[1]

1 (a) Sketch the graph of y = |2x + 1|.

(b)	Solve the inequality $3x + 5 < 2x + 1 $.	[3]

2 On a sketch of an Argand diagram shade the region whose points represent complex numbers z satisfying the inequalities $|z| \le 3$, Re $z \ge -2$ and $\frac{1}{4}\pi \le \arg z \le \pi$. [4]

where a and b are integers.	the form $\frac{\ln a}{\ln b}$,	your answ	$= 5(3^{-x})$. Giv	quation 2^{3x-1}	Solve the e
					•••••
					•••••
					•••••
					•••••
					•••••
FF1:324					

•••••
••••••
•••••
 •••••

- The complex numbers u and w are defined by $u = 2e^{\frac{1}{4}\pi i}$ and $w = 3e^{\frac{1}{3}\pi i}$.
 - (a) Find $\frac{u^2}{w}$, giving your answer in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. Give the exact values of r and θ .

.....

(b) State the least positive integer n such that both $\operatorname{Im} w^n = 0$ and $\operatorname{Re} w^n > 0$. [1]

6	(a)	Prove the identity $\cos 4\theta + 4\cos 2\theta + 3 \equiv 8\cos^4 \theta$.	[4]
			••••••

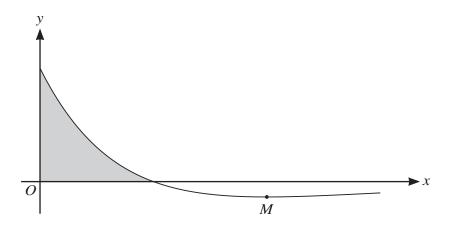
	Hence solve the equation $\cos 4\theta + 4\cos 2\theta = 4$ for $0^{\circ} \le \theta \le 180^{\circ}$.	[3
••		•
••		
••		
••		
••		
••		
••		
	To the second	77.00%
••		

The equation of a curve is $y =$	COS ² Y	for $0 \le x$	$<\frac{1}{2}\pi.$	At the point	where $x = a$,	the tangent	to the
curve has gradient equal to 12.	005 77						

Show that $a = \cos^{-1} \left(\sqrt[3]{\frac{\cos a + 2a \sin a}{12}} \right)$	<u>a</u>).	
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
	III 3	

•••••			
•••••			
•••••			
•••••			
	rative formula based on the ve the result of each iteration		termine a correct to 2 decim
	ve the result of each herativ	on to 1 decimal places.	

8 In a certain chemical reaction the amount, x grams, of a substance is increasing. The differential equation satisfied by x and t, the time in seconds since the reaction began, is


$$\frac{\mathrm{d}x}{\mathrm{d}t} = kx\mathrm{e}^{-0.1t},$$

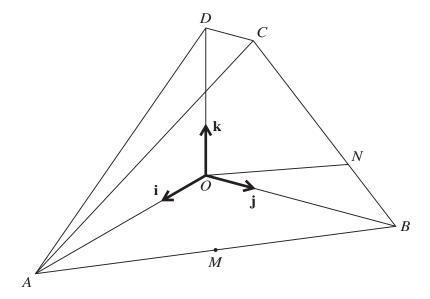
where k is a positive constant. It is given that x = 20 at the start of the reaction.

Solve the differential equation, obtaining a relation between x , t and k .	[
	•••••
	• • • • • • • • • • • • • • • • • • • •
	••••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
Ti de la companya de	71.75

				•••••	
				•••••	
				•••••	
	When $t = 10$, find	d the value of k	and find the val	ue approached	
) when $t = 10$, find	d the value of <i>k</i>	and find the val	ue approached	
) when $t = 10$, find	d the value of <i>k</i>	and find the val	ue approached	
) when $t = 10$, find	d the value of <i>k</i>	and find the val	ue approached	
) when <i>t</i> = 10, find	d the value of <i>k</i>	and find the val	ue approached	
) when $t = 10$, find	d the value of <i>k</i>	and find the val	ue approached	
) when $t = 10$, find	d the value of k	and find the val	ue approached	
) when <i>t</i> = 10, find	d the value of k	and find the val	ue approached	
) when $t = 10$, find	d the value of k	and find the val	ue approached	
) when <i>t</i> = 10, find	d the value of k	and find the val	ue approached	
) when <i>t</i> = 10, find	d the value of k	and find the val	ue approached	
Given that $x = 40$ large.) when <i>t</i> = 10, find	d the value of k	and find the val	ue approached	by x as t becomes [3]

9

The diagram shows part of the curve $y = (3 - x)e^{-\frac{1}{3}x}$ for $x \ge 0$, and its minimum point M.


(a)	Find the exact coordinates of M .	[5]

CTIII	s of e.							[
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	•••••
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••		•••••	•••••	••••••	•••••	••••••	•••••	•••••
						•••••		•••••
•••••	•••••••	•••••	••••••	••••••	•••••	••••••	••••••	•••••
		•••••						
••••••	•	••••••	••••••	••••••	••••••	•••••••	••••••	••••••
		•••••	•••••	•••••				•••••
•••••								
•••••		•••••	•••••	•••••	•••••		•••••	
•••••	•••••••••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	••••••••••	••••••	••••••	••••••	•••••	•••••••	••••••	••••••
		•••••		•••••	•••••			•••••

10 Let $f(x) = \frac{2x^2 + 7x + 8}{(1+x)(2+x)^2}$.

(a)	Express $f(x)$ in partial fractions.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		200

	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including	[5
•		
•		•••••
•		••••••
•		••••••
•		
•		
•		•••••
		600

In the diagram, OABCD is a solid figure in which OA = OB = 4 units and OD = 3 units. The edge OD is vertical, DC is parallel to OB and DC = 1 unit. The base, OAB, is horizontal and angle $AOB = 90^{\circ}$. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OB and OD respectively. The midpoint of AB is M and the point N on BC is such that CN = 2NB.

(a)	Express vectors \overrightarrow{MD} and \overrightarrow{ON} in terms of i , j and k .	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(b)	Calculate the angle in degrees between the directions of \overrightarrow{MD} and \overrightarrow{ON} .	[3]
		••••••
(c)	Show that the length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4]
		••••••