integers.	f x for which $3(2^{1-}$	$= /^{n}$. Give	your answer in t	the form $\frac{1}{\ln b}$,	where a and b a
		•••••			

Solve the inequality $ 3x - a > 2 x + 2a $, where a is a positive constant.	[4]
	•••••
	•••••
	•••••
	•••••
	•••••
	[- -1-32_6

	•••••
	•••••
	•••••
	•••••
olve the equation $(z + 2 + i)^* + (2 + i)z = 0$, giving your answer in the form $x + iy$ whare real.	nere <i>x</i> and
	•••••
	•••••
	•••••
	•••••

	are real.

4	Express $\frac{4x^2 - 13x + 13}{(2x - 1)(x - 3)}$ in partial fractions.	[5]
		•••••
		••••••

5 (a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z - 3 - 2i| \le 1$ and $\text{Im } z \ge 2$. [4]

(b)	Find the greatest value of $\arg z$ for points in the shaded region, giving your answer in degrees. [3]

		$\frac{1}{2}(\sin 5x)$	$+\sin x) \equiv$	$\sin 3x \cos 3x$	s 2x.			[3
• • • • • • • • • • • • • • • • • • • •			••••••	•••••	•••••	••••••		
•••••	•••••		•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••								
•			•	•		•		
•••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	•••••••
•••••			•••••	••••••	•••••	••••••		
•••••								
•••••			•••••			•••••		
			•••••			•••••		
•••••	•••••	•••••	•••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•
•••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••	
•••••			•••••	••••••		••••••	•••••	
•••••						•••••	•••••	
	•••••							
•••••	•••••	•••••	•••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
		•••••	•••••		•••••			
							1900	100

Hence show that $\int_0^{\frac{\pi}{4}} \sin 3x \cos 2x dx = \frac{1}{5}(3 - \sqrt{2}).$	
	••••••
	•••••
	•••••

7 The variables x and y satisfy the differential equation

$$e^{2x}\frac{\mathrm{d}y}{\mathrm{d}x} = 4xy^2,$$

and it is given that y = 1 when x = 0.

Solve the differential equation, obtaining an expression for y in terms of x .	[7]

 ••••••
 ••••••
 ••••••
 ••••••
 ••••••
 ••••••
 ••••••
<i>5</i> 00
<i>J</i> 00\

8 (a) By first expanding $(\cos^2\theta + \sin^2\theta)^2$, show that $\cos^4\theta + \sin^4\theta = 1 - \frac{1}{2}\sin^2 2\theta.$ [3]

		1 age 11 0/ 1/	9709_wz1_qp_32
(b)	Hence solve the equation		
		$\cos^4\theta + \sin^4\theta = \frac{5}{9},$	
	for $0^{\circ} < \theta < 180^{\circ}$.		[4]
			(m) 25.4 fr

9 The equation of a curve is $ye^{2x} - y^2e^x = 2$.

(a)	Show that $\frac{dy}{dx} =$	$\frac{2ye^x - y^2}{2y - e^x}.$	[4
-----	-----------------------------	---------------------------------	---	---

[4	
TEN OCC	

- 10 With respect to the origin O, the position vectors of the points A and B are given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.
 - (a) Find a vector equation for the line l through A and B. [3]

(b) The point *C* lies on *l* and is such that $\overrightarrow{AC} = 3\overrightarrow{AB}$.

Find the position vector of C. [2]

 •••••
 ••••••
•••••
 ••••••
 •••••
•••••
•••••
•••••
••••••
••••••
•••••

11 The equation of a curve is $y = \sqrt{\tan x}$, for $0 \le x < \frac{1}{2}\pi$.

(a)	Express $\frac{dy}{dx}$ in terms of tan x, and verify that	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 \text{ when } x = \frac{1}{4}\pi.$	[4]

.....

The value of $\frac{dy}{dx}$ is also 1 at another point on the curve where x = a, as shown in the diagram.

(b) Show that
$$t^3 + t^2 + 3t - 1 = 0$$
, where $t = \tan a$. [4]

		•••••			
		•••••			
		•••••			
		•••••			
		•••••			
(c)	Use the iterative formula				
(C)					
	$a_{n+1} = \tan^{-1} \left(\frac{1}{3} (1 - \tan^2 a_n - \tan^3 a_n) \right)$				
	to determine a correct to 2 decimal places, giving the result of each iteration to				
		[3]			
		min deut			
		63			