• • • • • • • • • • • • • • • • • • • •									
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••	•••••		•••••			
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
	•••••					• • • • • • • • • • • • • • • • • • • •			
	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
		•••••	•••••	•••••	•••••				
	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •			
			•••••						• • • • • • • • • • • • • • • • • • • •
			•••••						
	•••••			•••••					
	••••••	••••••	••••••	••••••	••••••	••••••	•	•••••••	• • • • • • • • • •
		•••••		•••••					
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
	•••••					• • • • • • • • • • • • • • • • • • • •			
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
									n 3

ng
••••
 · • • • • •
 •••••
•••••
 · • • • • •
 •••••
 · • • • • •
•••••
 •••••
 · • • • • •
••••
 ••••
•••••
.

[5	$\int_0^4 x \sec^2 x \mathrm{d}x.$	nd the exact value of
1135	 	
60	 	

_						
4	The	parametric	equations	of a	curve	are

	$x = 2t - \tan t,$	$y = \ln(\sin 2t),$
for $0 < t < \frac{1}{2}\pi$.		
Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \cot t$.		[5]

5 (a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z + 2| \le 2$ and $\text{Im } z \ge 1$. [4]

(b)	Find the greatest value of $\arg z$ for points in the shaded region.	[2]
		••••
		••••
		••••
		••••
		••••
		••••
		5 L

x and y are real.					[6
	 	••••••			
•••••	 		•••••	•••••	•••••
	 		•••••	•••••	•••••
	 ••••••	•••••	•••••	••••••	••••••
	 •••••	•••••	••••••	•••••	•••••
	 •••••	•••••	•••••	•••••	•••••
	 				•••••
	 				•••••
	 		•••••	•••••	•••••
	 		•••••	•••••	•••••
				- 7	

••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
• • • •	
••••	
••••	
••••	
••••	
••••	
	[m] *:

ŀ	Hence solve the equation $\sqrt{5} \sec 2x + \tan 2x = 4$, for $0^{\circ} < x < 180^{\circ}$.
٠	
•	
•	
•	
•	
•	
•	
٠	

8 The curve with equation $y = \frac{x^3}{e^x - 1}$ has a stationary point at x = p, where p > 0.

Show that $p = 3(1 - e^{-p})$.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
	•••••	••••••					
	•••••						
				•			
•••••	•		•••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••							•••••
							•••••
				•••••	•••••		•••••
							•••••
•••••	•••••						
							•••••
Use an iteraplaces. Giv	ntive formule the result	la based on of each itera	the equation	in part (a) to	o determine j	p correct to 2	
Use an iteraplaces. Give	ntive formule the result	la based on of each itera	the equation ation to 4 dec	in part (a) to	o determine j	p correct to 2	
places. Giv	e the result	of each itera	ation to 4 dec	in part (a) to cimal places.		p correct to 2	
olaces. Giv	e the result	of each itera	ation to 4 dec	cimal places.		p correct to 2	
olaces. Giv	e the result	of each itera	ation to 4 dec	cimal places.		p correct to 2	
olaces. Giv	e the result	of each itera	ation to 4 dec	cimal places.		p correct to 2	
olaces. Giv	e the result	of each itera	ation to 4 dec	cimal places.		p correct to 2	
olaces. Giv	e the result	of each itera	ation to 4 dec	cimal places.		p correct to 2	
olaces. Giv	e the result	of each itera	ation to 4 dec	cimal places.		p correct to 2	
places. Giv	e the result	of each itera	ation to 4 dec	cimal places.		p correct to 2	
places. Giv	e the result	of each itera	ation to 4 dec	cimal places.		p correct to 2	2 decin

9 With respect to the origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -3 \\ -2 \end{pmatrix}.$$

The midpoint of AC is M and the point N lies on BC, between B and C, and is such that BN = 2NC.

(a)	Find the position vectors of M and N .	[3]
(b)	Find a vector equation for the line through M and N .	[2]

A gardener is filling an ornamental pool with water, using a hose that delivers 30 litres of water per minute. Initially the pool is empty. At time t minutes after filling begins the volume of water in the pool is V litres. The pool has a small leak and loses water at a rate of 0.01V litres per minute.

The differential equation satisfied by V and t is of the form $\frac{dV}{dt} = a - bV$.

(a)	Write down the values of the constants a and b .	[1]
		•••••
(b)	Solve the differential equation and find the value of t when $V = 1000$.	[6]
		•••••
		•••••
		•••••
		•••••
		•••••

• • • • • • • • • • • • • • • • • • • •					
	•••••	 •	•••••	 •••••	• • • • •
		 		 •••••	• • • • • •
•••••		 		 	• • • • • •
		 		 	• • • • • •
	ression for V			s t becomes la	ırge
					ırge
Obtain an exp					

11 Let $f(x) = \frac{5 - x + 6x^2}{(3 - x)(1 + 3x^2)}$.

(a)	Express $f(x)$ in partial fractions.	[5]
		7007

Find the exact value of $\int_0^1 f(x) dx$, simplifying your answer.	
	•••••
	•••••
	•••••
	••••••
	••••••
	••••••
	•••••