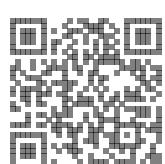


Pearson Edexcel A Level Mathematics 9MA0

Unit Test 11 Integration – 2

Time allowed: 50 minutes

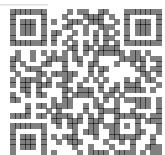
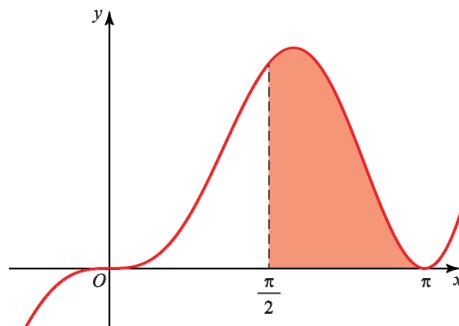
School: www.CasperYC.club

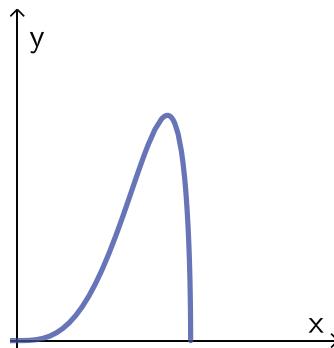

Name:

Teacher:

How I can achieve better:

Question	Points	Score
1	7	
2	11	
3	10	
4	10	
5	12	
Total:	50	



-
-
-


1. The diagram shows part of the curve with equation $y = x \sin^2(x)$. [7]

The finite region bounded by the line with equation $x = \frac{\pi}{2}$, the curve and the x -axis is shown shaded in the diagram.

Find the area of the shaded region.

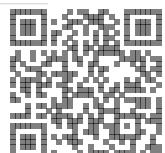
2. The diagram shows the curve with equation $y = \frac{1}{2}x^3\sqrt{4 - x^2}$.

(a) Complete the table with the value of y corresponding to $x = 1.5$.

Give your answer correct to 5 decimal places.

x	0	0.5	1	1.5	2
y	0	0.12103	0.86603		0

Given that


$$I = \int_0^2 \frac{1}{2}x^3 \sqrt{4 - x^2} \, dx$$

(b) Use the trapezium rule with 4 equal width strips to find an approximate value of I , giving your answer to 4 significant figures. [3]

(c) By using an appropriate substitution, or otherwise, find the exact value of I , leaving your answer as a rational number in its simplest form. [6]

(d) Suggest one way in which your estimate using a trapezium rule could be improved. [1]

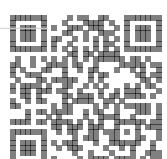
Total: 11

3.

$$f(x) = \frac{21 - 14x}{(1 - 4x)(2x + 3)}, \quad x \neq \frac{1}{4}, \quad x \neq -\frac{3}{2}.$$

(a) Given that

[5]


$$f(x) = \frac{A}{1-4x} + \frac{B}{2x+3},$$

find the values of the constants A and B .

(b) Find the exact value of $\int_{-1}^0 f(x) dx$.

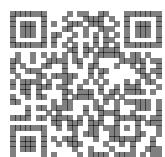
[5]

Total: 10

4. The value of a computer, V , decreases over time, t , measured in years.

The rate of decrease of the value is proportional to the remaining value.

(a) Given that the initial value of the computer is V_0 , show that $V = V_0 e^{-kt}$.


After 10 years the value of the computer is $\frac{1}{5}V_0$.

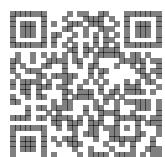
(b) Find the exact value of k . [3]

(c) How old is the computer when its value is only 5% of its original value? [3]

Give your answer to 3 significant figures.

Total: 10

5. A large cylindrical tank has radius 40 m. Water flows into the cylinder from a pipe at a rate of $4000\pi\text{m}^3\text{min}^{-1}$. At time t , the depth of water in the tank is hm . Water leaves the bottom of the tank through another pipe at a rate of $50\pi hm^3\text{min}^{-1}$.


(a) Show that t minutes after water begins to flow out of the bottom of the cylinder, [6]

$$160 \frac{dh}{dt} = 400 - 5h$$

(b) When $t = 0$ min, $h = 50$ m. [6]

Find the exact value of t when $h = 60\text{m}$.

Total: 12

