| | olve the equation | | | | | ΠD | | | |------|-------------------|-------|---|--------|---|---|---|-------| | | | | | | | | | | | | | | | | | | ••••• | •••• | •••• | | | | | ••••• | | | | | | | | | | | | | | | •••• | ••••• | | | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | •••• | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | •••• | ••••• | | • | •••••• | • | • | ••••• | ••••• | | | | | | | | | | | | •••• | ••••• | | • | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | •••• | | | • | ••••• | | • | | ••••• | •••• | •••• | ••••• | | | ••••• | | | • | | | | | | | | | | | | | •••• | ••••• | | | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | •••• | ••••• | | • | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | •••• | ••••• | ••••• | • | ••••• | ••••• | ••••• | ••••• | ••••• | | | | | | | | | | | | •••• | ••••• | | | | | | | | | | | | | | | | | | ••••• | | ••••• | | | | | | | | | | | | | •••• | (4) | Find the value of a . | [2 | |-------------|--|----| (1.) | | | | (b) | When a has this value, solve the inequality $p(x) < 0$. | [4 | [6] | ving your answer correct to 3 significant figures. | x-coordinate of this point, giving | Find the x-c | |-------|--|------------------------------------|--------------| | | | | | | | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | | | | | | | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | | | | | ••••• | -3- | | | ••••• | | | | | ••••• | | 4 (a) | Express $4\cos x - \sin x$ in the form $R\cos(x + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places. | |-------|--| (b | Hence solve the equation $4\cos 2x - \sin 2x = 3$ for $0^{\circ} < x < 180^{\circ}$. [5] | 5 | (a) | Solve the equation $z^2 - 6iz - 12 = 0$, giving the answers in the form $x + iy$, where x and y are real and exact. [3] | |---|-----|--| (b) | On a sketch of an Argand diagram with origin O , show points A and B representing the roots of the equation in part (a). | | | ind the exact modulus and argument of each root. | [3] | |----|--|--------| | •• | | | | •• | | | | | | ••••• | | | | ••••• | •• | | | | •• | | ••••• | | •• | | ••••• | | | | | | | | | | Η | Ience show that the triangle OAB is equilateral. | [1] | | | | | | | | | | | | | | | | | | •• | | | | •• | | •••••• | | •• | | ••••• | | •• | | | | | | | | | | | | | | | | | | 60 | 6 Relative to the origin O, the points A, B and C have position vectors given by $$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}.$$ | (a) | Using a scalar product, find the cosine of angle BAC. | [4] | |-----|---|-----| Hence find the area of triangle ABC . Give your answer in a simplified exact form. [4] | |--| 7 The variables x and θ satisfy the differential equation $$x\sin^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = \tan^2\theta - 2\cot\theta,$$ for $0 < \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 2 when $\theta = \frac{1}{4}\pi$. (a) Show that $\frac{d}{d\theta}(\cot^2 \theta) = -\frac{2 \cot \theta}{\sin^2 \theta}$. | (You may a | assume withou | ut proof that the | derivative of co | ot θ with respect t | so θ is $-\csc^2\theta$. |) [1] | |------------|---------------|-------------------|------------------|----------------------------|----------------------------------|-------| | | | | | | | ••••• | | | | | | | | | | •••••• | | | | | | ••••• | ••••• | | ••••• | | | | | | ••••• | (b) Solve the differential equation and find the value of x when $\theta = \frac{1}{6}\pi$. [7] |
••••• | |--------------| |
 | | | |
 <i>J</i> 00\ | | / 00\ | 8 The diagram shows part of the curve $y = \sin \sqrt{x}$. This part of the curve intersects the *x*-axis at the point where x = a. | (a) | State the exact value of a . | [1] | |------------|---|--------------------| | | | | | | | | | | | | | (b) | Using the substitution $u = \sqrt{x}$, find the exact area of the shaded region in the bounded by this part of the curve and the x-axis. | first quadrant [7] |
••••• | |--------------| |
 | | | |
 <i>J</i> 00\ | | / 00\ | The diagram shows a semicircle with diameter AB, centre O and radius r. The shaded region is the minor segment on the chord AC and its area is one third of the area of the semicircle. The angle CAB is θ radians. | (a) | Show that $\theta = \frac{1}{3}(\pi - 1.5 \sin 2\theta)$. | [4] | |-----|--|-----| Use an iterative formula based on the equation in part (a) to determine θ correct to 3 decimplaces. | | Verify by calculation that $0.5 < \theta < 0.7$. | | [2 | |---|----|--|--------------|-----------------------------| | | | | | | | | | | | | | | •• | | ••••• | | | | | | | | | | | | | | | | •• | •• | | | | | | | | | | | | | | | | | | •• | | ••••• | ••••••• | | | | | Use an iterative formula based on the equation in part (a) | to determine | θ correct to 3 decim | | | | | | θ correct to 3 decim | 10 Let $f(x) = \frac{4 - x + x^2}{(1 + x)(2 + x^2)}$. | (a) | Express $f(x)$ in partial fractions. | [5] | |-----|--------------------------------------|-------| | | | ••••• | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | | 200 | | Find the exact value of $\int_0^4 f(x) dx$. Give your answer as a single logarithm. | [| |--|---| | | | | | • | | | ••••• | | | | | | | | | ••••• | | | | | | | | | • | | | • | | | | | | | | | •••••• | | | ••••• | | | | | | | | | • | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | •••••• | | | | | | | | | |