1

The diagram shows a velocity-time graph which models the motion of a car. The graph consists of six straight line segments. The car accelerates from rest to a speed of $20 \,\mathrm{m\,s^{-1}}$ over a period of 5 s, and then travels at this speed for a further $20 \,\mathrm{s}$. The car then decelerates to a speed of $6 \,\mathrm{m\,s^{-1}}$ over a period of 5 s. This speed is maintained for a further $(T-30) \,\mathrm{s}$. The car then accelerates again to a speed of $20 \,\mathrm{m\,s^{-1}}$ over a period of $(50-T) \,\mathrm{s}$, before decelerating to rest over a period of $10 \,\mathrm{s}$.

(a)	Given that during the two stages of the motion when the car is accelerating, the accelerations are equal, find the value of T . [2]	
(b)	Find the total distance travelled by the car during the motion. [2]	
	المور المعالمة المعال	ŀ

(a)	The driving force exerted by the van is 2500 N.	
	Find the tension in the rope.	[4
	driving force is now removed and the van driver applies a braking force which acts only The resistance forces remain unchanged.	ly on the
(b)	Find the least possible value of the braking force which will cause the rope to become sla	ack. [2
		•••••

3

The diagram shows a semi-circular track ABC of radius 1.8 m which is fixed in a vertical plane. The points A and C are at the same horizontal level and the point B is at the bottom of the track. The section AB is smooth and the section BC is rough. A small block is released from rest at A.

(a)	Show that the speed of the block at B is $6 \mathrm{ms^{-1}}$.	[2]
	block comes to instantaneous rest for the first time at a height of $1.2 \mathrm{m}$ above the done against the resistance force during the motion of the block from B to this	
(b)	Find the mass of the block.	[3]

4 A cyclist starts from rest at a point A and travels along a straight road AB, coming to rest at B. The displacement of the cyclist from A at time t s after the start is s m, where

$$s = 0.004(75t^2 - t^3).$$

(a)	Show that the distance AB is 250 m.	[4]
(b)	Find the maximum velocity of the cyclist.	[3]

(a)	Find the resistance force.	[3
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••
		••••
		••••
		•••••
		•••••
		•••••
		•••••
		••••
		•••••
		•••••
		••••
		••••
		••••

The engine comes to a section of track which is horizontal. At the start of the section the engine is travelling at $30\,\mathrm{m\,s^{-1}}$ and the power of the engine is now reduced to $900\,\mathrm{kW}$. The resistance to motion is no longer constant, but in the next $60\,\mathrm{s}$ the work done against the resistance force is $46\,500\,\mathrm{kJ}$.

•••••	 •••••
•••••	•••••
•••••	•••••
• • • • • •	 •••••
•••••	•••••
•••••	
•••••	 •••••
•••••	
•••••	 •••••
•••••	•••••
•••••	
•••••	 •••••

A block of mass $5 \, \text{kg}$ is held in equilibrium near a vertical wall by two light strings and a horizontal force of magnitude $X \, \text{N}$, as shown in the diagram. The two strings are both inclined at 60° to the vertical.

(a)	Given that $X = 100$, find the tension in the lower string.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		 E 1- F:

•		••••••		•••••	•••••	•••••
•		•••••		•••••	•••••	•••••
•		•••••				
•		•••••		•••••	•••••	
		•••••				
•		•••••		•••••	•••••	•••••
•		•••••			•••••	
•						
•		•••••			•••••	•••••
•	•••••	•••••••	•••••••	•••••	•••••••	•••••
•		•••••				•••••
•		••••••	•	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•		•••••			•••••	•••••
•		••••••••	•	•••••	••••••	•••••
•		•••••			•••••	•••••
•	••••••	•••••	•••••	•••••	••••••	•••••
•				•••••		•••••
•	•••••	••••••		•••••	•••••	•••••
•						
•		••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•						
						ren ava e
•		•••••		•••••	•••••	

6.4 m apart on the same line of greatest slope of a rough plane inclined at an angle α to the horizontal, where $\sin \alpha = 0.8$ (see diagram). Particle P is released from rest and slides down the line of greatest slope. Simultaneously, particle Q is projected up the same line of greatest slope at a speed of $10 \,\mathrm{m \, s^{-1}}$. The coefficient of friction between each particle and the plane is 0.6.

(a)	Show that the acceleration of Q up the plane is $-11.6 \mathrm{m s^{-2}}$.	[4]
(b)	Find the time for which the particles are in motion before they collide.	[5]
		100

		•••••	
		••••••	
		••••••	
		••••••	
(c)	The particles coalesce on impact.		
	•		
	Find the speed of the combined particle immediately after the impact.	[4]	
	Find the speed of the combined particle immediately after the impact.	[4]	
	Find the speed of the combined particle immediately after the impact.	[4]	
	Find the speed of the combined particle immediately after the impact.	[4]	
	Find the speed of the combined particle immediately after the impact.		