| enstant driving force of | A cyclist is riding a bicycle along a straight horizontal road AB of length 5 from rest at A and reaches a speed of $6 \mathrm{ms^{-1}}$ at B . The cyclist produces a comagnitude 100 N. There is a resistance force, and the work done against the to B is 3560 J. | |--------------------------|--| | [3] | Find the total mass of the cyclist and bicycle. | [1] (Se) | | | | | | (a) | Show that the coefficient of friction between the particle and the plane is $\frac{1}{3}\sqrt{3}$. | [3] | |------|--|---| • | | A fo | orce of magnitude $7.2\mathrm{N}$ is now applied to P directly up a line of greatest slope of the | e plane. | | | orce of magnitude 7.2 N is now applied to P directly up a line of greatest slope of the Given that P starts from rest, find the time that it takes for P to move 1 m up the plane. | A particle of mass $0.3\,\mathrm{kg}$ is held at rest by two light inextensible strings. One string is attached at an angle of 60° to a horizontal ceiling. The other string is attached at an angle α° to a vertical wall (see diagram). The tension in the string attached to the ceiling is $4\,\mathrm{N}$. | Find the tension in the string which is attached to the wall and find the value of α . | [6] | |---|-------| | | | | | ••••• | | | ••••• | (a) | Find the power of the car's engine at the point A . | [3] | |------|--|------------------| car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{m s^{-1}}$. | | | from | car continues to work with this power as it travels from A to B . The car takes 53 | | | from | car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. | seconds to trave | | from | car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$. | seconds to trave | | from | car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$. | seconds to trave | | from | car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$. | seconds to trave | | from | car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$. | seconds to trave | | from | car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$. | seconds to trave | | from | car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$. | seconds to trave | | from | car continues to work with this power as it travels from A to B . The car takes 53 a A to B and the speed of the car at B is $32 \mathrm{ms^{-1}}$. Show that the distance AB is $1362.6 \mathrm{m}$. | seconds to trave | A block A of mass $80\,\mathrm{kg}$ is connected by a light, inextensible rope to a block B of mass $40\,\mathrm{kg}$. The rope joining the two blocks is taut and is parallel to a line of greatest slope of a plane which is inclined at an angle of 20° to the horizontal. A force of magnitude $500\,\mathrm{N}$ inclined at an angle of 15° above the same line of greatest slope acts on A (see diagram). The blocks move up the plane and there is a resistance force of $50\,\mathrm{N}$ on B, but no resistance force on A. | (a) | Find the acceleration of the blocks and the tension in the rope. | [5] | |-----|--|-----------| -1-95 × C | | | | | | 1. | | |-----|--| | (b) | Find the time that it takes for the blocks to reach a speed of $1.2 \mathrm{m s^{-1}}$ from rest. [2] | the particles A , B and C of masses 0.3 kg, 0.4 kg and m kg respectively lie at rest in a straight line a smooth horizontal plane. The distance between B and C is 2.1 m. A is projected directly towards with speed 2 m s ⁻¹ . After A collides with B the speed of A is reduced to 0.6 m s ⁻¹ , still moving in same direction. | | | | | | | |-----|---|------|--|--|--|--|--| | (a) | Show that the speed of B after the collision is $1.05\mathrm{ms^{-1}}$. | [2 | | | | | | | | | •••• | or this collision, the two particles coalesce and have a combined speed of $0.5 \mathrm{ms^{-1}}$. Find m . | [2 | d particle. | | | | | | | | [5 | |--------|---|---|---|---|---|---|------------|--------|--------| | | | | ••••• | | ••••• | | | ••••• | ••••• | ••••• | ••••• | •••••• | ••••• | , | ••••• | | ••••••• | ••••• | •••••• | | | • | •••••• | •••••• | • | ••••• | | • | • | •••••••••• | | •••••• | | | | | | | ••••• | ••••• | ••••• | | | ••••• | ••••• | | •••••• | | ••••• | ••••• | ••••• | | ••••• | | ••••• | | | ••••• | •••••• | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | | | ••••• | • | ••••••••• | ••••• | | ••••• | • | •••••••• | •••••• | •••••• | | ••••• | | | ••••• | | ••••• | ••••• | | | ••••• | ••••• | | •••••• | | ••••• | ••••• | ••••• | ••••••• | ••••• | | ••••• | | •••••• | ••••• | •••••• | | | | | | | ••••• | | | | | | | | | | | | | | | | | •••••• | ••••• | • | ••••• | | ••••• | • | • | •••••• | •••••• | | ••••• | | | | | | | | | ••••• | ••••• | ••••• | | ••••• | | ••••• | | ••••• | ••••• | ••••• | ••••• | • | • | • | • | • | • | ••••• | | | A particle *P* travels in a straight line, starting at rest from a point *O*. The acceleration of *P* at time *t* s after leaving *O* is denoted by $a \,\mathrm{m}\,\mathrm{s}^{-2}$, where $$a = 0.3t^{\frac{1}{2}}$$ for $0 \le t \le 4$, $a = -kt^{-\frac{3}{2}}$ for $4 < t \le T$, where k and T are constants. | (a) | Find the velocity of P at $t = 4$. [2] | | |------------|--|---| (b) | It is given that there is no change in the velocity of P at $t = 4$ and that the velocity of P at $t = 16$ is $0.3 \mathrm{m s^{-1}}$. | 1 | | | Show that $k = 2.6$ and find an expression, in terms of t , for the velocity of P for $4 \le t \le T$. [4] | c) | Given that P comes to instantaneous rest at $t = T$, find the exact value of T . | [2] | |----|---|--------| •••••• | 1/ | Find the total distance travelled between 4 0 and 4 T | F43 | | 1) | Find the total distance travelled between $t = 0$ and $t = T$. | [4] | • | | | | | | | | | | | | | | | | |