Question Number	Scheme	Notes	Marks
1	$\sum_{r=1}^{n} r^{2} (r+2) = \sum_{r=1}^{n} r^{3} + 2 \sum_{r=1}^{n} r^{2} \text{ or } \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} 2r^{2}$	Correct split with 2 summations. Could be implied by correct work. Condone missing or incorrect summation limits.	B1
	$=\frac{1}{4}n^{2}(n+1)^{2}+2\times\frac{1}{6}n(n+1)(2n+1)$	Attempts to use both standard results and obtains an expression of the form $pn^{2}(n+1)^{2} + qn(n+1)(2n+1)$ $p, q \neq 0$ Could be implied by immediate expansion	M1
	$= \frac{1}{12}n(n+1)[3n(n+1)+4(2n+1)]$ $= \frac{1}{12}n(n+1)(3n^2+11n+4)$	dM1: Attempts factorisation to obtain $\frac{1}{12}n(n+1)(an^{2}+bn+c)$ $a,b,c \neq 0$. Condone poor algebra. Could follow cubic or quartic. Allow a consistent $a =, b =,$ c = if quadratic never seen simplified Requires previous M mark. A1: Correct expression or a = 3, b = 11, c = 4 Allow e.g., $\frac{1}{12}n(n+1)$ written as $\frac{n}{12}(n+1)$	d M1 A1
	Note: $n(n+1)(3n^2+11n+4) =$	$=3n^4+14n^3+15n^2+4n$	Total 4

Question Number	Scheme	Notes	Marks
2	$2x^4 - 8x^3 + 29x^2 - 12x + 39 = 0, x = 2 + 3i$		
	Condone work in e.g	., z throughout	
(a)	2–3i	Correct conjugate	B1
(b)	(x-(2-3i))(x-(2+3i))	Attempts to multiply the two correct factors to obtain a 3 term quadratic with real coefficients.	(1)
	or $(x-2+3i)(x-2-3i) = \dots \{x^2-4x+13\}$	Could use $(x-2)^2 = (\pm 3i)^2$ or $x^2 - 2cm + c^2 + b^2$ with $c = 2, b = \pm 2$	
	sum = 4, product = 13 ⇒ $x^2 \pm 4x \pm 13 \text{ or } x^2 \pm 13x \pm 4$ or $x^2 - (2 + 3i + 2 - 3i)x + (2 + 3i)(2 - 3i)$ ⇒ $\{x^2 - 4x + 13\}$	$x^2 - 2ax + a^2 + b^2$ with $a = 2, b = \pm 3$ Or uses the correct sum and product of the roots to obtain an expression of the form shown (must be some minimal working – but if just a quadratic is given the next 2 marks are available) or $x^2 - (\alpha + \beta)x + \alpha\beta$ to obtain a 3 term	M1
	$2x^{4} - 8x^{3} + 29x^{2} - 12x + 39 \Longrightarrow (x^{2} - 4x + 13)(2x^{2} + 3)$	quadratic with real coefficients.Uses their 2 or 3 term quadratic factorwith real coefficients to obtain a second2 or 3 term quadratic of the form $2x^2 +$ by long division, equating coefficientsor inspection. Ignore any remainderfrom long division. Can follow M0	M1
	$2x^{2} + 3(=0) \Rightarrow$ $x = \pm \frac{\sqrt{6}}{2}i \text{ or } \pm i\sqrt{\frac{3}{2}} \text{ or } \pm \frac{\sqrt{3}}{\sqrt{2}}i \text{ or } \sqrt{1.5}i$ $\sqrt{1.5i} \text{ is M0}$ $1.2247i \text{ is M1 A0}$	dM1: Solves their second quadratic factor = 0. If 2 term must get one correct non-zero root. (Usual rules if 3TQ and one correct root if no working) Could be inexact. Requires previous method mark. A1: Both correct exact roots with "i" Requires all previous marks.	d M1 A1
	Solving by calculator, sometimes followed b $f(x) = \left(x^2 - 4x + 13\right)\left(x^2 + \frac{3}{2}\right)$ is first M1 only	and working for the 3TQ must be seen	(4)
(c)		Allow ft on their answers to (b) if they are of the form $\pm ki$ or $\pm k\sqrt{-1}$, $k \neq 0$ regardless of how they were obtained 1st B1: One of the two pairs of roots in correct positions 2nd B1: Both pairs of roots in correct positions and correct relative to each other for their k Allow any suitable indication of the roots such as vectors. Ignore all labelling and scaling but each pair should be reasonably symmetric in <i>x</i> -axis for any marks (for each pair -distance of one to <i>x</i> -axis not less than $\frac{1}{2}$ of the other)	B1 B1 (ft on (b))
			(2) Total 7

Question Number	Scheme	Notes	Marks
3(a)	$y = 9x^{-1} \Rightarrow \frac{dy}{dx} = -9x^{-2} \left\{ = -\frac{9}{(3t)^2} \right\}$ or $xy = 9 \Rightarrow x\frac{dy}{dx} + y = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} \left\{ = -\frac{3}{t} \right\}$ or	Any correct expression for $\frac{dy}{dx}$ but allow e.g., $\frac{dx}{dy} = -9y^{-2}$ Calculus must be seen so there is no credit for just a statement e.g., $m_T = -\frac{1}{2}$	B1
	$x = 3t, y = 3t^{-1} \Rightarrow \frac{dx}{dt} = 3, \frac{dy}{dt} = -3t^{-2} \Rightarrow \frac{dy}{dx} = \frac{-3t}{3}$	Uses the perpendicular gradient rule to	
	e.g., $m_N = \frac{(3t)^2}{9}$ or $\frac{3t}{\frac{3}{t}}$ or $\frac{3}{3t^{-2}} = t^2$	obtain the gradient of the normal in terms of t correct for their m_T Implied by correct use of $-\frac{dx}{dy}$	M1
	$y - \frac{3}{t} = t^2 \left(x - 3t \right) \text{ or } \frac{3}{t} = t^2 \left(3t \right) + c \Longrightarrow c = \dots$ $\left\{ c = \frac{3}{t} - 3t^3 \right\}$	Applies straight line method correctly with their normal (changed) gradient in terms of t. If using $y = mx + c$ coordinates must be correctly placed and $c =$ reached	M1
	$ty - t^3x = 3 - 3t^4$ Intermediate step not required. Allow recovery from a slip.	Correct equation or $f(t)$. Must be seen in (a). Accept equivalents for $f(t)$ e.g., $3(1-t^4)$, $-3(t^4-1)$	A1
	Allow work with $xy = c^2$ but the fination No calculus scores a maximum of 0111 if	al mark requires use of $c^2 = 9$ m_T is stated and 0011 if m_N is stated	(4)
(b)	$xy = 9, \ 2y - 8x = 3 - 3 \times 16$ e.g., $\Rightarrow y = 4x - \frac{45}{2}$ or $x = \frac{45}{8} + \frac{y}{4}$ $\Rightarrow x\left(4x - \frac{45}{2}\right) = 9$ or $y\left(\frac{45}{8} + \frac{y}{4}\right) = 9$	Uses $t = 2$ in their $ty - t^3x = f(t) \neq 0$ and the equation of H to obtain an unsimplified three term quadratic equation in x or y (no variables in denominators). Only allow $f(t) = \frac{9}{t}$ if stated first	M1
	$8x^{2} - 45x - 18 = 0 \text{ or } 2y^{2} + 45y - 72 = 0$ $\{\Rightarrow (8x+3)(x-6) = 0 \text{ or } (2y-3)(y+24) = 0\}$ $\Rightarrow x = \dots \{-\frac{3}{8}, 6\} \text{ or } y = \dots \{\frac{3}{2}, -24\}$	Solves their 3TQ to find a value for x or y – apply usual rules. One root correct if no working. Can award for P provided it has come from quadratic. Requires previous method mark.	d M1
	$\left(-\frac{3}{8}, -24\right)$ or $(-0.375, -24)$	Correct exact coordinates in simplest form from correct work. Allow $x =, y =$ Ignore $(6, \frac{3}{2})$ but A0 for any other point shown or incorrect <i>x</i> or <i>y</i> value.	A1
	Solving in terms of t: M1: \Rightarrow Unsimplified 3 M1: Solves e.g, $x = \frac{-\frac{3}{t} + 3t^3 \pm \sqrt{\left(\frac{3}{t} - 3t^3\right)^2 + 36t^2}}{2t^2}$	TQ e.g., $t^2 x^2 + \left(\frac{3}{t} - 3t^3\right) x - 9 = 0$ M1 $\left\{\Rightarrow \left(-\frac{3}{t^3}, -3t^3\right)\right\}$ A1: $t = 2 \Rightarrow \left(-\frac{3}{8}, -24\right)$ ork is 111 provided f(t) was correct	(3) Total 7

Question Number	Scheme	Notes	Marks
4	$\mathbf{A} = \begin{pmatrix} -3 & 8 \\ -3 & k \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix}$	$\mathbf{BC} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$	
(i)	det $\mathbf{A} = -3k - 8(-3) \{= -3k + 24\}$ Could be implied	Attempts det A and obtains $\pm 3k \pm 8(\pm 3)$ or $\pm 3k \pm 24$	M1
	$-3k + 24 = 3 \text{or} -3k + 24 = -3$ $\Rightarrow k = \dots$ May see $(-3k + 24)^2 = +9 \Rightarrow 9k^2 - 144k + 567 = 0 \Rightarrow \dots$	Equates their det A of form $ak+b$ $a, b \neq 0$ to 3 or -3 or equivalent work and solves for k (usual rules if quadratic and must use +9)	M1
	$k = 7, \ k =$ 1st A1: Either correct value of k from corr 2nd A1: Both correct values of k from corr	ect work. Allow e.g., $\frac{-21}{-3}$ or $\frac{-27}{3}$ rect work. 7 and 9 only. No extra	A1 A1
			(4)
(ii)	det B = $1 \times 3a - (-4) \times 2 \{= 3a + 8\}$	Correct unsimplified expression for det B. Could be implied	B1
	$\mathbf{B}^{-1} = \frac{1}{"3a+8"} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix}$	Correct B ⁻¹ with their det B . Adj(B) to be correct but allow elements to have their det B as denominators if incorporated.	M1
	$\mathbf{C} = \mathbf{B}^{-1}\mathbf{B}\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 3 & 4 \\ -2 & a \end{pmatrix} \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} = \dots$ Access to this mark is allowed if there is no determinant or if $\mathbf{B}^{-1} = \det \mathbf{B} \times \operatorname{Adj}(\mathbf{B})$	Multiplies BC by their \mathbf{B}^{-1} (changed – and not just by incorporation of their determinant) the correct way round. Expect four correct elements for their matrices if the method is unclear. The incorrect order scores M0 even if the	M1
	$\mathbf{C} = \frac{1}{3a+8} \begin{pmatrix} 10 & 31 & 11 \\ a-4 & 4a-10 & 2a-2 \end{pmatrix}$ Ignore any reference to inapplicable values of a $(a \neq -\frac{8}{3})$	Correct C or equivalent with like terms collected and single fractions if necessary. e.g., $\begin{pmatrix} 10 & 31 & 11 \\ 3a+8 & 3a+8 & 3a+8 \\ \frac{a-4}{3a+8} & \frac{2(2a-5)}{3a+8} & \frac{2(a-1)}{3a+8} \end{pmatrix}$	A1
			(4)
Alt Sim. equations	$ \begin{pmatrix} a & -4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} p & q & r \\ s & t & u \end{pmatrix} = \begin{pmatrix} 2 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} ap - 1 \\ 2p + 1 \\ Multiplies in the correct order to obtain \end{pmatrix} $	-4s = 2 aq - 4t = 5 ar - 4u = 1 -3s = 1 2q + 3t = 4 2r + 3u = 2 at least three correct equations	B1
	$(3a+8) p = 10 \qquad (3a+8)q = 31 \qquad (3a+8)r$ $p = \frac{10}{3a+8} \qquad q = \frac{31}{3a+8} \qquad r = \frac{1}{3a}$ $s = \frac{1}{3}\left(1 - \frac{20}{3a+8}\right) \qquad t = \frac{1}{3}\left(4 - \frac{62}{3a+8}\right) \qquad u = \frac{1}{3}\left(2 - \frac{62}{3a+8}\right) \qquad u = \frac{1}{3}\left(2 - \frac{62}{3a+8}\right)$ $s = \frac{a-4}{3a+8} \qquad t = \frac{4a-10}{3a+8} \qquad u = \frac{2a}{3a}$ $M1: \text{ Solves their equations to find expression}$ $M1: \text{ Finds expressions in terms of }$ $A1: \text{ Correct matrix - like terms column }$	$r = 11$ $\frac{1}{+8}$ $\frac{22}{3a+8} \Rightarrow \begin{pmatrix} \frac{10}{3a+8} & \frac{31}{3a+8} & \frac{11}{3a+8} \\ \frac{a-4}{3a+8} & \frac{4a-10}{3a+8} & \frac{2a-2}{3a+8} \end{pmatrix}$ $\frac{-2}{+8}$ ons in terms of <i>a</i> for three elements of <i>a</i> for three elements of <i>a</i> for all six elements lected and single fractions	M1 M1 A1
1			I VIALO

Question Number	Scheme	Notes	Marks
5	Solutions that rely entirely on solving the equation are generally unlikely to score but		
	there may be attempts which include some of the work below which can receive appropriate credit.		
(a)	$\alpha + \beta = 6$ $\alpha\beta = 3$	Correct sum and product. Could be implied. Allow $\frac{6}{1}$ and $\frac{3}{1}$	B1
		Multiplies $(\alpha^2 + 1)(\beta^2 + 1)$ to obtain	
	$(\alpha^{2}+1)(\beta^{2}+1) = \alpha^{2}\beta^{2} + \alpha^{2} + \beta^{2} + 1$	3 or 4 terms with 3 correct. Do not condone $\alpha\beta^2$ for $(\alpha\beta)^2$ unless implied later	M1
	$=\alpha^{2}\beta^{2}+(\alpha+\beta)^{2}-2\alpha\beta+1$	Uses $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1
	$ \left\{ = 3^2 + 6^2 - 2 \times 3 + 1 \right\} $ = 40	Correct answer from correct work. Use of e.g., $\alpha + \beta = -6$ is A0	A1
			(4)
(b)	Allow use of their $(\alpha^2 + 1)(\beta^2 + 1)$ which could	be from (a) or a first or reattempt in (b).	
	Numerator must b	e correct	
	$\frac{\alpha}{(2^2+1)} + \frac{\beta}{(2^2+1)} = \frac{\alpha(\beta^2+1) + \beta(\alpha^2+1)}{\alpha(2^2+1)(\alpha^2+1)}$	Any correct expression with their $(\alpha^2 + 1)(\beta^2 + 1)$ for the new sum as	B1
	$(\alpha^{2}+1)$ $(\beta^{2}+1)$ " $(\alpha^{2}+1)(\beta^{2}+1)$ "	a single fraction (or two fractions both with the common denominator)	
	$=\frac{\alpha\beta(\beta+\alpha)+(\alpha+\beta)}{"(\alpha^{2}+1)(\beta^{2}+1)"}=\frac{"3"\times"6"+"6"}{"40"}=\dots$	Uses a correct expression with their $(\alpha^2 + 1)(\beta^2 + 1)$ for the new sum to obtain a correct numerical expression with their denominator, $\alpha + \beta \& \alpha\beta$	M1
		and achieves a value.	
	$\frac{\alpha\beta}{"(\alpha^2+1)(\beta^2+1)"} = \frac{"3"}{"40"}$	$(\alpha^2 + 1)(\beta^2 + 1)$ for the new product to obtain a correct value with their denominator and $\alpha\beta$	M1
	new sum = $\frac{24}{40} \left\{ = \frac{3}{5} \right\}$ or new product = $\frac{3}{40}$	One value for new sum or new product correct. Any equivalent fractions. Not ft. Requires appropriate previous M mark.	A1
	$x^2 - \frac{24}{40}x + \frac{3}{40} \{=0\}$	Correctly uses $x^2 - (\text{sum of roots})x + (\text{product of roots})$ or equivalent work with their new sum and product. Condone use of a different variable. Allow appropriate values for p, q and r	M1
	$40x^2 - 24x + 3 = 0$	Any correct equation with integer coefficients and "= 0". Condone use of a different variable. Allow e.g., $p = 40$, q = -24, $r = 3$. Requires all marks.	A1
	Note that although $(\alpha^2 + 1)(\beta^2 + 1)$ may be atte	mpted or reattempted in (b) there is no	(0)
	credit for work in (a) that is only seen in (b)		

Question Number	Scheme	Notes	Marks
6(a)	$ z_1 + z_2 \{ = 3 + 2i + 2 + 3i = 5 + 5i \} = \sqrt{5^2 + 5^2}$	Attempts the sum (allow one slip) and uses Pythagoras correctly	M1
	$\sqrt{50}$ or $5\sqrt{2}$	Either correct exact answer	A1
	Answer only is no marks but working can l	be minimal e.g., $ 5+5i = 5\sqrt{2}$	(2)
(b)	$\frac{z_2 z_3}{z_1} = \frac{(2+3i)(a+bi)}{(3+2i)} = \frac{(2+3i)(a+bi)}{(3+2i)} \times \frac{(3-2i)}{(3-2i)}$ or $\frac{z_2}{z_1} = \frac{2+3i}{3+2i} \times \frac{3-2i}{3-2i}$ or $\frac{z_3}{z_1} = \frac{a+bi}{3+2i} \times \frac{3-2i}{3-2i}$	Substitutes complex numbers and correct multiplier to rationalise the denominator seen or implied. See note below Could use $\times \frac{-3+2i}{-3+2i}$	M1
	(3+2i)(3-2i)=13	13 <u>obtained from</u> $(3+2i)(3-2i)$ Could be implied.	B1
	$\frac{z_2 z_3}{z_1} = \frac{12a - 5b}{13} + \frac{5a + 12b}{13}i$ or $\frac{1}{13}(12a - 5b) + \frac{i}{13}(5a + 12b)$ or $\frac{12}{13}a - \frac{5}{13}b + i\left(\frac{5}{13}a + \frac{12}{13}b\right)$ etc. Condone $\frac{(12a - 5b) + (5a + 12b)i}{13}$	dM1: Attempts to simplify the numerator and collects terms to obtain $pa + qb + rai + sbi$ with at least three of p , q , r and s non-zero. Requires previous M mark . A1: Correct answer in any form with a single "i". Correct bracketing where needed.	d M1 A1
	13 Note: The following marks are accessible if complex no	Allow $x =, y =$ umbers are substituted in the wrong places:	(4)
(c)	$\frac{12a-5b}{13} = \frac{4}{13}, \frac{5a+12b}{13} = \frac{58}{13} \implies a =, b =$	Equates their x to $\frac{4}{13}$ and their y to $\frac{58}{13}$ to obtain 2 linear equations in both a and b and solves to obtain values for both a and b.	
	No need to check values but must be some wor " $\frac{12a-5b}{13} = \frac{4}{13}$, $\frac{5a+12b}{13} = \frac{58}{13}$ $12a-5b=4$, 5 Values can immediately follow if equations are p the same magni	king between equations and values. a+12b=58 $a=2$, $b=4$ " is M0A0 produced with coefficients of <i>a</i> or <i>b</i> of tude	M1
	a=2 and $b=4$	Correct values for <i>a</i> and <i>b</i> from correct equations with working.	A1
	SC: Allow access to both marks for the exact $a = -\frac{242}{169}$ and $b =$ There are no marks in (c) if z_3 was used as the den	$\frac{716}{169} \text{ from using } w = \frac{z_1 z_3}{z_2} = \frac{12a + 5b}{13} + \frac{12b - 5a}{13} \text{ i}$ ominator in (b) [leads to a = b = 0]	(2)
(d)	$\arctan\left(\frac{\frac{58}{13}}{\frac{4}{13}}\right) \left\{=1.5019 \text{ or } 86.05^{\circ}\right\} \text{ or}$ $\arctan\left(\frac{\frac{4}{13}}{\frac{58}{13}}\right) \left\{=0.068856 \text{ or } 3.945^{\circ}\right\}$	Either correct arctan or tan ⁻¹ seen or implied by a correct 2sf value (awrt 1.5, 86, 0.069/0.068, 3.9) Could use equivalent trig. Note : tan $\frac{58}{4} = -2.634$ or 0.258	M1
	1.502	1.502 only (not awrt) Mark final answer if 1.502 is followed by e.g., $\frac{\pi}{2}$ -1.502 = 0.06880	A1
			(2) Total 10

Question	Scheme	Notes	Marks
7(a)	3	Calculates values for both $f(1)$ and	
	$f(x) = x^2 + x - 3$	f(2) with one correct. Allow	M1
	$f(1) = 1 + 1 - 3 = -1$ $f(2) = \sqrt{8} + 2 - 3 = 1.828$	e.g., $f(2) = 2\sqrt{2} - 1$ or awrt 2	
	f is continuous and changes sign, so root or α		
	in [1, 2]. Correct interval [1, 2] if given.	Correct values and sight of	Δ1
	Sign change can be implied by "negative,	root/shown/OED/true/proven/√	211
	positive", " $f(1) < 0$, $f(2) > 0$ " or " $f(1)f(2) < 0$ "		(2)
(h)	3	Obtains a numerical expression or	(2)
	$f(1.5) = 1.5^{\overline{2}} + 1.5 - 3 \{= \dots 0.3371 \dots\}$	value for f (1.5)	M1
Work	$f(1,25) = 1, 25^{\frac{3}{2}} + 1, 25, 3 = (0, 2524)$	Obtains a <u>value</u> for $f(1.25)$. Requires	dM1
seen in a	$1(1.23) - 1.23^{-} + 1.23^{-} - 3^{-} \dots \{-0.3324\dots\}$	previous M mark.	
table	\Rightarrow root/ α /x/it's in/on/ \in [1.25, 1.5]	Correct values (awrt 0.3 and -0.3 or 0.4) and guitable conclusion. Allow	
	or " in [1.25, 1.5]" or $1.25 \le \operatorname{root} / \alpha / x \le 1.5$	"between $\frac{5}{2}$ and $\frac{3}{2}$ inclusive"	AI
	$D_{1} = f_{1} + f_{1} + f_{2} + f_{3} + f_{3$	$f(1.5) = \frac{3}{2} = \frac{3}{2} = \frac{100}{5} =$	
	$(1.25) = \dots$ followed b interval bisection. There are no marks if it is	\mathbf{y} I(1.5) = so is 100 if no evidence of a clear attempt at interpolation.	(3)
(c)(i)	$3^{-\frac{1}{2}}$	Correct differentiation.	
	$f'(x) = \frac{3}{2}x^2 + 1$	Any correct equivalent e.g., $1.5\sqrt{x} + 1$	B1
(ii)	3	Correctly applies the Newton-	
(11)	$1.375^{-1}+1.375-3$	Raphson formula with 1.375 & their	
	$\alpha \approx 1.3/5 - \frac{1}{3} = \dots$	f'(x) and obtains a value. Some	
	" $\frac{1}{2} \times 1.375^2 + 1$ "	working must be seen unless approx	
	-0.01266958256	root is seen correct to 6 d.p. accuracy	M1
	= 1.375 - 0.0120000000000000000000000000000000000	(1.379592) or better.	
	=1.379592249	Allow "= $1.375 - \frac{f(1.375)}{f(1.375)}$ " followed by value	
	$\begin{bmatrix} 11 & 11\sqrt{22} - 52 & 8 + 3\sqrt{22} \end{bmatrix}$	f'(1.375)	
	$\left\{ \begin{array}{c} \text{exact values}: \frac{-}{8} - \frac{-}{32} \div \frac{-}{8} \end{array} \right\}$	but formula must be fully substituted if just followed by value unless " x_0 "defined	
	awrt 1.380 or "1.38" (Ignore further iterations)	No clearly incorrect work.	A1
	NB Actual root is 1.379589808. A	nswer only is no marks.	(3)
(d)	e.g., $\frac{\alpha - 1.25}{\alpha - 1.25} = \frac{0.3524575141}{\alpha - 1.25}$	Forms an equation in e.g., α with their f(1.25) and f(1.5) allowing for	
	$1.5-\alpha$ 0.3371173071	sign errors only but must be using	M1
	or e.g. $\frac{1.5-\alpha}{\alpha} = \frac{1.5-1.25}{\alpha}$	differences. Allow use of "f(1.25)"	1411
	0.337 0.337 + 0.352	and "f(1.5)"- could recover sign error	
		d M1: Solves \Rightarrow value	
	$\alpha = 1.377780737 = 1.378$	Requires previous M mark.	d M1 A1
	May use a formula Allow work in e.g. r for all	A1: aWR 1.5/8 marks No working required for 2nd M	(3)
Alt		-(-0.3524)	(3)
(Equation	or $y - (-0.3524[\text{or } 0.3371]) = \frac{0.3371]}{1}$	$\frac{1.5 - 1.25}{1.5 - 1.25} (x - 1.25 [or 1.5])$	
of line methods)	0.3371(-0	.3524)	M1
memousy	or -0.3524 [or 0.3371] = $-1.5-1.2$	$\frac{1.25[\text{or}1.5]}{25} + c \Rightarrow c = \dots$	141 1
	A full method to determine the equation of th	e line using their $f(1.25)$ and $f(1.5)$	
	allowing for sign errors only (but allow subseque	ent errors finding c if $y = mx + c$ used)	
	$\{\Rightarrow y = 2.758x - 3.800\}$	unit: Puts $y = 0$ and solves \Rightarrow value R equires provious M mark	
	$\alpha = 1.377780737 = 1.378$	A1: awrt 1.378	(3)
	May use a formula. Allow work in, e.g., x for all x	marks. No working required for 2nd M	Total 11

Question Number	Scheme	Notes	Marks
8	$y^2 = 8x P(2p^2, 4p)$	$Q\left(\frac{2}{p^2}, \frac{-4}{p}\right)$	
	Each part is marked separately. For example there unless that work is refe	e is no credit in (c) for work seen in (b) rred to in (c)	
(a)		Substitutes both coordinates of Q into the parabola equation, obtains	
x and y into	LHS or $y^2 \left\{ = \left(\frac{-4}{p}\right) \right\} = \frac{16}{p^2}$ RHS or $8x \left\{ = 8 \times \frac{2}{p^2} \right\} = \frac{16}{p^2}$	e.g., $\frac{10}{p^2}$ twice and makes minimal	
$y^2 = 8x$	So Q lies on the parabola* $(A)^2$ (2) 16 16	conclusion - e.g., shown/QED/true/proven/√	B1*
	Allow e.g., $\left(\frac{-4}{p}\right) = 8\left(\frac{2}{p^2}\right) \Rightarrow \frac{16}{p^2} = \frac{16}{p^2} \Rightarrow \text{true}$	Sight of just " $y^2 = 8x$ " is insufficient	
		but allow " $y_0^2 = 8x_0$ "	
			(1)
Alt Subs. x or y to find y or x	$x = \frac{2}{p^2} \Rightarrow y^2 = 8 \times \frac{2}{p^2} \text{ or } \frac{16}{p^2} \Rightarrow y = \frac{-4}{p} \text{ or } \pm \frac{4}{p}$ or $y = \frac{-4}{p} \Rightarrow \frac{16}{p^2} = 8x \Rightarrow x = \frac{2}{p^2}$	Substitutes one coordinate of Q into the parabola equation to correctly find the other coordinate and makes minimal conclusion - e.g., - e.g., shown/QED/true/proven/ \checkmark Sight of just" $v^2 = 8x$ " is insufficient	B1*
	p p p $pSo Q lies on the parabola*$	but allow $y_{Q}^{2} = 8x_{Q}$ "	
			(1)
8(b)	Focus is $(2, 0)$ or $x = 2, y = 0$ Could be seen on a diagram	Correct focus seen or used. Condone $(0, 2)$ if $x = 2$, $y = 0$ used but award final A0	B1
	gradient of $PQ = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}}$ or $\frac{-\frac{4}{p} - 4p}{\frac{2}{p^2} - 2p^2}$ $\left\{ = \frac{4p^3 + 4p}{2p^4 - 2} = \frac{2p^3 + 2p}{p^4 - 1} = \frac{2p(p^2 + 1)}{p^4 - 1} = \frac{2p}{p^2 - 1} \right\}$	Attempts the gradient of <i>PQ</i> condoning one term of incorrect sign. Allow this mark is they subsequently attempt to convert it to a normal gradient. Note that <i>m</i> may be obtained from $4p = 2mp^2 + c$, $-\frac{4}{p} = \frac{2m}{p^2} + c \implies m =$	M1
	e.g., $y-4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} (x-2p^2)$ If $y = mx + c$ is used, one of the following express	Any correct equation for <i>PQ</i> . May use <i>Q</i> . Allow this mark to be implied if their equation would have been correct but errors were made simplifying a correct gradient.	A1
	correct gradient seen: $c = 4p - 2p^2$ (gradient	t) or $c = \frac{-4}{p} - \frac{2}{p^2}$ (gradient)	
	Examples with fully simplified gradient (see over $x = 2 \Rightarrow y - 4p = \frac{2p}{p^2 - 1}(2 - 2p^2) \Rightarrow y = \frac{4p - 4p^3}{p^3}$ or $y - 4p = \frac{2p}{p^2 - 1}(2 - 2p^2) \Rightarrow y - 4p = -4p^3$ $y = 0 \Rightarrow -4p = \frac{2p}{p^2 - 1}(x - 2p^2) \Rightarrow x = \frac{-4p^3}{p^3}$ $(2,0) \Rightarrow -4p = \frac{2p}{2}(2 - 2p^2) \Rightarrow -4p$	cheaf for a fuller list): $\frac{+4p^{3}-4p}{2-1} = 0$ $4p \Rightarrow y = 0$ $4p \Rightarrow y = 0$ $+4p+4p^{3} = 2$ $p = -4p$ So <i>PQ</i> passes through the focus*	A1*
	$p^{2}-1$		

	Substitutes $x = 2$ and shows $y = 0$ or vice versa or substitutes both values and shows that the equation is true. Must have minimal conclusion e.g., shown/QED/true/proven/ \checkmark and no incorrect work. Condone no conclusion if the mark in (a) was withheld for this reason only. The examples indicate the minimum level of algebra acceptable. With the		
	exception of using (2, 0) with a fully simplified gradient, <u>look for substitution into the</u>		
	line followed by a further step which shows an expression that clearly leads to 0, 2 or		
	$\underbrace{\text{e.g.}, -4p \text{ or "}1=1" \text{ followed by a}}_{W_{1}}$	a minimal conclusion	
A 14 1	Work in " <i>a</i> " can only access the accuracy	marks when $a = 2$ is substituted	(4)
$\frac{AIT I}{Grad PF} =$	Focus is $(2, 0)$ or $x = 2, y = 0$ Could be seen on a diagram	Condone (0, 2) if $x = 2$, $y = 0$ used but award final A0	B1
Grad <i>QF</i>	gradient $PF = \frac{4p}{2p^2 - 2}$ or $\frac{-4p}{2 - 2p^2}$ and gradient $QF = \frac{\frac{4}{p}}{2 - \frac{2}{p^2}}$ or $\frac{-\frac{4}{p}}{\frac{2}{p^2} - 2}$	M1: Obtains expressions for both gradients condoning one term of incorrect sign in either or both expressions A1: Both correct expressions oe	M1 A1
	Grad $QF = \frac{4p}{2p^2 - 2}$ = Grad <i>PF</i> So <i>PQ</i> passes through the focus*	Shows that the gradients are the same plus minimal conclusion e.g., shown/QED/true/proven/√ with no incorrect work. Condone no conclusion if penalised in (a).	A1*
	Note: A variation is to show grad <i>PF</i> or gra	nd <i>QF</i> = grad <i>PQ</i> – marked as Alt	(4)
	Alt 2 Follows (simila	r triangles)	
8(b) Examples of minimum amount of algebra required with different expressions for gradient: $y-4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} (x-2p^2)$			
$x = 2, y = \dots$	$x = 2 \Longrightarrow y - 4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} (2 - 2p^2)$	$\Rightarrow y = \frac{8p + \frac{8}{p} - 8p^3 - 8p + 8p^3 - \frac{8}{p}}{2p^2 - \frac{2}{p^2}} =$	0
y = 0, x =	$y = 0 \Longrightarrow -4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} \left(x - 2p\right)$	$x^{2} \Rightarrow x = \frac{-8p^{3} + \frac{8}{p} + 8p^{3} + 8p}{4p + \frac{4}{p}} = 2$	
$(2, 0) \Rightarrow$	$(2,0) \Longrightarrow -4p = \frac{4p + \frac{4}{p}}{2p^2 - \frac{2}{p^2}} (2 - 2p^2) \Longrightarrow$	$-4p = \frac{8p + \frac{8}{p} - 8p^3 - 8p}{2p^2 - \frac{2}{p^2}} \Longrightarrow -4p = -4p$	р
	$y - 4p = \frac{4p^3 + 4p}{2p^4 - 2} (x - 2p^2)$		
x = 2, y =	$x = 2 \Longrightarrow y - 4p = \frac{4p^3 + 4p}{2p^4 - 2} (2 - 2p^2) \Longrightarrow$	$y = \frac{8p^3 + 8p - 8p^5 - 8p^3 + 8p^5 - 8p}{2p^4 - 2}$	$\frac{p}{2} = 0$
	or $y-4p = \frac{4p^3 + 4p}{2p^4 - 2} (2-2p^2)$	$\Rightarrow y = \frac{-4p^3 - 4p + 4p^3 + 4p}{p^2 + 1} = 0$	
y = 0, x =	$y = 0 \Longrightarrow -4p = \frac{4p^3 + 4p}{2p^4 - 2} (x - 2p^2)$	$) \Rightarrow x = \frac{-8p^5 + 8p + 8p^5 + 8p^3}{4p^3 + 4p} = 2$	

$$\begin{array}{|c|c|c|c|c|c|} (2,0) \Rightarrow -4p = \frac{4p^3 + 4p}{2p^4 - 2} (2 - 2p^2) \Rightarrow -4p = \frac{8p^3 + 8p - 8p^3 - 8p^3}{2p^4 - 2} \Rightarrow -4p = -4p \\ \hline y -4p = \frac{2p}{2p^2 - 1} (x - 2p^2) \\ \hline y -4p = \frac{2p}{p^2 - 1} (x - 2p^2) \Rightarrow y = \frac{4p - 4p^3 + 4p^3 - 4p}{p^2 - 1} = 0 \\ \hline x = 2 \Rightarrow y - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow y = \frac{4p - 4p^3 + 4p^3 - 4p}{p^2 - 1} = 0 \\ \hline y = 0, x = ... \\ y = 0 \Rightarrow -4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow y - 4p = -4p \Rightarrow y = 0 \\ \hline y = 0, x = ... \\ y = 0 \Rightarrow -4p = \frac{2p}{p^2 - 1} (x - 2p^2) \Rightarrow x = \frac{-4p^3 + 4p + 4p^3}{2p} = 2 \\ \hline (2, 0) \Rightarrow (2, 0) \Rightarrow -4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} (2 - 2p^2) \Rightarrow -4p = -4p \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} = \frac{2p}{p^2} = \frac{2p}{p^2 - 1} = \frac{2p}{p^2} = \frac{2p}{p^2 - 2p^2} \\ \hline x = x - 4p = \frac{2p}{p^2 - 1} = \frac{2p}{p^2} = \frac{2p}{p^2 - 2p^2} = \frac{2p}{p^2} = \frac{2p}{p^2 - 2p^2} \\ \hline x = x - 4p = \frac{4p}{p + p} = \frac{4p}{p + p} = \frac{2p}{p^2 - 2p^2} = \frac{2p}{p^2} = \frac{2p}{p$$

$$\begin{aligned} & \text{Eqn of tgt at } P: \ y-4p = \frac{1}{p}(x-2p^2) \text{ or } \\ & \text{or } \\ & \text{or } \\ & \text{eqn of tgt at } Q: \ y+\frac{4}{p} = -p\left(x-\frac{2}{p^2}\right) \text{ or } \\ & \text{for } \\ & \text{Eqn of tgt at } Q: \ y+\frac{4}{p} = -p\left(x-\frac{2}{p^2}\right) \text{ or } \\ & \text{for tgt at } Q: \ y+\frac{4}{p} = -p\left(x-\frac{2}{p^2}\right) \text{ or } \\ & \text{for } \\ \\ & \text{for } \\ \\ & \text{for } \\ & \text{for } \\ \\ & \text{for } \\ & \text{for } \\ & \text{for } \\ \\ & \text$$

Question Number	Scheme	Notes	Marks	
9	$f(n) = 4^n + 6n - 10 \qquad n$	$v \in \mathbb{Z}$ $n \geqslant 2$		
Att Using e.g., 1 Alternative e divisibility, e	General guidance : Apply the way that best fits the overall approach. Condone work in e.g., <i>n</i> instead of <i>k</i> . Attempts with no induction e.g., not using $f(k)$ in an equation with $f(k+1)$ score a max of 11000. Using e.g., $f(k+2) - f(k+1)$ requires a clear indication of assuming $f(k+1)$ is true to access the last three marks. Alternative explanations are unlikely to access the last three marks unless there is a fully convincing justification of divisibility e.g. $f(k+1) - f(k) = 3 \times 4^k + 6$ followed by "Since 3×4^k is a multiple of both 3 and 4 and hence 12			
$3 \times 4^k +$ <u>Allow use</u>	 6 is divisible by 18" is not a sound argument. Attent expressions must be complete methods of -18 but if any different multiples of 18 are involv of/divisible by (but not "factor of") B1: Any correct numerical expression that is not e.g., 16 + 12 -10, 28 - 10, 4² + 2. Starting with gnore an extra evaluation of f (1) but a comment on 	npts that involve further induction on different to access the last 3 marks. (red e.g., 36, the first A1 requires "36 is a requires "36	ferent <u>multiple</u>	
Final A1: Th	here must be evidence that true for $n = k \implies$ true for $n = k \implies$ true for	or $n = k + 1$ but it could be minimal and be for $n = k$, "is seen in the work follow:	e scored in	
a conclusion	for $n = k + 1$ " in a conclusion	this is sufficient.	sa by the	
	Condone "for all $n \in \mathbb{Z}$ ", "all $n \in \mathbb{Z}$ $n > 2$ ", "a	all $\mathbb{Z} > (\text{or} \ge)$ 2" but not $n \in \mathbb{R}$		
Way 1 f(k+1) = f(k)	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1	
1(k+1)-1(k)	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1	
	$f(k+1) - f(k) = 4^{k+1} + 6(k+1) - 10 - (4^{k} + 6k - 10)$	Attempts $f(k+1)-f(k)$, uses		
	$= 4^{k+1} - 4^{k} + 6 = 3 \times 4^{k} + 6$ = 3(4 ^k + 6k - 10) - 18k + 36	$4^{k+1} = 4 \times 4^k \text{ \& obtains } pf(k) + g(k)$ with g(k) linear (allow constant $\neq 0$)	M1	
	f(k+1) = 4f(k) + 18(2-k) f(k) may be written in full	Correct factorised expression Allow $4f(k)+18 \times 2-18 \times k$ If $f(k + 1)$ is not made the subject then e.g., "true for $f(k + 1) - f(k)$ " is also required	A1	
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
Way 2	(2) 4^{2} (2 10 10		(5)	
f(k+1) =	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1	
	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1	
	$= 4 \times 4^{k} + 6k - 4$ = 4(4 ^k + 6k - 10) - 18k + 36	Uses $4^{k+1} = 4 \times 4^k$ & obtains pf(k) + g(k) with $g(k)$ linear (allow constant $\neq 0$)	M1	
	= 4f(k) + 18(2-k) f(k) may be written in full	Correct factorised expression Allow $4f(k) + 18 \times 2 - 18 \times k$	A1	
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1	
			(5)	

Question Number	Scheme	Notes	Marks
9 cont.	$f(n) = 4^n + 6n - 10 \qquad n$	$n \in \mathbb{Z}$ $n \ge 2$	
Way 3 f(k+1) - mf(k)	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1
	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$f(k+1) - mf(k) = 4^{k+1} + 6(k+1) - 10 - m(4^{k} + 6k - 10)$ = $(4 - m)4^{k} + (6 - 6m)k - 4 + 10m$ e.g. $m = -14 \Rightarrow 18 \times 4^{k} + 90k - 144$ e.g. $m = 4 \Rightarrow -18k + 36$	Attempts $f(k+1) - mf(k)$ and uses a value of <i>m</i> to obtain $c \times 4^k + \dots$ where <i>c</i> is a multiple of their 18 or uses $m = 4$	M1
	e.g., $f(k+1) = -14f(k) + 18(4^{k} + 5k - 8)$ f(k+1) = 4f(k) + 18(2-k) f(k) may be written in full	A correct factorised expression Allow $-14f(k)+18 \times 4^{k}+18 \times 5k-18 \times 8$ If $f(k + 1)$ is not made the subject then e.g., "true for $f(k + 1) - mf(k)$ " is also required	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
			(5)
$\begin{array}{c} \text{Way 4} \\ f(k) = 18M \end{array}$	$f(2) = 4^2 + 6 \times 2 - 10 = 18$	Obtains $f(2) = 18$ with substitution	B1
1(k) - 10M	$f(k+1) = 4^{k+1} + 6(k+1) - 10$	Attempts $f(k+1)$	M1
	$f(k) = 18M, f(k+1) = 4 \times 4^{k} + 6k - 4$ = 4×18M - 18k + 36	Sets $f(k) = 18M$, uses $4^{k+1} = 4 \times 4^k$ & obtains $pf(k) + g(k)$ with $g(k)$ linear (allow constant $\neq 0$)	M1
	f(k+1) = 18(4M+2-k)	A correct factorised expression Allow $18 \times 4M + 18 \times 2 - 18 \times k$	A1
	True for $n = 2$, if true for $n = k$ then true for $n = k + 1$ so true for all $n \in \mathbb{Z}$ $(n \ge 2)$ Minimum in bold.	Full conclusion/narrative and no errors. All marks needed but allow if B0 provided this mark was only withheld for insufficient working.	A1
			(5)
		PAPER T	OTAL: 75