| • | | | | | | | | | | |---|---|--------|--------|---|--------|---|---|---------|---| | | | | | | | | | | | | ••••• | • | ••••• | ••••• | | ••••• | • | ••••• | ••••• | • | | ••••• | ••••• | ••••• | ••••• | ••••• | | ••••• | | | | | | | | | | | | | | | | ••••• | • | ••••• | ••••• | • | ••••• | • | ••••• | •••••• | • | | | ••••• | | | | | • | | | | | | | | | | | | | | | | | ••••• | ••••• | ••••• | | ••••• | • | | | • | ••••• | ••••• | •••••• | •••••• | ••••• | • | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | • | | ••••• | • | ••••• | • | ••••• | | | | | | • | ••••• | ••••• | | | ••••• | | | | | | | | | | | | | | | | | | | •••••• | •••••• | •••••• | •••••• | •••••• | •••••• | • | ••••••• | • • • • • • • • • • | | | | ••••• | | ••••• | | | | | | | | | | | | | | | | | | | • | ••••• | ••••• | •••••• | ••••• | • | | ••••• | • | | | ••••• | | | | | • | | | | | | | | | | | | | | | | ••••• | • | ••••• | •••••• | •••••• | ••••• | • | • | n 3 | | ng | |-----------------| | | | •••• | |
· • • • • • | | | | | |
••••• | |
 | | | | ••••• | |
· • • • • • | | | | | |
••••• | |
· • • • • • | | | | ••••• | |
 | | | | | |
••••• | |
· • • • • • | | | | •••• | | | |
 | | | |
•••• | | | | | | ••••• | | . | | | | [5 | $\int_0^4 x \sec^2 x \mathrm{d}x.$ | nd the exact value of | |-------------|-------------------------------------|-----------------------| | |
 | | | | | | | | | | | | | | | |
 | | | | | | | |
 | | | 1135 |
 | | | 60 |
 | | | _ | | | | | | | |---|-----|------------|-----------|------|-------|-----| | 4 | The | parametric | equations | of a | curve | are | | | $x = 2t - \tan t,$ | $y = \ln(\sin 2t),$ | |--|--------------------|---------------------| | for $0 < t < \frac{1}{2}\pi$. | | | | Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \cot t$. | | [5] | 5 (a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z + 2| \le 2$ and $\text{Im } z \ge 1$. [4] | (b) | Find the greatest value of $\arg z$ for points in the shaded region. | [2] | |------------|--|------------| | | | | | | | •••• | | | | | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | | | | | 5 L | | x and y are real. | | | | | [6 | |-------------------|------------|--------|--------|--------|--------| | |
 | •••••• | | | | | |
 | | | | | | |
 | | | | | | ••••• |
 | | ••••• | ••••• | ••••• | | |
 | | | | | | |
 | | ••••• | ••••• | ••••• | | |
 |
•••••• | ••••• | ••••• | •••••• | •••••• | | |
••••• | ••••• | •••••• | ••••• | ••••• | | |
 | | | | | | |
••••• | ••••• | ••••• | ••••• | ••••• | | |
 | | | | ••••• | | |
 | | | | ••••• | | |
 | | | | | | |
 | | ••••• | ••••• | ••••• | | |
 | | | | | | |
 | | ••••• | ••••• | ••••• | | |
 | | | | | | |
 | | | | | | |
 | | | | | | | | | | - 7 | | | •••• | | |---------|--------| | | | | •••• | | | | | | | | | | | | | | | •••• | | | | | | •••• | | | | | | •••• | | | | | | •••• | | | | | | | | | | | | | | | •••• | | | | | | •••• | | | | | | •••• | | | | | | | | | | | | | | | • • • • | | | | | | •••• | | | | | | •••• | | | | | | •••• | | | | | | | | | | | | | | | •••• | | | | | | •••• | | | | [m] *: | | ŀ | Hence solve the equation $\sqrt{5} \sec 2x + \tan 2x = 4$, for $0^{\circ} < x < 180^{\circ}$. | |---|---| | | | | | | | ٠ | | | | | | | | | | | | | | | • | | | | | | | | | | | | • | | | | | | | | | | | | • | | | | | | | | | | | | | | | • | | | | | | | | | | | | • | | | • | | | | | | | | | | | | ٠ | | | | | | | | 8 The curve with equation $y = \frac{x^3}{e^x - 1}$ has a stationary point at x = p, where p > 0. | Show that $p = 3(1 - e^{-p})$. | | |---------------------------------|-------| | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | ••••• | • | • | | | | |--------------------------|--------------------------|---------------------------|---|---|---------------|----------------|---| | | ••••• | •••••• | | | | | | | | ••••• | • | | | | | ••••• | • | | ••••• | •••••• | •••••• | •••••• | • | | ••••• | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | ••••• | ••••• | | ••••• | | | | | | | | | ••••• | | ••••• | ••••• | ••••• | | Use an iteraplaces. Giv | ntive formule the result | la based on of each itera | the equation | in part (a) to | o determine j | p correct to 2 | | | Use an iteraplaces. Give | ntive formule the result | la based on of each itera | the equation ation to 4 dec | in part (a) to | o determine j | p correct to 2 | | | places. Giv | e the result | of each itera | ation to 4 dec | in part (a) to cimal places. | | p correct to 2 | | | olaces. Giv | e the result | of each itera | ation to 4 dec | cimal places. | | p correct to 2 | | | olaces. Giv | e the result | of each itera | ation to 4 dec | cimal places. | | p correct to 2 | | | olaces. Giv | e the result | of each itera | ation to 4 dec | cimal places. | | p correct to 2 | | | olaces. Giv | e the result | of each itera | ation to 4 dec | cimal places. | | p correct to 2 | | | olaces. Giv | e the result | of each itera | ation to 4 dec | cimal places. | | p correct to 2 | | | olaces. Giv | e the result | of each itera | ation to 4 dec | cimal places. | | p correct to 2 | | | places. Giv | e the result | of each itera | ation to 4 dec | cimal places. | | p correct to 2 | | | places. Giv | e the result | of each itera | ation to 4 dec | cimal places. | | p correct to 2 | 2 decin | 9 With respect to the origin O, the position vectors of the points A, B and C are given by $$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -3 \\ -2 \end{pmatrix}.$$ The midpoint of AC is M and the point N lies on BC, between B and C, and is such that BN = 2NC. | (a) | Find the position vectors of M and N . | [3] | |-----|---|-----| (b) | Find a vector equation for the line through M and N . | [2] |
 | |------| | | | | |
 | | | | | | | | | | | |
 | |
 | | | | | |
 | |
 | |
 | | | | | |
 | | | |
 | | | | | |
 | | | | | | | | | A gardener is filling an ornamental pool with water, using a hose that delivers 30 litres of water per minute. Initially the pool is empty. At time t minutes after filling begins the volume of water in the pool is V litres. The pool has a small leak and loses water at a rate of 0.01V litres per minute. The differential equation satisfied by V and t is of the form $\frac{dV}{dt} = a - bV$. | (a) | Write down the values of the constants a and b . | [1] | |------------|---|-------| | | | | | | | | | | | ••••• | | (b) | Solve the differential equation and find the value of t when $V = 1000$. | [6] | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | ••••• | • | | | | | | |---|-----------------|---|-------|----------------|-------------| | | ••••• |
• | ••••• |
••••• | • • • • • | | | |
 | |
••••• | • • • • • • | | ••••• | |
 | |
 | • • • • • • | | | |
 | |
 | • • • • • • | | | |
 | |
 | | | | |
 | |
 | | | | |
 | |
 | | | | |
 | |
 | | | | |
 | |
 | | | | |
 | |
 | | | | | | | | | | | ression for V | | | s t becomes la | ırge | | | | | | Obtain an exp | | | | | | 11 Let $f(x) = \frac{5 - x + 6x^2}{(3 - x)(1 + 3x^2)}$. | (a) | Express $f(x)$ in partial fractions. | [5] | |-----|--------------------------------------|------| 7007 | | Find the exact value of $\int_0^1 f(x) dx$, simplifying your answer. | | |---|--------| | | ••••• | ••••• | | | ••••• | •••••• | | | •••••• | | | •••••• | | | | | | | | | | | | ••••• | | | | | | | | | |