	olve the equation					ΠD		
							•••••	
••••								
••••					•••••			
••••	•••••			•••••	•••••	•••••	•••••	•••••
••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••
••••			•	•••••		•		•••••
••••								
••••	•••••			•••••			• • • • • • • • • • • • • • • • • • • •	
••••	•••••			•••••	•••••	•••••	•••••	•••••
••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••
••••								
							•••••	
					•••••		•••••	
••••								

(4)	Find the value of a .	[2
(1.)		
(b)	When a has this value, solve the inequality $p(x) < 0$.	[4

[6]	ving your answer correct to 3 significant figures.	x-coordinate of this point, giving	Find the x-c
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
-3-			•••••
			•••••

4 (a)	Express $4\cos x - \sin x$ in the form $R\cos(x + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. State the exact value of R and give α correct to 2 decimal places.
(b	Hence solve the equation $4\cos 2x - \sin 2x = 3$ for $0^{\circ} < x < 180^{\circ}$. [5]

5	(a)	Solve the equation $z^2 - 6iz - 12 = 0$, giving the answers in the form $x + iy$, where x and y are real and exact. [3]
	(b)	On a sketch of an Argand diagram with origin O , show points A and B representing the roots of the equation in part (a).

	ind the exact modulus and argument of each root.	[3]
••		
••		
		•••••
		•••••
••		
••		•••••
••		•••••
Η	Ience show that the triangle OAB is equilateral.	[1]
••		
••		••••••
••		•••••
••		
		60

6 Relative to the origin O, the points A, B and C have position vectors given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}.$$

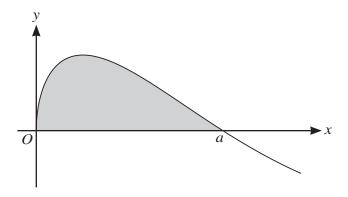
(a)	Using a scalar product, find the cosine of angle BAC.	[4]

Hence find the area of triangle ABC . Give your answer in a simplified exact form. [4]

7 The variables x and θ satisfy the differential equation

$$x\sin^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = \tan^2\theta - 2\cot\theta,$$

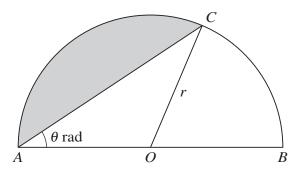
for $0 < \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 2 when $\theta = \frac{1}{4}\pi$.


(a) Show that $\frac{d}{d\theta}(\cot^2 \theta) = -\frac{2 \cot \theta}{\sin^2 \theta}$.

(You may a	assume withou	ut proof that the	derivative of co	ot θ with respect t	so θ is $-\csc^2\theta$.) [1]
						•••••
••••••						•••••
						•••••
•••••						•••••

(b) Solve the differential equation and find the value of x when $\theta = \frac{1}{6}\pi$. [7]

 •••••
<i>J</i> 00\
/ 00\


8

The diagram shows part of the curve $y = \sin \sqrt{x}$. This part of the curve intersects the *x*-axis at the point where x = a.

(a)	State the exact value of a .	[1]
(b)	Using the substitution $u = \sqrt{x}$, find the exact area of the shaded region in the bounded by this part of the curve and the x-axis.	first quadrant [7]

 •••••
<i>J</i> 00\
/ 00\

The diagram shows a semicircle with diameter AB, centre O and radius r. The shaded region is the minor segment on the chord AC and its area is one third of the area of the semicircle. The angle CAB is θ radians.

(a)	Show that $\theta = \frac{1}{3}(\pi - 1.5 \sin 2\theta)$.	[4]

Use an iterative formula based on the equation in part (a) to determine θ correct to 3 decimplaces.		Verify by calculation that $0.5 < \theta < 0.7$.		[2
	••		•••••	
	••			
	••			
	••		•••••	
			•••••••	
		Use an iterative formula based on the equation in part (a)	to determine	θ correct to 3 decim
				θ correct to 3 decim

10 Let $f(x) = \frac{4 - x + x^2}{(1 + x)(2 + x^2)}$.

(a)	Express $f(x)$ in partial fractions.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		200

Find the exact value of $\int_0^4 f(x) dx$. Give your answer as a single logarithm.	[
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	•
	• • • • • • • • • • • • • • • • • • • •
	••••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	•••••
	••••••