1

Coplanar forces of magnitudes PN, QN, 16N and 22N act at a point in the directions shown in the diagram. The forces are in equilibrium.

Find the values of P and Q .	[5]

in the speeds of	the spheres is 2 m s	1.	ame direction and the difference
Find the loss of l	kinetic energy of the	e system due to the collision.	[5]
•••••	•••••		F-1-32-4

100	onstant resistance of magnitude 1400 N acts on a car of mass 1250 kg.
a)	The car is moving along a straight level road at a constant speed of $28 \mathrm{ms^{-1}}$.
	Find, in kW, the rate at which the engine of the car is working.
)	The car now travels at a constant speed up a hill inclined at an angle of θ to the horizontal, whe $\sin \theta = 0.12$, with the engine working at 43.5 kW.
	Find this speed.

3

	the motion of the car remains 1400 N.	
Find the acce	eleration of the system and the tension in the cable	. [4
•••••		
•••••		
		1 = 11354

4

A block of mass 8 kg is placed on a rough plane which is inclined at an angle of 18° to the horizontal. The block is pulled up the plane by a light string that makes an angle of 26° above a line of greatest slope. The tension in the string is TN (see diagram). The coefficient of friction between the block and plane is 0.65.

(a)	The acceleration of the block is $0.2 \mathrm{ms^{-2}}$.
	Find T . [7]

•••								
•••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
					• • • • • • • • • • • • • • • • • • • •			••••
•••		• • • • • • • • • • • • • • • • • • • •			•••••		•••••	•••••
•••		• • • • • • • • • • • • • • • • • • • •			•••••	•••••	•••••	•••••
•••	••••••••	• • • • • • • • • • • • • • • • • • • •	•	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••								
•••					•••••			•••••
•••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••	•••••
•••		•		•	•		•	
	he block is ind the dista			block durir	ng the fourth	second of me	otion.	I
				block durir	ng the fourth	second of me	otion.	
				block durir	ng the fourth	second of m	otion.	l
				block durir	ng the fourth	second of me	otion.	
				block durir	ng the fourth	second of me		
				block durir	ng the fourth	second of m		
				block durir	ng the fourth	second of me		
	ind the dista			block durir	ng the fourth	second of m		
Fi	ind the dista			block durir	ng the fourth	second of m		
Fi	ind the dista			block durin	ng the fourth	second of me		
F:	ind the dista			block durir	ng the fourth	second of me		
Fi	ind the dista			block durin	ng the fourth	second of me		
Fi	ind the dista			block durir	ng the fourth	second of m		
Fi	ind the dista			block durin	ng the fourth	second of me		
	ind the dista			block durir	ng the fourth	second of m		
	ind the dista			block durin	ng the fourth	second of me		
	ind the dista			block durin	ng the fourth	second of me		
	ind the dista			block durir	ng the fourth	second of m		
	ind the dista			block during	ng the fourth	second of me		
Fi	ind the dista			block durin	ng the fourth	second of me		

5 A particle *P* moves on the *x*-axis from the origin *O* with an initial velocity of $-20 \,\mathrm{m\,s^{-1}}$. The acceleration $a \,\mathrm{m\,s^{-2}}$ at time *t* s after leaving *O* is given by a = 12 - 2t.

(a)	Sketch a velocity-time graph for $0 \le t \le 12$, indicating the times when P is at rest.	[5]
		•••••
		•••••
		•••••

						 	•••••
						 	•••••
• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	•••••	 ••••••	•••••
• • • • • • • • • • • • • • • • • • • •			•••••			 	•••••
						 	•••••
• • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••	 •••••	•••••
	•••••					 	•••••
			•••••			 •••••	•••••
						 	•••••
• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	•••••	 ••••••	•••••
						 	••••
• • • • • • • • • • • • • • • • • • • •	•••••		•••••		•••••	 •••••	•••••
						 	••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	 ••••••	•••••
						 	••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	 ••••••	•••••

Fig. 6.1

Fig. 6.1 shows particles A and B, of masses 4kg and 3kg respectively, attached to the ends of a light inextensible string that passes over a small smooth pulley. The pulley is fixed at the top of a plane which is inclined at an angle of 30° to the horizontal. A hangs freely below the pulley and B is on the inclined plane. The string is taut and the section of the string between B and the pulley is parallel to a line of greatest slope of the plane.

(a)	It is given that the plane is rough and the particles are in limiting equilibrium.
	Find the coefficient of friction between B and the plane. [6]
	63

(b)

Fig. 6.2

It is given instead that the plane is smooth and the particles are released from rest when the difference in the vertical heights of the particles is 1 m (see Fig. 6.2).

Use an energy method to find the speed of the particles at the instant when the particles are at the same horizontal level. [6]