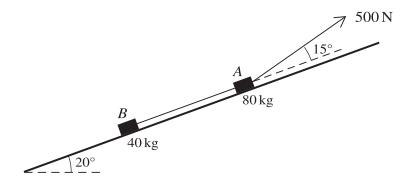

enstant driving force of	A cyclist is riding a bicycle along a straight horizontal road AB of length 5 from rest at A and reaches a speed of $6 \mathrm{ms^{-1}}$ at B . The cyclist produces a comagnitude 100 N. There is a resistance force, and the work done against the to B is 3560 J.
[3]	Find the total mass of the cyclist and bicycle.
[1] (Se)	


(a)	Show that the coefficient of friction between the particle and the plane is $\frac{1}{3}\sqrt{3}$.	[3]
		• • • • • • • • • • • • • • • • • • • •
A fo	orce of magnitude $7.2\mathrm{N}$ is now applied to P directly up a line of greatest slope of the	e plane.
	orce of magnitude 7.2 N is now applied to P directly up a line of greatest slope of the Given that P starts from rest, find the time that it takes for P to move 1 m up the plane.	

A particle of mass $0.3\,\mathrm{kg}$ is held at rest by two light inextensible strings. One string is attached at an angle of 60° to a horizontal ceiling. The other string is attached at an angle α° to a vertical wall (see diagram). The tension in the string attached to the ceiling is $4\,\mathrm{N}$.

Find the tension in the string which is attached to the wall and find the value of α .	[6]
	•••••
	•••••

(a)	Find the power of the car's engine at the point A .	[3]
	car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$.	
from	car continues to work with this power as it travels from A to B . The car takes 53	
from	car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$.	seconds to trave
from	car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	seconds to trave
from	car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	seconds to trave
from	car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	seconds to trave
from	car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	seconds to trave
from	car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	seconds to trave
from	car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	seconds to trave
from	car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$.	seconds to trave

A block A of mass $80\,\mathrm{kg}$ is connected by a light, inextensible rope to a block B of mass $40\,\mathrm{kg}$. The rope joining the two blocks is taut and is parallel to a line of greatest slope of a plane which is inclined at an angle of 20° to the horizontal. A force of magnitude $500\,\mathrm{N}$ inclined at an angle of 15° above the same line of greatest slope acts on A (see diagram). The blocks move up the plane and there is a resistance force of $50\,\mathrm{N}$ on B, but no resistance force on A.

(a)	Find the acceleration of the blocks and the tension in the rope.	[5]
		-1-95 × C

1.	
(b)	Find the time that it takes for the blocks to reach a speed of $1.2 \mathrm{m s^{-1}}$ from rest. [2]

	the particles A , B and C of masses 0.3 kg, 0.4 kg and m kg respectively lie at rest in a straight line a smooth horizontal plane. The distance between B and C is 2.1 m. A is projected directly towards with speed 2 m s ⁻¹ . After A collides with B the speed of A is reduced to 0.6 m s ⁻¹ , still moving in same direction.						
(a)	Show that the speed of B after the collision is $1.05\mathrm{ms^{-1}}$.	[2					
		••••					
	or this collision, the two particles coalesce and have a combined speed of $0.5 \mathrm{ms^{-1}}$. Find m .	[2					

	d particle.								[5
			•••••		•••••			•••••	•••••
•••••	•••••	••••••	•••••	,	•••••		•••••••	•••••	••••••
	• • • • • • • • • • • • • • • • • • • •								
••••••	••••••	•	•••••		• • • • • • • • • • • • • • • • • • • •	•	••••••••••		••••••
					•••••				
•••••	•••••			•••••	•••••		••••••		•••••
•••••	•••••		•••••		•••••			•••••	••••••
	•••••				•••••				
•••••	• • • • • • • • • • • • • • • • • • • •	•••••••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••••	••••••	••••••
•••••			•••••		•••••				
	•••••			•••••	•••••		••••••		•••••
•••••	•••••	•••••••	•••••		•••••		••••••	•••••	••••••
					•••••				
••••••	•••••	•	•••••		•••••	•	•	••••••	••••••
•••••									•••••
•••••	•••••		•••••		•••••		•••••	•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		

A particle *P* travels in a straight line, starting at rest from a point *O*. The acceleration of *P* at time *t* s after leaving *O* is denoted by $a \,\mathrm{m}\,\mathrm{s}^{-2}$, where

$$a = 0.3t^{\frac{1}{2}}$$
 for $0 \le t \le 4$,
 $a = -kt^{-\frac{3}{2}}$ for $4 < t \le T$,

where k and T are constants.

(a)	Find the velocity of P at $t = 4$. [2]	
(b)	It is given that there is no change in the velocity of P at $t = 4$ and that the velocity of P at $t = 16$ is $0.3 \mathrm{m s^{-1}}$.	1
	Show that $k = 2.6$ and find an expression, in terms of t , for the velocity of P for $4 \le t \le T$. [4]	

c)	Given that P comes to instantaneous rest at $t = T$, find the exact value of T .	[2]
		••••••
1/	Find the total distance travelled between 4 0 and 4 T	F43
1)	Find the total distance travelled between $t = 0$ and $t = T$.	[4]
		•