Question	Scheme	FP1_2024 Notes	_06_MS Marks
		(2L 4L 1)	
1(1)	$\mathbf{A} =$	$\begin{pmatrix} 3k & 4k-1 \\ 2 & 6 \end{pmatrix}$	
(2)	$2k\times 6-2($	$\begin{pmatrix} 2 & 0 \end{pmatrix}$	
(a)	$5\kappa \times 0 - 2\kappa$	= 0 and solves for k	
	The " $=$ 0" can be	implied by a solution for k.	241
	Award for $3k \times 10^{-10}$	$6-2(4k-1)=0 \Longrightarrow k=\dots$	NI I
	If LHS is only seen expanded 2 terms of May use $ad = b$ and condone det A	of $18k - 8k + 2$ must be correct (implied by $10k$)	
	$\frac{1}{2}$		
	$(10k+2=0 \Longrightarrow k=) -\frac{1}{5} \text{ or } -0.2$	A1: Correct value. Accept $-\frac{-}{10}$	A1
	Г		(2)
(b)	(1) $(6 \ 1-4k)$ $(\frac{1}{1})$	$\frac{6}{0k+2} = \frac{1-4k}{10k+2}$ $\left(\frac{3}{5k+1} = \frac{1-4k}{10k+2}\right)$	
	$(\mathbf{A}^{-1} =) \frac{1}{10k+2} \begin{vmatrix} -2 & 3k \end{vmatrix}$ or $\begin{vmatrix} 1 \\ 2 \\ -2 & 3k \end{vmatrix}$	-2 3k or e.g., $-1 3k$	
		$\overline{0k+2} \overline{10k+2} \end{pmatrix} \qquad \left(\overline{5k+1} \overline{10k+2} \right)$	
	M1: for $\begin{pmatrix} 6 & 1-4k \\ -2 & 3k \end{pmatrix}$ Ignore any multiplier and accept without one and condone if		
	this matrix is labelled as \mathbf{A}^{-1} . Allow unsimplified e.g., $\begin{pmatrix} 6 & -(4k-1)\\ -2 & 3k \end{pmatrix}$		
	Allow if determinant incorporated pro	vided it is clear that the elements of Adj(A) are correct	MI A1ft
	A1ft: $\frac{1}{"10k+2"} \begin{pmatrix} 6 & 1-4k \\ -2 & 3k \end{pmatrix}$ Fully	v correct inverse ft their determinant in form	
	$ak+b$ $a,b\neq 0$ and simplified but if do	eterminant incorporated there is no requirement	
	to write e.g., $\frac{6}{10k+2}$ as $\frac{3}{5k+1}$. Allow	different brackets e.g., [], $\{\}$ but $ $ is M0 if	
	followed by an attempt at det(Adj(A)). Allow if "×" is between fraction and matrix	
	and allow fraction to appear on the rig	ght of the matrix. Isw when a correct answer is	
	seen but this mark is not available if the	d/or matrix.	
			(2)
(ii)(a)	$n = a = 2$ or $(\mathbf{P} =) \begin{pmatrix} -2 & 0 \end{pmatrix}$	Both values identified or correct matrix (any	D1
	$p = q = -2 \text{or} (\mathbf{D} =) \left(\begin{array}{c} 0 & -2 \end{array} \right)$	or no bracket). Allow "Both are -2" or "-22"	D1
(b)	(-1 0)	Both values identified or correct matrix (any	<u> </u>
	$p = -1$ $q = 1$ or $(\mathbf{B} =) \begin{pmatrix} 0 & 1 \end{pmatrix}$	or no bracket). Allow "-1, +1" (Mark in order	B 1
		presented). No trig expressions.	(2)
			Total 6

Question Number	Scheme	Notes FP1_2024_	06 MS Marks
2	f(z) = z	$z^{3}-13z^{2}+59z+p$	
(a)	$[f(3) =]3^{3} - 13(3)^{2} + 59(3) + p$ or e.g., $27 - 117 + 177 + p$ or $z^{2} - 10z + 29$ $z - 3 \overline{z^{3} - 13z^{2} + 59z + p}$ $\frac{z^{3} - 3z^{2}}{-10z^{2} + 59z}$ $-10z^{2} + 59z$ $\frac{-10z^{2} + 30z}{29z + p}$ $\frac{29z - 87}{0}$	Attempts $f(3)$.Must see more than just $87 + p$ Allow one slip (e.g., a miscopy of one coefficient, or one incorrect value/sign if expression just given $as 27 - 117 + 177 + p$)Alternatively long divides by $z - 3$ obtaining a 3TQ with two terms of $z^2 - 10z + 29$ correct. Could use synthetic division. An attempt at equating coefficients/factorising requires 2 correct values for the a, b and c of $az^2 + bz + c$	M1
	$f(3) = 0 \Longrightarrow p = -87 *$	Obtains " $p = -87$ " only with no errors but condone work in x "=0" must have been seen before $p = -87$ if f(3) attempted but allow just $p = -87$ following a full and correct attempt via division/equating coefficients etc with no errors.	A1* (shown as B1 on ePen)
(b)	Allow equivalent work in r. Allow use of	a calculator to solve a quadratic Solutions that just	(2)
(b)	follow $z^3 - 13z^2 + 59z - 87 = 0$ score clearly been produced by	no marks. There are no marks if $z^2 - 10z + 29$ has y using $(z - (5 + 2i))(z - (5 - 2i))$	
	$(z^{3} - 13z^{2} + 59z - 87) \div (z - 3)$ $= \dots \left[z^{2} - 10z + 29 \right]$	M1: Uses $z \pm 3$ with $f(z)$ (not their $f(z)$) to obtain a 3TQ expression with evidence of any appropriate method including inspection (must be evidence of use of $z \pm 3$) or equating coefficients. Ignore any remainder if long division is used and may see $z^2 - 16z + 107 (r(-408))$ if $z + 3$ used. Must be seen or referred to in (b) A1: Correct quadratic	M1 A1
	$z = \frac{-(-10) \pm \sqrt{(-10)^2 - (4)(1)(29)}}{2(1)}$ or $(z-5)^2 - 25 + 29 = 0 \Longrightarrow z = 5 \pm \sqrt{-4}$	Solves their 3TQ arising from using $(z-3)$ only as a factor (usual rules but allow if one correct root if calculator used on their quadratic) If a sum/product of roots method is used on their $3TQ(i.e., 2a = -("-10"), a^2 + b^2 = "29")$ it must be complete and condone only sign errors. Do not allow just $5 \pm 2i$ following an incorrect quadratic Requires previous M mark.	dM1
	$\left(z = \frac{10 \pm \sqrt{-16}}{2} = \right) 5 \pm 2i$	$5 \pm 2i \text{ or } 5 + 2i, 5 - 2i \text{ only. Not } 5 \pm 2\sqrt{-1}$ Accept $\pm 2i+5$	A1
			(4)

Question	Scheme	FP1_2024_ Notes	06 MS Marks
Number	Selieme	110105	WIGIKS
2(c)	Look for this arrangement if correct but note potential ft	Correct diagram ft their $a \pm bi$ $(a, b \neq 0)$ Diagram should be roughly symmetrical in the real axis. The point on the negative x-axis should be further from the origin than the point on the positive x- axis but ignore any other scaling issues – just look for the $a \pm bi$ points to be placed in the correct quadrants, roughly aligned vertically and placed correctly relative to the given point that is on the same side of the y-axis. Points/axes may be unlabelled or mislabelled. If vectors/lines are used the end points must satisfy the conditions above.	B1ft
			(1)
(d)	$2\left(\sqrt{("5"-(-9))^2 + "2"^2} + \sqrt{("5"-3)^2 + "2"^2}\right)$	A correct numerical expression for the perimeter ft their $a \neq 0$ or 3 or -9 and $b \neq 0$ This mark requires working with points that would form a convex or concave kite where the <i>x</i> -axis is a line of symmetry. Working must be seen if $a \pm bi$ incorrect but allow just $4\sqrt{5} + 4\sqrt{17}$ oe from using $-5 \pm 2i$	M1
	$\begin{bmatrix} = 2(\sqrt{14^2 + 2^2} + \sqrt{2^2 + 2^2}) = 2(\sqrt{200} + \sqrt{8}) \end{bmatrix}$ $= 24\sqrt{2}$	$24\sqrt{2}$ or any simplified equivalent e.g., $12\sqrt{8}$ or $2\sqrt{288}$ but not $\sqrt{1152}$. Correct answer scores both marks and allow M1 A0 for just $\sqrt{1152}$	A1
			(2)
			Total 9

			<u>(2)</u> Total 7
	1	[Note: actual root is 2.011276]	
	$x_1 = 2.13057185 \Longrightarrow \beta = 2.131$	awrt 2.131 (ignore labelling and just look for this value). Ignore further iterations	A1
	3.297677635	" $x_0 = 1.75, \ x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \dots$ "or $1.75 - \frac{f(1.75)}{f'(1.75)} = \dots$ "	,
	$\begin{bmatrix} 3(1.75) - 2.5(1.75) & -4 \\ -1.255003278 & -1.75 \pm 0.38057 \end{bmatrix}$	implied by awrt 2.13 (2.13057185). Working must be seen if x_1 is wrong – allow	M1
	$x_1 = 1.75 - \frac{1.75^3 - 5\sqrt{1.75} - 4(1.75) + 7}{(3(1.75)^2 - 2.5(1.75)^{-0.5} - 4)}$	numerical expression for x_1 but	
(c)		Uses a correct Newton-Raphson formula with $x_0 = 1.75$ and their f'(x) to obtain a	
			(2)
(b)	$\left[f'(x) = \right] 3x^2 - \frac{5}{2}x^{-\frac{1}{2}} - 4 \qquad M1: 2 \text{ corr}$	Allow unsimplified e.g., $3 \times x^{3-1}$ 1: Fully correct simplified derivative	M1 A1
	$y = 0 \Longrightarrow \alpha = \frac{-5.0208\dot{3}}{-6.0208\dot{3}} = 0.834$	I(1) and the x and y coordinates should always be correctly placed. A1: awrt 0.834	
(straight line equation)	$(1, -1) \Rightarrow -1 = -6.02083 + c$ $\Rightarrow c = 5.02083$	α . Condone errors finding <i>c</i> and α but the initial equation should be correct for their f(0.25) and α	M1 A1
Alt for last 2 marks	e.g., $y = \frac{"3.515625" - "(-1)"}{0.25 - 1}x + c$	M1: Any full method to find the equation of the line between (0.25, " 3.515625 ") and (1, "-1") and then uses $y = 0$ to find a value for	
			(3)
	$\alpha = 0.834$	decimal. Ignore labelling and just look for this value. [Note: actual root is 0.767843]	A1
		usually indicates a sign error. awrt 0.834 (0.8339100346) Must be	
	$[\alpha - 0.25 = 3.515625 - 3.515625\alpha 4.515625\alpha = 3.765625]$	If e.g., A is used for $\alpha - 0.25$ then must see $A + 0.25$ later. Note that sight of 1.2981 or $\frac{209}{161}$	
	$\boxed{"1"} = \boxed{"3.515625" + "1"} \Rightarrow \alpha = \dots$	or a correct partially processed equivalent and only allow formula followed by value if values for $a, b, f(a)$ and $f(b)$ are seen	
	$\begin{array}{c} "3.515625" & - "3.515625" + "1" \\ 1 - \alpha & 1 - 0.25 \\ \end{array} \xrightarrow{\sim} \alpha = \dots$	use of $\frac{a_1(b) - b_1(a)}{f(b) - f(a)} \Rightarrow \frac{1(-3.515625^{\circ}) - 0.25(-1^{\circ})}{-3.515625^{\circ} - (-1^{\circ})}$	
	$\frac{\alpha - 0.25}{64} = \frac{1 - 0.25}{1 - 0.25} \Longrightarrow \alpha =$	otherwise a correct equation for their $f(0.25)$ and f(1) must be seen but allow af(b) = bf(a) = 1/(2.5)f(2.5) = 0.2f(0.5)	M1
	$\frac{\alpha - 0.25}{\mu^{225} \mu} = \frac{1 - \alpha}{\mu^{11}} \Longrightarrow \alpha = \dots$	Can be implied by just awrt 0.83 or $\frac{241}{289}$ but	
	$\frac{\alpha - 0.25}{"3.515625"} = \frac{1 - \alpha}{"1"} \Longrightarrow \alpha = \dots$	signs must be applied and $f(0.25)$ and $f(1)$ must have had different signs	
	examples: "1" refers to "-1" with sign corrected	values and solves for α . Can use <i>x</i> etc. Allow e.g., "f(0.25)" and "-f(1)" in this equation provided values for these are seen. Any modulus	
	64 64	correct allowing awrt 3.52 for $f(0.25)$ Forms an equation in α that is correct for their	
(a)	$f(0.25)=3.515625, \frac{225}{51}, 3\frac{33}{51}, f(1)=-1$	Attempts both $f(0.25)$ and $f(1)$ with one	M1
3	f(x) = x	$\frac{1}{x^3 - 5\sqrt{x} - 4x + 7}$	
Question Number	Scheme	FP1_2024_ Notes	06_MS Marks

Question Number	Scheme	FP1_2024_ Notes	06_MS Marks
4	If z is restated incorrectly, e.g., "	z = 3 + 4i" is seen allow a maximum of	
	M1dM1A0 B0M1A1M1A0		
(a)	$z^{2}-3 = (-3+4i)(-3+4i)-3$ = 9-24i-16-3 = -10-24i	Substitutes $z = -3 + 4i$ into $z^2 - 3$, expands and reaches $a + bi$ $(a, b \neq 0)$ Implied by $-10 - 24i$ seen and condone misapplication of the modulus e.g., using a + bi from $ -a - bi $	M1
	$ z^2 - 3 = \sqrt{"10"^2 + "24"^2}$	Correct expression for modulus of their $a+bi$ $(a, b \neq 0)$ Allow with no working for the modulus provided answer correct for their $a+bi$ Requires previous M mark.	dM1
		26 only from correct work. $10 \times 24^{1/2} = 26^{1/2} \times 10^{1/2}$	
	26	e.g., $ -10 + 241 = 20$ is A0 Answer only or without 10, 24i is no marks	Al
		Answer only of without $-10-24$ is no marks.	(3)
(b)	$(z=-3+4i \Longrightarrow)$ $z^*=-3-4i$	Correct conjugate. Can be implied	B1
	$\frac{50}{z^*} = \frac{50}{-3-4i} \times \frac{-3+4i}{-3+4i} \left[= 50 \times \frac{-3+4i}{25} \right]$ or $\frac{1}{z^*} = \frac{1}{-3-4i} \times \frac{-3+4i}{-3+4i} \left[= \frac{-3+4i}{25} \right]$	A correct multiplier seen that would make the denominator real for $\frac{50}{z^*}$ or $\frac{1}{z^*}$ where $z^* = \pm 3 \pm 4i$ (except $-3+4i$). If the multiplier is not seen must see something better than $50 \times \frac{-3+4i}{25}$ or $\frac{-3+4i}{25}$ or $-6+8i$ e.g., $\frac{50}{z^*} = \frac{50(-3+4i)}{9+16}$	M1
	$\frac{50}{z^*} = 2(-3+4i)$ or $2z$	Obtains $2(-3+4i)$ or $2z$ Just $-6+8i$ is insufficient Allow $k = 2$ provided "= kz " or "= $k(-3+4i)$ " is seen	A1
Laing	70	50	(3)
Result	May see : $\frac{50}{-3-4i} = k(-$	$(3+4i) \Longrightarrow \frac{50}{9+16} = k \Longrightarrow k = 2$	
	B1:Correct z^* M1: $\frac{50}{9+16} = k$ or	better after multiplication $A1^*: k = 2$	
Alt Using	$\frac{1}{z^*} = \frac{z}{ z ^2}$ oe e.g., $z^* z = z ^2$	States or uses $\frac{1}{z^*} = \frac{z}{ z ^2}$ oe	B 1
$\frac{1}{z^*} = \frac{z}{ z ^2}$	$\frac{c}{z^*} = \frac{cz}{ z ^2}, z = \sqrt{3^2 + 4^2} = \dots$	Expresses $\frac{c}{z^*}$ as $\frac{cz}{ z ^2}$ and attempts $ z $ or $ z ^2$ where $c = 1$ or 50	M1
	$\frac{50}{z^*} = \frac{50z}{25} = 2z$	Correctly finds $2z$ Allow $k = 2$ provided "= kz " or "= $k(-3+4i)$ " is seen	A1

Question Number	Scheme	FP1_2024_ Notes	06 MS Marks
4(c)	$\arctan\left(\pm\frac{4}{3}\right) = \pm 0.927(53.13^{\circ})$	Finds a relevant angle which could be in degrees correct to 2sf so accept awrt $\pm 0.93 (53^{\circ})$ or $\pm 0.64 (37^{\circ})$	
	or $\arctan\left(\pm\frac{3}{4}\right) = \pm 0.643(36.86^{\circ})$	If neither value is seen allow implication from the work	M1
	May see equivalent trig in which case the hypotenuse should be correct	May see e.g., $\tan^{-1}\left(\pm\frac{8}{6}\right) =$	
		M0 if arg 2z replaced with 2 arg z	
	$\theta = \pi - 0.927295 \theta = \frac{\pi}{2} + 0.643501$	Final answer of awrt 2.21 – do not isw. (n.b. $\theta = 2.214297436$) Final answer of e.g. " $\pi = 0.927$ " is A0	A 1
	$\theta = 2.21$	Answer only in degrees (awrt 127°) is M140	AI
	Note: allow access to both ma	rks even if k in part (b) was incorrect	(2)
			Total 8

Question Number	Scheme	FP1_2024_ Notes	06_MS Marks
5	$5x^2$	-4x + 2 = 0	
	Solutions that rely on solving the given quadratic/finding values for <i>p</i> and <i>q</i> are likely to score a maximum of 0010 11010 if the relevant work is seen		
(a)(i)	$\frac{1}{p} \times \frac{1}{q} \text{ or } \frac{1}{pq} = \frac{2}{5} \Rightarrow pq = \frac{5}{2} *$	Shows product of roots $=\frac{2}{5}$ followed by $pq = \frac{5}{2}$ Minimum as shown. Allow e.g., $qp = 2.5$ Note that $\frac{1}{pq} = \frac{1}{\frac{2}{5}} \Rightarrow pq = \frac{5}{2}$ is B0 No clearly incorrect work/statements.	B1*
	May see: $\left(x - \frac{1}{p}\right)\left(x - \frac{1}{q}\right) = x^2 - \left(\frac{1}{p} + \frac{1}{q}\right)$ Must not be any clearly	$\int x + \frac{1}{pq} = x^2 - \frac{4}{5}x + \frac{2}{5} \Longrightarrow \frac{1}{pq} = \frac{2}{5} \Longrightarrow pq = \frac{5}{2} *$ y incorrect work/statements.	
	Assuming result: $pq = \frac{5}{2} \Rightarrow \frac{1}{p} \times \frac{1}{q} =$	$\frac{2}{5}$ requires conclusion e.g., "Hence true"	
(a)(ii)	$\frac{1}{p} + \frac{1}{q} = -\frac{(-4)}{5}$	Uses sum of roots to achieve a correct equation in p and q	M1
May use work from (i)	$\frac{1}{p} + \frac{1}{q} = \frac{p+q}{pq}$	States or uses $\frac{1}{p} + \frac{1}{q} = \frac{p+q}{pq}$	M1
	$\frac{p+q}{pq} = \frac{p+q}{\frac{5}{2}} = \frac{4}{5} \Longrightarrow p+q = \frac{4}{5} \times \frac{5}{2} = 2$	" $p+q=2$ " from correct work. Allow " $2 = q + p$ "	A1
			(4)
Alt	$x \rightarrow \frac{1}{z} \Longrightarrow 5\left(\frac{1}{z}\right)^2 - 4\left(\frac{1}{z}\right) + 2 = 0$	Correctly replaces x with e.g., $\frac{1}{z}$ and allow $\frac{1}{x}$	1 st M1
$x \rightarrow \frac{1}{z}$	$2z^2 - 4z + 5 = 0$	Obtains a 3TQ in "z", "w" etc.	2 nd M1
	$pq = \frac{5}{2}$	States $pq = \frac{5}{2}$ following correct work	B1* 1 st mark
	p + q = 2	" $p + q = 2$ " from correct work	A1

Question Number	Scheme	Notes FP1_2024_	06 MS Marks
5(b)	$\frac{p}{p^2+1} + \frac{q}{q^2+1} = \frac{pq^2+p+p^2q+q}{p^2q^2+p^2+q^2+1}$ M1: For $p(q^2+1)+q$ or $(p^2+1)(q^2+q)$ Allow equivalents e.g., $pq(p+q)+p+q$ A1: Both correct (expression Do not accept pq^2 for ($\frac{p}{p^{2}+1} \times \frac{q}{q^{2}+1} = \frac{pq}{p^{2}q^{2}+p^{2}+q^{2}+1}$ $(p^{2}+1) \rightarrow pq^{2}+p+p^{2}q+q$ $(p^{2}+1) \rightarrow p^{2}q^{2}+p^{2}+q^{2}+1$ $(p^{2}+1) \rightarrow p^{2}q^{2}+p^{2}+1$ $(p^{2}+1) \rightarrow p^{2}q^{2}+1$ $(p^{2$	M1 A1
	$sum = \frac{pq(p+q)+p+q}{(pq)^2 + (p+q)^2 - 2pq + 1}$ $product = \frac{pq}{(pq)^2 + (p+q)^2 - 2pq}$ Obtains a value for either the new sum or which could be their answer from part (a could be inconsistent with At least one of their expressions must have in terms of pq and p+q including at Accept just sum = $\frac{28}{25}$ or product = $\frac{2}{5}$ if evidence of all of the above con Requires	$=\frac{\frac{5}{2}\times2+2}{\left(\frac{5}{2}\right)^{2}+2^{2}-2\times\frac{5}{2}+1}=\frac{7}{\frac{25}{4}}=\dots\left(\frac{28}{25}\text{ or }1.12\right)$ $=\frac{5}{1}=\frac{5}{\left(\frac{5}{2}\right)^{2}+2^{2}-2\left(\frac{5}{2}\right)+1}=\frac{5}{\frac{25}{4}}\dots\left(\frac{2}{5}\text{ or }0.4\right)$ new product using $pq=\frac{5}{2}$ and a value for $p+q$)(ii) and may have been stated as e.g., $\frac{1}{p}+\frac{1}{q}$ or it their answer to (a)(ii). May be slips. included both pq and $p+q$ and have been completely there is no clearly incorrect work otherwise some additions and not just values must be seen. previous M mark.	dM1
	Note that for the numera $pq^2 + p + p^2q + q = p + q + (p+q)(p^2 + q^2) - (p^3 + q^2)$ in which case both $p^2 + q^2 = (p+q)^2 - 2p$	tor of the sum it is possible to use $q^{3} = p + q + (p+q)((p+q)^{2} - 2pq) - ((p+q)^{3} - 3pq(p+q))$ q and $p^{3} + q^{3} = (p+q)^{3} - 3pq(p+q)$ must be used	
	The above work may be emb	bedded within $x^2 \pm (sum)x \pm product$	
	$x^2 - \frac{28}{25}x + \frac{2}{5}$	pplies $x^2 - (sum)x + product$ correctly for their stated values for new sum and product. Not dependent.	M1
	$25x^2 - 28x + 10 = 0$	orrect quadratic (or integer multiple) with "= 0" Allow a different variable e.g., z for x Allow e.g., $a = 25$, $b = -28$, $c = 10$ provided $ax^2 + bx + c = 0$ is seen otherwise score M1A0	A1
			(5) Total 0
			i otal 9

Question Number	Scheme	FP1_2024_ Notes	06_MS Marks
6(a)	$\begin{pmatrix} 1 & n \\ 0 & 2 \end{pmatrix}$	$\binom{r}{2}^{n} = \binom{1 (2^{n} - 1)r}{0 2^{n}}$	
	Evaluates LHS & RHS for $n = 1$. LHS & RHS indicated (or "true" seen) if not equated $(LHS=)\begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^{1} \text{ or } \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & (2^{1}-1)r \\ 0 & 2^{1} \end{pmatrix} \text{ or } \begin{pmatrix} 1 & (2-1)r \\ 0 & 2 \end{pmatrix} (=RHS)$		
	Assume true for <i>n</i> =	= k, i.e., $\begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^{k} = \begin{pmatrix} 1 & (2^{k} - 1)r \\ 0 & 2^{k} \end{pmatrix}$	
	$ \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & (2^{k} - 1)r \\ 0 & 2^{k} \end{pmatrix} $	Uses $n = k$ result to form expression for $\begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^{k+1}$ Implied by 3 correct elements if they immediately multiply provided the result is not just the "given" answer and allow this to be the intermediate step	M1
	$= \begin{pmatrix} 1 & (2^{k} - 1)r + 2^{k}r \\ 0 & 2(2^{k}) \end{pmatrix} = \begin{pmatrix} 1 & (2^{k+1} - 1)r \\ 0 & 2^{k+1} \end{pmatrix}$	$)r) \left(\begin{array}{c} \text{Correct result with intermediate step that involves} \\ \text{the top right element and no errors seen in the} \\ \text{algebra. Allow "meet in the middle" proofs.} \\ \text{Only allow} (2^{k+1}-1)r \text{ written as } r(2^{k+1}-1) \text{ or} \\ (-1+2^{k+1})r \text{ or } r(-1+2^{k+1}) \text{ . No } 2(2^k) \text{ s for } 2^{k+1} \end{array}\right)$	A1
	Alternatively: $\begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix}^{k+1} = \begin{pmatrix} 1 & (2^k - 1)^{k+1} \\ 0 & 2^k \end{pmatrix}$	$ \begin{pmatrix} 1 & r \\ k \end{pmatrix} \begin{pmatrix} 1 & r \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & r+2(2^{k}-1)r \\ 0 & 2(2^{k}) \end{pmatrix} = \begin{pmatrix} 1 & (2^{k+1}-1)r \\ 0 & 2^{k+1} \end{pmatrix} $	
	True for $n = 1$, if true for $n = k$ then Correct conclusion "Assume true for $n = k$ tr The two previous marks are required ar withheld for insufficient working pro verifications for $n = 2$ etc. Condome	<u>n</u> true for $n = k + 1$, true for all (positive integers) n on or narrative. Minimum in bold . rue for $n = k + 1$ " is sufficient for the " <u>then</u> " and this mark can only follow B0 if the B mark was only ovided there was an attempt with $n = 1$. Ignore further Condone "for all $n \in \mathbb{Z}$ " but not $n \in \mathbb{R}$ e work with n used for k .	A1
			(4)
(b)(i)	$ \begin{pmatrix} 1 & -2 \\ 0 & 2 \end{pmatrix}^4 = \begin{pmatrix} 1 & (2^4 - 1)(-2) \\ 0 & 24 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} $	 Correct matrix N. Could come from manual multiplication or calculator 	B1
(ii)	$\mathbf{B} = \mathbf{N}\mathbf{M} = \begin{pmatrix} 1 & -30 \\ 0 & 16 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 5 \end{pmatrix} = \dots$	Attempts NM with their N . Must not be MN . The N must have exactly three non-zero elements with 0 as the first element in the second row and their NM must have three elements correct for their matrices	M1
	$\begin{pmatrix} 4 & -150 \\ 0 & 80 \end{pmatrix}$	Correct matrix B	A1
		· · ·	(3)
(c)	det B = 4×80 - (0×(-150)) = 320 area $S = \frac{720}{320}$ B	correct non-zero value for the determinant of their (no more than two zero elements) and divides this result into 720 to obtain a value for the area	M1
	$\frac{9}{4}$ or $2\frac{1}{4}$ or 2.25	Correct area. Any exact equivalent. <u>Must follow a</u> <u>correct B</u> . Answer only is M1A1 if B correct.	A1
			(2) Total 9

Question	Scheme	FP1_2024_0 Notes	6_MS Marks
Number		110105	10101165
7(a)		M1: Expands summation to at least 2 separate sums with one correct (could be implied),	
		uses $\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1)$	
	$\sum_{n=1}^{n} (12r^{2} + 2r - 3) = 12\sum_{n=1}^{n} r^{2} + 2\sum_{n=1}^{n} r - 3\sum_{n=1}^{n} 1$	(allowing one of the following slips within the formula above:	
	r=1 $r=1$ $r=1$ $r=1$	One of the 2 + signs seen as –	3.64
	$=12 \times \frac{n}{6}(n+1)(2n+1) + 2 \times \frac{n}{2}(n+1) - 3n$	or a missing first <i>n</i>)	
	$0 \qquad 2 \\ \left[-2n(n+1)(2n+1) + n(n+1) - 2n\right]$	and	AI
	$\left[-2n(n+1)(2n+1)+n(n+1)-3n\right]$	replaces $\sum_{r=1}^{n} r$ with $\frac{n}{2}(n+1)$ or $\sum_{r=1}^{n} 1$ with n	
		Condone r used for n for the first three marks	
		only. Allow $\sum_{r=1}^{n}$ for $\sum_{r=1}^{n}$	
		A1: Fully correct unsimplified expression	
	<u>n</u>	Expands to a cubic and collects terms.	
	$\sum_{r=1}^{\infty} (12r^2 + 2r - 3) = 4n^3 + 6n^2 + 2n + n^2 + n - 3n = \dots$	Allow slips.	dM1
		Correct expression from correct work	
	$4n^3 + 7n^2$	Allow $A = 4$ $B = 7$ following "= $4n^3 + Bn^2$ "	A1
			(4)
(b)	Full marks in (h) does	not require full marks in (a)	(-)
	T thi marks in (b) does	Attempts to use the sum of cubes formula	
		with 2n	
	$\sum^{2n} r^3 = \frac{(2n)^2}{(2n+1)^2}$	Allow one of the following two slips:	M1
	$\sum_{r=1}^{r=1}$ 4	$2n^2$ for $(2n)^2$	
		Only one of the <i>n</i> 's in the formula replaced by $2n$	
		Correct expanded quartic expression for	
	$\sum_{r=1}^{2n} r^3 - \sum_{r=1}^{n} (12r^2 + 2r - 3) =$	$\sum_{r=1}^{2n} r^3 - \sum_{r=1}^{n} (12r^2 + 2r - 3) \text{ (ft their } An^3 + Bn^2)$	
	$4n^4 + 4n^3 + n^2 - "4"n^3 - "7"n^2 = 270$	No requirement to collect terms but must be	A1ft
	$\left[\rightarrow 4x^4 - 6x^2 - 270 \right]$	correct for their A and B if expression only	
	$[\Rightarrow 4n - 6n = 270]$	seen with terms collected. If this is only seen	
		as an equation it must be correct. Solves their 3TO in n^2 (usual rules and allow	
		for one correct root if no working). May	
	$4n^4 - 6n^2 - 270 = 0 \Longrightarrow$	change variable e.g., $n^2 \rightarrow x$	
	$2n^4 - 3n^2 - 135 = (2n^2 + 15)(n^2 - 9) = 0$	Ignore the labelling of roots (e.g. " $n =$ ")	dM1
	$\Rightarrow n^2 = \dots$	Allow for solving as a quartic if one root correct $\frac{4}{2}$	
		but requires $pn^2 + qn^2 + r = 0$ oe, $p, q, r \neq 0$	
		Requires previous M mark. $n = 2$ and no other previous d colutions	
	$n^2 - 0 \rightarrow n - 2$	n - 3 and no other unrejected solutions. n = +3 is A0	Δ1
	$n \rightarrow n - 3 \rightarrow n - 3$	Must follow a correct equation.	A1
			(4)
Total 8			

Ouestion		FP1_2024_0	6_MS
Number	Scheme	Notes	Marks
8	f(<i>k</i>) =	$=7^{k-1}+8^{2k+1}$	
	Gener Apply the Way that be Condone work Allow use of -57 but if any different mu additionally requires "114 is a multiple of/di Ignore work re the divisibility of f(2), f(3) et Final A1 : There must be evidence that the minimal and be scored in a conclusion or a n = k" is seen in the work followed by "the May say "is divisible by 57" for "true	ral guidance : best fits the overall approach. in e.g., <i>n</i> instead of <i>k</i> . ditiples of 57 are involved, e.g., 114, the last A1 visible by (but not "factor of") 57" oe for each case is but starting with e.g., $f(2)$ scores a max of 01110. rue for $n = k \implies$ true for $n = k + 1$ but it could be narrative or via both. So if e.g., "Assume true for rue for $n = k + 1$ " in a conclusion this is sufficient. e". Condone "for all $n \in \mathbb{Z}$ " but not $n \in \mathbb{R}$	
$\begin{array}{c c} Way 1 \\ f(k+1) \end{array}$	$n = 1$: $f(1) = [7^0 + 8^3 =]513$, $513 \div 57 = 9$ oe	Obtains 513 for f(1) and shows 513 is divisible by 57. Allow $\frac{1+512}{57} = 9$	B1
$-\mathbf{f}(k)$	$[f(k+1)] = \frac{7^{(k+1)-1}}{8^{2(k+1)+1}} = \frac{7^k}{8^{2k+3}}$	Attempts $f(k+1)$	M1
	$\begin{bmatrix} f(k+1) - f(k) = \end{bmatrix}$ 7(7 ^{k-1})-7 ^{k-1} +8 ² (8 ^{2k+1})-8 ^{2k+1}	Obtains expression for $f(k+1) - f(k)$ in 7^{k-1} and $8^{2^{k+1}}$ only	M1
	$= 6(7^{k-1} + 8^{2k+1}) + 57(8^{2k+1})$ $\Rightarrow f(k+1) = 7f(k) + 57(8^{2k+1})$ or $= 63(7^{k-1} + 8^{2k+1}) - 57(7^{k-1})$ $\Rightarrow f(k+1) = 64f(k) - 57(7^{k-1})$	M1: Obtains expression for $f(k+1)$ in terms of $f(k)$. May not see $f(k+1) =$ A1: Correct expression. Must see $f(k+1) =$ Allow if e.g., $7f(k)$ written as $7(7^{k-1}+8^{2k+1})$ or $7(7^{k-1})+7(8^{2k+1})$	M1 A1
	Shown true for $n = 1$ and if true for $n = k$ then true for $n = k + 1$ so true for all $n \ (\in \mathbb{Z}^+)$	Makes correct conclusion or narrative with no errors throughout. Minimum in bold . Requires all previous marks but can follow B0 if that mark was withheld for omitting to show that 513 is divisible by 57.	A1
			(6)
$\begin{array}{c c} Way 2 \\ f(k+1) = \end{array}$	$n = 1$: $f(1) = [7^0 + 8^3 =]513$, $513 \div 57 = 9$ oe	Obtains 513 for f(1) and shows 513 is divisible by 57. Allow $\frac{1+512}{57} = 9$	B1
- ()	$\left[f(k+1)=\right]7^{(k+1)-1}+8^{2(k+1)+1}\left\{=7^{k}+8^{2k+3}\right\}$	Attempts $f(k+1)$	M1
	$\left[f(k+1)=]7(7^{k-1})+8^{2}(8^{2k+1})\right]$	Obtains expression for $f(k+1)$ in 7^{k-1} and 8^{2k+1} only	M1
	$=7(7^{k-1}+8^{2k+1})+57(8^{2k+1})$ $\Rightarrow f(k+1) = 7f(k)+57(8^{2k+1})$ or $= 64(7^{k-1}+8^{2k+1})-57(7^{k-1})$ $\Rightarrow f(k+1) = 64f(k)-57(7^{k-1})$	M1: Obtains expression for $f(k+1)$ in terms of $f(k)$. May not see $f(k+1) =$ A1: Correct expression. Must see $f(k+1) =$ Allow if e.g., $7f(k)$ written as $7(7^{k-1} + 8^{2k+1})$ or $7(7^{k-1}) + 7(8^{2k+1})$	M1 A1
	Shown true for $n = 1$ and if true for $n = k$ then true for $n = k + 1$ so true for all $n \ (\in \mathbb{Z}^+)$	Makes correct conclusion or narrative with no errors throughout. Minimum in bold . Requires all previous marks but can follow B0 if that mark was withheld for omitting to show that 513 is divisible by 57.	A1

Question	Scheme	FP1_2024_0 Notes	6 MS Marks
8 Way 3	$n = 1$: $f(1) = [7^0 + 8^3 =]513$, $513 \div 57 = 9$ oe	Obtains 513 for f(1) and shows 513 is divisible by 57. Allow $\frac{1+512}{57} = 9$	B1
f(k+1)	$\left[\mathbf{f}(k+1)=\right]7^{(k+1)-1}+8^{2(k+1)+1}\left\{=7^{k}+8^{2k+3}\right\}$	Attempts $f(k+1)$	M1
-mf(k)	$f(k+1) - mf(k) = 7(7^{k-1}) - (7^{k-1})m + 8^2(8^{2k+1}) - (8^{2k+1})m$	Obtains expression for $f(k+1) - mf(k)$ in 7^{k-1} and 8^{2k+1} only	M1
	$e.g., m = 7 \Rightarrow$ $f(k+1) - 7f(k) = 57(8^{2k+1})$ $\Rightarrow f(k+1) = 7f(k) + 57(8^{2k+1})$ $e.g., m = 64 \Rightarrow$ $f(k+1) - 64f(k) = -57(7^{k-1})$ $\Rightarrow f(k+1) = 64f(k) - 57(7^{k-1})$	M1: Obtains expression for $f(k+1)$ in terms of $f(k)$ using a value for m . May not see $f(k+1) =$ A1: A correct expression. Must see $f(k+1) =$ Allow if $\beta f(k)$ written as $\beta (7^{k-1} + 8^{2k+1})$ or $\beta (7^{k-1}) + \beta (8^{2k+1})$	M1 A1
	Shown true for $n = 1$ and if true for $n = k + 1$ so true for all $n \ (\in \mathbb{Z}^+)$	Makes correct conclusion or narrative with no errors throughout. Minimum in bold . Requires all previous marks but can follow B0 if that mark was withheld for omitting to show that 513 is divisible by 57.	A1
			(6)
$\begin{array}{c} \text{Way 4} \\ f(k) = 572 \end{array}$	<i>n</i> =1: $f(1) = \lfloor 7^0 + 8^3 = \rfloor 513$, 513÷57=9 oe	Obtains 513 for f(1) and shows 513 is divisible by 57. Allow $\frac{1+512}{57} = 9$	B 1
$I(k) = J/\lambda$	$\left[\mathbf{f}(k+1)=\right]7^{(k+1)-1}+8^{2(k+1)+1}\left\{=7^{k}+8^{2k+3}\right\}$	Attempts $f(k+1)$	M1
	$\left[f(k+1)=\right]7(7^{k-1})+8^2(8^{2k+1})$	Obtains expression for $f(k+1)$ in 7^{k-1} and 8^{2k+1} only	M1
	$=7(7^{k-1}+8^{2k+1})+57(8^{2k+1})$ f(k)=57 $\lambda \Rightarrow$ f(k+1)=399 λ +57(8 ^{2k+1}) or =7×57 λ +57(8 ^{2k+1}) =64(7 ^{k-1} +8 ^{2k+1})-57(7 ^{k-1}) f(k)=57 $\lambda \Rightarrow$ f(k+1)=64×57 λ -57(7 ^{k-1}) or =3648 λ -57(7 ^{k-1})	M1: Obtains expression for $f(k+1)$ in terms of λ with $f(k) = 57\lambda$ seen. May not see $f(k+1) =$ A1: Correct expression Must see $f(k+1) =$	M1 A1
	Shown true for $n = 1$ and if true for $n = k + 1$ so true for all $n \ (\in \mathbb{Z}^+)$	Makes correct conclusion or narrative with no errors throughout. Minimum in bold . Requires all previous marks but can follow B0 if that mark was withheld for omitting to show that 513 is divisible by 57.	A1
			Total 6

Question Number	Scheme	FP1_2024_0 Notes	6_MS Marks		
9(a)	$y = c^{2}x^{-1}$ $\frac{dy}{dx} = -c^{2}x^{-2} = -\frac{c^{2}}{x^{2}}$ $y + x = \frac{dy}{dx}$ $\left(ct, \frac{c}{t}\right) \Rightarrow \frac{dy}{dx} = -\frac{c^{2}}{c^{2}t^{2}}$ $\frac{dy}{dx} = -\frac{c^{2}}{c^{2}t^{2}}$	$= c^{2} \qquad x = ct \qquad y = \frac{c}{t}$ $\frac{dy}{dx} = 0 \qquad \qquad \frac{dx}{dt} = c \qquad \frac{dy}{dt} = -ct^{-2}$ $\frac{dy}{dx} \Rightarrow \frac{-\frac{c}{t}}{ct} \qquad \qquad \frac{dy}{dx} = -\frac{ct^{-2}}{c}$ $c \text{ and } t \text{ (or just } t\text{). Award when seen and isw.}$ correct $\frac{dx}{t}$ or $-\frac{dx}{t}$	B1		
	$m_T = -\frac{1}{t^2} \Longrightarrow m_N = t^2$	$\frac{dy}{dx} \frac{dy}{dt}$ Correct perpendicular gradient rule for their $\frac{dy}{dx}$ in terms of t (or c and t)	M1		
	$y - \frac{c}{t} = "t^{2}"(x - ct) \text{or}$ $y = "t^{2}"x + b \Rightarrow \frac{c}{t} = "t^{2}"(ct) + b \Rightarrow b = \dots$	Correct straight line method with a changed gradient in terms of t (or c and t) with coordinates correctly placed. Condone the use of $y = mx + c$ instead of e.g. $y = mx + b$	M1		
	$ty - c = t^3 x - ct^4 \text{or} \qquad y = t^2 x + \frac{c}{t} - ct^3$ $\Rightarrow t^3 x - ty = c(t^4 - 1)^*$	Fully correct proof with at least one intermediate line before printed answer but allow if equation reversed and/or order altered e.g., $(-1+t^4)c = -ty+t^3x$	A1*		
	Score a maximum of 0110 if they start	with just $\frac{dy}{dx} = -\frac{1}{t^2}$ and 0010 if just $m_N = t^2$			

Question Number	Scheme	Notes FP1_2024_0	6 MS Marks		
9(b)	(8, 2) \Rightarrow e.g., $c^2 = 16$, $c = 4$; $ct = 8 \text{ or } \frac{c}{t} = 2 \Rightarrow t = 2$	Correct values for <i>c</i> and <i>t</i> seen, used or implied (e.g., by correct normal). If $c = \pm 4$, $t = \pm 2$ then the positive values must be implied by subsequent work	B1		
	Note that another way of finding t is by using $c = 4$ and $(8, 2)$ in the normal: $\Rightarrow 8t^{3} - 2t = 4(t^{4} - 1) \Rightarrow 4t^{4} - 8t^{3} + 2t - 4 = (t - 2)(4t^{3} + 2) = 0 \Rightarrow t = 2$				
	normal: $8x - 2y = 60 \Rightarrow$ $y = 4x - 30 \text{ or } x = \frac{15}{2} + \frac{1}{4}y$ $\Rightarrow (4x - 30)^2 = 6x \text{ or } y^2 = 45 + \frac{3}{2}y$	Uses their values of <i>c</i> and <i>t</i> in the given normal $t^3x - ty = c(t^4 - 1)$ [could repeat the work in (a) with $y = 16x^{-1}$] and substitutes into the parabola to obtain a quadratic equation. Note that appropriate work must be seen for this mark. $4x - 30 = \sqrt{6x}$ must be followed by a credible attempt to square (i.e., a 3TQ on LHS andx on the RHS) but see note below	M1		
	Note that replacing x with e.	g., k^2 in $4x - 30 = \sqrt{6x} \rightarrow$			
	$4k^2 - 30 = \sqrt{6} k \Longrightarrow k = \frac{\sqrt{6} \pm \sqrt{6 - 4(4)(-30)}}{2(4)} = \frac{5\sqrt{6}}{4}, -\sqrt{6} \Longrightarrow x = \frac{75}{8}, 6$				
	Scores the M1 for the quadratic in k and the dM1 for solving via usual rules and also reaching $x =$ by squaring.				
	$16x^{2} - 246x + 900 = 0 \Longrightarrow 8x^{2} - 123x + 450 = 0$ $\Rightarrow (8x - 75)(x - 6) = 0 \Longrightarrow x = \dots \text{ or}$ $2y^{2} - 3y - 90 = 0 \Longrightarrow (2y - 15)(y + 6) = 0 \Longrightarrow y = \dots$	Solves 3TQ (usual rules – one correct root if no working). Requires previous method mark.	dM1		
	$x = \frac{75}{8}, y = \frac{15}{2}$ or e.g., $Q(9.375, 7.5)$	Correct values/coordinates. Allow any equivalent fractions. If a second point is given e.g., (6, -6) or (6, 6) score A0 if it is not rejected in (b).	A1		
			(4)		
Alt	c = 4, t = 2	Correct values for c and t seen or used	B1		
Approaches using	Let Q have coordin	nates $\left(\frac{3}{2}k^2, 3k\right)$:			
parametric coords	Substituting into the normal with $c = 4$ and $t = 2$:				
	OR Since gradient of norm) = 4(10-1)	M1		
	Since gradient of normal to hyperbola $= i = 4$, 3k-2				
	gradient of AQ where A is $(8, 2) = \frac{3}{2}k^2 - 8 = 4$				
	Forms a quadratic equation with their values. The equation in case 2 implies the B1.				
	or $3k-2 = 6k^2 - 32 \Longrightarrow 6k^2 - 3k - 30 = 0$ $\Rightarrow 2k^2 - k - 10 = 0 \Longrightarrow (2k - 5)(k + 2) = 0 \Longrightarrow k = \dots \left[\frac{5}{2}\right]$ $\Rightarrow x = \dots$ or $y = \dots$	Solves 3TQ (usual rules – one correct root if no working) and proceeds to a value of x or y Requires previous method mark.	dM1		
	$x = \frac{75}{8}, y = \frac{15}{2}$ or e.g., $Q\left(9\frac{3}{8}, 7\frac{1}{2}\right)$	Correct values/coordinates. Allow any equivalent fractions. If a second point is given e.g., (6, -6) or (6, 6) score A0 if it is not rejected in (b).	A1		
			(4)		

Question Number	Scheme	Notes FP1_2024_0	6 MS Marks			
9(c)	$R(\frac{3}{2}, 0)$					
	Correct coordinates for the focus seen or used. Can score anywhere e.g., written across the					
	question. Condone sight of $(0, \frac{3}{2})$ if used correctly e.g. in gradient calculation. If on a diagram,					
	accept $\frac{3}{2}$ appropriately placed. Accept 1.5, $\frac{6}{2}$ etc. for $\frac{3}{2}$. Just " <i>a</i> or $x = \frac{3}{2}$ " or " $R = \frac{3}{2}$ " is					
	insufficient. There must be some recognition of the position of R .					
	Allow work with decimals for the 3 M marks.					
	$QR: \text{ e.g., } y - 0 = \left(\frac{\frac{15}{2} - 0}{\frac{75}{8} - \frac{3}{2}}\right)(x - \frac{3}{2}) \text{ or } y = \left(\frac{\frac{15}{2} - 0}{\frac{75}{8} - \frac{3}{2}}\right)x + c \Rightarrow 0 = \frac{20}{21}\left(\frac{3}{2}\right) + c \Rightarrow c = \dots$ Correctly forms equation of QR for their Q and R. Q could be "made up" or be an incorrect					
	choice from part (b) but must have real co	pordinates (A, B) , $A > 0$, $B \neq 0$ so allow e.g., (6, 6)				
	and (6, -6). <i>R</i> must be of form (α , 0), $\alpha > 0$ Allow if a correct gradient is seen but wrongly calculated before line equation is given. If using $y = mx + c$ the equation must be formed correctly and " $c =$ " reached following correct					
	place	ment of $(\alpha, 0)$.				
	For $0 = \frac{3}{2}m + c$, $\frac{15}{2}m = \frac{75}{8}m + c \Rightarrow m = \dots$, $c = \dots$ must find both <i>m</i> and <i>c</i> with one correct					
	M0 for a vertical line or if a normal gradient is used 20 10 3 Substitutes $r = -\alpha$, $\alpha > 0$ into their equation to find a					
	$y = \frac{1}{21}x - \frac{1}{7}, x = -\frac{1}{2}$	value for the <i>y</i> coordinate.	dM1			
	$\Rightarrow y = \frac{20}{21} \left(-\frac{3}{2} \right) - \frac{10}{7} = -\frac{10}{7} - \frac{10}{7} = -\frac{20}{7}$	Must be using a consistent α	uivii			
	Z1(Z) /////////////// Requires previous M mark. Applies correct distance formula for their					
	$S\left(-\frac{3}{2},-\frac{20}{7}\right) \Rightarrow$	$Q(A,B), A > 0, B \neq 0$ and				
		$S(-\alpha, \pm \beta) \alpha > 0 \text{ and consistent}, \beta \neq 0$	1.13.64			
	$OS = \sqrt{\left(\frac{75}{2} - \left(-\frac{3}{2}\right)\right)^2 + \left(\frac{15}{2} - \left(-\frac{20}{2}\right)\right)^2}$ Imp	blied by 15.017857 otherwise working must be seen.	ddMII			
	$\sim \gamma(8(2))(2(7))$	Requires both previous M marks. Note that using $(6, 6)$ or $(6, -6) \rightarrow OS = \frac{25}{25}$				
		Note that using $(0, 0)$ of $(0, 0)$ $\neq g_{0} = \frac{1}{2}$				
	$=\sqrt{\left(\frac{87}{8}\right)^2 + \left(\frac{145}{14}\right)^2} = \sqrt{\frac{7569}{64} + \frac{21025}{196}} = \sqrt{\frac{707281}{3136}} = \implies QS = \frac{841}{56}$					
	Correct exact distance. Any exact equi	valent e.g., $15\frac{1}{56}$ and may not be in simplest form				
Alt						
For the	QS = QR + RS but $QR = $ shorte	$\frac{1}{2} = \frac{1}{8}$				
last two	$QS = \sqrt{\left(0 - \left(-\frac{20}{7}\right)\right)^2 + \left(\frac{3}{2} - \left(-\frac{3}{2}\right)\right)^2 + \frac{87}{8}} = \frac{29}{7} + \frac{87}{8} = \frac{841}{56}$					
(QS =	M1: A full method correct for their Q and S. Implied only by awrt 15.017857					
QR + RS)	A1: Correct exact distance (any equivalent)					
	y of					
	s	(8, 2) R x				
	PAPER TOTAL • 7					