

Pearson Edexcel A Level Mathematics 9MA0

Unit Test 8 Differentiation

Time allowed: 50 minutes

School: www.CasperYC.club

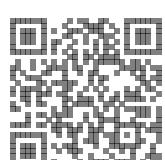
Name:

Teacher:

How I can achieve better:

-
-
-

Question	Points	Score
1	6	
2	8	
3	6	
4	5	
5	5	
6	8	
7	6	
8	2	
9	4	
Total:	50	



1. (a) Given that $f(x) = \sin(x)$, show that

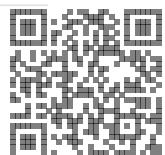
[4]

$$f'(x) = \lim_{h \rightarrow 0} \left[\left(\frac{\cos(h) - 1}{h} \right) \sin(x) + \frac{\sin(h)}{h} \cos(x) \right]$$

(b) Hence prove that $f'(x) = \cos(x)$.

[2]

Total: 6



2. A toy soldier is connected to a parachute.

The soldier is thrown into the air from ground level.

The height, in metres, of the soldier above the ground can be modelled by the equation

$$H = \frac{4t^{\frac{2}{3}}}{t^2 + 1} \quad 0 \leq t \leq 6s$$

where H is height of the soldier above the ground and t is the time since the soldier was thrown.

(a) Show that

[4]

$$\frac{dH}{dt} = \frac{8(1 - 2t^2)}{3\sqrt[3]{t}(t^2 + 1)^2}$$

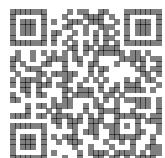
(b) Using the differentiated function, explain whether the soldier was increasing or decreasing in height after 2 seconds.

[2]

(c) Find the exact time when the soldier reaches a maximum height.

[2]

Total: 8



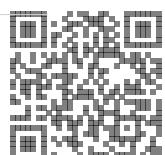
3. A curve has the equation

[6]

$$y = \ln(3x) - e^{-2x}.$$

Show that the equation of the tangent at the point with an x -coordinate of 1 is

$$y = \left(\frac{e^2 + 2}{e^2} \right) x - \left(\frac{e^2 + 3}{e^2} \right) + \ln(3).$$



4. Given that $x = \sec(4y)$, find

(a) $\frac{dy}{dx}$ in terms of y .

[2]

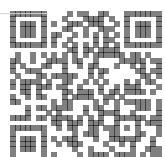
(b) Show that

[3]

$$\frac{dy}{dx} = \frac{k}{x\sqrt{x^2 - 1}}$$

where k is a constant which should be found.

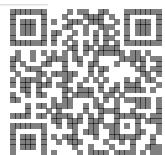
Total: 5



5. A curve C has equation $4^x = 2xy$ for $x > 0$.

[5]

Find the exact value of $\frac{dy}{dx}$ at the point C with coordinates $(2, 4)$.



6. A curve has parametric equations

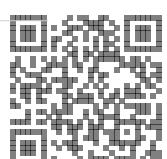
$$x = \cos(2t), \quad \text{and} \quad y = \sin(t), \quad -\pi \leq t \leq \pi.$$

(a) Find an expression for $\frac{dy}{dx}$ in terms of t . [3]

Leave your answer as a single trigonometric ratio.

(b) Find an equation of the normal to the curve at the point A where $t = -\frac{5\pi}{6}$. [5]

Total: 8



7. The curve C has equation $y = x^3 + 6x^2 - 12x + 6$.

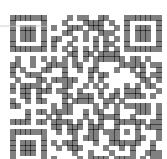
(a) Show that C is concave on the interval $[-5, -3]$.

[3]

(b) Find the coordinates of the point of inflection.

[3]

Total: 6

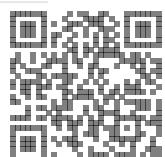


8. In a rainforest, the area covered by trees, F , has been measured every year since 1990.

[2]

It was found that the rate of loss of trees is proportional to the remaining area covered by trees.

Write down a differential equation relating F to t , where t is the numbers of years since 1990.



9. The volume of a sphere V cm^3 is related to its radius r cm by the formula $V = \frac{4}{3}\pi r^3$. [4]

The surface area of the sphere is also related to the radius by the formula $S = 4\pi r^2$.

Given that the rate of decrease in surface area, in cm^2s^{-1} , is $\frac{dS}{dt} = -12$, find the rate of decrease of volume $\frac{dV}{dt}$.

