Pearson Edexcel

A Level Mathematics 9MA0

Unit Test

5 Binomial Theorem

	Question	Points	Score
Time allowed: 50 minutes	1	10	
	2	6	
	3	9	
School: Name:	4	12	
	5	13	
	Total:	50	

Teacher:

(b) State the set of values of x for which the expansion is valid. [1]

(c) Show that when
$$x = \frac{1}{100}$$
, the exact value of $\frac{1+x}{\sqrt{1-2x}}$ is $\frac{101\sqrt{2}}{140}$. [2]

(d) Substitute $x = \frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{2}$. Give your answer to 5 decimal places. [3]

Total: 10

(a) the possible values of a,[4](b) the corresponding coefficients of the x^3 term.[2]Total: 6

$$4 - \frac{1}{8}x + cx^2 + \cdots$$

(a) Find the values of a and b .	[5]
(b) State the range of values of x for which the expansion is valid.	[2]
(c) Find the value of c .	[2]
	Total: 9

4.

$$f(x) = \frac{6}{2+3x} - \frac{4}{3-5x}, \qquad |x| < \frac{3}{5}.$$

(a) Show that the first three terms in the series expansion of f(x) can be written as

$$\frac{5}{3} - \frac{121}{18}x + \frac{329}{108}x^2.$$

(b) Find the exact value of f(0.01).

Round your answer to 7 decimal places.

(c) Find the percentage error made in using the series expansion in part (a) to estimate the [3] value of f(0.01).

Give your answer to 2 significant figures.

Total: 12

[7]

[2]

5.

$$\frac{4x^2 - 4x - 9}{(2x+1)(x-1)} \equiv A + \frac{B}{2x+1} + \frac{C}{x-1}$$

- (a) Find the values of the constants A, B and C. [6]
- (b) Hence, or otherwise, expand in ascending powers of x, as far as the x^2 term. [6]
- (c) Explain why the expansion is not valid for $x = \frac{3}{4}$.

Total: 13

[1]