## Pearson Edexcel A Level Mathematics 9MA0

## Statistics – Regression and Correlation

Time allowed: 45 minutes

School: www.CasperYC.club

Name:

Teacher:

How I can achieve better:

•

•

•

| Points | Score                      |
|--------|----------------------------|
| 5      |                            |
| 5      |                            |
| 5      |                            |
| 5      |                            |
| 7      |                            |
| 7      |                            |
| 6      |                            |
| 10     |                            |
| 50     |                            |
|        | 5<br>5<br>5<br>7<br>7<br>6 |



[3]

[1]

[1]

1. The table shows some data collected on the temperature, in  ${}^{\circ}$ C, of a cup of coffee, c, and the time, t in minutes, after which it was made.

| t | 0    | 2    | 4    | 5    | 7    | 11   | 13   | 17   | 25   |
|---|------|------|------|------|------|------|------|------|------|
| c | 81.9 | 75.9 | 70.1 | 65.1 | 60.9 | 51.9 | 50.8 | 45.1 | 39.2 |

The data is coded using the changes of variable x = t and  $y = \log_{10}(c)$ .

The regression line of y on x is found to be y = 1.89 - 0.0131x.

- (a) Given that the data can be modelled by an equation of the form  $c = ab^t$  where a and b are constants, find the values of a and b.
- (b) Give an interpretation of the constant b in this equation.
- (c) Explain why this model is not reliable for estimating the temperature of the coffee after an hour.

| Total: 5 |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |



[3]

[1]

Total: 5

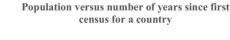
2. The number of bacteria, n thousand per cm<sup>3</sup>, in a sample of liquid is measured over a period of time, t, in hours. The data is shown in the table.

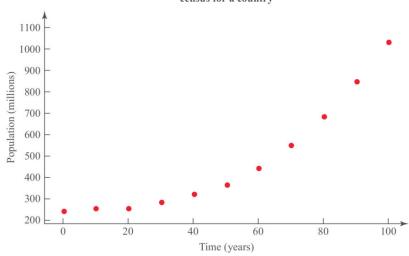
| t | 3.9  | 5.5  | 6.8  | 8.5  | 10.6 | 11.5 | 13.3 | 14.7 | 16.5 | 17.8 |
|---|------|------|------|------|------|------|------|------|------|------|
| n | 10.1 | 13.1 | 14.6 | 20.7 | 27.9 | 31.5 | 40   | 49.9 | 64.7 | 75.6 |

The data is coded using the changes of variable x = t and  $y = \log_{10}(n)$ .

The regression line of y on x is found to be y = 0.7606 + 0.0635x.

(a) Given that the data can be modelled by an equation of the form  $n = ab^t$  where a and b are constants, find the values of a and b.


(b) Give an interpretation of the constant a in this equation.


(c) Explain why this model is not reliable for estimating the number of bacteria after 24 hours. [1]



3. The data and scatter diagram show the population, p, in millions, of a country taken t years since their first census.

| t | 0     | 10    | 20    | 30  | 40    | 50    | 60    | 70    | 80    | 90    | 100    |
|---|-------|-------|-------|-----|-------|-------|-------|-------|-------|-------|--------|
| p | 238.4 | 252.1 | 251.3 | 279 | 318.7 | 361.1 | 439.2 | 548.2 | 683.3 | 846.4 | 1028.7 |



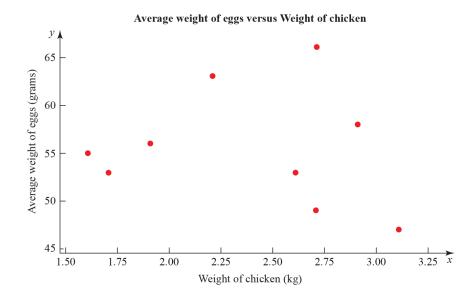


- (a) Give a reason why the data is coded using the changes of variable x = t and  $y = \log_{10}(p)$ .
- (b) The product moment correlation coefficient for the coded data is r = 0.9735. Comment on r for this model.
- (c) With reference to your answer to part b, state whether a model in the form  $p = ab^t$ , where

  [2] a and b are constants, is a good fit for this data.

Total: 5

[1]


[2]

| (Q3 continued) |  |
|----------------|--|
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |



4. The data and scatter diagram show the weight of chickens, x kilograms, and the average weight, y grams, of eggs laid by a random sample of 10 chickens.

| Weight of chickens (kg)    | 2.9 | 1.9 | 1.6 | 2.7 | 3.1 | 2.2 | 2.7 | 1.9 | 1.7 | 2.6 |
|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Average weight of eggs (g) | 58  | 56  | 55  | 66  | 47  | 63  | 49  | 56  | 53  | 53  |

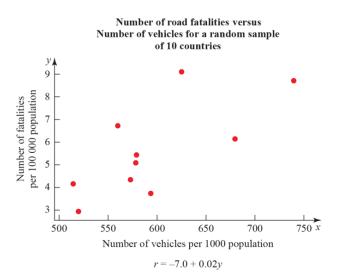


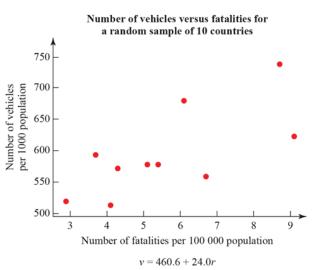
The product moment correlation coefficient for the average weight of eggs and weight of chickens is -0.136.

- (a) Test for evidence of a negative population product moment correlation coefficient at the 2.5% significance level. Interpret this result in context.
- (b) Explain why even if the population product moment correlation coefficient between two variables is close to zero there may still be a relationship between them.

Total: 5




[3]


| (Q4 continued) |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |



5. A researcher wishes to investigate if there is a positive correlation between the number of vehicles and the number of road fatalities in European countries. He selects a random sample of 10 European countries and records the number of vehicles, v per 1000 people, and the number of road fatalities, r per 100,000 population, for a particular year. These are shown in the table and scatter diagrams.

| Country    | v   | r   |
|------------|-----|-----|
| Austria    | 578 | 5.4 |
| Belgium    | 559 | 6.7 |
| France     | 578 | 5.1 |
| Germany    | 572 | 4.3 |
| Greece     | 624 | 9.1 |
| Ireland    | 513 | 4.1 |
| Italy      | 679 | 6.1 |
| Luxembourg | 739 | 8.7 |
| Spain      | 593 | 3.7 |
| UK         | 519 | 2.9 |

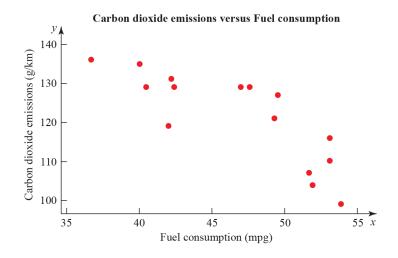




- (a) What is the definition of a critical value?
- (b) The product moment correlaton coefficient for v and r is 0.714. Use this value to test for positive correlation at the 5% significance level. Interpret your result in context.
- (c) The researcher wishes to predict the number of road fatalities for a country with 650 vehicles per 1000 people. Write down the regression model he should use.

[1]

[3]


| (d) State the dependent variable for the regression model in part (c).                           | [1]      |
|--------------------------------------------------------------------------------------------------|----------|
| (e) Monaco has 899 vehicles per 1000 people. Explain why the model stated in (c) is not reliable | e [1]    |
| for estimating the number of road fatalities in Monaco.                                          |          |
|                                                                                                  | Total: 7 |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |
|                                                                                                  |          |



6. An engineer believes that there is a relationship between the  $CO_2$  emissions and fuel consumption for cars.

A random sample of 40 different car models (old and new) was taken and the  $CO_2$  emission figures, e grams per kilometre, and fuel consumption, f miles per gallon, were recorded.

The engineer calculates the product moment correlation coefficient for the 40 cars and obtains r = -0.803.



- (a) State what is measured by the product moment correlation coefficient.
- (b) State, with a reason, whether a linear regression model based on these data is reliable or not for a car when the fuel consumption is 60 mpg.
- (c) For the linear regression model  $e = 198 1.71 \times f$  write down the explanatory variable.
- (d) State the definition of a hypothesis test.
- (e) Test at 1% significance level whether or not the product moment correlation coefficient for CO<sub>2</sub> emissions and fuel consumption is less than zero. State your hypotheses clearly.

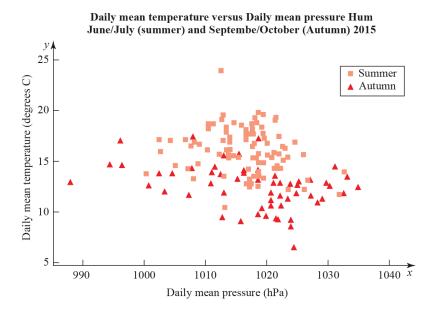
Total: 7



[1]

[1]

[1]


| (Q6 continued) |  |  |  |
|----------------|--|--|--|
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |



7. To investigate if there is a correlation between daily mean temperature (°C) and daily mean pressure (hPa) the location Hurn 2015 was randomly selected from:

| Camborne 2015 | Camborne 1987 |
|---------------|---------------|
| Hurn 2015     | Hurn 1987     |
| Leuchars 2015 | Leuchars 1987 |
| Leeming 2015  | Leeming 1987  |
| Heathrow 2015 | Heathrow 1987 |

Source: Pearson Edexcel GCE AS and AL Mathematics data set



- (a) State the definition of a test statistic.
- (b) The product moment correlation coefficient between daily mean temperature and daily mean pressure for these data is -0.258 with a p-value of 0.001. Use a 5% significance level to test whether or not there is evidence of a correlation between the daily mean temperature and daily mean pressure.
- (c) The scatter diagram shows daily mean temperature versus daily mean pressure, by season, for Hurn 2015. Give two interpretations on the split of the data between summer and autumn.

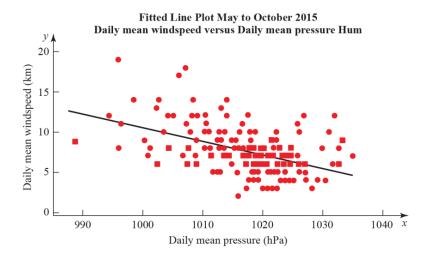
Total: 6

[1]

[3]

[2]




| (Q7 continued) |  |
|----------------|--|
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |
|                |  |



8. To investigate if there is a correlation between daily mean pressure (hPa) and daily mean wind speed (kn) the location Hurn 2015 was randomly selected from:

| Camborne 2015 | Camborne 1987 |
|---------------|---------------|
| Hurn 2015     | Hurn 1987     |
| Leuchars 2015 | Leuchars 1987 |
| Leeming 2015  | Leeming 1987  |
| Heathrow 2015 | Heathrow 1987 |

The statistical software output for these data is shown below.



Correlation coefficient Daily mean winds and Daily mean pressure = -0.477 with p-value < 0.001. Regression summary output for daily mean wind speed versus daily mean pressure

|                                   | Coefficients | Lower 95% | Upper 95% |
|-----------------------------------|--------------|-----------|-----------|
| Intercept                         | 180.00       | 133.5424  | 226.4128  |
| Daily Mean Pressure(hPa) Gradient | -0.1694      | -0.21512  | -0.12377  |

- (a) State what is measured by the product moment correlation coefficient.
- (b) Comment on the correlation between the two variables.
- (c) Give an interpretation of the correlation between the two variables.
- (d) Test at 5% significance level whether or not the product moment correlation coefficient for the population is less than zero. State your hypotheses clearly.
- (e) Write down the regression model for daily mean wind speed versus daily mean pressure

[1]

[1]

| (f) Interpret the gradient of the line of regression stated in part (e).                                                                                                                 | [1]       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (g) The regression model (equation of regression) was used to predict the daily mean speed of 11.15 knots for a daily mean pressure of 995 hPa. Comment on the accuracy this prediction. |           |
|                                                                                                                                                                                          | Total: 10 |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |
|                                                                                                                                                                                          |           |

