•••••
••••••
•••••

2 (a) Sketch the graph of y = |2x - 3|.

[1]

(b)	Solve the inequality $ 2x - 3 < 3x + 2$.	[3]

•••	••••
•••	 ••••
•••	••••
	• • • • •
	• • • • •
• • •	 • • • • •
•••	• • • • •
•••	
• • •	• • • • •
• • •	 ••••
• • •	• • • • •
• • •	• • • • •
• • •	••••
• • •	• • • • •
	• • • • •
•••	• • • • •
•••	• • • • • •
•	j
	1

Tilla tile en	exact value of $\int_{\frac{1}{3}\pi}^{\pi} x s$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			[5
•••••	•••••	•••••	•••••	•••••	
•••••		•••••			
•••••					
••••••	••••••••••••	••••••	••••••	••••••	
•••••		•••••			
•••••					
•••••					
••••••	••••••	••••••••	••••••	••••••	
•••••		•••••			
•••••			•••••	•••••	
•••••					
••••••	••••••	••••••••	••••••	••••••	
•••••	•••••	•••••	•••••		
				•••••	

9709 w21 qp 33 (a) By first expanding $\cos(x - 60^\circ)$, show that the expression $2\cos(x-60^\circ)+\cos x$ can be written in the form $R\cos(x-\alpha)$, where R>0 and $0^{\circ}<\alpha<90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. (b) Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ takes its least possible value. [2]

7 The equation of a curve is ln(x + y) = x - 2y.

(a)	Show that $\frac{dy}{dx} = \frac{x+y-1}{2(x+y)+1}$.	
(u)	$\frac{dx}{dx} = 2(x+y) + 1$	[4]
		•••••••••••••••••••••••••••••••••••••••
		•••••••••••••••••••••••••••••••••••••••
		725

	•••••
	•••••
	• • • • •
	•••••
	•••••
	•••••
PER AV	

In the diagram, OABCD is a pyramid with vertex D. The horizontal base OABC is a square of side 4 units. The edge OD is vertical and OD = 4 units. The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively.

The midpoint of AB is M and the point N on CD is such that DN = 3NC.

(a)	Find a vector equation for the line through M and N .	[5]
		•••••
		•••••
		19861

ow that the length of the perpendicular	-	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••
		•••••
		[E] (90)

9 Let $f(x) = \frac{1}{(9-x)\sqrt{x}}$.

•	
٠	
•	
•	
٠	
٠	
•	
٠	
•	
•	
	1 = 1170

	Using the substitution $u = \sqrt{x}$, show that $\int_0^1 f(x) dx = \frac{1}{3} \ln 5$.	I
•		
•		
•		
•		
•		
•		
•		
•		•••••
•		
٠		

A large plantation of area $20 \,\mathrm{km^2}$ is becoming infected with a plant disease. At time t years the area infected is $x \,\mathrm{km^2}$ and the rate of increase of x is proportional to the ratio of the area infected to the area not yet infected.

When t = 0, x = 1 and $\frac{dx}{dt} = 1$.

(a) Show that x and t satisfy the differential equation

 $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{19x}{20 - x}.$

[2]

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
	••••				
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

(b) Solve the differential equation and show that when t = 1 the value of x satisfies the equation $x = e^{0.9 + 0.05x}$. [5]

.....

(c)	Use an iterative formula based on the equation in part (b), with an initial value of 2, to determine <i>x</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
(d)	Calculate the value of t at which the entire plantation becomes infected. [1]

11	The	complex number $-\sqrt{3} + i$ is denoted by u .	
	(a)	Express u in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$, giving the exact values of r and θ . [2]	
	(b)	Hence show that u^6 is real and state its value. [2]	

(c) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $0 \le \arg(z - u) \le \frac{1}{4}\pi$ and $\operatorname{Re} z \le 2$. [4]

(ii)	Find the greatest value of $ z $ for points in the shaded region. Give your answer correct to 3 significant figures. [2]