Question Number	Scheme	Notes	Marks
1(a)	$z_{1}=3+3 \mathrm{i} \quad z_{2}=p+q \mathrm{i} \quad p, q \in \square$		
	$\begin{gathered} \left\|z_{1}\right\|=\sqrt{3^{2}+3^{2}} \\ \left\|z_{1} z_{2}\right\|=\left\|z_{1}\right\|\left\|z_{2}\right\| \Rightarrow\left\|z_{2}\right\| \sqrt{18}=15 \sqrt{2} \Rightarrow\left\|z_{2}\right\|=\ldots \end{gathered}$	Attempts $\left\|z_{1}\right\|$ using Pythagoras and uses $\left\|z_{1} z_{2}\right\|=\left\|z_{1}\right\|\left\|z_{2}\right\|$ to find $\left\|z_{2}\right\|$	M1
	$\left\|z_{2}\right\|=5$	Cao	A1
			(2)
ALT	$\begin{gathered} \left\|z_{1} z_{2}\right\|=15 \sqrt{2} \\ \|(3 p-3 q)+\mathrm{i}(3 p+3 q)\|=15 \sqrt{2} \\ \sqrt{18 p^{2}+18 q^{2}}=15 \sqrt{2} \\ p^{2}+q^{2}=25 \\ \left\|z_{2}\right\|=\sqrt{p^{2}+q^{2}}=5 \end{gathered}$	Uses $\left\|z_{1} z_{2}\right\|=\left\|z_{1}\right\|\left\|z_{2}\right\|$ to reach $p^{2}+q^{2}=\ldots$	M1 A1 (2)
(b)	$\begin{gathered} \left\|z_{2}\right\|=5 \Rightarrow p^{2}+q^{2}=25 \\ \Rightarrow(-4)^{2}+q^{2}=25 \Rightarrow q=\ldots \end{gathered}$	Uses $p^{2}+q^{2}=" 5^{12}$ with $p= \pm 4$ leading to a value for q.	M1
	$q= \pm 3$	Both values. Must be clear $p=4$ has not been used	A1
			(2)
(c)	 Points to be in the correct quadrants and either with correct numbers on the axes or labelled correctly	$3+3 i$ plotted correctly and labelled Vectors/ lines not needed; point(s) alone are sufficient	B1
		A conjugate pair plotted correctly following through their q.	B1ft
			(2)
			Total 6

Question Number	Scheme	Notes	Marks
2	$\mathrm{f}(x)=10-2 x-\frac{1}{2 \sqrt{x}}$	$\frac{1}{x^{3}} \quad x>0$	
(a)	$f(0.4)=-7.21 \ldots, \mathrm{f}(0.5)=0.292 \ldots$	Attempts both $\mathrm{f}(0.4)$ and $\mathrm{f}(0.5)$	M1
	Sign change (positive, negative) and $\mathrm{f}(x)$ is continuous therefore (a root) α is between $x=0.4$ and $x=0.5$	Both $\mathrm{f}(0.4)=$ awrt -7 and $\mathrm{f}(0.5)=$ awrt 0.3 , sign change and conclusion. Must mention continuity. Can have $\mathrm{f}(0.4) \times \mathrm{f}(0.5)<0$ instead of "sign change"	A1
			(2)
(b)	$f^{\prime}(x)=-2+\frac{1}{4} x^{-\frac{3}{2}}+3 x^{-4}$	$\begin{aligned} & x^{n} \rightarrow x^{n-1} \text { in at least } 1 \text { term other than } \\ & 10 \end{aligned}$	M1
		2 of the 3 terms shown correct	A1
		All correct	A1
			(3)
(c)	$x_{1}=0.5-\frac{\mathrm{f}(0.5)}{\mathrm{f}^{\prime}(0.5)}=0.5-\frac{0.29289321 \ldots}{46.70710678 \ldots}$	Correct application of Newton-Raphson	M1
	$=0.494$	Correct value 3dp. A correct derivative must have been used	A1
			(2)
(d)	$\frac{4.9-\beta}{\|\mathrm{f}(4.9)\|}=\frac{\beta-4.8}{\mathrm{f}(4.8)} \Rightarrow \beta=\ldots$	Uses a correct interpolation method (Signs to be correct)	M1
	$\beta=4.883$	Correct value 3dp unless penalised in (c)	A1
			(2)
ALT 1	$\begin{aligned} & \beta=\frac{a\|\mathrm{f}(b)\|+b\|\mathrm{f}(a)\|}{\|\mathrm{f}(a)\|+\|\mathrm{f}(b)\|} \\ & \beta=\frac{4.8 \times 0.0344+4.9 \times 0.1627}{0.0344+0.1627}=\ldots \end{aligned}$	Uses a correct interpolation method (Signs to be correct)	M1
	$\beta=4.883$	Correct value 3dp unless penalised in (c)	A1
			(2)
ALT 2	$\begin{aligned} & \text { Gradient }=\frac{-0.0344-0.1627}{4.9-4.8}=-1.971 \\ & \text { Equation of line: } y-0.1627=-1.971(x-4.8) \\ & \text { or } y=-1.971+9.6235 \\ & \text { Substitute } y=0 \quad x=\ldots \end{aligned}$	Complete method for line equation followed by substitution to obtain a value for x	M1
	$\beta=4.883$	Correct value 3dp unless penalised in (c)	A1
			(2)
			Total 9

Question Number	Scheme	Notes	Marks
3(a)	$\mathbf{M}^{-1}=\frac{1}{5 k-3 k}\left(\begin{array}{rr}5 & -k \\ -3 & k\end{array}\right)$	Attempts $\mathbf{M}^{-1}=\frac{1}{\operatorname{det} \mathbf{M}} \times \operatorname{adj}(\mathbf{M})$ Either part correct but $\operatorname{adj}(\mathbf{M})=\mathbf{M}$ scores M0	M1
	$=\frac{1}{2 k}\left(\begin{array}{rr}5 & -k \\ -3 & k\end{array}\right)$ or $\left(\begin{array}{cc}\frac{5}{2 k} & -\frac{1}{2} \\ \frac{-3}{2 k} & \frac{1}{2}\end{array}\right)$	Correct matrix $2 k$ must be seen for this mark	A1
			(2)
(b)	$(\mathbf{M N})^{-1}=\mathbf{N}^{-1} \mathbf{M}^{-1}=\frac{1}{2 k}\left(\begin{array}{cc}k & k \\ 4 & -1\end{array}\right)\left(\begin{array}{rr}5 & -k \\ -3 & k\end{array}\right)$	Applies ($\mathbf{M N})^{-1}=\mathbf{N}^{-1} \mathbf{M}^{-1}$	M1
	$=\frac{1}{2 k}\left(\begin{array}{cc}2 k & 0 \\ 23 & -5 k\end{array}\right)$ or e.g. $\left(\begin{array}{cc}1 & 0 \\ \frac{23}{2 k} & \frac{-5}{2}\end{array}\right)$	Correct matrix	A1
			(2)
ALT (b)	$\begin{array}{r} \text { Find } \mathbf{N} \text { (ie inverse of } \mathbf{N}^{-1} \text {) } \\ \text { Find } \mathbf{M N}=-\frac{1}{5 k}\left(\begin{array}{rr} -5 k & 0 \\ -23 & 2 k \end{array}\right) \\ \text { Find }(\mathbf{M N})^{-1} \\ =\frac{1}{2 k}\left(\begin{array}{cc} 2 k & 0 \\ 23 & -5 k \end{array}\right) \text { or e.g. }\left(\begin{array}{cr} 1 & 0 \\ \frac{23}{2 k} & \frac{-5}{2} \end{array}\right) \end{array}$	Complete method needed Correct matrix	M1 A1
			(2)
			Total 4

Question Number	Scheme	Notes	Marks
4	$\mathrm{f}(z)=2 z^{4}-19 z^{3}+A z^{2}+B z-156$		
(a)	$(z=) 5+\mathrm{i}$	Correct complex number	B1
			(1)
	Mark (b) and (c) together - ignore any labelling seen. Award marks in the order given for their choice of method		
(b)/(c) With (b) first	$z=5 \pm \mathrm{i} \Rightarrow(z-(5+\mathrm{i}))(z-(5-\mathrm{i}))=\ldots$ Or e.g. Sum of roots $=10$ Product of roots $=26$	Correct strategy to find the quadratic factor using the conjugate pair	M1
	$z^{2}-10 z+26$	Correct quadratic	A1
	$\mathrm{f}(z)=\left(z^{2}-10 z+26\right)\left(2 z^{2}+\ldots z+k\right)$	Attempts to find the other quadratic. May use inspection (apply rules for quadratic factorisation ie " $26 "\|k\|=156$) or e.g. long division with quotient $2 z^{2}+\ldots z+\ldots$	M1
	NB long division gives quotient $2 z^{2}+z+(A-42)$ and remainder$(10 A+B-446) z+936-26 A$		
	$2 z^{2}+z-6$	Correct quadratic	A1
	$\Rightarrow z=\frac{3}{2},-2(, 5 \pm \mathrm{i})$	Correct real roots. The complex roots do not have to be stated.	A1
			(5)
	$\begin{gathered} \mathrm{f}(z)=\left(z^{2}-10 z+26\right)\left(2 z^{2}+z-6\right) \\ =\ldots \end{gathered}$	Multiplies out both quadratics or extracts the terms needed	M1
	$A=36, B=86$	Correct values (can be seen in the quartic equation)	A1
			(2)
			Total 8
(b)/(c) With (c) first	952+960i-2090-24A+10Ai $+5 B \mathrm{i}-156=0$	Substitute $(5+i)$ into the quartic (by calculator) and equate real and imag parts (can be done with $(5-\mathrm{i})$)	M1
	$\begin{gathered} -1294+24 A+5 B=0 \\ -446+10 \mathrm{~A}+\mathrm{B}=0 \end{gathered}$	Correct equations	A1
	$A=36 \quad B=86$	M1 Solve simultaneously A1 One correct A1 Both correct	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1A1 } \end{aligned}$
			(5)
	$\begin{aligned} & 2 z^{4}-19 z^{3}+36 z^{2}+86 z-156=0 \\ & z=\ldots \end{aligned}$	Solve the equation by long division, inspection or by calculator	M1
	$\Rightarrow z=\frac{3}{2},-2(, 5 \pm i)$	Correct real roots. The complex roots do not have to be stated.	A1
			(2)
			Total 8

Question Number	Scheme	Notes	Marks
5	$2 x^{2}-3 x+5=0$		
(a)	$\alpha+\beta=\frac{3}{2}, \quad \alpha \beta=\frac{5}{2}$	Both	B1
			(1)
(b)(i)	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$	Uses a correct identity	M1
	$=\left(\frac{3}{2}\right)^{2}-2\left(\frac{5}{2}\right)=-\frac{11}{4}(=-2.75)$	Correct value Allow to come from $\alpha+\beta=-\frac{3}{2}$	A1
(ii)	$\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$	Reaches an identity ready for substitution	M1
	$=\left(\frac{3}{2}\right)^{3}-3\left(\frac{3}{2}\right)\left(\frac{5}{2}\right)=-\frac{63}{8}(=-7.875)$	Correct value	A1
			(4)
(c)	$\operatorname{Sum}=\alpha^{3}+\beta^{3}-(\alpha+\beta)=-\frac{63}{8}-\frac{3}{2}\left(=-\frac{75}{8}\right)$	Attempts sum Allow eg $\left(\alpha^{3}-\beta\right)+\left(\beta^{3}-\alpha\right)$ followed by $\left(\alpha^{3}+\beta^{3}\right)+(\alpha+\beta)=\ldots$	M1
	$\begin{gathered} \operatorname{Prod}=(\alpha \beta)^{3}-\alpha^{4}-\beta^{4}+\alpha \beta \\ \text { and } \\ \alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2(\alpha \beta)^{2} \end{gathered}$	Expands $\left(\alpha^{3}-\beta\right)\left(\beta^{3}-\alpha\right)$ and uses a correct identity for $\alpha^{4}+\beta^{4}$	M1
	Alt identities:$\begin{aligned} & \alpha^{4}+\beta^{4}= \\ & (\alpha+\beta)^{4}-4 \alpha \beta\left(\alpha^{2}+\beta^{2}\right)-6 \alpha^{2} \beta^{2} ; \alpha^{4}+\beta^{4}=\left(\alpha^{3}+\beta^{3}\right)(\alpha+\beta)-\alpha \beta\left(\alpha^{2}+\beta^{2}\right) \end{aligned}$		
	$(\alpha \beta)^{3}-\alpha^{4}-\beta^{4}+\alpha \beta=\left(\frac{5}{2}\right)^{3}+\frac{5}{2}-\left(\left(-\frac{11}{4}\right)^{2}-2\left(\frac{5}{2}\right)^{2}\right)=\frac{369}{16}$		A1
	$x^{2}+\frac{75}{8} x+\frac{369}{16}(=0) \quad$ App	$x^{2}-($ their sum $) x+$ their prod $(=0)$	M1
	$16 x^{2}+150 x+369=0$	Allow any integer multiple	A1
			(5)
			Total 10

Question Number	Scheme	Notes	Marks
6(a)	$x=9 t^{2}, y=18 t \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{18}{18 t}$ or $\begin{gathered} y^{2}=36 x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=36 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{18}{y}=\frac{18}{18 t} \\ \text { or } \\ y^{2}=36 x \Rightarrow y=6 \sqrt{x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{\sqrt{x}}=\frac{3}{3 t} \end{gathered}$	Correct $\frac{d y}{d x}$ in terms of t There must be evidence of use of calculus $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{t}\right.$ with no working scores B0)	B1
	$m_{T}=\frac{1}{t} \Rightarrow m_{N}=-t$	Correct use of the perpendicular gradient rule.	M1
	$y-18 t=-t\left(x-9 t^{2}\right)$	Correct straight line method for the normal. Must use their perpendicular gradient - not $\mathrm{d} y / \mathrm{d} x$. (Any complete method - use of $y=m x+c$ requires an attempt at " c ")	dM1
	$y+t x=9 t^{3}+18 t^{*}$	Cso All previous marks must have been earned	A1*
			(4)
(b)	$\begin{aligned} x=54, y & =0 \Rightarrow 54 t=9 t^{3}+18 t \\ & \Rightarrow 9 t^{3}-36 t=0 \end{aligned}$	Substitutes $x=54$ and $y=0$ into the equation from part (a) and attempts to collect terms.	M1
	$\begin{gathered} 9 t^{3}-36 t=0 \Rightarrow 9 t\left(t^{2}-4\right)=0 \\ \Rightarrow t= \pm 2 \Rightarrow y \pm 2 x=9(\pm 2)^{3}+18(\pm 2) \end{gathered}$	Solves to obtain at least one non zero value for t and attempts at least one normal equation	dM1
	$\begin{gathered} y=-2 x+108 \\ \text { or } \\ y=2 x-108 \end{gathered}$	One correct equation in any equivalent form	A1
	$\begin{gathered} y=-2 x+108 \\ \quad \text { and } \\ y=2 x-108 \end{gathered}$	Both correct and in the required form	A1
			(4)
(c)	$x=-9 \Rightarrow y=18+108$ or $-18-108$	Uses $x=-9$ to find the y coordinate of A or B	M1
	Area $=\frac{1}{2} \times 252 \times 18$	Fully correct strategy for the area Award M0 if their x coord of the focus is not doubled	M1
	$=2268$	Cao	A1
			(3)
			Total 11
ALT	Last 2 marks by "shoelace" method: $\begin{aligned} & \text { eg } \left.\left\|\frac{1}{2}\right\| \begin{array}{cccc} -9 & 9 & -9 & -9 \\ 126 & 0 & -126 & 126 \end{array} \right\rvert\, \\ & =\left\|\frac{1}{2}(9 \times-126-9 \times 126-(-9 \times-126+9 \times 126))\right\| \\ & =2268 \end{aligned}$	Their coordinates with first and last the same $1 / 2$ must be included Attempt to expand also needed Must be positive	M1 A1

Question Number	Scheme	Notes	Marks
7(a)	$\mathbf{A}^{2}=\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	Correct matrix	B1
			(1)
(b)	Rotation -60° (anticlockwise) about the origin	Rotation	M1
		-60° (anticlockwise) (Or 60° clockwise or 300° (anticlockwise)) about (0,0)	A1
			(2)
(c)	$n=12$	Cao but can be embedded ie $A^{12}=I$	B1
			(1)
(d)	$\mathbf{B}=\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)$	Correct matrix	B1
			(1)
(e)	$\mathbf{C}=\mathbf{B} \mathbf{A}=\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}-\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2}\end{array}\right)$	Multiplies the right way round.	M1
	$\mathbf{C}=\left(\begin{array}{cc}-2 \sqrt{3} & -2 \\ \frac{1}{2} & -\frac{\sqrt{3}}{2}\end{array}\right)$	Correct matrix Accept unsimplified	A1
			(2)
(f)	$\begin{gathered} \operatorname{det} \mathbf{C}=-2 \sqrt{3} \times-\frac{\sqrt{3}}{2}-\frac{1}{2}(-2)=4 \\ \text { So area of } P \text { is } \frac{20}{\operatorname{det} \mathbf{C}}=\ldots \end{gathered}$	Attempts determinant of \mathbf{C} (or deduces area scale factor is 4) and divides into 20	M1
	$=5$	Cao Must follow a correct matrix in (e)	A1
			(2)
			Total 9

Question Number	Scheme	Notes	Marks
8	$\sum_{r=0}^{n}$	$(r+2)$	
(a)	$\sum_{r=0}^{n} r^{2}+3 r+2=2+\frac{1}{6} n(n+1)(2 n+1)+\frac{3}{2} n(n+1)+2 n$ M1: Attempt to use at least one of the standard formulae correctly A1: For $\frac{1}{6} n(n+1)(2 n+1)+\frac{3}{2} n(n+1)+(2 n$ or $2 n+2)$ A1:Fully correct expression		M1A1A1
	$\begin{gathered} \frac{1}{6} n(n+1)(2 n+1)+\frac{3}{2} n(n+1)+2 n+2=(n+1)\left[\frac{1}{6} n(2 n+1)+\frac{3}{2} n+2\right] \\ \text { Attempt to factorise }(n+1) \end{gathered}$ It is a "show" question so this must be seen (in any equivalent form). If their expression does not allow for factorising $(n+1)$ score M0		M1
	$\frac{1}{3}(n+1)\left[n^{2}+5 n+6\right]$	May obtain a cubic and extract a different factor ie $n+2$ or $n+3$	
	$\frac{1}{3}(n+1)(n+2)(n+3)$ *	Cso At least one intermediate step in the working must be seen.	A1*
			(5)
$\begin{gathered} \text { (a) } \\ \text { Way } 2 \end{gathered}$	$\begin{gathered} \sum_{r=0}^{n}(r+1)(r+2)=\sum_{r=1}^{n+1} r(r+1) \\ =\sum_{r=1}^{n+1} r^{2}+r=\frac{1}{6}(n+1)(n+2)(2(n+1)+1)+\frac{1}{2}(n+1)(n+2) \end{gathered}$ M1: Attempt to use at least one of the standard formulae correctly with $n=n+1$ A1: For $\frac{1}{6}(n+1)(n+2)(2(n+1)+1)$ or $\frac{1}{2}(n+1)(n+2)$ A1:Fully correct expression		M1A1A1
	$\frac{1}{6}(n+1)(n+2)(2(n+1)+1)+\frac{1}{2}(n+1)(n+2)=(n+1)\left[\frac{1}{6}(n+1)(2 n+3)+\frac{1}{2}(n+2)\right]$ Attempt to factorise $(n+1)$ (see additional comments above)		M1
	$\frac{1}{3}(n+1)\left[n^{2}+5 n+6\right]$	May obtain a cubic and extract a different factor ie $n+2$ or $n+3$	
	$\frac{1}{3}(n+1)(n+2)(n+3) *$	Cso At least one intermediate step in the working must be seen.	A1*
(b)	Upper limit = 99	Correct upper limit	B1
	$10 \times 11+11 \times 12+12 \times 13+\ldots+100 \times 101=\sum_{r=0}^{99}(r+1)(r+2)-\sum_{r=0}^{8}(r+1)(r+2)$ Fully correct strategy for the sum using their upper limit for the first sum and upper limit 8 for the second in the result from (a). Lower limits 0 or 1		M1
	$\begin{gathered} =\frac{1}{3}(100)(101)(102)-\frac{1}{3}(9)(10)(11) \\ =343070 \end{gathered}$	Correct value	A1

			(3)
			Total 8

ii ALT 1	$f(1)=125-4-9=112=16 \times 7 \quad \begin{aligned} & \text { Sh } \\ & \text { E }\end{aligned}$	Shows $f(1)$ is divisible by 16 Either of 112 or 16×7 must be seen	B1
	Assume $5^{k+2}-4 k-9$ is divisible by 16		
	$\begin{aligned} \mathrm{f}(k+1)-m \mathrm{f}(k)= & 5^{k+3}-4(k+1)-9-m\left(5^{k+2}-4 k-9\right) \\ & \text { Attempt } \mathrm{f}(k+1)-m \mathrm{f}(k) \end{aligned}$		M1
	$=(5-m)\left(5^{k+2}-4 k-9\right)+\ldots \quad$ A	Attempts to express in terms of $\mathrm{f}(k)$	dM1
	$\mathrm{f}(k+1)=5 \times\left(5^{k+2}-4 k-9\right)+16 k+32$	Correct expression for $\mathrm{f}(k+1)$	A1
	If the result is true for $n=k$ then it is true for $n=k+1$. As the result has been shown to be true for $n=1$, then the result is true for all n.		A1cso
	The final mark depends on all except the B mark, though a check for $n=1$ must have been attempted		
ii ALT 2	$\mathrm{f}(1)=125-4-9=112=16 \times 7$	Shows $\mathrm{f}(1)$ is divisible by 16 Either of 112 or 16×7 must be seen	B1
	Assume $5^{k+2}-4 k-9$ is divisible by 16		
	$\mathrm{f}(k+1)-\mathrm{f}(k)=5^{k+3}-4(k+1)-9-\left(5^{k+2}-4 k-9\right)$ Attempt $\mathrm{f}(k+1)-\mathrm{f}(k)$		M1
	$\begin{aligned} \mathrm{f}(k+1)-\mathrm{f}(k) & =5 \times 5^{k+2}-5^{k+2} \\ & =4 \times 5^{k+2}-4=4 \end{aligned}$ Obtains a simplified expression for the difference divisible by 4 using in	$\begin{aligned} & { }^{2}-4 k-4-9+4 k+9 \\ & 4\left(5^{k+2}-1\right) \end{aligned}$ e and attempts to prove $\left(5^{k+2}-1\right)$ is induction	dM1
	Correct proof for $\left(5^{k+2}-1\right)$ being divisible by 4 and states that thus as the difference is divisible by $16, \mathrm{f}(k+1)$ is divisible by 16		A1
	If the result is true for $n=k$ then it is true for $n=k+1$. As the result has been shown to be true for $n=1$, then the result is true for all n.		A1 cso
	The final mark depends on all except the B mark, though a check for $n=1$ must have been attempted		
ii ALT 3	$\mathrm{f}(1)=125-4-9=112=16 \times 7$	Shows $\mathrm{f}(1)$ is divisible by 16 Either of 112 or 16×7 must be seen	B1
	$\mathrm{f}(k)$ is divisible by 16 so set $\mathrm{f}(k)=16 \lambda$		
	$5^{k+2}=16 \lambda+4 k+9$		M1
	$\begin{aligned} & \mathrm{f}(k+1)=5^{k+3}-4(k+1)-9 \\ & \quad=5 \times 5^{k+2}-4 k-13=5(16 \lambda+4 k+9)-4 k-13 \end{aligned}$	Expresses $\mathrm{f}(k+1)$ in terms of λ and k and collects terms	dM1
	$=80 \lambda+16 k+32$	Correct expression May have factor of 16 taken out	A1
	If the result is true for $n=k$ then it is true for $n=k+1$. As the result has been shown to be true for $n=1$, then the result is true for all n.		A1cso
	The final mark depends on all except the B mark, though a check for $n=1$ must have been attempted		

