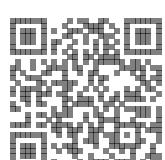


Pearson Edexcel A Level Mathematics 9MA0

Unit Test 9 Numerical Methods

Time allowed: 50 minutes

School: www.CasperYC.club


Name:

Teacher:

How I can achieve better:

-
-
-

Question	Points	Score
1	7	
2	5	
3	7	
4	10	
5	10	
6	11	
Total:	50	

$$1. \ f(x) = x^4 - 8x^2 + 2.$$

(a) Show that the equation $f(x) = 0$ can be written as

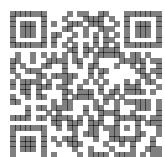
[2]

$$x = \sqrt{ax^4 + b}, x > 0$$

where a and b are constants to be found.

(b) Let $x_0 = 1.5$. Use the iteration formula

[2]


$$x_{n+1} = \sqrt{ax_n^4 + b}$$

together with your values of a and b from part (a), to find, to 4 decimal places, the values of x_1, x_2, x_3 and x_4 .

A root of $f(x) = 0$ is α .

(c) By choosing a suitable interval, prove that $\alpha = -2.782$ to 3 decimal places.

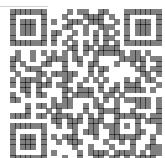
Total: 7

2.

$$g(x) = 3 \sin \left(\frac{x}{6} \right)^3 - \frac{1}{10}x - 1, \quad -40 < x < 20,$$

x is in radians.

(a) Show that the equation $g(x) = 0$ can be written as

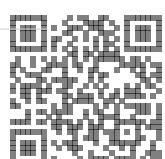

$$x = 6 \left(\sqrt[3]{\arcsin \left(\frac{1}{3} + \frac{1}{30}x \right)} \right)$$

(b) Using the formula

$$x_{n+1} = 6 \left(\sqrt[3]{\arcsin \left(\frac{1}{3} + \frac{1}{30} x_n \right)} \right),$$

with $x_0 = 4$, find to 3 decimal places, the values of x_1, x_2 and x_3 .

Total: 5



3. $f(x) = 2 - 3 \sin^3(x) - \cos(x)$, where x is in radians.

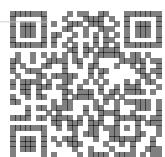
(a) Show that $f(x) = 0$ has a root α between $x = 1.9$ and $x = 2.0$. [2]

(b) Using $x_0 = 1.95$ as a first approximation, apply the Newton-Raphson procedure once to $f(x)$ to find a second approximation to α , giving your answer to 3 decimal places. [5]

Total: 7

$$4. \ g(x) = \frac{2}{x-1} - e^x$$

(a) By drawing an appropriate sketch, show that there is only one solution to the equation $g(x) = 0$. [2]


(b) Show that the equation $g(x) = 0$ may be written in the form $x = 2e^{-x} + 1$ [2]

(c) Let $x_0 = 1.5$. [2]

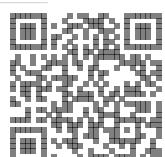
Use the iterative formula to find to 4 decimal places the values of x_1, x_2, x_3 and x_4 .

(d) Using $x_0 = 1.5$ as a first approximation, apply the Newton-Raphson procedure once to $g(x)$ to find a second approximation to α , giving your answer to 4 decimal places. [4]

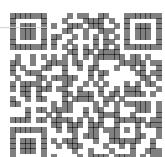
Total: 10

5.

$$h(t) = 40 \ln(t+1) + \sin\left(\frac{t}{5}\right) - \frac{1}{4}t^2, \quad t \geq 0$$

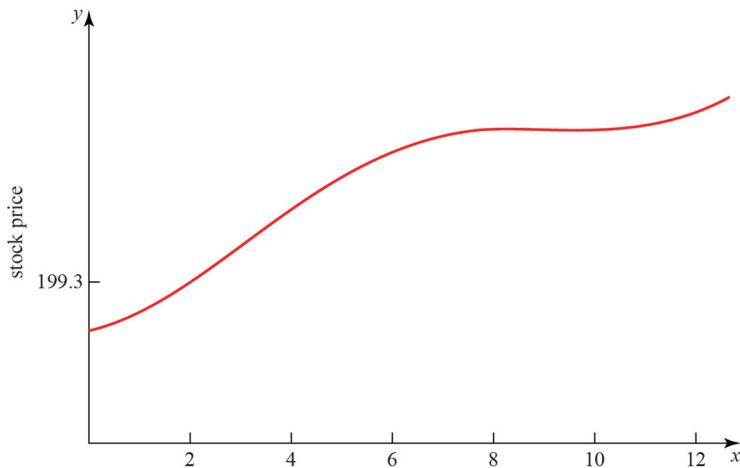

The graph $y = h(t)$ models the height of a rocket t seconds after launch.

(a) Show that the rocket returns to the ground between 19.3 and 19.4 seconds after launch. [2]


(b) Using $t_0 = 19.35$ as a first approximation to α , apply the Newton-Raphson procedure once to $h(t)$ to find a second approximation to α , giving your answer to 3 decimal places. [5]

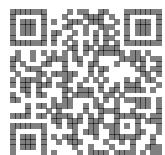
(c) By considering the change of sign of $h(t)$ over an appropriate interval, determine if your answer to part (b) is correct to 3 decimal places. [3]

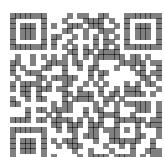
Total: 10



(Q5 continued ...)

6.


$$p(t) = \frac{1}{10} \ln(t+1) - \cos\left(\frac{t}{2}\right) + \frac{1}{10}t^{\frac{3}{2}} + 199.3, \quad 0 \leq t \leq 12$$


(a) Above is a graph of the price of a stock during a 12-hour trading window. The equation of the curve is given above. Show that the price reaches a local maximum in the interval $8.5 < t < 8.6$. [5]

(b) Above shows that the price reaches a local minimum between 9 and 11 hours after trading begins. Using the Newton-Raphson procedure once and taking $t_0 = 9.9$ as a first approximation, find a second approximation of when the price reaches a local minimum. [6]

Total: 11

(Q6 continued ...)

