

Pearson Edexcel A Level Mathematics 9MA0

Unit Test 6 Trigonometry

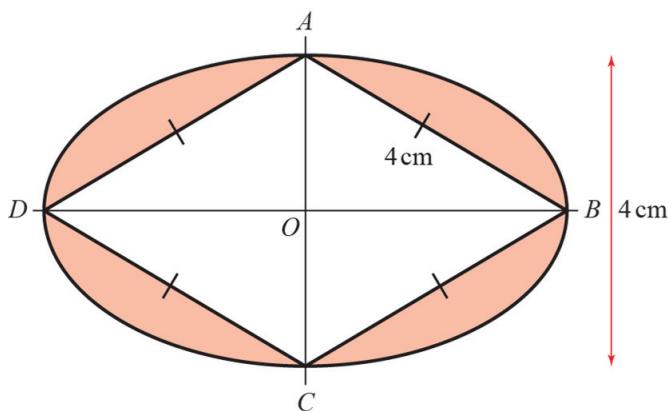
Time allowed: 50 minutes

School: www.CasperYC.club

Name:

Teacher:

How I can achieve better:


-
-
-

Question	Points	Score
1	8	
2	5	
3	6	
4	8	
5	4	
6	7	
7	12	
Total:	50	


Last updated: January 11, 2026

1. Figure below shows a logo comprised of a rhombus surrounded by two arcs. Arc BAD has centre C and arc BCD has centre A . Some of the dimensions of the logo are shown in the diagram.

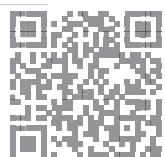
Prove that the shaded area of the logo is $\frac{2}{3}(16\pi - 24\sqrt{3})$.

2. (a) When θ is small, show that the expression $\frac{1 + \sin(\theta) + \tan(2\theta)}{2 \cos(3\theta) - 1}$ can be written as $\frac{1}{1 - 3\theta}$. [4]

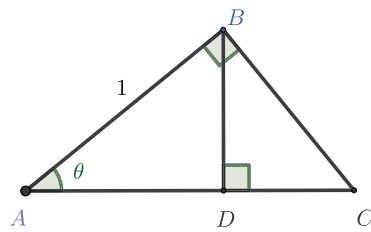
(b) Hence write down the value of $\frac{1 + \sin(\theta) + \tan(2\theta)}{2 \cos(3\theta) - 1}$ when θ is small. [1]

Total: 5

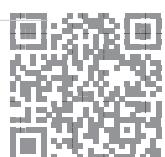
3. (a) Prove that


[3]

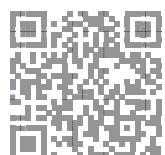
$$\frac{\tan(x) - \sec(x)}{1 - \sin(x)} = -\sec(x), \quad x \neq (2n+1)\frac{\pi}{2}$$


(b) Hence solve, in the interval $0 \leq x \leq 2\pi$, the equation $\frac{\tan(x) - \sec(x)}{1 - \sin(x)} = \sqrt{2}$.

[3]


Total: 6

4. Figure below shows the right-angled triangles and $\triangle ABC, \triangle ABD$ and $\triangle BCD$, with $AB = 1$ [8]
and $\angle BAD = \theta$.


Prove that $1 + \tan^2(\theta) = \sec^2(\theta)$.

5. Solve $6 \sin(\theta + 60) = 8\sqrt{3} \cos(\theta)$ in the range $0 \leq \theta \leq 360^\circ$.

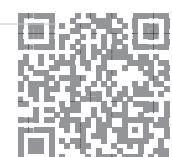
[4]

Round your answer to 1 decimal place.

6. (a) Prove that

[3]

$$\left(\sin(3\theta) + \cos(3\theta) \right)^2 \equiv 1 + \sin(6\theta).$$


(b) Use the result to solve, for $0 \leq \theta \leq \frac{\pi}{2}$, the equation

[4]

$$\sin(3\theta) + \cos(3\theta) = \sqrt{\frac{2 + \sqrt{2}}{2}}.$$

Give your answer in terms of π . Check for extraneous solutions.

Total: 7

7. (a) Express $5\cos(\theta) - 8\sin(\theta)$ in the form $R\cos(\theta + \alpha)$, where $R > 0$ and $0 < \alpha < \pi$. [4]

Write R in surd form and give the value of α correct to 4 decimal places.

The temperature of a kiln, $T^\circ\text{C}$, used to make pottery can be modelled by the equation

$$T = 1100 + 5 \cos\left(\frac{x}{3}\right) - 8 \sin\left(\frac{x}{3}\right),$$

for $0 \leq x \leq 72$, where x is the time in hours since the pottery was placed in the kiln.

(b) Calculate the maximum value of T predicted by this model and the value of x , to 2 decimal places, when this maximum first occurs. [4]

(c) Calculate the times during the first 24 hours when the temperature is predicted, by this model, to be exactly 1097°C . [4]

Total: 12

