1

A metal post is driven vertically into the ground by dropping a heavy object onto it from above. The mass of the object is $120\,\mathrm{kg}$ and the mass of the post is $40\,\mathrm{kg}$ (see diagram). The object hits the post with speed $8\,\mathrm{m\,s^{-1}}$ and remains in contact with it after the impact.

(a)	Calculate the speed with which the combined post and object moves immediately after the impact. [2]
(b)	There is a constant force resisting the motion of magnitude 4800 N.
	Calculate the distance the post is driven into the ground. [3]

(a)	Draw a diagram showing the forces acting on the particle.	[1
(b)	Find the tensions in the strings.	[6
		•••••
		•••••
		•••••
		•••••

(a)	Use an energy method to find the greatest height that the ball reaches after hitting the ground
(b)	Find the total time taken, from the initial release of the ball until it reaches this greatest heig
(b)	Find the total time taken, from the initial release of the ball until it reaches this greatest heig
(b)	Find the total time taken, from the initial release of the ball until it reaches this greatest heig
(b)	
(b)	

) The	e car moves along a horizontal section of the road at a constant speed of 36 m s ⁻¹ .
(i)	Calculate the work done against the resisting force during the first 8 seconds.
(ii)	Calculate, in kW, the power developed by the engine of the car.
(ii)	Calculate, in kW, the power developed by the engine of the car.
(ii)	Calculate, in kW, the power developed by the engine of the car.
(ii)	

	of the car.	[3
		••••••
		••••••
		•••••
The	car now travels at a constant speed of $32\mathrm{ms^{-1}}$ up a section of the	road inclined at θ° to the
hori	e car now travels at a constant speed of $32 \mathrm{ms^{-1}}$ up a section of the izontal, with the engine working at $64 \mathrm{kW}$.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	
hori	izontal, with the engine working at 64 kW.	road inclined at θ° to the
hori	izontal, with the engine working at 64 kW.	

[5	Show that $s = \frac{1}{64}t^2(96 - t^2)$.

Find the speed of P at the instant that it returns to O .	[3
Find the maximum displacement of the particle from O .	[3

[2]

The diagram shows a particle of mass 5 kg on a rough horizontal table, and two light inextensible strings attached to it passing over smooth pulleys fixed at the edges of the table. Particles of masses 4 kg and 6 kg hang freely at the ends of the strings. The particle of mass 6 kg is 0.5 m above the ground. The system is in limiting equilibrium.

(a) Show that the coefficient of friction between the 5 kg particle and the table is 0.4.

		•••••
		••••••
		•••••
The	ne 6 kg particle is now replaced by a particle of mass 8 kg and the system is released f	from rest.
	ne 6 kg particle is now replaced by a particle of mass 8 kg and the system is released for the acceleration of the 4 kg particle and the tensions in the strings.	From rest.

(c)	In the subsequent motion the 8 kg particle hits the ground and does not rebound.
	Find the time that elapses after the 8 kg particle hits the ground before the other two particles come to instantaneous rest. (You may assume this occurs before either particle reaches a pulley.) [5]