Pearson Edexcel A Level Mathematics 9MA0

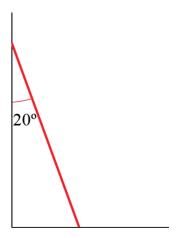
Mechanics – Application of Forces

Time allowed: 45 minutes

School: www.CasperYC.club

Name:

Teacher:


Question	Points	Score
1	17	
2	6	
3	14	
4	13	
Total:	50	

How I can achieve better:

- •
- •
- •

1. A 10 m long, uniform ladder has a mass of 6 kg and makes an angle of 20° with a smooth vertical wall. It stands on a rough horiztonal floor, which has coefficient of friction 0.3 with the bottom of the ladder.

(a) Draw a diagram showing all the forces acting on the ladder. Describe the origin of each force using words.

(b) Calculate the magnitude of each force and hence determine whether or not the ladder slips. [13]

[4]

Total: 17

2. Three forces, F_1 , F_2 and F_3 , act on a circular lamina of radius 5 cm. The origin is at the centre of the lamina.

$$\mathbf{F}_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
N acts at the point $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ cm $\tag{1}$

$$\mathbf{F}_2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \text{ N acts at the point } \begin{pmatrix} -2 \\ 3 \end{pmatrix} \text{ cm} \tag{2}$$

$$\mathbf{F}_3 = \begin{pmatrix} f \\ 0 \end{pmatrix}$$
N acts at the point $\begin{pmatrix} -3 \\ -3 \end{pmatrix}$ cm (3)

The net force on the lamina is zero.

(a) Find the value of f .	[2]

(b) Find the total moment about the origin. Give your answer in N m. [4]

Total: 6

[2]

[3]

[4]

[5]

14

3.	A $0.1\mathrm{kg}$ inflatable ball floats on the surface of the sea. The current from the water undernea	th
	the ball exerts a force $\mathbf{C} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ N and the wind exerts a force of $\mathbf{W} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ N on the ball.	
	(a) Find the resultant force exerted on the ball.	
	(b) Calculate the acceleration of the ball.	
	Initially, the ball is at the origin and has velocity $\binom{1}{1}$ m/s.	
	(c) Find the x and y coordinates of the ball t s later.	
	(d) Find the distance travelled by the ball when $t = 10 \text{ s.}$	
		Total

4.	A 0.	.5 kg particle experiences two forces $\mathbf{A} = (2\mathbf{i} - \mathbf{j}) \mathrm{N}$, and $\mathbf{B} = \mathbf{i} \mathrm{N}$.		
Initially, the particle is at rest and has position vector $(3\mathbf{i} + 4\mathbf{j})$ m				
(a) Find the x and y coordinates of the particle t seconds later.			[9]	
	(b)	Explain why the particle never returns to its starting point.		[2]
	(c)	Describe a physical situation which this mathematical model could represent and give physical	S-	[2]
		ical meanings to \mathbf{A} and \mathbf{B} .		
			Total:	13

