final A0 and	A1
	a must be a valu		
	A1: Both correct exact answ	vers. Accept e.g., $\frac{\pm\sqrt{91}+3i}{2}$	
	Allow both marks for e.g., $a = \pm \frac{\sqrt{91}}{2}$, $b =$		A1
	subsequent evidence of a or b wrongly defin	ned) or e.g., $z_2 = x + \frac{3}{2}i$ seen and $x = \pm \frac{\sqrt{91}}{2}$	
	No additional answers. Ignore any labo	elling of the answers. Isw if necessary.	
	A nossible	variation is:	(5)
	A possible $z_1 = 3\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right), \ z_2 = 5\left(\cos\theta + i\sin\theta\right)$		
	$\Rightarrow \sin \theta = \frac{3}{10} \Rightarrow \left(\frac{3}{10}\right)^2 + \cos^2 \theta = 1 \text{ (M1)} \Rightarrow \cos \theta = \pm \frac{\sqrt{9}}{10}$	_	

Question	Scheme	FP1_2025_0 Notes	6_MS Marks
Number			WithKS
5(c)	(b) which contains Allow if still have trig expressions Ignore relative positions and complex necessity.	gi $p > 0$, $q > 0$ or $(\pm p) - qi$ $p > 0$, $q > 0$ from ould be inexact. s, e.g., $\pm \sqrt{25 - \left(3\sin\frac{7\pi}{6}\right)^2} - 3\sin\frac{7\pi}{6}i$ number/axis labelling. May use points/lines. numbers indicated is M0. For $(\pm p) - qi$: Three complex numbers: 2 in Q3 and one in Q4 (not on axes). e.g. ,	M1
	$(\pm \operatorname{awrt} 4.8) + 1.5i$ and allow if $\pm \sqrt{25 - \left(3\sin\frac{7\pi}{6}\right)^2} - 3\sin\frac{7\pi}{6}i$ and ig	(b) but condone inexact equivalents still have trig expressions, e.g., gnore attempts to write z_2 in trig form ulation of z_1 {i.e., if $\neq -\frac{3\sqrt{3}}{2} - \frac{3}{2}i$ } provided in Q3 and is closest to O Correct sketch with complex number in Q3 clearly closest of the three to the origin, otherwise ignore relative positions. Condone e.g., asymmetry of z_{2a} and z_{2b} May use points/lines. If real and imaginary axes have been labelled the wrong way round then A0 but ignore all other labelling	A1
			(2)
			Total 8

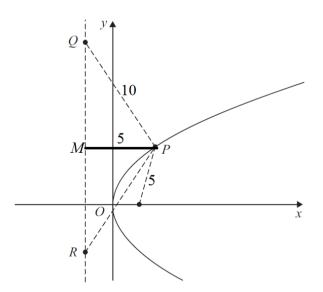
Question Number	Scheme	Notes FP1_2025_	06_MS Marks
6(a)	$f(x) = 3x^2 + kx - 5 \Rightarrow \{\alpha\beta =\} -\frac{5}{3}$	Correct value for $\alpha\beta$. Accept $-1.\dot{6}$ Allow if e.g., "(a)" omitted and seen later	B1
			(1)
(b)	$\alpha + \beta = 9\alpha\beta \Rightarrow -\frac{k}{3} = 9 \times "-\frac{5}{3}" \Rightarrow k = \dots$	Uses $\pm \frac{k}{3}$ for the sum of roots, sets equal to 9 times their product of roots and solves for k	M1
	{ <i>k</i> =} 45	Correct value (no equivalents) from correct work . Answer only is M1A1	A1
			(2)
(c)	$\left\{ \left(\alpha + \beta\right)^3 = \right\} \alpha^3 + 3\alpha^2 \beta + 3\alpha \beta^2 + \beta^3$	Correct expansion seen. Terms may be uncollected e.g., $\alpha^3 + 2\alpha^2\beta + \alpha\beta^2 + \alpha^2\beta + 2\alpha\beta^2 + \beta^3$	B1
	$\Rightarrow \alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha^{2}\beta - 3\alpha\beta^{2}$ $= (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)^{*}$	Achieves given answer via an intermediate step following expansion that is not just collecting terms on RHS of $(\alpha + \beta)^3 =$ No errors seen. Both sides must be seen but allow correct use of LHS=/RHS=. Previous mark required.	d B1*
	Worki	ing backwards:	
	2	$\alpha^2 \beta + 3\alpha \beta^2 + \beta^3 - 3\alpha^2 \beta - 3\alpha \beta^2 = \alpha^3 + \beta^3$	
	B1: $(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta$	t^3 or e.g., $\alpha^3 + 2\alpha^2\beta + \alpha\beta^2 + \alpha^2\beta + 2\alpha\beta^2 + \beta^3$	
	d B1*: Correct proof with $-3\alpha\beta(\alpha+\beta)$	seen expanded. Both sides must be seen but allow	
	,	HS=. Previous mark required.	
		•	(2)

Question Number	Scheme	Notes FP1_2025_	06_MS Marks
6(d)	Note that the work for the first four m	arks might be seen embedded in a quadratic	
5 (32)		see use of $(x-\alpha^2-\beta)(x-\alpha-\beta^2)$	
	If the work clearly relies on us	ing the solutions to $3x^2 + 45x - 5 = 0$	
	$\left(\frac{-45 \pm \sqrt{2085}}{6} \text{ or } 0.1103 \& -1\right)$	5.1103) then allow a max of 101010	
	$\alpha^2 + \beta + \alpha + \beta^2 = \alpha + \beta^2 + \alpha^2 + \beta$	Evidence of a correct algebraic expression in terms of $\alpha + \beta$ and $\alpha\beta$ only for the new sum	1st M1
	$=\alpha+\beta+(\alpha+\beta)^2-2\alpha\beta$	of roots. If not seen in its entirety it could be implied by e.g. a numerical expression/value.	(Sum)
	$=-15+(-15)^2-2\left(-\frac{5}{3}\right)$	Correct value for new sum. If inexact allow awrt 213 from a correct calculation. Allow if exact values are recovered later. Must have used a correct expression and	A1
	$=-15+225+\frac{10}{3}=\frac{640}{3}$	$\alpha\beta = -\frac{5}{3}$, $\alpha + \beta = -\frac{45}{3}$ but allow slip in	Al
		algebra if it is clearly recovered by e.g., an appropriate calculation	
	$\left (\alpha^2 + \beta)(\alpha + \beta^2) = \alpha^3 + \beta^3 + \alpha\beta + (\alpha\beta)^2 \right $	Evidence of a correct algebraic expression for	
	$= (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) + \alpha\beta + (\alpha\beta)^{2}$	the new product of roots in terms of $\alpha + \beta$ and $\alpha\beta$ only. If not seen in its entirety it could	2nd M1
	Allow $\alpha^2 \beta^2$ for $(\alpha \beta)^2$ but $\alpha \beta^2$ must be recovered by later work	be implied by e.g. a numerical expression/value.	(Product)
	$= (-15)^{3} - 3\left(-\frac{5}{3}\right)(-15) - \frac{5}{3} + \left(-\frac{5}{3}\right)^{2}$ $= -3375 - 75 - \frac{5}{3} + \frac{25}{9} = -\frac{31040}{9}$	Correct value for new product. If inexact allow awrt -3450 from a correct calculation. Must have used a correct expression and $\alpha\beta = -\frac{5}{3}, \ \alpha + \beta = -\frac{45}{3} \text{ but allow slip in}$ algebra if it is clearly recovered by e.g., an appropriate calculation	A1
	$x^{2} - \left(\frac{640}{3}\right)x + \left(-\frac{31040}{9}\right) \left\{=0\right\}$	Applies x^2 – (their <i>new</i> sum of roots) x + their <i>new</i> product of roots correctly (e.g., no missing " x ") with non-zero values (which could be inexact). Allow without the "=0" for this mark. Not dependent. If just see e.g., $a =, b =, c =$ then must see e.g., $ax^2 + bx + c$	M1
	$9x^2 - 1920x - 31040 = 0$	Correct equation as shown or an integer multiple. Could recover inexact values. Must include the "= 0". Could use e.g., z consistently for x . Requires all previous marks. If just see e.g., $a =, b =, c =$ then must see e.g., $ax^2 + bx + c = 0$	A1
			(6)
<u> </u>			Total 11

<u> </u>		FP1 2025 0	б MS
Question Number	Scheme	Notes Notes	Marks
7	$f(z) = Pz^4 - 36z^3 + Qz^2$	$z^2 + 192z + 68$, $z = 3 + 5i$	
	Condone <i>x</i> used consis	tently for z throughout	
(a)	3 – 5i	Correct second root	B1
(1.)			(1)
(b)		$S(x) = z^2 \pm 6z \pm m, m \in \square$ or	
	$\alpha_1 + \alpha_2 = 6, \ \alpha_1 \alpha_2 = M :$		3.61
	For completing a correct strategy to find a 3 term quadratic factor. May either attempt to expand with correct starting point achieving $z^2 \pm 6z \pm m$, $m \in \square$, or attempts the sum and		M1
	product of roots and reaches $z^2 \pm 6z \pm their$ (real) product		
	_		A 1
	$z^2 - 6z + 34$	Correct factor. Accept answer only & "=0"	A1 (2)
(c)	Alternatives for (a)	are shown overleaf	(2)
(C)	1.1		
	$(z^2-6z+34)("a"z^2+"b"z+"c$		
	34c = 68	· · · -	B1
	c'' = 2 seen or implied. Allow $c = -2$ from	$z^2 - 6z - 34$ but no other follow throughs.	(ft on -34)
	4. (1. (2) 3. (2. (1. 24.) 2. (241. (2) 24.)	Expands $("z^2 - 6z + 34")(az^2 + bz + c)$	
	$\begin{vmatrix} az^4 + (b-6a)z^3 + (c-6b+34a)z^2 + (34b-6c)z + 34c \\ \Rightarrow b-6a = -36, \ c-6b+34a = Q, \ -6c+34b = 192 \end{vmatrix}$	[which could be implied] and compares coefficients for at least two of the z^3 , z^2 and z	
		terms obtaining at least 2 equations (could be	3.41
	$\{a = P, 34c = 68\}$	implied) with real coefficients (may include	M1
	With $c = 2$ substituted: $\Rightarrow b - 6a = -36, 2 - 6b + 34a = Q, -12 + 34b = 192$	the variable e.g., $34bz - 12z = 192z$). Must	
	$\Rightarrow b - 0a = -30, \ 2 - 0b + 34a - Q, \ -12 + 34b - 192$	use at least 2 terms from the expansion per	
	$a = 34h$ $12-102 \rightarrow b-6$	equation. Their 3TQ must have real coeffs.	
	e.g., $\Rightarrow 34b-12=192 \Rightarrow b=6$, $b-6a=-36 \Rightarrow a=7 \Rightarrow P=7$ Solves sufficient equations of correct form to find a real non-zero value for P (allow " a ") or Q .		
	No need to check algebra and accept a value following equations. Note that only 2 equations		d M1
	from comparing z^3 and z coefficients are needed to find P . It is possible to find Q first although		41 /11
	it is not common e.g. $b=6$ in $Q=2-6b+34\left(\frac{b}{6}+6\right) \Rightarrow Q=204$. Previous mark required.		
	e.g., $Q = c - b + 34a = 2 - 36 + 238 = 204$		
	Solves sufficient equations of correct form to find real non-zero values for both P (allow " a ")		dd M1
	and Q. No need to check algebra and accept values following equations. 2 previous marks required.		G2 G21 (11
	P = 7 and $Q = 204$ only	P = 7 (not "a") and Q = 204	
	Allow $a = 7$ if $P = a$ (only) seen	No other answers. May be embedded in $f(z)$	A1
			(5)
(d)	$"7z^2 + 6z + 2" = 0$ (Allow with their other	r 3TQ factor - must have real coefficients)	
	$\Rightarrow z = \frac{-6 \pm \sqrt{6^2 - 4 \times 7 \times 2}}{2 \times 7} \text{ or } \frac{-6 \pm \sqrt{-20}}{14} \text{ or } \frac{-6 \pm \sqrt{20} i}{14} \text{ or } z^2 + \frac{6}{7}z + \frac{2}{7} = \left(z + \frac{3}{7}\right)^2 - \frac{9}{49} + \frac{2}{7} = 0 \Rightarrow z = \dots \left\{-\frac{3}{7} \pm \frac{\sqrt{-5}}{7}\right\}$		
	Either uses correct formula correctly or completes the square - usual rules - shown for solving		M1
	their other three term quadratic factor (which must have complex roots). Do not accept		1,11
	factorisation or just writing down simplified roots from calculator. 1 root is sufficient. If forms equations e.g., $z_1 + z_2 = -\frac{6}{7}$, $z_1 z_2 = \frac{2}{7}$ (allow sign errors only) a full algebraic method		
	for obtaining 1 root must be seen.		
		Correct simplified other roots from correct factor.	
	$\frac{-3\pm i\sqrt{5}}{7} \text{ or } -\frac{3\pm i\sqrt{5}}{7} \text{ or } \frac{-3}{7}\pm\frac{\sqrt{5}}{7}i$	Must see "i". Ignore the presence of $3 \pm 5i$ if also	A1
	1 1 1	listed. Ignore labelling. Does not require 5/5 in (c)	(2)
			(2) Total 10
	<u> </u>		10tal 10

Question Number	Scheme		06_MS Marks
7(c)	If long division is not completed/equations not seen allow access to the marks if the correct values for P and/or Q are deduced provided there is no clearly inappropriate work. For		
	example it is possible to deduce that $b = 6$ as w division. If their quadratic factor is incorrect		
Alt 1a Full	Allow for equivalent work using e.g., a multiplication grid $Pz^{2} + (6P - 36)z + (Q + 2P - 216)$		
Long Division	$z^{2} - 6z + 34 \overline{Pz^{4} - 36z^{3} + Qz^{2} + 192z + 68}$ $\underline{Pz^{4} - 6Pz^{3} + 34Pz^{2}}$		
Use Alt 1b if they	$\frac{(6P-36)z^{3}+(Q-34P)z^{2}}{(6P-36)z^{3}-6(6P-36)z^{2}}$		
have a <u>value</u> for	$(Q+2P-216)z^2$	+(1416-204P)z+68 +6(Q+2P-216)z+34(Q+2P-216)	B1 M1
C	$\Rightarrow 120 - 192P + 6Q = 0, -$	20 - 192P + 6Q)z - 68P - 34Q + 7412 $-68P - 34Q + 7412 = 0$	IVII
	B1: Attempts long division using a 3TQ with a first z^3 coefficient after subtraction (double M1: Carries out sufficient long division and sets if remainder not seen explicitly) to form a particle coefficients. Must have come from comparing a Both equations must	le underlined) - ignore subsequent errors. s remainder = 0 (could be implied by equations ir of linear simultaneous equations with real coefficients oe for z terms and constant terms.	
	${32P - Q = 20, 2P + Q = 218}$ $\Rightarrow P = \dots \text{ or } Q = \dots$	Solves the equations to find a real non-zero value for either <i>P</i> or <i>Q</i> . No requirement to check algebra and accept a value following equations. Previous mark required.	dM1
	$\Rightarrow P = \dots$ and $Q = \dots$	Solves the equations to find real non-zero values for both <i>P</i> and <i>Q</i> . No requirement to check algebra and accept values following equations. 2 previous marks required.	ddM1
	P = 7 and $Q = 204$ only	P = 7 and $Q = 204No other answers. May be embedded in f(z)$	A1 (5)
Alt 1b Long	$Pz^{2} + (6P - 36)z + 2$ $z^{2} - 6z + 34 Pz^{4} - 36z^{3} + Qz^{2} + 192$	J ₂ 1 69	(5)
Division: using a	$Pz^4 - 6Pz^3 + 34Pz^2$		
value for c	$(6P-36)z^{3} + (Q-34P)z^{2} + 192z$ $(6P-36)z^{3} - 6(6P-36)z^{2} + 34(6P-36)z$		
	$Q + 2P - 216)z^2 + (1416 - 204P)z + 68$		
	$\frac{2z^2 -12z+68}{(2P+Q-218)z^2-(204P-1428)z}$		
		,	
	$\Rightarrow 2P + Q - 218 = 0, -204P + 1428 = 0$ B1: $c = 2$ implied		
	M1: Carries out sufficient long division and sets remainder = 0 (which could be implied) to form at least an equation with real coefficients in just P . Note that a remainder may not be		
	seen explicitly. Must have come from comparing coefficients (oe) of z^2 terms and z terms. dM1: Solves an equation in P to find a real non-zero value for P or solves two equations (one in just P and one in both P and Q) to find a real non-zero value for Q . However, it is very unlikely that Q will be seen with no answer for P given.		
	dd M1: Solves two equations to find real non- one equation in P only and or A1: $P = 7$ and $Q = 204$ only	ne equation in both P and Q .	

Question	Scheme/Notes FP1_2025_0		6_MS Marks
Number			1/10/11/5
7(c)	$f(3\pm5i) = P(3\pm5i)^4 - 36(3\pm5i)^3 + Q(3\pm5i)^2 + 192(3\pm5i) + 68$		
Alt 2 Substitution	$= P(-644 \mp 960i) + Q(-16 \pm 30i) + 7772 \pm 600i$		
	or $-644P - 16Q + 777$	$2 + (\mp 960P \pm 30Q \pm 600)i$	B1
	Correct six term expression for f(3- Implied by corr	, · · · · ·	
	$f(3\pm 5i) = 0 \Rightarrow P(-644\mp 960i) +$	$-Q(-16\pm30i)+7772\pm600i=0$	
	$\Rightarrow -644P - 16Q + 7772 = 0,$	$\mp 960P \pm 30Q \pm 600 = 0$	
	Attempts $f(3+5i)$ or $f(3-5i)$ and sets equal to 0 and equates real and imaginary parts form a pair of linear simultaneous equations with real coefficients. Both equation must have no imaginary terms and both must include P and Q . Ignore extra equation		M1
	$\{161P + 4Q = 1943, 32P - Q = 20\}$ $\Rightarrow P = \text{ or } Q =$	Solves the equations to find a real non- zero value for either <i>P</i> or <i>Q</i> . No requirement to check algebra and accept a value following equations. Previous mark required.	d M1
	$\Rightarrow P = \dots$ and $Q = \dots$	Solves the equations to find real non-zero values for both <i>P</i> and <i>Q</i> . No requirement to check algebra and accept values following equations. 2 previous marks required.	dd M1
	P = 7 and $Q = 204$ only	P = 7 and $Q = 204$. No other answers. Maybe embedded in $f(z)$	A1
			(5)


Question	Scheme	FP1_2025	_06_MS Marks
Number 8(a)		M1: Uses $2n$ for k in	
		$2 \times \frac{k}{6} (k+1)(2k+1)$	
		U	
	$\binom{2n}{2}\binom{2n^2}{2}\binom{1}{2}\binom{2n}{2}2$	Must replace k with $2n$ at least once. Must be otherwise correct i.e., only allow	
	$\sum_{r=1}^{3n} (2r^2 - 1) = 2 \sum_{r=1}^{3n} r^2 - \sum_{r=1}^{3n} 1$	n or 2n for k	M1
		Note that failing to replace the first k	1411
	$= 2 \times \frac{2n}{6} (2n+1)(2(2n)+1) - 2n = \frac{2n}{3} (2n+1)(4n+1) - 2n = \frac{16n^3}{3} + 4n^2 - \frac{4n}{3}$	with $2n$ leads to $\frac{n}{3}$ ()	
	$\left\{ = \frac{2n}{3}(2n+1)(4n+1) - 2n = \frac{16n}{3} + 4n^2 - \frac{4n}{3} \right\}$	Award M0 if it is quite clear that the	
		wrong formula for the sum of the squares has been used.	
		$\underline{\underline{\mathbf{B1}}}$: Correct $\sum_{r=1}^{2n} 1 = 2n$ seen/used	B1
	$=\frac{2n}{3}(8n^2+6n-2)$	or $\frac{4n}{3}(4n^2+3n-1)$	
	Obtains $n(3\mathbf{TQ} \text{ in } n)$ from a cubic w	with no constant. If 3TQ allow fractional	
	_	lication of this mark with	
	$\frac{4}{3}(4n^3+3n^2-n) \text{ or } \frac{2}{3}(8n^3+6n^2-2n) \text{ but not just } \frac{16n^3}{3}+4n^2-\frac{4n}{3}. \text{ Must not have}$		M1
		instead of $2n$ used throughout the sum of	
	squares formula $\left(\Rightarrow \frac{n}{3}(n^2+3n-5)\right)$	but next ddM0. Condone poor algebra.	
		Obtains n (factorised 3TQ in n)	
	4	Apply usual quadratic rules for the	
	$= \frac{4}{3}n(n+1)(4n-1)$	factorisation. If e.g., $\frac{2n}{3}$ () $\rightarrow \frac{4n}{3}$ ()	dd M1
	Allow e.g., $\frac{4n(4n-1)(n+1)}{3}$	work must be on a consistent 3TQ.	
	Allow e.g., 3	Factors must have all real & exact terms. Previous 2 method marks required.	
		Correct result. Allow minor recovered algebraic/bracketing slips.	A1
	Note that e.g., if $2 \times \frac{2n}{6} (2n+1)(2(2n)+1) - 2n$ or $\frac{16n^3}{3} + 4n^2 - \frac{4n}{3}$ or		
	$\frac{2n}{3}(2n+1)(4n+1)-2n$ is immediately for	ollowed by $\frac{4}{3}n(n+1)(4n-1)$ score 11000.	
	Allow expanding the given answer $\frac{4}{3}n$	(n+1)(an+b) and equating coefficients for	
	the last three marks:		
	$\frac{16n^3}{3} + 4n^2 - \frac{4n}{3} = \frac{4}{3}an^3 + \frac{4}{3}(a+b)n^2 + \frac{4}{3}bn \Rightarrow a = 4, \ b = -1 \Rightarrow \frac{4}{3}n(n+1)(4n-1)$		
	M1: Correct form for expansion of given answer and obtains a value for either a or b dd M1: Obtains values for both a and b		
		= 4, $b = -1$ if $\frac{4}{3}n(n+1)(an+b)$ seen)	
		for attempts using induction or e.g., setting up unless there is work that can score as above.	
	1		(5)

Question Number	Scheme	Notes FP1_2025	_06_MS Marks
8(b)	$\sum_{r=1}^{1} r(3r-2)^2 \text{ or LHS} = 1(3\times1-2)^2 = 1 \text{ an}$ Achieves 1 from two numerical express	and $\frac{n^2(n+1)(9n-7)}{4}$ or RHS = $\frac{1^2 \times 2 \times 2}{4}$ = 1 ions (both not just "1"). No requirement	B1
	here to say		D1
	{Assume true for $n = k$, then} $\sum_{r=1}^{k+1} r(3r-2)^2 = \sum_{r=1}^{k} r(3r-2)^2 + (k+1)(3(k+1)-2)^2$ $= \frac{k^2(k+1)(9k-7)}{4} + (k+1)(3k+1)^2$	Adds an attempt at the $(k+1)$ th term to an attempt at the sum to k terms. Allow clear copying slips (e.g., losing the squared from the k^2) but must be a recognisable attempt at forming $\frac{k^2(k+1)(9k-7)}{4} + (k+1)(3(k+1)-2)^2$ So e.g.,+ $k(3k-2)^2$ is M0	M1
	$= \frac{(k+1)}{4} (9k^3 - 7k^2 + 4(9k^2 + 6k + 4k^2))$ $\begin{cases} \text{or } = (k+1) \left(\frac{9}{4}k^3\right) \\ \text{OR } = \frac{1}{4} (9k^4 + 38k^3 + 53k^2 + 28k + 4) \end{cases}$ Reaches $\frac{(k+1)}{4} (4 \text{ term cubic in } k) \text{ or } (k^4 + 4k^2)$	$(1) = \frac{(k+1)}{4} (9k^3 + 29k^2 + 24k + 4) + \frac{29}{4}k^2 + 6k + 1 $ $\left\{ \text{or} = \frac{9}{4}k^4 + \frac{19}{2}k^3 + \frac{53}{4}k^2 + 7k + 1 \right\}$	d M1
	5 term quartic. Must collect terms. Condo		
	Correctly reaches the result completely $k+1+1$ for $((k+1)+1)$] with an internal allow the odd recovered algebraic slip/properties $\frac{k+1}{4}$ (4 term cubic in k) or $(k+1)$ (4 there are no subsequent errors. Factorisa	y in terms of $k + 1$ [but allow $k + 2$ or mediate step . Condone poor notation and poor bracketing provided they reach the 4 term cubic in k) or 5 term quartic and tion may be achieved via calculator use.	A1
	Allow a final answer of $\frac{1}{4}(k+1)^2(k+2)$ order. Meet in the middle approaches mu k+1 must be s		
	True for $n = 1$ and if true for $n = k$ then it is true for $n = k$ then it Acceptable proof (i.e., must have scored to Requires previous three marks and consufficient evidence of substitution. The	the previous A) and narrative/conclusion. an only follow B0 if B0 was given for ere must be no errors if one substitution	
	was attempted and must hat "Assume (true) for $n = k$ " or "If true for $n = k + 1$ " is sufficient for the "ifthen". A stating the result from the question paper Condone $n \in \square$ but not $n \in \square$. Allow work credit for attempts using summation form	$n = k$ " in narrative followed by "true for Allow suitable surrogates for "true". Allow or " P_n is true" with added reference to n .	A1

Question	Scheme	Notes FP1_2025	_06_MS Marks
Number 8(c)			
	$8 \times \frac{n^2 (n+1)(9n-7)}{4} =$ Attempts to form the given equation, of answer to (a) which must be cubic but not (a) could have been reattempted in this precreate an equivalent for the answ Allow if 8 and 15 are swapped or if on provided there are no other errors. If 8 and	$15\sum_{r=1}^{2n} (2r^2 - 1) \Rightarrow$ $= 15 \times \frac{4}{3}n(n+1)(4n-1)$ betaining an equation in <i>n</i> only with their tracessarily in the right form. (Note - part but do not allow attempts that seek to ver to (b) via summation formulae). • is missing (but other correctly placed) and 15 correctly placed, condone one minor	M 1
	copying error but must have quartic = cubic unless n instead of n^2 on LHS is the only error. Note that if they attempt to replace the ' n 's in their answer to (a) with ' $2n$'s then award M0 unless they have used n throughout part (a) in which case all marks are potentially available. If e.g., $15 \times \frac{4}{3}$ is only seen evaluated it must be correct. Allow with " a " and " b " or		
	invented values used	but no further marks.	
	$\Rightarrow 2n(9n-7) = 20(4n-1)$ $\Rightarrow 18n^2 - 94n + 20 = 0$ $\Rightarrow 9n^2 - 47n + 10 = 0$ $\Rightarrow (9n-2)(n-5) = 0$ $\Rightarrow n = \dots$ May see, e.g. $18n^3 - 94n^2 + 20n = 0$ $9n^3 - 47n^2 + 10n = 0$	Simplifies to a 3TQ or 3 term cubic with no constant (see below if 4TC or quartic) and solves to find a value for n . If working is shown, apply usual rules (in this case solution does not have to be a positive integer). However, if answer/s are just written down one real positive integer root must be achieved and be correct for their 3TQ/3TC with no constant. If there is no 3TQ/3TC with no constant and $n = 5$ is just written down score 100. Do not allow solutions directly from just a quartic e.g., $9n^4 - 38n^3 - 37n^2 + 10n = 0$ or a cubic with constant e.g., $9n^3 - 38n^2 - 37n + 10 = 0$ unless there is a clear full method to factorise (e.g., factor theorem, long division, multiplication grid). Do not allow immediate factorisation. Previous mark required.	d M1
	Correct answer and no other unre (Ignore any rejected incorrect values of dM1 wa	$n = \frac{1}{5}$ jected solutions e.g., $n = \frac{2}{9}$, 0, -1 n provided quadratic oe was correct and as scored) lled and accept e.g., $x = 5$	A1
			(3)
			Total 13

0		FP1 2025 0	6 MS
Question Number	Scheme	Notes	Marks
9	Let M be point where perpendicular to directrix from P meets the directrix, then $PM = 5$	States, uses or implies the horizontal distance from <i>P</i> to the directrix is 5. If indicated on Figure 1 or on their own diagram it must be clearly the horizontal distance from <i>P</i> to the directrix. Could be implied by a correct <i>QM</i> or <i>QR</i> . Do not be concerned about any preceding algebra. There is no credit for just forming expressions/equations in e.g., <i>a</i> and/or <i>t</i> until a numerical distance is found.	В1
	$QM = \sqrt{10^2 - "5"^2} \ (= \sqrt{75} = 5\sqrt{3} \approx 8.66)$ May see: $QM = 10\sin\frac{\pi}{3}, 5\tan\frac{\pi}{3}, 10\cos\frac{\pi}{6}, \frac{5}{\tan\frac{\pi}{6}}$ $QM = 10\sin 60^\circ, 5\tan 60^\circ, 10\cos 30^\circ, \frac{5}{\tan 30^\circ}$	Obtains a correct numerical expression for QM (not QM^2) with their $PM = k$ where $0 < k < 10$ Pythagoras must be fully correctly applied. Implied by QR . This mark is not available for arbitrarily choosing a value for an angle but apply BOD and potentially full marks if a correct angle is used without working.	M1
	$QR = 2 \times \sqrt{10^2 - "5"^2} $ (= $2 \times 5\sqrt{3} \approx 17.3$) May see: $QR = \sqrt{10^2 + 10^2 - 2 \times 10 \times 10 \times \cos \frac{2\pi}{3}}$	A correct numerical expression for QR (not QR^2) with their $PM = k$ where $0 < k < 10$ Previous mark required.	dM1
	$\{QR = \}10\sqrt{3}$	Correct answer. Allow any exact equivalent e.g., $2\sqrt{75}$, $\sqrt{300}$	A1
	If trigonometry is used the scheme applies	following no or minimal work scores 4/4 as above so all work must be correct for their allow premature rounding.	
			(4)

Total 4

Correct angles:
$$\angle MPQ = \angle MPR = \frac{\pi}{3} = 60^{\circ}$$
, $\angle MQP = \angle MRP = \frac{\pi}{6} = 30^{\circ}$, $\angle QPR = \frac{2\pi}{3} = 120^{\circ}$