Question Number	Scheme	Notes	Marks
1(a)	$z_1 = 3 + 3i \qquad z_2 = p + qi \qquad p, q \in \square$		
	$ z_1 = \sqrt{3^2 + 3^2}$ $ z_1 z_2 \Rightarrow z_2 \sqrt{18} = 15\sqrt{2} \Rightarrow z_2 = \dots$	Attempts $ z_1 $ using Pythagoras and uses $ z_1z_2 = z_1 z_2 $ to find $ z_2 $	M1
	$ z_2 = 5$	Сао	A1
			(2)
ALI	$ z_{1}z_{2} = 15\sqrt{2}$ $ (3p-3q)+i(3p+3q) = 15\sqrt{2}$ $\sqrt{18p^{2}+18q^{2}} = 15\sqrt{2}$	Uses $ z_1 z_2 = z_1 z_2 $ to reach $p^2 + q^2 =$	M1
	$p^{2} + q^{2} = 25$ $ z_{2} = \sqrt{p^{2} + q^{2}} = 5$		A1 (2)
(b)	$ z_2 = 5 \Longrightarrow p^2 + q^2 = 25$ $\Longrightarrow (-4)^2 + q^2 = 25 \Longrightarrow q = \dots$	Uses $p^2 + q^2 = "5"^2$ with $p = \pm 4$ leading to a value for q .	M1
	$q = \pm 3$	Both values. Must be clear $p = 4$ has not been used	A1
			(2)
(c)	Im	3 + 3i plotted correctly and labelled	BI
	Re	Vectors/ lines not needed; point(s) alone are sufficient	
	Points to be in the correct quadrants and either with correct numbers on the axes or labelled correctly	A conjugate pair plotted correctly following through their q .	B1ft
			l otal 6

Question Number	Scheme	Notes	Marks
2	$f(x) = 10 - 2x - \frac{1}{2\sqrt{x}} - \frac{1}{2\sqrt{x}}$	$-\frac{1}{x^3} \qquad x > 0$	
(a)	f(0.4) = -7.21, f(0.5) = 0.292	Attempts both $f(0.4)$ and $f(0.5)$	M1
	Sign change (positive, negative) and $f(x)$ is continuous therefore (a root) α is between x = 0.4 and $x = 0.5$	Both $f(0.4) = awrt - 7$ and $f(0.5) = awrt$ 0.3, sign change and conclusion. Must mention continuity . Can have $f(0.4) \times f(0.5) < 0$ instead of "sign change"	A1
			(2)
(b)	$f'(x) = -2 + \frac{1}{2}x^{-\frac{3}{2}} + 3x^{-4}$	$x^n \rightarrow x^{n-1}$ in at least 1 term other than 10	M1
	4	2 of the 3 terms shown correct	Al
		All correct	Al (3)
(c)	$x_1 = 0.5 - \frac{f(0.5)}{f'(0.5)} = 0.5 - \frac{0.29289321}{46.70710678}$	Correct application of Newton-Raphson	M1
	= 0.494	Correct value 3dp. A correct derivative must have been used	A1
			(2)
(d)	$\frac{4.9-\beta}{\left f\left(4.9\right)\right } = \frac{\beta-4.8}{f\left(4.8\right)} \Longrightarrow \beta = \dots$	Uses a correct interpolation method (Signs to be correct)	M1
	$\beta = 4.883$	Correct value 3dp unless penalised in (c)	A1
			(2)
ALT 1	$\beta = \frac{a f(b) + b f(a) }{ f(a) + f(b) }$ $\beta = \frac{4.8 \times 0.0344 + 4.9 \times 0.1627}{0.0344 + 0.1627} = \dots$	Uses a correct interpolation method (Signs to be correct)	M1
	$\beta = 4.883$	Correct value 3dp unless penalised in (c)	A1
		1	(2)
ALT 2	Gradient = $\frac{-0.0344 - 0.1627}{4.9 - 4.8} = -1.971$ Equation of line: $y - 0.1627 = -1.971(x - 4.8)$ or $y = -1.971 + 9.6235$ Substitute $y = 0$ $x =$	Complete method for line equation followed by substitution to obtain a value for x	M1
	$\beta = 4.883$	Correct value 3dp unless penalised in (c)	A1
			(2) Total 9

Question Number	Scheme	Notes	Marks
3(a)	$\mathbf{M}^{-1} = \frac{1}{5k - 3k} \begin{pmatrix} 5 & -k \\ -3 & k \end{pmatrix}$	Attempts $\mathbf{M}^{-1} = \frac{1}{\det \mathbf{M}} \times \operatorname{adj}(\mathbf{M})$ Either part correct but $\operatorname{adj}(\mathbf{M}) = \mathbf{M}$ scores M0	M1
	$=\frac{1}{2k} \begin{pmatrix} 5 & -k \\ -3 & k \end{pmatrix} \text{ or } \begin{pmatrix} \frac{5}{2k} & -\frac{1}{2} \\ \frac{-3}{2k} & \frac{1}{2} \end{pmatrix}$	Correct matrix $2k$ must be seen for this mark	A1
			(2)
(b)	$(\mathbf{MN})^{-1} = \mathbf{N}^{-1}\mathbf{M}^{-1} = \frac{1}{2k} \begin{pmatrix} k & k \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 5 & -k \\ -3 & k \end{pmatrix}$	Applies $(\mathbf{MN})^{-1} = \mathbf{N}^{-1}\mathbf{M}^{-1}$	M1
	$=\frac{1}{2k} \begin{pmatrix} 2k & 0\\ 23 & -5k \end{pmatrix} \text{ or e.g.} \begin{pmatrix} 1 & 0\\ \frac{23}{2k} & \frac{-5}{2} \end{pmatrix}$	Correct matrix	A1
			(2)
ALT (b)	Find N (ie inverse of N ⁻¹) Find MN = $-\frac{1}{5k}\begin{pmatrix}-5k & 0\\-23 & 2k\end{pmatrix}$ Find (MN) ⁻¹	Complete method needed	M1
	$= \frac{1}{2k} \begin{pmatrix} 2k & 0\\ 23 & -5k \end{pmatrix} \text{ or e.g.} \begin{pmatrix} 1 & 0\\ \frac{23}{2k} & \frac{-5}{2} \end{pmatrix}$	Correct matrix	A1
			(2)
			Total 4

Question Number	Scheme	Notes	Marks
4	$f(z) = 2z^4 - 19z^3 + $	$-Az^2 + Bz - 156$	
(a)	(z=)5+i	Correct complex number	B1
			(1)
	Mark (b) and (c) together – i Award marks in the order give	ignore any labelling seen. n for their choice of method	
(b)/(c)	$z = 5 \pm i \Rightarrow (z - (5 + i))(z - (5 - i)) =$		
With (b) first	Or e.g. Sum of roots = 10 Product of roots = 26	Correct strategy to find the quadratic factor using the conjugate pair	M1
	$z^2 - 10z + 26$	Correct quadratic	A1
	$f(z) = (z^2 - 10z + 26)(2z^2 +z + k)$	Attempts to find the other quadratic. May use inspection (apply rules for quadratic factorisation ie "26" $ k = 156$) or e.g.	M1
	NB long division gives quotient 2	$z^2 + z + (4 - 4^2)$ and remainder	
	(10A+B-446)z	z + 936 - 26A	
	$2z^2 + z - 6$	Correct quadratic	A1
	$\Rightarrow z = \frac{3}{2}, -2 \ (,5\pm i)$	Correct real roots. The complex roots do not have to be stated.	A1
			(5)
	$f(z) = (z^{2} - 10z + 26)(2z^{2} + z - 6)$ =	Multiplies out both quadratics or extracts the terms needed	M1
	A = 36, B = 86	Correct values (can be seen in the quartic equation)	A1
			(2)
(b)/(c)		Substitute (5+i) into the substitute (by)	M1
With (c)	952+960i-2090-24 <i>A</i> +10 <i>A</i> i+5 <i>B</i> i-156=0	calculator) and equate real and imag parts (can be done with $(5-i)$)	
	-1294+24 <i>A</i> +5 <i>B</i> =0 -446+10A+B=0	Correct equations	A1
	A=36 B=86	M1 Solve simultaneously A1 One correct A1 Both correct	M1 A1A1
	$2z^4 - 19z^3 + 36z^2 + 86z - 156 = 0$	Solve the equation by long division, inspection or by calculator	(5) M1
	$\Rightarrow z = \frac{3}{2}, -2 (,5\pm i)$	Correct real roots. The complex roots do not have to be stated.	A1
			(2)
			Total 8

Question Number	Scheme		Notes	Marks
5	$2x^2 - 3x + 5 = 0$			
(a)	$\alpha + \beta = \frac{3}{2}, \alpha\beta = \frac{5}{2}$		Both	B1
				(1)
(b)(i)	$\alpha^2 + \beta^2 = \left(\alpha + \beta\right)^2 - 2\alpha\beta$		Uses a correct identity	M1
	$= \left(\frac{3}{2}\right)^2 - 2\left(\frac{5}{2}\right) = -\frac{11}{4} \left(=-2.75\right)$		Correct value Allow to come from $\alpha + \beta = -\frac{3}{2}$	A1
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$		Reaches an identity ready for substitution	M1
	$= \left(\frac{3}{2}\right)^3 - 3\left(\frac{3}{2}\right)\left(\frac{5}{2}\right) = -\frac{63}{8} \left(=-7.875\right)$	5)	Correct value	A1
				(4)
(c)	Sum = $\alpha^3 + \beta^3 - (\alpha + \beta) = -\frac{63}{8} - \frac{3}{2} \left(= -\frac{63}{8} - \frac{3}{2} \right)$	$\left(\frac{75}{8}\right)$	Attempts sum Allow $eg(\alpha^3 - \beta) + (\beta^3 - \alpha)$ followed by $(\alpha^3 + \beta^3) + (\alpha + \beta) =$	M1
	Prod = $(\alpha\beta)^3 - \alpha^4 - \beta^4 + \alpha\beta$ and $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2$		Expands $(\alpha^3 - \beta)(\beta^3 - \alpha)$ and uses a correct identity for $\alpha^4 + \beta^4$	M1
	Alt identities: $\alpha^4 + \beta^4 =$			
	$ \begin{array}{l} \alpha^{4} + \beta^{4} = \\ \left(\alpha + \beta\right)^{4} - 4\alpha\beta\left(\alpha^{2} + \beta^{2}\right) - 6\alpha^{2}\beta^{2}; \ \alpha^{4} + \beta^{4} = \left(\alpha^{3} + \beta^{3}\right)\left(\alpha + \beta\right) - \alpha\beta\left(\alpha^{2} + \beta^{2}\right) \end{array} $		$(\alpha^{3}+\beta^{3})(\alpha+\beta)-\alpha\beta(\alpha^{2}+\beta^{2})$	
	$(\alpha\beta)^3 - \alpha^4 - \beta^4 + \alpha\beta = \left(\frac{5}{2}\right)^3$	$+\frac{5}{2}-$	$\left(\left(-\frac{11}{4}\right)^2 - 2\left(\frac{5}{2}\right)^2\right) = \frac{369}{16}$	A1
	$x^2 + \frac{75}{8}x + \frac{369}{16}(=0)$	Applie	es $x^2 - (\text{their sum})x + \text{their prod} (= 0)$	M1
	$16x^2 + 150x + 369 = 0$		Allow any integer multiple	A1
				(5) Total 10

Question Number	Scheme	Notes	Marks
6(a)	$x = 9t^{2}, y = 18t \Rightarrow \frac{dy}{dx} = \frac{18}{18t}$ or $y^{2} = 36x \Rightarrow 2y\frac{dy}{dx} = 36 \Rightarrow \frac{dy}{dx} = \frac{18}{y} = \frac{18}{18t}$ or $y^{2} = 36x \Rightarrow y = 6\sqrt{x} \Rightarrow \frac{dy}{dx} = \frac{3}{\sqrt{x}} = \frac{3}{3t}$	Correct $\frac{dy}{dx}$ in terms of t There must be evidence of use of calculus $(\frac{dy}{dx} = \frac{1}{t}$ with no working scores B0)	B1
	$m_T = \frac{1}{t} \Longrightarrow m_N = -t$	Correct use of the perpendicular gradient rule.	M1
	$y - 18t = -t\left(x - 9t^2\right)$	Correct straight line method for the normal. Must use their perpendicular gradient – not dy/dx . (Any complete method – use of y = mx + c requires an attempt at "c")	dM1
	$y + tx = 9t^3 + 18t^*$	earned	A1*
			(4)
(b)	$x = 54, y = 0 \Longrightarrow 54t = 9t^3 + 18t$ $\implies 9t^3 - 36t = 0$	Substitutes $x = 54$ and $y = 0$ into the equation from part (a) and attempts to collect terms.	M1
	$9t^{3} - 36t = 0 \Longrightarrow 9t(t^{2} - 4) = 0$ $\Longrightarrow t = \pm 2 \Longrightarrow y \pm 2x = 9(\pm 2)^{3} + 18(\pm 2)$	Solves to obtain at least one non zero value for t and attempts at least one normal equation	dM1
	y = -2x + 108 or y = 2x - 108	One correct equation in any equivalent form	A1
	y = -2x + 108 and $y = 2x - 108$	Both correct and in the required form	A1
			(4)
(c)	$x = -9 \Longrightarrow y = 18 + 108 \text{ or } -18 - 108$	Uses $x = -9$ to find the <i>y</i> coordinate of <i>A</i> or <i>B</i>	M1
	Area = $\frac{1}{2} \times 252 \times 18$	Fully correct strategy for the area Award M0 if their <i>x</i> coord of the focus is not doubled	M1
	= 2268	Cao	A1
			(3)
			Total 11
ALT	Last 2 marks by "shoelace" method:		
	$eg \left \frac{1}{2} \right ^{-9} \frac{9}{126} \frac{-9}{0} \frac{-9}{126} \right \\ = \left \frac{1}{2} (9 \times -126 - 9 \times 126 - (-9 \times -126 + 9 \times 126)) \right \\$	Their coordinates with first and last the same ½ must be included Attempt to expand also needed	M1
	= 2268	Must be positive	A1

Question Number	Scheme	Notes	Marks
7(a)	$\mathbf{A}^{2} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$	Correct matrix	В1
		Dec. 1	(1)
(b)		Rotation	M1
	Rotation -60° (anticlockwise) about the origin	-60° (anticlockwise) (Or 60° clockwise or 300° (anticlockwise)) about (0, 0)	A1
			(2)
(c)	<i>n</i> = 12	Cao but can be embedded ie $A^{12} = I$	B1
			(1)
(d)	$\mathbf{B} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$	Correct matrix	B1
			(1)
(e)	$\mathbf{C} = \mathbf{B}\mathbf{A} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	Multiplies the right way round.	M1
	$\mathbf{C} = \begin{pmatrix} -2\sqrt{3} & -2\\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	Correct matrix Accept unsimplified	A1
			(2)
(f)	det $\mathbf{C} = -2\sqrt{3} \times -\frac{\sqrt{3}}{2} - \frac{1}{2}(-2) = 4$ So area of P is $\frac{20}{\det \mathbf{C}} = \dots$	Attempts determinant of C (or deduces area scale factor is 4) and divides into 20	M1
	= 5	Cao Must follow a correct matrix in (e)	A1
			(2)
			Total 9

Question Number	Scheme	Notes	Marks
8	$\sum_{r=0}^{n} (r+1)($	(r+2)	
(a)	$\sum_{r=0}^{n} r^{2} + 3r + 2 = 2 + \frac{1}{6}n(n+1)$	$(2n+1)+\frac{3}{2}n(n+1)+2n$	
	M1: Attempt to use at least one of the standard formulae correctly		
	A1: For $\frac{1}{6}n(n+1)(2n+1) + \frac{3}{2}n(n+1) + (2n \text{ or } 2n+2)$		
	A1:Fully correct	expression	
	$\frac{1}{6}n(n+1)(2n+1) + \frac{3}{2}n(n+1) + 2n+2$	$2 = (n+1) \left\lfloor \frac{1}{6}n(2n+1) + \frac{3}{2}n+2 \right\rfloor$	
	Attempt to factor	ise $(n+1)$	M1
	It is a "show" question so this must be	e seen (in any equivalent form).	
	If their expression does not allow for	r factorising $(n+1)$ score M0	
	$\frac{1}{3}(n+1)\left[n^2+5n+6\right]$	May obtain a cubic and extract a different factor ie $n + 2$ or $n + 3$	
	$\frac{1}{3}(n+1)(n+2)(n+3)^*$	Cso At least one intermediate step in the working must be seen.	A1*
			(5)
(a) Way 2	$\sum_{r=0}^{n} (r+1)(r+2) = \sum_{r=1}^{n+1} r(r+1)$		
	$=\sum_{r=1}^{n+1} r^2 + r = \frac{1}{6} (n+1)(n+2)(2(n+1)+1) + \frac{1}{2}(n+1)(n+2)$		
	M1: Attempt to use at least one of the standard formulae correctly with $n = n + 1$		
	A1: For $\frac{1}{6}(n+1)(n+2)(2(n+1)+1)$ or $\frac{1}{2}(n+1)(n+2)$		
	A1:Fully correct	expression	
	$\frac{1}{6}(n+1)(n+2)(2(n+1)+1) + \frac{1}{2}(n+1)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2)(n+2$	$) = (n+1) \left\lfloor \frac{1}{6} (n+1)(2n+3) + \frac{1}{2} (n+2) \right\rfloor$	M1
	Attempt to factorise $(n+1)$ (see	additional comments above)	
	$\frac{1}{3}(n+1)\left[n^2+5n+6\right]$	May obtain a cubic and extract a different factor ie $n + 2$ or $n + 3$	
	$\frac{1}{3}(n+1)(n+2)(n+3)^*$	Cso At least one intermediate step in the working must be seen.	A1*
(b)	Upper limit = 99	Correct upper limit	B1
	$10 \times 11 + 11 \times 12 + 12 \times 13 + + 100 \times 101 =$	$\sum_{r=0}^{99} (r+1)(r+2) - \sum_{r=0}^{8} (r+1)(r+2)$	M1
	Fully correct strategy for the sum using their upper limit for the first sum and upper limit 8 for the second in the result from (a). Lower limits 0 or 1		
	$=\frac{1}{3}(100)(101)(102) - \frac{1}{3}(9)(10)(11)$ $= 343\ 070$	Correct value	A1

			(3)
			Total 8
Question Number	Scheme	Notes	Marks
9(i)	$u_n = 5 \times 2^{n-1} -$	$-n \times 2^n$	
	$n = 1 \Longrightarrow u_1 = 5 \times 2^{10}$	$^{0}-1 \times 2 = 3$	R1
	(Shows the result is t	true for $n = 1$)	DI
	Assume true for $n = k$ so that a	$u_k = 5 \times 2^{k-1} - k \times 2^k$	
	$u_{k+1} = 2(5 \times 2^{k-1} - k \times 2^k) - 2^{k+1}$	Attempts u_{k+1} using the recurrence relationship	M1
	$= 5 \times 2^{k} - k \times 2^{k+1} - 2^{k+1}$	Correct expanded expression	A1
	$=5 \times 2^{k} - (k+1)2^{k+1}$	Achieves this result with no errors	A1
	If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n .		Alcso
	The final mark depends on all except the B mark, though a check for $n = 1$ must have been attempted.		
(11)	$f(n) = 5^{n+2} - 4n - 9$		
	$f(1) = 125 - 4 - 9 = 112 = 16 \times 7$	Shows $f(1)$ is divisible by 16 Either of 112 or 16×7 must be seen	B1
	Assume true for $n = k$ so that $5^{k+2} - 4k - 9$ is divisible by 16		
	$f(k+1) = 5^{k+3} - 4(k+1) - 9$	Attempts $f(k + 1)$	M1
	$= 5 \times (5^{k+2} - 4k - 9) + \dots$	Attempts to express in terms of $f(k)$	dM1
	$= 5 \times (5^{k+2} - 4k - 9) + 16k + 32$	Correct expression for $f(k+1)$	A1
	If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n .		Alcso
	The final mark depends on all except the B mark, though a check for $n = 1$ must have been attempted		(5)
			Total 10

ii ALT 1	$f(1) = 125 - 4 - 9 = 112 = 16 \times 7$	Shows $f(1)$ is divisible by 16 Either of 112 or 16×7 must be seen	B1
	Assume $5^{k+2} - 4k - 9$ is divisible by 16		
	$f(k+1) - mf(k) = 5^{k+3} - 4(k + 4)$	$(-1) - 9 - m(5^{k+2} - 4k - 9)$	M1
	$= (5-m)(5^{k+2}-4k-9) + \dots$	Attempts to express in terms of $f(k)$	dM1
			uwn
	$f(k+1) = 5 \times (5^{k+2} - 4k - 9) + 16k + 32$	Correct expression for $f(k+1)$	A1
	If the result is true for $n = k$ then it is true for $n = t$ true for $n = 1$, then the res	k + 1. As the result has been shown to be ult is true for all n .	Alcso
	The final mark depends on all except the B mark attempte	, though a check for $n = 1$ must have been d	
	*		
ii ALT 2	$f(1) = 125 - 4 - 9 = 112 = 16 \times 7$	Shows $f(1)$ is divisible by 16 Either of 112 or 16×7 must be seen	B1
	Assume $5^{k+2} - 4k - 9i$	s divisible by 16	
	$f(k+1) - f(k) = 5^{k+3} - 4(k+1)$	$(-1) - 9 - (5^{k+2} - 4k - 9)$	M1
	$f(k+1) - f(k) - 5 \times 5^{k+2} - 5^{k}$	$\frac{1}{k} - \frac{1}{k} - \frac{1}{2} - \frac{1}$	
	$= 4 \times 5^{k+2} - 4 = 4(5^{k+2} - 1)$		
	Obtains a simplified expression for the differen	nce and attempts to prove $(5^{k+2}-1)$ is	
	divisible by 4 using induction		
	Correct proof for $(5^{k+2}-1)$ being divisible by 4 and states that thus as the difference is divisible by 16. $f(k+1)$ is divisible by 16.		A1
	If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n .		A1 cso
	The final mark depends on all except the B mark, though a check for $n = 1$ must have been attempted		
ii ALT 3	$f(1) = 125 - 4 - 9 = 112 = 16 \times 7$	Shows $f(1)$ is divisible by 16 Either of 112 or 16×7 must be seen	B1
	f(k) is divisible by 16 so	p set $f(k) = 16\lambda$	
	$5^{k+2} = 16\lambda + 4k + 9$		M1
	$f(k+1) = 5^{k+3} - 4(k+1) - 9$	$\Gamma_{\text{respective}} = \frac{g(1+1)}{2}$ is the set of $\frac{1}{2}$	
	$= 5 \times 5^{k+2} - 4k - 13 = 5(16\lambda + 4k + 9) - 4k - 4k + 9$	-13 Expresses $I(k+1)$ in terms of λ and k and collects terms	dM1
	$= 80\lambda + 16k + 32$	Correct expression May have factor of 16 taken out	A1
	If the result is true for $n = k$ then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n .		Alcso
	The final mark depends on all except the B mark, though a check for $n = 1$ must have been attempted		