| •••••• | |-----------| | ••••• | | | | | | ••••• | | ••••• | | •••• | | | | ••••• | | ••••• | | | | •••••• | | | |
••••• | | | | •••••• | | ••••• | | ••••• | | | |
••••• | | ••••• | | | | | | ••••• | | ••••• | | | |
 | | ••••• | | | | | | | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | |------------|---| | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | b) | Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$. | | (a) | Find the coordinates of this point. | [4 | |------------|---|----| (b) | Determine whether the stationary point is a maximum or a minimum. | [2 | $\int_3^\infty \frac{1}{(x+1)\sqrt{x}} \mathrm{d}x.$ | [6 | |---|----| 5 | (a) | Show that the equation | |---|-----|---| | | | $\cot 2\theta + \cot \theta = 2$ | | | | can be expressed as a quadratic equation in $\tan \theta$. [3] | (b) | Hence solve the equation $\cot 2\theta + \cot \theta = 2$, for $0 < \theta < \pi$, giving your answers correct to 3 decimal places. [3] | Find the values of a and b . | [6 | |----------------------------------|--------| F-1754 | | | | | | Given that $y = \ln(\ln x)$, show that | 1 4 | | |------------|--|--|---| | | <u>d</u> | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x \ln x}.$ | [| | | d | $ix x \ln x$ | | | | | | | | | | | ••••• | | | | | | | | | | ••••• | • | | | | | | | The | variables x and t satisfy the differential | l equation | | | | 1 | dx | | | | $x \ln$ | $ax + t\frac{\mathrm{d}x}{\mathrm{d}t} = 0.$ | | | It is | given that $x = e$ when $t = 2$. | | | | 10 15 | given that $x = 0$ when $t = 2$. | | | | (b) | answer. | | [| Hence state what happens to the value of x as t tends to infinity. | [1] | |--|------| | | | | | | | | | | | /00/ | (c) 8 The constant a is such that $\int_{1}^{a} \frac{\ln x}{\sqrt{x}} dx = 6.$ | (a) | Show that $a = \exp \left(\frac{1}{2} \right)$ | $\left(\frac{1}{\sqrt{a}}+2\right).$ | [5] | |-----|---|--------------------------------------|-----| |-----|---|--------------------------------------|-----| | $[\exp(x)$ is an alternative notation for e^x .] | |--| ••• | | | |----------|--|----------------| | ••• | | | | ••• | | ••••• | | ••• | | | | ••• | | | | Us
pl | Use an iterative formula based on the equation in part (a) to determine a correctlaces. Give the result of each iteration to 4 decimal places. | ct to 2 decima | | ••• | | | | ••• | | | | ••• | (a) | Show that l and m are perpendicular. | |-----|---| (b) | Show that l and m intersect and state the position vector of the point of intersection. | | (~) | Show that the length of the perpendicular from the origin to the line m is $\frac{1}{3}\sqrt{5}$. [4] | |--| (a) | Find the values of a and b . | [4 | |-----|---|--------| •••••• | | | | •••••• | | | | •••••• | | | | | | | | | | (b) | State a second complex root of this equation. | [1] | | | | | | | | | | | the real factors of $p(x)$. | [| |---------------|---|-------| | | | ••••• | | | | | | | | | | ••••• | | ••••• | | | | ••••• | | | | | | | | | | •••••• | | ••••• | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | | | | (i) O | on a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. | | | (i) O | In a sketch of an Argand diagram, shade the region whose points represent columbers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. | | | (i) O
m | In a sketch of an Argand diagram, shade the region whose points represent columbers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. | omplo | | (i) O | In a sketch of an Argand diagram, shade the region whose points represent columbers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. | | | (i) O | In a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. | | | (i) O | In a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. | | | (i) O | on a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. | | | nu
(ii) Fi | on a sketch of an Argand diagram, shade the region whose points represent combers z satisfying the inequalities $ z - u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. The property of the least value of $\operatorname{Im} z$ for points in the shaded region. Give your answer in an arm. | [| | nu
(ii) Fi | umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an | [| | nu
(ii) Fi | umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an | [| | nu
(ii) Fi | umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an | [| | nu
(ii) Fi | umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an | [| | nu
(ii) Fi | umbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. ind the least value of Im z for points in the shaded region. Give your answer in an | [|