••••••
•••••
•••••
•••••
••••
•••••
•••••
••••••
 •••••
••••••
•••••
•••••
 •••••
•••••
•••••
•••••
•••••

b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.
b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.

(a)	Find the coordinates of this point.	[4
(b)	Determine whether the stationary point is a maximum or a minimum.	[2

$\int_3^\infty \frac{1}{(x+1)\sqrt{x}} \mathrm{d}x.$	[6

5	(a)	Show that the equation
		$\cot 2\theta + \cot \theta = 2$
		can be expressed as a quadratic equation in $\tan \theta$. [3]
	(b)	Hence solve the equation $\cot 2\theta + \cot \theta = 2$, for $0 < \theta < \pi$, giving your answers correct to 3 decimal places. [3]

Find the values of a and b .	[6
	F-1754

	Given that $y = \ln(\ln x)$, show that	1 4	
	<u>d</u>	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x \ln x}.$	[
	d	$ix x \ln x$	
			•••••
			•••••
			• • • • • • • • • • • • • • • • • • • •
The	variables x and t satisfy the differential	l equation	
	1	dx	
	$x \ln$	$ax + t\frac{\mathrm{d}x}{\mathrm{d}t} = 0.$	
It is	given that $x = e$ when $t = 2$.		
10 15	given that $x = 0$ when $t = 2$.		
(b)	answer.		[

Hence state what happens to the value of x as t tends to infinity.	[1]
	/00/

(c)

8 The constant a is such that $\int_{1}^{a} \frac{\ln x}{\sqrt{x}} dx = 6.$

(a)	Show that $a = \exp \left(\frac{1}{2} \right)$	$\left(\frac{1}{\sqrt{a}}+2\right).$	[5]
-----	---	--------------------------------------	-----

$[\exp(x)$ is an alternative notation for e^x .]

•••		
•••		
•••		•••••
•••		
•••		
Us pl	Use an iterative formula based on the equation in part (a) to determine a correctlaces. Give the result of each iteration to 4 decimal places.	ct to 2 decima
•••		
•••		
•••		

(a)	Show that l and m are perpendicular.
(b)	Show that l and m intersect and state the position vector of the point of intersection.
(~)	

Show that the length of the perpendicular from the origin to the line m is $\frac{1}{3}\sqrt{5}$. [4]

(a)	Find the values of a and b .	[4
		••••••
		••••••
		••••••
(b)	State a second complex root of this equation.	[1]

	the real factors of $p(x)$.	[
		•••••
•••••		•••••
		•••••
••••••		•••••
		•••••
		•••••
(i) O	on a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$.	
(i) O	In a sketch of an Argand diagram, shade the region whose points represent columbers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$.	
(i) O m	In a sketch of an Argand diagram, shade the region whose points represent columbers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$.	omplo
(i) O	In a sketch of an Argand diagram, shade the region whose points represent columbers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$.	
(i) O	In a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$.	
(i) O	In a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$.	
(i) O	on a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$.	
nu (ii) Fi	on a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. The property of the least value of $\operatorname{Im} z$ for points in the shaded region. Give your answer in an arm.	[
nu (ii) Fi	umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an	[
nu (ii) Fi	umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an	[
nu (ii) Fi	umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an	[
nu (ii) Fi	umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an	[
nu (ii) Fi	umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an	[