(a)	Find the constant speed of the bus.	[2
		•••••
		•••••
		•••••
		•••••
(b)	Find the magnitude of the deceleration.	[1

	$ed 4 m s^{-1}$.	
(a)	Find k .	[3
<i>(</i> -1)		
(b)	Find, in terms of m , the loss of kinetic energy due to the collision.	[2
		••••••

3

Coplanar forces of magnitudes $24 \,\mathrm{N}$, $P \,\mathrm{N}$, $20 \,\mathrm{N}$ and $36 \,\mathrm{N}$ act at a point in the directions shown in the diagram. The system is in equilibrium.

Given that $\sin \alpha = \frac{3}{5}$, find the values of <i>P</i> and θ .	[6]

[1]	Draw a sketch showing the forces acting on the particle.
[5]	Find the least possible value of P .
Time State	

sin ⁻		
(a)	Find the change in potential energy of the car in 30 s.	[3
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
<i>a</i> .		••••
(b)	Given that the total work done by the engine of the car in this time is 1960 kJ, find the constant force resisting the motion.	
(b)		
(b)		
(b)		

en that this power is suddenly decreased by 15%, find the instantaneous deceleration of	
en that this power is suddenly decreased by 15%, find the instantaneous deceleration of	•••••
en that this power is suddenly decreased by 15%, find the instantaneous deceleration of	•••••
en that this power is suddenly decreased by 15%, find the instantaneous deceleration of	•••••
en that this power is suddenly decreased by 15%, find the instantaneous deceleration of	•••••
en that this power is suddenly decreased by 15%, find the instantaneous deceleration of	•••••
en that this power is suddenly decreased by 15%, find the instantaneous deceleration of	
ren that this power is suddenly decreased by 15%, find the instantaneous deceleration of	
	•••••

A particle P moves in a straight line starting from a point O and comes to rest 14 s later. At time t s after leaving O, the velocity v m s⁻¹ of P is given by 6

$$v = pt^2 - qt$$

$$0 \leqslant t \leqslant 6,$$

$$v = 63 - 4.5t$$
 $6 \le t \le 14$,

$$6 \le t \le 14$$
,

where p and q are positive constants.

(b) Sketch the velocity-time graph.

The acceleration of P is zero when t = 2.

(a)	Given that there are no instantaneous changes in velocity, find p and q .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••

[3]

	•••••
	••••••
	••••••
	 •••••
	••••••
	 •••••
	•••••
FET 198.4	
	promption and a

Two particles A and B of masses 2 kg and 3 kg respectively are connected by a light inextensible string. Particle B is on a smooth fixed plane which is at an angle of 18° to horizontal ground. The string passes over a fixed smooth pulley at the top of the plane. Particle A hangs vertically below the pulley and is 0.45 m above the ground (see diagram). The system is released from rest with the string taut. When A reaches the ground, the string breaks.

Find the total distance travelled by B before coming to instantaneous rest. does not reach the pulley.	You may assume that <i>B</i> [8]
	(00)

•••••••••••
••••••
<i>J</i> 00\
 100