Describe	fully, in the co	orrect order	, the two tr	ansformati	ons that ha	ive been co	mbined.	[4
••••••	•••••	••••••	•••••	•	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••••		•••••						•••••
• • • • • • • • • • • • • • • • • • • •								
••••••		•••••••	•••••	•	•	••••••	••••••	•••••
• • • • • • • • • • • • • • • • • • • •								
•••••							•••••	
•••••	••••••	••••••	•••••	•	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••								
•••••			•••••			•••••	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		•••••	•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••								
• • • • • • • • • • • • • • • • • • • •								
•••••		••••••	•••••			••••••	•••••	•••••
•••••		•••••	•••••		•••••	•••••	•••••	•••••

(a)	Find the first three terms, in ascending powers of x , in the expansion of $(1 + ax)^6$. [1]
(b)	Given that the coefficient of x^2 in the expansion of $(1-3x)(1+ax)^6$ is -3 , find the possible value of the constant a .

(a)	Express $5y^2 - 30y + 50$ in the form $5(y + a)^2 + b$, where a and b are constants.	[2]
		•••••••
(b)	The function f is defined by $f(x) = x^5 - 10x^3 + 50x$ for $x \in \mathbb{R}$.	
	Determine whether f is an increasing function, a decreasing function or neither.	[3
	200	60

(a)	Find the smallest value of <i>n</i> for which the <i>n</i> th term is negative.	[2
		•••••
	given that the sum of the first $2k$ terms of this progression is equal to the sum of the Find the value of k .	
		[3
		[3

In the diagram, X and Y are points on the line AB such that BX = 9 cm and AY = 11 cm. Arc BC is part of a circle with centre X and radius 9 cm, where CX is perpendicular to AB. Arc AC is part of a circle with centre Y and radius Y and Y cm.

(a)	Show that angle $XYC = 0.9582$ radians, correct to 4 significant figures. [1]

)	Find the perimeter of ABC .	[6]
		•••••
		•••••
		•••••
		•••••
		7.32.4

6

(b)

The diagram shows the graph of y = f(x).

(a) On this diagram sketch the graph of $y = f^{-1}(x)$. [1]

It is now given that $f(x) = -\frac{x}{\sqrt{4 - x^2}}$ where -2 < x < 2.

Find an expression for $f^{-1}(x)$.	[4]
	••••••
	••••••

The	function g is defined by $g(x) = 2x$ for $-a < x < a$, where a is a constant.	
(c)	State the maximum possible value of a for which fg can be formed.	[1]
(d)	Assuming that fg can be formed, find and simplify an expression for $fg(x)$.	[2]
		(E104 - C
		700

7	(a)	Show that the equation $\frac{\tan x + \cos x}{\tan x - \cos x} = k$, where <i>k</i> is a constant, can be expressed as
		$(k+1)\sin^2 x + (k-1)\sin x - (k+1) = 0.$ [4]

)	Hence solve the equation	$\frac{\tan x + \cos x}{\tan x - \cos x} = 4 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$.]
			•
			. •
			. •
			. •
			. •
			. •
			. •
			. •
			. •
			. •
			. •
			. •
			, .
			. •

8

The diagram shows the curves with equations $y = x^{-\frac{1}{2}}$ and $y = \frac{5}{2} - x^{\frac{1}{2}}$. The curves intersect at the points $A(\frac{1}{4}, 2)$ and $B(4, \frac{1}{2})$.

a)	Find the area of the region between the two curves.	[6]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

E	Find the value of p .	[4
		•••••
		•••••
		•••••
		••••••
		••••••
		•••••
		••••••

Page 13 of 16 9709_w21_qp_13 The line y = 2x + 5 intersects the circle with equation $x^2 + y^2 = 20$ at A and B. (a) Find the coordinates of A and B in surd form and hence find the exact length of the chord AB. [7]

A straight line through the point (10, 0) with gradient m is a tangent to the circle.

Find the two possible values of m .	[5

10 A curve has equation y = f(x) and it is given that

$$f'(x) = (\frac{1}{2}x + k)^{-2} - (1 + k)^{-2},$$

where k is a constant. The curve has a minimum point at x = 2.

	Find $f''(x)$ in terms of k and x , and hence find the set of possible values of k .	
•		
		•••••
•		
		•••••
•		
s n	ow given that $k = -3$ and the minimum point is at $(2, 3\frac{1}{2})$.	
	ow given that $k = -3$ and the minimum point is at $(2, 3\frac{1}{2})$. Find $f(x)$.	
	ow given that $k = -3$ and the minimum point is at $(2, 3\frac{1}{2})$. Find $f(x)$.	[4
		[4
	Find $f(x)$.	[4
	Find $f(x)$.	[4
	Find $f(x)$.	[-
	Find $f(x)$.	[-
	Find $f(x)$.	[-
	Find $f(x)$.	[4
	Find $f(x)$.	[4

(c)	Find the coordinates of the other stationary point and determine its nature.	[4]
		(E) 98.40